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OPTIMALITY CONDITIONS AND ERROR ANALYSIS OF
SEMILINEAR ELLIPTIC CONTROL PROBLEMS WITH L

1 COST
FUNCTIONAL∗

EDUARDO CASAS† , ROLAND HERZOG‡ , AND GERD WACHSMUTH‡

Abstract. Semilinear elliptic optimal control problems involving the L1 norm of the control in
the objective are considered. Necessary and sufficient second-order optimality conditions are derived.
A priori finite element error estimates for piecewise constant discretizations for the control and piece-
wise linear discretizations of the state are shown. Error estimates for the variational discretization
of the problem in the sense of [M. Hinze, Comput. Optim. Appl., 30 (2005), pp. 45–61] are also
obtained. Numerical experiments confirm the convergence rates.
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1. Introduction. In this paper we consider an optimal control problem subject
to a semilinear elliptic state equation. The objective functional contains the L1 norm
of the control and it is therefore nondifferentiable. Problems of this type are of interest
for two reasons. First, the L1 norm of the control is often a natural measure of the
control cost. Second, this term leads to sparsely supported optimal controls, which
are desirable, for instance, in actuator placement problems [17]. In optimal control
of distributed parameter systems, it may be impossible or undesirable to put the
controllers at every point of the domain. Instead, we can decide to control the system
by localizing the controls in small regions. The big issue is to determine the most
effective location of the controls. An answer to this question is given by solving the
control problem with an L1 norm of the control.

However, the nondifferentiability of the objective leads to some difficulties. While
first-order necessary optimality conditions can be derived in a standard way via
Clarke’s calculus of generalized derivatives, second-order conditions require additional
effort. From the first-order optimality conditions, we deduce a representation formula
(see (3.5c)) for the subdifferential λ̄ of the nondifferentiable term at the optimal control
ū, i.e., λ̄ ∈ ∂‖ū‖L1(Ω). This formula is new and it has some important consequences.
First, it proves the uniqueness of λ̄, which is not usually obtained for a nondifferen-
tiable optimization problem. Second, it proves that λ̄ is not only an L∞(Ω) function,
but it is a Lipschitz function in Ω̄, which implies, with formula (3.5a) for the optimal
control, that ū is also Lipschitz in Ω̄. This extra regularity for the optimal control
is essential in deriving the error estimates. We should emphasize that there are no
error estimates if we do not have extra regularity of the optimal control. Moreover,
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796 EDUARDO CASAS, ROLAND HERZOG, AND GERD WACHSMUTH

the representation formulas (3.5a) and (3.5c), along with their discrete counterparts,
allow us to derive L∞ error estimates for ū − ūh and λ̄ − λ̄h, which is important for
this problem because it shows that we can identify in a precise way the region where
the optimal control is vanishing by solving the discrete control problem.

An important part of the paper is devoted to the second-order optimality condi-
tions. Since the partial differential equation is not linear, the control problem is not
convex in general; therefore, we have to determine second-order conditions to deal
with local minima. It is well known that the sufficient second-order condition is a
crucial tool in proving error estimates. In the second-order analysis, due to the non-
smoothness of the problem, the most delicate point was to discover the correct cone of
critical directions Cū; see (3.6). We found the correct one, allowing us to prove both
second-order necessary and sufficient optimality conditions with the minimal gap.

The second-order sufficient conditions are subsequently put to use to derive a
priori error estimates for a finite element discretization of the problem at hand. We
employ piecewise linear and continuous elements for the state and adjoint state and
piecewise constants for the control. We obtain an estimate of order h w.r.t. the
L∞ norm for the control, state, and adjoint state. The proof of these estimates
requires a deeper analysis than the one used in smooth optimal control problems,
and it is not a straightforward extension of the techniques established for smooth
problems. The proof exploits the W 2,p regularity of the optimal adjoint state, and
the consequential Lipschitz regularity of the optimal control, which hold under the
assumption of a smooth boundary of the domain Ω. Since smooth domains cannot
be triangulated exactly, the error estimate takes into account the additional error
from replacing Ω by a polygonal approximation Ωh. As mentioned in Remark 2.4, all
results also remain valid for a convex polygonal domain of R2. Numerical experiments
verify the theoretical convergence order for both cases, smooth and convex polygonal
domains. Finally, we derive error estimates for a variational discretization of the
control problem. More precisely, we discretize the states and the state equation, but
there is no discretization of the control. This procedure suggested by Hinze [13] leads
to optimal error estimates (order h2), and the discrete problem can still be solved
numerically.

