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Abstract. We establish sufficient optimality conditions for a class of nondif-

ferentiable minimax fractional programming problems involving (F, α, ρ, d)-

convexity. Subsequently, we apply the optimality conditions to formulate two

types of dual problems and prove appropriate duality theorems.
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1. Introduction

Schmitendorf (Ref. 1) established necessary and sufficient optimality condi-

tions for a minimax problem. Tanimoto (Ref. 2) applied these optimality conditions

to define a dual problem and derived duality theorems, which were extended for the

fractional analogue of a generalized minimax problem by Yadav and Mukherjee

(Ref. 3). In Ref. 3, Yadav and Mukherjee employed also the optimality con-

ditions of Ref. 1 to construct two dual problems and derived duality theorems

for differentiable fractional minimax programming. Chandra and Kumar (Ref. 4)

pointed out certain omissions and inconsistencies in the formulation of Yadav

and Mukherjee (Ref. 3); they constructed two modified dual problems and proved

duality theorems for differentiable fractional minimax programming. Bector and

Bhatia (Ref. 5) and Weir (Ref. 6) relaxed the convexity assumptions in the suf-

ficient optimality conditions of Ref. 1, employed the optimality conditions to

construct several dual problems which involve pseudoconvex and quasiconvex

functions, and discussed weak and strong duality theorems. In Ref. 7, Zalmai

1 The authors thank the referee for valuable suggestions improving the presentation of the paper.
2 Reader, Department of Mathematics, Aligarh Muslim University, Aligarh, India.
3 Research Scholar, Department of Mathematics, Aligarh Muslim University, Aligarh, India.
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used an infinite-dimensional version of the Gordan theorem of the alternative to

derive first-order and second-order necessary optimality conditions for a class of

minimax programming problems in a Banach space; he established several suf-

ficient optimality conditions and duality formulations under generalized invexity

assumptions. Liu and Wu (Ref. 8) and Ahmad (Ref. 9) recently derived sufficient

optimality conditions and duality theorems for minimax fractional programming

in the framework of (F, ρ)-convex functions and ρ-invex functions respectively.

Motivated by various concepts of generalized convexity, Liang et al. (Refs. 10,

11) introduced a unified formulation of generalized convexity, which was called

(F, α, ρ, d)-convexity and obtained some corresponding optimality conditions

and duality results for both single-objective fractional problems and multiobjec-

tive problems. Recently, Liang and Shi (Ref. 12) obtained sufficient conditions and

duality theorems for minimax fractional problem under (F, α, ρ, d)-convexity. Lai

et al. (Ref. 13) derived necessary and sufficient conditions for nondifferentiable

minimax fractional problem with generalized convexity and applied these opti-

mality conditions to construct a parametric dual model and also discussed duality

theorems. Lai and Lee (Ref. 14) obtained duality theorems for two parameter-free

dual models of nondifferentiable minimax fractional problem involving general-

ized convexity assumptions. Recently, in view of generalized univexity, Mishra

et al. (Ref. 15) extended the results of Refs. 13–14.

In this paper, motivated by Liang et al. (Ref. 10), Lai et al. (Ref. 13), and

Lai and Lee (Ref. 14), we establish sufficient conditions for a nondifferentiable

minimax fractional programming problem with (F, α, ρ, d)-convexity. When the

sufficient conditions are utilized, two dual models can be formulated and the usual

duality results are presented. In view of the generalized convexity, we extend the

results of Refs. 8, 9 and 12–14.

This paper is organized as follows. In Section 2, we give some preliminaries.

In Section 3, we establish sufficient optimality conditions. Duality results are

presented in Sections 4 and 5.

2. Notations and Preliminary Results

Let Rn be the n-dimensional Euclidean space and let X be an open set in Rn.

Definition 2.1. A functional F : X × X × Rn → R is said to be sublinear

if, ∀x, x̄ ∈ X,

(i) F (x, x̄; a1 + a2) ≤ F (x, x̄; a1) + F (x, x̄; a2), ∀ a1, a2 ∈ Rn,

(ii) F (x, x̄; αa) = αF (x, x̄; a), ∀α ∈ R+, a ∈ Rn.

The concept of sublinear functional was given in Ref. 16. By (ii), it is clear

that F (x, x̄; 0) = 0.
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Based upon the concept of sublinear functional, we recall a unified formula-

tion of generalized convexity [i.e., (F, α, ρ, d)-convexity], which was introduced

by Liang et al. (Ref. 10) as follows.

Definition 2.2. Let F : X × X × Rn → R be a sublinear functional; let

the function ζ : X → R be differentiable at x̄ ∈ X,α : X × X → R+\{0}, ρ ∈ R,

and d(., .) : X × X → R. The function ζ is said to be (F, α, ρ, d)-convex at x̄ if

ζ (x) − ζ (x̄) ≥ F (x, x̄; α(x, x̄)∇ζ (x̄)) + ρd2(x, x̄), ∀x ∈ X.

The function ζ is said to be (F, α, ρ, d)-convex over X if it is (F, α, ρ, d)-convex

at x̄,∀x ∈ X; ζ is said to be strongly (F, α, ρ, d)-convex or (F, ρ)-convex if ρ > 0

or ρ = 0, respectively.

Special Cases. From Definition 2.2, there are the following special cases.

(I) If α(x, x̄) = 1, for all x, x̄ ∈ X, then the (F, α, ρ, d)-convexity is the

(F, ρ)-convexity defined in Ref. 16.

(II) If F (x, x̄; α(x, x̄)∇ζ (x̄)) = ∇ζ (x̄)tη(x, x̄) for a certain map η : X ×

X → Rn, then the (F, α, ρ, d)-convexity is the ρ-invexity of Ref. 17.

(III) If ρ = 0 or d(x, x̄) = 0 for all x, x̄ ∈ X and if F (x, x̄; α(x, x̄)∇ζ (x̄)) =

∇ζ (x̄)tη(x, x̄) for a certain map η : X × X → Rn, then the (F, α, ρ, d)-

convexity reduces to the invexity introduced in Ref. 18.