Let us put this work into perspective. A problem with an L1 term in the objective
was analyzed in [17], subject to a linear elliptic equation. Second-order conditions are
not required there since this problem is convex. A priori and a posteriori error esti-
mates for this case were provided in [19]. The authors in [9] analyze algorithms for op-
timal control problems which involve the norm of a nonreflexive control Banach space.

This paper is organized as follows. We present the problem setting and some
preliminary results in section 2. Section 3 is devoted to the development of first-
and second-order necessary and sufficient optimality conditions. We study the finite
element error for the case of full discretization in section 4 and in section 5 for the
case of variational discretization. We report on numerical experiments which confirm
our results in section 6.

2. Setting of the problem and preliminary results. In this paper, Ω will
denote an open bounded subset of Rn, n = 2 or 3, with a C1,1 boundary Γ. In this
domain we consider the following control problem:

(P)

{

min J(u),

α ≤ u(x) ≤ β for a.a. x ∈ Ω,
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SEMILINEAR CONTROL PROBLEMS WITH L1 COST FUNCTIONAL 797

where J(u) = F (u) + µ j(u), with F : L2(Ω) −→ R and j : L1(Ω) −→ R defined by

F (u) =

∫

Ω

L(x, yu(x)) dx+
ν

2

∫

Ω

u2(x) dx and j(u) =

∫

Ω

|u(x)| dx,

yu being the solution of the state equation

(2.1)

{

Ay + a(x, y) = u in Ω,

y = 0 on Γ.

A is the linear operator

Ay = −

n
∑

i,j=1

∂xj
[aij(x) ∂xi

y] + a0(x) y.

We make the following assumptions on the functions and parameters involved in the
control problem (P).

Assumption 1. The coefficients of A have the following regularity properties:
a0 ∈ L∞(Ω), aij ∈ C0,1(Ω̄), and

(2.2) a0(x) ≥ 0 and

n
∑

i,j=1

aij(x) ξi ξj ≥ Λ |ξ|2 for a.a. x ∈ Ω and ∀ξ ∈ R
n.

Assumption 2. a : Ω × R −→ R is a Carathéodory function of class C2 with
respect to the second variable, with a(·, 0) ∈ Lp̄(Ω) for some n < p̄, and satisfying

(2.3)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂a

∂y
(x, y) ≥ 0 for a.a. x ∈ Ω and ∀y ∈ R,

∀M > 0 ∃CM > 0 s.t.
2

∑

j=1

∣

∣

∣

∣

∂ja

∂yj
(x, y)

∣

∣

∣

∣

≤ CM for a.a. x ∈ Ω and |y| ≤ M.

Assumption 3. We also assume −∞ < α < 0 < β < +∞, µ > 0, ν > 0, and
L : Ω×R −→ R is a Carathéodory function of class C2 w.r.t. the second variable such
that L(·, 0) ∈ L1(Ω) and for every M > 0 there exists a function ψM ∈ Lp̄(Ω), with
n < p̄ < +∞, satisfying

(2.4)

∣

∣

∣

∣

∂jL

∂yj
(x, y)

∣

∣

∣

∣

≤ ψM (x) ∀|y| ≤ M and for a.a. x ∈ Ω, with j = 1, 2.

In what follows, we will denote the set of feasible controls by

K = {u ∈ L∞(Ω) : α ≤ u(x) ≤ β for a.a. x ∈ Ω}.

Let us notice that the usual function L(x, y) = 1
2 (y−yd(x))

2 satisfies Assumption 3
if yd ∈ Lp̄(Ω).

Remark 2.1. In Assumption 3 we made the hypothesis α < 0 < β. In the case
where 0 ≤ α ≤ β or α ≤ β ≤ 0, the L1 norm is linear; hence the cost functional
J is differentiable, and the control problem (P) falls into the framework of well stud-
ied optimal control problems. Here we are interested in analyzing the nondifferen-
tiable case.
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798 EDUARDO CASAS, ROLAND HERZOG, AND GERD WACHSMUTH

Moreover, since we are looking for sparsity of the optimal control, it does not
make sense to consider 0 < α or β < 0. However, the cases α = 0 or β = 0 are
frequent in practice. In these situations, the sparsity of the optimal control is also
induced by the presence of the term µ‖u‖L1(Ω); see Remark 3.3.

The next theorem states that the control-to-state map is well posed and differen-
tiable.