We consider now the following nondifferentiable minimax fractional pro-

gramming problem:

(P) min
x∈Rn

sup
y∈Y

f (x, y) + (x tBx)1/2

h(x, y) − (x tDx)1/2
,

s.t. g(x) ≤ 0, x ∈ X,

where Y is a compact subset of Rm, f, h : Rn × Rm → R are C1 functions on

Rn × Rm, and g : Rn → Rp is a C1 function on Rn; B and D are n × n positive-

semidefinite matrices.

Let

S = {x ∈ X : g(x) ≤ 0}

denote the set of all feasible solutions of (P). Any point x ∈ S is called the feasible

point of (P). For each (x, y) ∈ Rn × Rm, we define

φ(x, y) =
f (x, y) + (x tBx)1/2

h(x, y) − (x tDx)1/2
,

such that, for each (x, y) ∈ S × Y,

f (x, y) + (x tBx)1/2 ≥ 0 and h(x, y) − (x tDx)1/2 > 0.



258 JOTA: VOL. 129, NO. 2, MAY 2006

For each x ∈ S, we define

J (x) = {j ∈ J : gj (x) = 0},

where

J = {1, 2, . . . , p},

Y (x) =

{

y ∈ Y :
f (x, y) + (x tBx)1/2

h(x, y) − (x tDx)1/2
= sup

z∈Y

f (x, z) + (x tBx)1/2

h(x, z) − (x tDx)1/2

}

.

K(x) =

{

(s, t, ỹ) ∈ N × Rs
+ × Rms : 1≤ s ≤n + 1, t = (t1, t2, . . . , ts) ∈Rs

+,

with

s
∑

i=1

ti =1,ỹ = (ȳ1, ȳ2, . . . , ȳs), with ȳi ∈ Y (x), i = 1, 2, . . . , s

}

.

Since f and h are continuously differentiable and Y is compact in Rm, it

follows that, for each x∗ ∈ S, Y (x∗) 	= ∅ and for any ȳi ∈ Y (x∗), we have a positive

constant

k◦ = φ(x∗, ȳi) =
f (x∗, ȳi) + (x∗tBx∗)1/2

h(x∗, ȳi) − (x∗tDx∗)1/2
.

We shall need the following generalized Schwartz inequality.

Let B be a positive-semidefinite matrix of order n. Then, for all x,w ∈ Rn,

x tBw ≤ (x tBx)1/2(wtBw)1/2. (1)

We observe that equality holds if Bx = λBw for some λ ≥ 0. Evidently, if

(wtBw)1/2 ≤ 1, we have

x tBw ≤ (x tBx)1/2.

If the functions f, g, h in problem (P) are continuously differentiable with respect

to x ∈ Rn, then Lai et al. (Ref. 13) derived the following necessary conditions for

optimality of (P). In what follows, ∇ stands for the gradient vector with respect to x.

Theorem 2.1. Necessary Conditions. If x∗ is a solution of problem (P)

satisfying x∗tBx∗ > 0, x∗tDx∗ > 0 and if ∇gj (x∗), j ∈ J (x∗) are linearly inde-

pendent, then there exist (s, t∗, ȳ) ∈ K(x∗), k◦ ∈ R+, w, v ∈ Rn, and µ∗ ∈ R
p
+

such that
s

∑

i=1

t∗i {∇f (x∗, ȳi) + Bw − k◦(∇h(x∗, ȳi) − Dv)} + ∇

p
∑

j=1

µ∗
jgj (x∗) = 0, (2)

f (x∗, ȳi)+(x∗tBx∗)1/2− k◦(h(x∗, ȳi)−(x∗tDx∗)1/2)=0, i = 1, 2, . . . , s, (3)

p
∑

j=1

µ∗
jgj (x∗) = 0, (4)
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t∗i ≥ 0, i = 1, 2, . . . , s,

s
∑

i=1

t∗i = 1, (5)

wtBw ≤ 1, vtDv ≤ 1, (6a)

(x∗tBx∗)1/2 = x∗tBw, (6b)

(x∗tDx∗)1/2 = x∗tDv. (6c)

Remark 2.1. In the above theorem, both matrices B and D are positive

semidefinite. If either x∗tBx∗ or x∗tDx∗ is zero, or if both B and D are singular,

then for (s, t∗, ȳ) ∈ K(x∗), we can take a set Zȳ(x∗) as defined in Ref. 13 by

Zȳ(x∗)={z ∈ Rn : zt∇gj (x∗) ≤ 0, j ∈ J (x∗)

satisfying one of the following conditions (i), (ii), (iii)}:

(i) x∗tBx∗ > 0, x∗tDx∗ = 0

⇒ zt

(

s
∑

i=1

t∗t {∇f (x∗, ȳi) + Bx∗/(x∗tBx∗)1/2

− k◦∇h(x∗, ȳi)}

)

+
(

zt
(

k2
◦D

)

z
)1/2

< 0,

(ii) x∗tBx∗ = 0, x∗tDx∗ > 0

⇒ zt

(

s
∑

i=1

t∗i {∇f (x∗, ȳi) − k◦(∇h(x∗, ȳi)

−Dx∗/(x∗tDx∗)1/2)}

)

+ (ztBz)1/2 < 0,

(iii) x∗tBx∗ = 0, x∗tDx∗ = 0

⇒ zt

(

s
∑

i=1

t∗i {∇f (x∗, ȳi) − k◦∇h(x∗, ȳi)}

)

+
(

zt
(

k2
◦D

)

z
)1/2

+ (ztBz)1/2 < 0.

If we take Zȳ(x∗) = ∅ in Theorem 2.1, then the result of Theorem 2.1 still holds.

3. Sufficient Conditions

We establish now the sufficient conditions for optimality of (P) under the

assumptions of (F, α, ρ, d)-convexity.
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Theorem 3.1. Sufficient Conditions. Let x∗ be a feasible solution of (P)

and let there exist a positive integer s, 1 ≤ s ≤ n + 1, t∗ ∈ Rs
+, ȳi ∈ Y (x∗), i =

1, 2, . . . s, k◦ ∈ R+, w, v ∈ Rn, and µ∗ ∈ R
p
+ satisfying relations (2)–(6). If

f (., ȳi) + (.)tBw is (F, α, ρi, di)-convex, if −h(., ȳi) + (.)tDv is (F, α, ρ̄i, d̄i)-

convex, and if gj (.), for j = 1, 2, . . . , p is (F, βj , νj , cj )-convex at x∗ and

s
∑

i=1

t∗i

{

ρid
2
i (x, x∗)

α(x, x∗)
+ k◦

ρ̄i d̄
2
i (x, x∗)

α(x, x∗)

}

+

p
∑

j=1

µ∗
jνj

c2
j (x, x∗)

βj (x, x∗)
≥ 0, (7)

then x∗ is a global optimal solution of (P).

Proof. Suppose to the contrary that x∗ is not an optimal solution of (P).

Then, there exists an x ∈ S such that

sup
y∈Y

f (x, y) + (x tBx)1/2

h(x, y) − (x tDx)1/2
< sup

y∈Y

f (x∗, y) + (x∗tBx∗)1/2

h(x∗, y) − (x∗tDx∗)1/2
.

We note that

sup
y∈Y

f (x∗, y) + (x∗tBx∗)1/2

h(x∗, y) − (x∗tDx∗)1/2
=

f (x∗, ȳi) + (x∗tBx∗)1/2

h(x∗, ȳi) − (x∗tDx∗)1/2
= k◦,

for ȳi ∈ Y (x∗), i = 1, 2, . . . , s, and

f (x, ȳi) + (x tBx)1/2

h(x, ȳi) − (x tDx∗)1/2
≤ sup

y∈Y

f (x, y) + (x tBx)1/2

h(x, y) − (x tDx)1/2
.

Therefore, we have

f (x, ȳi) + (x tBx)1/2

h(x, ȳi) − (x tDx)1/2
< k◦, for i = 1, 2, . . . , s.

It follows that

f (x, ȳi) + (x tBx)1/2 − k◦[h(x, ȳi) − (x tDx)1/2] < 0, for i = 1, 2, . . . , s.

(8)

From relations (1), (3), (5), (6), (8), we obtain

φ◦(x) =

s
∑

i=1

t∗i {f (x, ȳi) + x tBw − k◦(h(x, ȳi) − x tDv)}

≤

s
∑

i=1

t∗i {f (x, ȳi) + (x tBx)1/2 − k◦(h(x, ȳi) − (x tDx)1/2)}

< 0 =

s
∑

i=1

t∗i {f (x∗, ȳi) + (x∗tBx∗)1/2 − k◦(h(x∗, ȳi) − (x∗tDx∗)1/2)}
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=

s
∑

i=1

t∗i {f (x∗, ȳi) + x∗tBw − ko(h(x∗, ȳi) − x∗tDv)} = φ◦(x∗).

It follows that

φ◦(x) < φ◦(x∗). (9)

We use the (F, α, ρi, di)-convexity of f (., ȳi) + (.)tBw and the (F, α, ρ̄i, d̄i)-

convexity of −h(., ȳi) + (.)tDv at x∗ for i = 1, 2, . . . , s, i.e.,

f (x, ȳi) + x tBw − f (x∗, ȳi) − x∗tBw

≥ F (x, x∗; α(x, x∗)(∇f (x∗, ȳi) + Bw)) + ρid
2
i (x, x∗), i = 1, 2, . . . , s,

(10)

and

−h(x, ȳi) + x tDv + h(x∗, ȳi) − x∗tDv

≥ F (x, x∗; α(x, x∗)(−∇h(x∗, ȳi) + Dv)) + ρ̄i d̄
2
i (x, x∗), i = 1, 2, . . . , s.

(11)

Multiplying (10) by t∗i , (11) by t∗i k◦, and then summing up these inequalities,

using the sublinearity of F , we have [by (9)]

F

(

x, x∗; α(x, x∗)

s
∑

i=1

t∗i {∇f (x∗, ȳi) + Bw − k◦(∇h(x∗, ȳi) − Dv)}

)

+

s
∑

i=1

t∗i
{

ρid
2
i (x, x∗) + k◦ρ̄i d̄

2
i (x, x∗)

}

≤ φ◦(x) − φ◦(x∗) < 0.

Since α(x, x∗) > 0, by the sublinearity of F , we obtain

F

(

x, x∗;

s
∑

i=1

t∗i {∇f (x∗, ȳi) + Bw − k◦(∇h(x∗, ȳi) − Dv)}

)

+

s
∑

i=1

t∗i

{

ρid
2
i (x, x∗)

α(x, x∗)
+ k◦

ρ̄i d̄
2
i (x, x∗)

α(x, x∗)

}

< 0. (12)

On the other hand, by the (F, βj , νj , cj )-convexity of gj (.) for j = 1, 2, . . . , p,

we have

gj (x) − gj (x∗) ≥ F (x, x∗; βj (x, x∗)∇gj (x∗)) + νjc
2
j (x, x∗),

j = 1, 2, . . . , p.
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By µ∗ ≥ 0, β(x, x∗) > 0, and the sublinearity of F ,

p
∑

j=1

µ∗
j

gj (x) − gj (x∗)

βj (x, x∗)

≥ F

(

x, x∗;

p
∑

j=1

µ∗
j∇gj (x∗)

)

+

p
∑

j=1

µ∗
jνj

c2
j (x, x∗)

βj (x, x∗)
. (13)

Since the feasibility of x, β(x, x∗) > 0, and (4) imply that

p
∑

j=1

µ∗
j

gj (x) − gj (x∗)

βj (x, x∗)
≤ 0,

then (13) leads to

F

(

x, x∗;

p
∑

j=1

µ∗
j∇gj (x∗)

)

+

p
∑

j=1

µ∗
jνj

c2
j (x, x∗)

βj (x, x∗)
≤ 0. (14)

From (2), (12), (14) and the sublinearity of F , we have [by (7)]

0 = F

(

x, x∗;

s
∑

i=1

t∗i {∇f (x∗, ȳi) + Bw − k◦(∇h(x∗, ȳi) − Dv)}

+

p
∑

j=1

µ∗
j∇gj (x∗)

)

≤ F

(

x, x∗;

s
∑

i=1

t∗i {∇f (x∗, ȳi) + Bw − k◦(∇h(x∗, ȳi) − Dv)}

)

+F

(

x, x∗;

p
∑

j=1

µ∗
j∇gj (x∗)

)

< −

s
∑

i=1

t∗i

{

ρid
2
i (x, x∗)

α(x, x∗)
+ k◦

ρ̄i d̄
2
i (x, x∗)

α(x, x∗)

}

−

p
∑

j=1

µ∗
jνj

c2
j (x, x∗)

βj (x, x∗)

≤ 0.