Theorem 2.2. The following statements hold:
1. For any u ∈ Lp(Ω), with n/2 < p ≤ p̄, there exists a unique solution of (2.1)

yu ∈ W 2,p(Ω).
2. The mapping G : Lp(Ω) −→ W 2,p(Ω) defined by G(u) = yu is of class C2.

Moreover, for v ∈ Lp(Ω), zv = G′(u) v is the unique solution of

(2.5)

⎧

⎨

⎩

Az +
∂a

∂y
(x, y) z = v in Ω,

z = 0 on Γ,

and given v1, v2 ∈ Lp(Ω), wv1,v2 = G′′(u)(v1, v2) is the unique solution of

(2.6)

⎧

⎨

⎩

Aw +
∂a

∂y
(x, y)w +

∂2a

∂y2
(x, y) zv1zv2 = 0 in Ω,

w = 0 on Γ,

where zvi = G′(u) vi, i = 1, 2.
The existence and uniqueness of a solution of (2.1) in H1

0 (Ω)∩L∞(Ω) is obtained
by classical arguments; see, for instance, [4]. The W 2,p(Ω) regularity follows from the
C1,1 regularity of Γ, Assumptions 1 and 2, and the result of Grisvard [11, Theorem
2.4.2.5]. The differentiability of G can be obtained from the implicit function theorem
as follows. We define the nonlinear operator

F : [W 2,p(Ω) ∩W 1,p
0 (Ω)]× Lp(Ω) −→ Lp(Ω), F(y, u) = Ay + a(·, y)− u.

Then, it is immediate to check that F is of class C2 and F(G(u), u) = 0 for every
u ∈ Lp(Ω). Using [11, Theorem 2.4.2.5] again, we deduce that

∂F

∂y
(G(u), u) : W 2,p(Ω) ∩W 1,p

0 (Ω) −→ Lp(Ω)

is an isomorphism. Thus, the assumptions of the implicit function theorem are fulfilled
and some simple calculations prove (2.5) and (2.6).

As an immediate consequence of the previous theorem, we get that the smooth
part F of the objective functional enjoys the following differentiability result.

Theorem 2.3. Functional F : L2(Ω) −→ R is of class C2, and the first and
second derivatives are given by

F ′(u) v =

∫

Ω

(ϕu + ν u) v dx,(2.7)

F ′′(u)(v1, v2) =

∫

Ω

{

∂2L

∂y2
(x, yu) zv1zv2 −

∂2a

∂y2
(x, yu)ϕu zv1zv2 + ν v1 v2

}

dx,(2.8)
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where zvi = G′(u) vi, i = 1, 2, and ϕu ∈ W 2,p(Ω) is the adjoint state defined as the
unique solution of

(2.9)

⎧

⎨

⎩

A∗ϕ+
∂a

∂y
(x, yu)ϕ =

∂L

∂y
(x, yu) in Ω,

ϕ = 0 on Γ,

A∗ being the adjoint operator of A.
Finally, it is obvious that problem (P) has at least one global solution, which

belongs to L∞(Ω) because of the control constraints. The reader is referred to the
book by Tröltzsch [18, Chapter 4.4] for the proof of these results.

Note that under some extra assumptions for L the existence of a solution of (P)
in L2(Ω) can still be proved for α = −∞ or β = +∞. For instance, if L is bounded
from below, i.e., L(x, y) ≥ CL, with CL ∈ R, then the cost functional J is coercive and
consequently (P) has again a global solution in L2(Ω). Indeed, from the first-order
optimality conditions we can deduce that this solution is not only in L2(Ω) but it
belongs also to L∞(Ω).

Remark 2.4. Theorem 2.2 is also valid for convex polygonal domains Ω ⊂ R
2.

The only difference is that p is not only bounded above by p̄, it also depends on the
angles of the polygon Ω. Indeed, let ω be the biggest angle of Ω. Using the results of
Grisvard [11, Chapter 4], if ω ≤ π/2, then p can be chosen as in Theorem 2.2, only
bounded by p̄. However, if ω > π/2, then n/2 < p < min{p̄, 2

2−π/ω} is the correct

interval. With this modification, Theorem 2.3 also is valid as well as the rest of the
results in this paper.