Thus, we have a contradiction. Hence, the proof is complete. �

Corollary 3.1. Let x∗ be a feasible solution of (P) and let there ex-

ist a positive integer s, 1 ≤ s ≤ n + 1, t∗ ∈ Rs
+, ȳi ∈ Y (x∗), i = 1, 2, . . . , s, k◦ ∈

R+, w, v ∈ Rn, and µ∗ ∈ R
p
+ satisfying the relations (2)–(6). If f (., ȳi) + (.)tBw

is strongly (F, α, ρi, di)-convex or (F, α)-convex, if −h(., ȳi) + (.)tDv is strongly

(F, α, ρ̄i, d̄i)-convex or (F, α)-convex, and if gj (.), for j = 1, 2, . . . , p, is strongly
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(F, βj , νj , cj )-convex or (F, βj )-convex at x∗, then x∗ is a global optimal solution

of (P).

Proof. Under the assumptions of this corollary, we know that inequality,

holds [by (7)]. Therefore, x∗ is a global optimal solution of (P). �

4. Duality Model I

In this section, we consider the following dual problem to (P):

(DI) max
(s,t,ȳ)∈K(z)

sup
(z,µ,k,v,w)∈H1(s,t,ȳ)

k,

where H1(s, t, ȳ) denotes the set of all (z, µ, k, v,w) ∈ Rn× R
p
+× R+× Rn × Rn

satisfying

s
∑

i=1

ti{∇f (z, ȳi) + Bw − k(∇h(z, ȳi) − Dv)} + ∇

p
∑

j=1

µjgj (z) = 0, (15)

s
∑

i=1

ti{f (z, ȳi) + ztBw − k(h(z, ȳi) − ztDv)} ≥ 0, (16)

p
∑

j=1

µjgj (z) ≥ 0, (17)

(s, t, ȳ) ∈ K(z), (18)

wtBw ≤ 1, vtDv ≤ 1. (19)

For a triplet (s, t, ȳ) ∈ K(z), if the set H1(s, t, ȳ) = ∅, then we define the supre-

mum over it to be −∞. Throughout this section, we denote

φ1(.) =

s
∑

i=1

ti{f (., ȳi) + (.)tBw − k(h(., ȳi) − (.)tDv)}.

Now, we derive the following weak, strong, and strict converse duality theorems.

Theorem 4.1. Weak Duality. Let x and (z, µ, k, v,w, s, t, ȳ) be the fea-

sible solutions of (P) and (DI) respectively. Suppose that f (., ȳi) + (.)tBw and

−h(., ȳi) + (.)tDv, for i = 1, 2, . . . , s, are respectively (F, α, ρi, di)-convex and

(F, α, ρ̄i, d̄i)-convex at z. Also, let gj (.), for j = 1, 2, . . . , p, be (F, βj , νj , cj )-

convex at z and let the inequality

s
∑

i=1

ti

{

ρid
2
i (x, z)

α(x, z)
+ k

ρ̄i d̄
2
i (x, z)

α(x, z)

}

+

p
∑

j=1

µjνj

c2
j (x, z)

βj (x, z)
≥ 0 (20)
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hold. Then,

sup
y∈Y

f (x, y) + (x tBx)1/2

h(x, y) − (x tDx)1/2
≥ k.

Proof. Suppose to the contrary that

sup
y∈Y

f (x, y) + (x tBx)1/2

h(x, y) − (x tDx)1/2
< k.

Therefore, we get the following relation:

f (x, ȳi) + (x tBx)1/2 − k[h(x, ȳi) − (x tDx)1/2] < 0, for all ȳi ∈ Y.

It follows from ti ≥ 0, i = 1, 2, . . . , s, with
∑s

i=1 ti = 1, that

ti{f (x, ȳi) + (x tBx)1/2 − k(h(x, ȳi) − (x tDx)1/2)} ≤ 0, (21)

with at least one strict inequality because t = (t1, t2, . . . , ts) 	= 0.

From (1), (16), (19), (21), we have

φ1(x) =

s
∑

i=1

ti{f (x, ȳi) + x tBw − k(h(x, ȳi) − x tDv)}

≤

s
∑

i=1

ti{f (x, ȳi) + (x tBx)1/2 − k(h(x, ȳi) − (x tDx)1/2)}

< 0 ≤

s
∑

i=1

ti{f (z, ȳi) + ztBw − k(h(z, ȳi) − ztDv)}

= φ1(z).

Hence,

φ1(x) < φ1(z).

Similar to the proof of Theorem 3.1, we have

F

(

x, z;

s
∑

i=1

ti{∇f (z, ȳi) + Bw − k(∇h(z, ȳi) − Dv)}

)

+

s
∑

i=1

ti

{

ρid
2
i (x, z)

α(x, z)
+ k

ρ̄i d̄
2
i (x, z)

α(x, z)

}

< 0, (22)

p
∑

j=1

µj

gj (x) − gj (z)

βj (x, z)
≥ F

(

x, z;

p
∑

j=1

µj∇gj (z)

)

+

p
∑

j=1

µjνj

c2
j (x, z)

βj (x, z)
. (23)
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Utilizing the feasibility of x for (P) and (17), we get

p
∑

j=1

µjgj (x) ≤ 0 ≤

p
∑

j=1

µjgj (z). (24)

Therefore, from (23), (24), and β(x, z) > 0, we obtain

F

(

x, z;

p
∑

j=1

µj∇gj (z)

)

+

p
∑

j=1

µjνj

c2
j (x, z)

βj (x, z)
≤ 0. (25)

Thus, from (15), (22), (25), we get [by (20)]

0 = F

(

x, z;

s
∑

i=1

ti{∇f (z, ȳi) + Bw − k(∇h(z, ȳi) − Dv)} +

p
∑

j=1

µj∇gj (z)

)

≤ F

(

x, z;

s
∑

i=1

ti{∇f (z, ȳi) + Bw − k(∇h(z, ȳi) − Dv)}

)

+F

(

x, z;

p
∑

j=1

µj∇gj (z)

)

< −

s
∑

i=1

ti

{

ρid
2
i (x, z)

α(x, z)
+ k

ρ̄i d̄
2
i (x, z)

α(x, z)

}

−

p
∑

j=1

µjνj

c2
j (x, z)

βj (x, z)

≤ 0.

We have a contradiction. Hence, the proof is complete. �

Corollary 4.1. Let x and (z, µ, k, v,w, s, t, ȳ) be feasible solutions of (P)

and (DI) respectively. Suppose that f (., ȳi) + (.)tBw and −h(., ȳi) + (.)tDv, for

i = 1, 2, . . . , s, are respectively strongly (F, α, ρi, di)-convex or (F, α)-convex

and strongly (F, α, ρ̄i, d̄i)-convex or (F, α)-convex at z. Also let gj (.), for j =

1, 2, . . . , p, be strongly (F, βj , νj , cj )-convex or (F, βj )-convex at z. Then,

sup
y∈Y

f (x, y) + (x tBx)1/2

h(x, y) − (x tDx)1/2
≥ k.

Proof. Under the assumptions of this corollary, we know that the inequality

(20) holds. So, we get the corollary from Theorem 4.1. �

Theorem 4.2. Strong Duality. Assume that x∗ is an optimal solution for (P)

and let ∇gj (x∗), j ∈ J (x∗), be linearly independent. Then, there exist (s̄, t̄ , ȳ∗) ∈

K(x∗) and (x∗, µ̄, k̄, v̄, w̄) ∈ H1(s̄, t̄ , ȳ∗) such that (x∗, µ̄, k̄, v̄, w̄, s̄, t̄ , ȳ∗)

is feasible for (DI). Further, if the weak duality holds for all feasible
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(z, µ, k, v,w, s, t, ȳ) of (DI), then (x∗, µ̄, k̄, v̄, w̄, s̄, t̄ , ȳ∗) is optimal for (P) and

the two objectives have the same optimal values.

Proof. By Theorem 2.1, there exist (s̄, t̄ , ȳ∗) ∈ K(x∗) and (x∗, µ̄, k̄, v̄, w̄) ∈

H1(s̄, t̄ , ȳ∗) such that (x∗, µ̄, k̄, v̄, w̄, s̄, t̄ , ȳ∗) is feasible for (DI) and

k̄ =
f (x∗, ȳ∗

i ) + (x∗tBx∗)1/2

h(x∗, ȳ∗
i ) − (x∗tDx∗)1/2

.

Since (P) and (DI) have the same objective values, the optimality of this feasible

solution follows from Theorem 4.1. �

Theorem 4.3. Strict Converse Duality. Let x∗ and (z̄, µ̄, k̄, v̄, w̄, s̄, t̄ , ȳ∗)

be the optimal solutions for (P) and (DI), respectively. Suppose that f (., ȳ∗
i ) +

(.)tBw̄ and −h(., ȳ∗
i ) + (.)tDv̄, for i = 1, 2, . . . , s̄, are respectively (F, α, ρi, di)-

convex and (F, α, ρ̄i, d̄i)-convex at z̄ for all (s̄, t̄ , ȳ∗) ∈ K(x∗) and (z̄, µ̄, k̄, v̄, w̄) ∈

H1(s̄, t̄ , ȳ∗). Let gj (.), for j = 1, 2, . . . , p, be (F, βj , νj , cj )-convex at z̄ and let

the inequality

s̄
∑

i=1

ti

{

ρid
2
i (x∗, z̄)

α(x∗, z̄)
+ k

ρ̄i d̄
2
i (x∗, z̄)

α(x∗, z̄)

}

+

p
∑

j=1

µ̄jνj

c2
j (x∗, z̄)

βj (x∗, z̄)
> 0 (26)

hold; let ∇gj (x∗), j ∈ J (x∗), be linearly independent. Then, x∗ = z̄; that is, z̄ is

optimal for (P) and

sup
y∈Y

f (z̄, ȳ∗) + (z̄tBz̄)1/2

h(z̄, ȳ∗) − (z̄tDz̄)1/2
= k̄.

Proof. We assume that x∗ 	= z̄ and reach a contradiction. From

Theorem 4.2, we know that

sup
y∈Y

f (x∗, ȳ∗) + (x∗tBx∗)1/2

h(x∗, ȳ∗) − (x∗tDx∗)1/2
= k̄.

Similar to the proof of Theorem 4.1, we have

φ1(x∗) − φ1(z̄)

α(x∗, z̄)
≥ F

(

x∗, z̄;

s̄
∑

i=1

t̄i{∇f (z̄, ȳ∗
i ) + Bw̄ − k̄(∇h(z̄, ȳ∗

i ) − Dv̄)}

)

+

s̄
∑

i=1

t̄i

{

ρid
2
i (x∗, z̄)

α(x∗, z̄)
+ k̄

ρ̄i d̄
2
i (x∗, z̄)

α(x∗, z̄)

}

, (27)
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p
∑

j=1

µ̄j

gj (x∗) − gj (z̄)

βj (x∗, z̄)
≥ F

(

x∗, z̄;

p
∑

j=1

µ̄j∇gj (z̄)

)

+

p
∑

j=1

µ̄jνj

c2
j (x∗, z̄)

βj (x∗, z̄)
.

(28)

By both the feasibility of x∗ and (17), we have

p
∑

j=1

µ̄jgj (x∗) ≤ 0 ≤

p
∑

j=1

µ̄jgj (z̄).

Thus, from (28) and β(x∗, z̄) > 0, we obtain

F

(

x∗, z̄;

p
∑

j=1

µ̄j∇gj (z̄)

)

+

p
∑

j=1

µ̄jνj

c2
j (x∗, z̄)

βj (x∗, z̄)
≤ 0. (29)

Relations (15), (26), (29) along with the sublinearity of F yield

F

(

x∗, z̄;

s̄
∑

i=1

t̄i{∇f (z̄, ȳ∗
i ) + Bw̄ − k̄(∇h(z̄, ȳ∗

i ) − Dv̄)}

)

≥ −F

(

x∗, z̄;

p
∑

j=1

µ̄j∇gj (z̄)

)

≥

p
∑

j=1

µ̄jνj

c2
j (x∗, z̄)

βj (x∗, z̄)

> −

s̄
∑

i=1

t̄i

{

ρid
2
i (x∗, z̄)

α(x∗, z̄)
+ k̄

ρ̄i d̄
2
i (x∗, z̄)

α(x∗, z̄)

}

. (30)

Hence, from (27), (30), and α(x∗, z̄) > 0, we get

φ1(x∗) − φ1(z̄) > 0.

Now, we get the following relation [by (16)]:

s̄
∑

i=1

t̄i{f (x∗, ȳ∗
i ) + (x∗tBx∗)1/2 − k̄(h(x∗, ȳ∗

i ) − (x∗tDx∗)1/2)}

>

s̄
∑

i=1

t̄i{f (z̄, ȳ∗
i ) + (z̄tBz̄)1/2 − k̄(h(z̄, ȳ∗

i ) − (z̄tDz̄)1/2)} ≥ 0.

Therefore, there exists a certain i◦, such that

f
(

x∗, ȳ∗
i◦

)

+ (x∗tBx∗)1/2 − k̄
[

h
(

x∗, ȳ∗
i◦

)

− (x∗tDx∗)1/2
]

> 0.
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It follows that

sup
y∈Y

f (x∗, ȳ∗) + (x∗tBx∗)1/2

f (x∗, ȳ∗) − (x∗tDx∗)1/2
≥

f (x∗, ȳ∗
i◦

) + (x∗tBx∗)1/2

h(x∗, ȳ∗
i◦

) − (x∗tDx∗)1/2
> k̄. (31)

Finally, we have a contradiction and the proof is complete. �

Remark 4.1. If we take

F (x, x̄; α(x, x̄)∇f (x̄)) = (x − x̄)t∇f (x̄), for x, x̄ ∈ X,

in Theorems 4.1–4.3, we get Theorems 4.1–4.3 in Ref. 13. If we remove the

quadratic terms from the numerator and denominator of the objective function and

if take α(x, x̄) = 1, for all x ∈ X, we obtain Theorems 4.1–4.3 in Ref. 8. Also, if

we take

F (x, x̄; α(x, x̄)∇f (x̄)) = η(x, x̄)t∇f (x̄)

for a certain map η : X × X → Rn and remove the quadratic terms from the

numerator and denominator of the objective function, we get Theorems 4.1–4.3

in Ref. 9.

5. Duality Model II

In this section, we introduce a Wolfe type dual model to problem (P). In

order to discuss the following duality model, we state first another version of

Theorem 2.1, by replacing the parameter k◦ with
f (x̄,ȳi )+(x̄tBx̄)1/2

h(x̄,ȳi )−(x̄tDx̄)1/2 and by rewriting

the multiplier functions associated with the inequality constraints.

Theorem 5.1. Let x̄ be a solution for (P) and let ∇gj (x̄), j ∈ J (x̄) be

linearly independent. Then, there exist (s̄, t̄ , ȳ) ∈ K(x̄) and µ̄ ∈ R
p
+ such that

s̄
∑

i=1

t̄i{(h(x̄, ȳi) − (x̄ tDx̄)1/2)(∇f (x̄, ȳi) + Bw)

− (f (x̄, ȳi) + (x̄ tBx̄)1/2)(∇h(x̄, ȳi) − Dv)} +

p
∑

j=1

µ̄j∇gj (x̄) = 0,

p
∑

j=1

µ̄jgj (x̄) ≥ 0,

µ̄ ∈ R
p
+, t̄i ≥ 0,

s̄
∑

i=1

t̄i = 1, ȳi ∈ Y (x̄), i = 1, 2, . . . , s̄.

(DII) max
(x,t,ȳ)∈K(z)

sup
(z,µ,v,w)∈H2(s,t,ȳ)

F (z),
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where

F (z) = sup
y∈Y

f (z, y) + (ztBx)1/2

h(z, y) − (ztDx)1/2

and H2(s, t, ȳ) denotes the set of all (z, µ, v,w) ∈ Rn × R
p
+ × Rn × Rn satisfying

s
∑

i=1

ti{(h(z, ȳi) − (ztDz)1/2)(∇f (z, ȳi) + Bw)

− (f (z, ȳi) + (ztBz)1/2)(∇h(z, ȳi) − Dv)} +

p
∑

j=1

µ̄j∇gj (z) = 0, (32)

p
∑

j=1

µjgj (z) ≥ 0, (33)

(s, t, ȳ) ∈ K(z), (34)

(ztBz)1/2 = ztBw, (ztDz)1/2 = ztDv, wt Bw ≤ 1, vtDv ≤ 1. (35)

For a triplet (s, t, ȳ) ∈ K(z), if the set H2(s, t, ȳ) is empty, then we define the

supremum over it to be −∞. For convenience, we let

φ2(.)=

s
∑

i=1

ti{(h(z, ȳi) − ztDv)(f (., ȳi) + (.)tBw)

−(f (z, ȳi) + ztBw)(h(., ȳi) − (.)tDv)}.

Then, we can establish the following weak, strong, and strict converse duality

theorems.

Theorem 5.2. Weak Duality. Let x and (z, µ, v,w, s, t, ȳ) be the feasi-

ble solutions of (P) and (DII) respectively. Suppose that f (., ȳi) + (.)tBw and

−h(., ȳi) + (.)tDv, for i = 1, 2, . . . , s, are respectively (F, α, ρi, di)-convex and

(F, α, ρ̄i, d̄i)-convex at z. Also, let gj (.), for j = 1, 2, . . . , p, be (F, βj , νj , cj )-

convex at z and let the inequality

s
∑

i=1

ti

{

(h(z, ȳi) − (ztDz)1/2)ρid
2
i (x, z)

α(x, z)
+

(f (z, ȳi) + (ztBz)1/2)ρ̄i d̄
2
i (x, z)

α(x, z)

}

+

p
∑

j=1

µjνj

c2
j (x, z)

βj (x, z)
≥ 0 (36)

hold. Then,

sup
y∈Y

f (x, y) + (x tBx)1/2

h(x, y) − (x tDx)1/2
≥ F (z).
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Proof. Suppose to the contrary that

sup
y∈Y

f (x, y) + (x tBx)1/2

h(x, y) − (x tDx)1/2
< F (z). (37)

Since ȳi ∈ Y (z), i = 1, 2, . . . , s, we get

F (z) =
f (z, ȳi) + (ztBz)1/2

h(z, ȳi) − (ztDz)1/2
. (38)

By (37) and (38), we have

[h(z, ȳi) − (ztDz)1/2][f (x, ȳi) − (x tBx)1/2]

−[f (z, ȳi) + (ztBz)1/2][h(x, ȳi) − (x tDx)1/2] < 0,

for all i =1, 2, . . . , s and ȳi ∈ Y . From ȳi ∈ Y (z) ⊂ Y and t ∈ Rs
+, with

∑s
i=1 ti =

1, we obtain

s
∑

i=1

ti{[h(z, ȳi) − (ztDz)1/2][f (x, ȳi) + (x tBx)1/2]

−[f (z, ȳi) + (ztBz)1/2][h(x, ȳi) − (x tDx)1/2]} < 0. (39)

By (1), (35), and (39), we have

φ2(x) =

s
∑

i=1

ti{(h(z, ȳi) − ztDv)(f (x, ȳi) + x tBw)

− (f (z, ȳi) + ztBw)(h(x, ȳi) − x tDv)}

≤

s
∑

i=1

ti{(h(z, ȳi) − (ztDz)1/2)(f (x, ȳi) + (x tBx)1/2)

− (f (z, ȳi) + ztBz)1/2)(h(x, ȳi) − (x tDx)1/2)}

< 0 = φ2(z).

Hence,

φ2(x) < φ2(z). (40)

Using the (F, α, ρi, di)-convexity of f (., ȳi) + (.)tBw and the (F, α, ρ̄i, d̄i)-

convexity of −h(., ȳi) + (.)tDv at z for i = 1, 2, . . . , s, i.e.,

f (x, ȳi) + x tBw − f (z, ȳi) − ztBw

≥ F (x, z; α(x, z)(∇f (z, ȳi) + Bw)) + ρid
2
i (x, z), i = 1, 2, . . . , s, (41)

−h(x, ȳi) + x tDv + h(z, ȳi) − ztDv

≥ F (x, z; α(x, z)(−	h(z, ȳi) + Dv)) + ρ̄i d̄
2
i (x, z), i = 1, 2, . . . , s. (42)
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Multiplying (41) by ti[h(z, ȳi) − (ztDz)1/2], (42) by ti[f (z, ȳi) + (ztBz)1/2], and

then summing up these inequalities with the sublinearity of F , we get

φ2(x) − φ2(z)

α(z, x)
≥ F

(

x, z;

s
∑

i=1

ti{(h(z, ȳi) − (ztDz)1/2)(∇f (z, ȳi) + Bw)

− (f (z, ȳi) + (ztBz)1/2)(∇h(z, ȳi) − Dv)}

)

+

s
∑

i=1

ti

{

(h(z, ȳi) − (ztDz)1/2)ρid
2
i (x, z)

α(x, z)

+
(f (z, ȳi) + (ztBz)1/2)ρ̄i d̄

2
i (x, z)

α(x, z)

}

,

which by using the (F, βj , νj , cj )-convexity of gj (.), (32), and (36), along with

the sublinearity of F , yields

φ2(x) − φ2(z)

α(z, x)
≥ F

(

x, z; −

p
∑

j=1

µj∇gj (z)

)

−

p
∑

j=1

µjνj

c2
j (x, z)

βj (x, z)

≥
−

∑p

j=1 µjgj (x) −
∑p

j=1 µjgj (z)

βj (x, z)

≥ 0,

by the feasibility of x, (33), and βj (x, z) > 0. Since α(x, z) > 0, we get φ2(x) ≥

φ2(z), which contradicts (40). Hence, the proof is complete. �

Corollary 5.1. Let x and (z, µ, v,w, s, t, ȳ) be feasible solutions of

(P) and (DII) respectively. Let f (., ȳi) + (.)tBw and −h(., ȳi) + (.)tDv, for

i = 1, 2, . . . , s, be respectively strongly (F, α, ρi, di)-convex or (F, α)-convex

and strongly (F, α, ρ̄i, d̄i)-convex or (F, α)-convex at z. Also, let gj (.), for

j = 1, 2, . . . , p, be strongly (F, βj , νj , cj )-convex or (F, βj )-convex at z. Then,

sup
y∈Y

f (x, y) + (x tBx)1/2

h(x, y) − (x tDx)1/2
≥ F (z).

Proof. Under the assumptions of this corollary, we know that the inequality

(36) holds. So, we can get the corollary from Theorem 5.2. �

Theorem 5.3. Strong Duality. Let x∗ be an optimal solution for (P) and

let ∇gj (x∗), j ∈ J (x∗), be linearly independent. Then, there exist (s̄, t̄ , ȳ∗) ∈

K(x∗) and (x∗, µ̄, v̄, w̄) ∈ H2(s̄, t̄ , ȳ∗) such that (x∗, µ̄, v̄, w̄, s̄, t̄ , ȳ∗) is feasible

for (DII). Further, let the weak duality holds for all feasible (z, µ, v,w, s, t, ȳ) of
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(DII). Then, (x∗, µ̄, v̄, w̄, s̄, t̄ , ȳ∗) is optimal for (DII) and the two objectives have

the same optimal values.

Proof. If x∗ is an optimal solution for (P), then by Theorem 2.1, there exist

v̄, w̄ ∈ Rn, and µ̄ ∈ R
p
+ to satisfy the expression (2), that is, the expression (32)

by substituting

k◦ =
f (x̄, ȳ∗

i ) + (x̄ tBx̄)1/2

h(x̄, ȳ∗
i ) − (x̄ tDx̄)1/2

in (2). It follows that there are (s̄, t̄ , ȳ∗) ∈ K(x∗) and (x∗, µ̄, v̄, w̄) ∈ H2(s̄, t̄ , ȳ∗)

such that (x∗, µ̄, v̄, w̄, s̄, t̄ , ȳ∗) is feasible for (DII) and such that problems (P) and

(DII) have the same objective values. The optimality of this feasible solution for

(DII) thus follows from Theorem 5.2. �

Theorem 5.4. Strict Converse Duality. Let x∗ and (z̄, µ̄, v̄, w̄, s̄, t̄ , ȳ∗) be

the optimal solutions for (P) and (DII), respectively. Suppose that f (., ȳ∗
i ) +

(.)tBw̄ and −h(., ȳ∗
i ) + (.)tDv̄, for i = 1, 2, . . . , s̄, are respectively (F, α, ρi, di)-

convex and (F, α, ρ̄i, d̄i)-convex at z̄ for all (s̄, t̄ , ȳ∗) ∈ K(x∗) and (z̄, µ̄, v̄, w̄) ∈

H2(s̄, t̄ , ȳ∗); let gj (.), for j = 1, 2, . . . , p, be (F, βj , νj , cj )-convex at z̄, let the

inequality

s̄
∑

i=1

t̄i

{

(h(z̄, ȳ∗
i ) − (z̄tDz̄)1/2)ρid

2
i (x∗, z̄)

α(x∗, z̄)
+

(f (z̄, ȳ∗
i ) + (z̄tBz̄)1/2)ρ̄i d̄

2
i (x∗, z̄)

α(x∗, z̄)

}

+

p
∑

j=1

µ̄jνj

c2
j (x∗, z̄)

βj (x∗, z̄)
> 0 (43)

hold, and let ∇gj (x∗), j ∈ J (x∗) be linearly independent. Then, x∗ = z̄; that is, z̄

is optimal for (P) and

sup
y∈Y

f (z̄, ȳ∗) + (z̄tBz̄)1/2

h(z̄, ȳ∗) − (z̄tDz̄)1/2
= F (z̄).

Proof. We shall assume that x∗ 	= z̄ and reach a contradiction. From con-

ditions similar to the proof of Theorem 5.2, we have

φ2(x∗) − φ2(z̄)

α(x∗, z̄)
≥ F

(

x∗, z̄;

s̄
∑

i=1

t̄i{(h(z̄, ȳ∗
i ) − (z̄tDz̄)1/2)(∇f (z̄, ȳ∗

i ) + Bw̄)

− (f (z̄, ȳ∗
i ) + (z̄tBz̄)1/2)(∇h(z̄, ȳ∗

i ) − Dv̄)}

)

+

s̄
∑

i=1

t̄i

{

(h(z̄, ȳ∗
i )−(z̄tDz̄)1/2)ρid

2
i (x∗, z̄)

α(x∗, z̄)
+

(f (z̄, ȳ∗
i ) + (z̄tBz̄)1/2)ρ̄i d̄

2
i (x∗, z̄)

α(x∗, z̄)

}

,

(44)
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p
∑

j=1

µ̄j

gj (x∗) − gj (z̄)

βj (x∗, z̄)
≥ F

(

x∗, z̄;

p
∑

j=1

µ̄j∇gj (z̄)

)

+

p
∑

j=1

µ̄jνj

c2
j (x∗, z̄)

βj (x∗, z̄)
. (45)

By the feasibility of x∗, β(x∗, z̄) > 0, and (33), inequality (45) gives

F

(

x∗, z̄;

p
∑

j=1

µ̄j∇gj (z̄)

)

≤ −

p
∑

j=1

µ̄jνj

c2
j (x∗, z̄)

βj (x∗, z̄)
. (46)

From (32), (43), and (46), along with the sublinearity of F , we obtain

F

(

x∗, z̄;

s̄
∑

i=1

t̄i{(h(z̄, ȳ∗
i ) − (z̄tDz̄)1/2)(∇f (z̄, ȳ∗

i ) + Bw̄)

− (f (z̄, ȳ∗
i ) + (z̄tBz̄)1/2)(∇h(z̄, ȳ∗

i ) − Dv̄)}

)

≥ −F

(

x∗, z̄;

p
∑

i=1

µ̄j∇gj (z̄)

)

≥

p
∑

j=1

µ̄jνj

c2
j (x∗, z̄)

βj (x∗, z̄)

> −

s̄
∑

i=1

t̄i

{

(h(z̄, ȳ∗
i ) − (z̄tDz̄)1/2)ρid

2
i (x∗, z̄)

α(x∗, z̄)

+
(f (z̄, ȳ∗

i ) + (z̄tBz̄)1/2)ρ̄i d̄
2
i (x∗, z̄)

α(x∗, z̄)

}

. (47)

Using α(x∗, z̄) > 0 and (47), inequality (44) yields

φ2(x∗) − φ2(z̄) > 0,

that is,

s̄
∑

i=1

t̄i{(h(z̄, ȳ∗
i ) − z̄tDv̄)(f (x∗, ȳ∗

i ) + x∗tBw̄)

− (f (z̄, ȳ∗
i ) + z̄tBw̄)(h(x∗, ȳ∗

i ) − x∗tDv̄)}

>

s̄
∑

i=1

t̄i{(h(z̄, ȳ∗
i ) − z̄tDv̄)(f (z̄, ȳ∗

i ) + z̄tBw̄)

− (f (z̄, ȳ∗
i ) + z̄tBw̄)(h(z̄, ȳ∗

i ) − z̄tDv̄)} ≥ 0.
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Therefore, there exists a certain i◦ such that

s̄
∑

i=1

t̄i{(h(z̄, ȳ∗
i◦

) − z̄tDv̄)(f (x∗, ȳ∗
i◦

) + x∗tBw̄)

− (f (z̄, ȳ∗
i◦

) + z̄tBw̄)(h(x∗, ȳ∗
i◦

) − x∗tDv̄)} > 0.

From the above inequality and (35), it follows that

sup
y∈Y

f (x∗, ȳ∗) + (x∗tBx∗)1/2

h(x∗, ȳ∗) − (x∗tDx∗)1/2
≥

f (x∗, ȳ∗
i◦

) + (x∗tBx∗)1/2

h(x∗, ȳ∗
i◦

) − (x∗tDx∗)1/2
> F (z̄). (48)

By strong duality theorem, we know that

sup
y∈Y

f (x∗, ȳ∗) + (x∗tBx∗)1/2

h(x∗, ȳ∗) − (x∗tDx∗)1/2
= F (z̄). (49)

Inequality (48) contradicts (49); hence, the proof is complete. �

Remark 5.1. If we replace F (x, x̄; α(x, x̄)∇f (x̄)) by (x − x̄)t∇f (x̄), for

x, x̄ ∈ X, in Theorems 5.2–5.4, we get Theorems 1–3 in Ref. 14. Also, when

B = C = 0 in the objective function, Theorems 4.5–4.7 of Ref. 12 can be obtained;

in addition, if α(x, x̄) = 1, for all x, x̄ ∈ X, Theorems 4.5–4.7 of Ref. 8 can be

found.
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