3. First- and second-order optimality conditions. In this section, we will
derive the necessary first- and second-order optimality conditions and we will also
provide a sufficient second-order condition with a minimal gap with respect to the
necessary ones. Since (P) is not a convex problem we will deal with local solutions.
As usual, ū is said to be a local solution of (P) in the Lq(Ω) sense, 1 ≤ q ≤ +∞, if
there exists ε > 0 such that ū is a solution of the problem

(Pε) min
u∈K∩B̄ε(ū)

J(u),

where B̄ε(ū) denotes the closed ball of Lq(Ω) with the center at ū and the radius ε.
The solution is called strict if ū is the unique global solution of (Pε) for some ε > 0. It
is immediate to check that if ū is a local solution in the Lq(Ω) sense for any 1 ≤ q < ∞,
then it is also a local solution in the L∞(Ω) sense. On the other hand, since K is
bounded in L∞(Ω), if ū is a local solution in the Lq(Ω) sense, for some 1 ≤ q < ∞,
then ū is also a local solution in the Lp(Ω) sense for any 1 ≤ p < ∞. Therefore, we can
distinguish two different notions of local minima: L2(Ω) sense or L∞(Ω) sense. The
results proved in this paper will hold for either of these two notions of local minima.
Therefore, we will not distinguish between these two notions and we will simply speak
about local minima.

In the study of the optimality conditions there is a difficulty coming from the
nondifferentiability of the function j(u) = ‖u‖L1(Ω) involved in the objective func-
tion of (P). Since j is convex and Lipschitz, we can apply some classical results to
deduce the first-order conditions. However, the second-order necessary and sufficient
optimality conditions, as presented here, are new to the best of our knowledge. The
sufficient second-order conditions will be used in the next section to derive the error
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estimates of finite element approximations, which shows their utility. Before stating
these optimality conditions we recall some properties of the function j. Since j is
convex and Lipschitz, the subdifferential in the sense of convex analysis and the gen-
eralized gradients introduced by Clarke coincide. Moreover, a simple computation
shows that λ ∈ ∂j(u) if and only if

(3.1)

⎧

⎪

⎨

⎪

⎩

λ(x) = +1 if u(x) > 0,

λ(x) = −1 if u(x) < 0,

λ(x) ∈ [−1,+1] if u(x) = 0

holds a.e. in Ω. Also j has directional derivatives given by

(3.2) j′(u; v) = lim
ρց0

j(u + ρ v)− j(u)

ρ
=

∫

Ω+
u

v dx−

∫

Ω−

u

v dx+

∫

Ω0
u

|v| dx,

for u, v ∈ L1(Ω), where Ω+
u , Ω

−
u and Ω0

u represent the sets of points where u is positive,
negative or zero, respectively. Finally, the following relation holds:

(3.3) max
λ∈∂j(u)

∫

Ω

λ v dx = j′(u; v) ≤
j(u+ ρ v)− j(u)

ρ
∀0 < ρ ≤ 1.

We refer to Clarke [8, Chapter 2] and Bonnans and Shapiro [2, section 2.4.3]
for more details. Necessary optimality conditions can be deduced from the abstract
results presented in these references and Theorem 2.3.

Theorem 3.1. If ū is a local minimum of (P), then there exist ȳ, ϕ̄ ∈ W 2,p̄(Ω)
and λ̄ ∈ ∂j(ū) such that

{

Aȳ + a(x, ȳ) = ū in Ω,

ȳ = 0 on Γ,
(3.4a)

⎧

⎨

⎩

A∗ϕ̄+
∂a

∂y
(x, ȳ) ϕ̄ =

∂L

∂y
(x, ȳ) in Ω,

ϕ̄ = 0 on Γ,

(3.4b)

∫

Ω

(ϕ̄+ ν ū+ µ λ̄)(u− ū) dx ≥ 0 ∀u ∈ K.(3.4c)

Corollary 3.2. Let ū, ϕ̄, and λ̄ be as in the previous theorem; then the following
relations hold:

ū(x) = Proj[α,β]

(

−
1

ν

(

ϕ̄(x) + µ λ̄(x)
)

)

,(3.5a)

ū(x) = 0 ⇔ |ϕ̄(x)| ≤ µ,(3.5b)

λ̄(x) = Proj[−1,+1]

(

−
1

µ
ϕ̄(x)

)

.(3.5c)

Moreover, from the first and last representation formulas it follows that ū, λ̄ ∈ C0,1(Ω̄)
and λ̄ is unique for any fixed local minimum ū.
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Proof. The derivation of the formula (3.5a) is standard in control theory. Now,
from (3.1), (3.5a), and the fact that α < 0 < β, we get

ū(x) = 0 ⇒ ϕ̄(x) + µ λ̄(x) = 0 ⇒ |ϕ̄(x)| ≤ µ,

ū(x) > 0 ⇒ λ̄(x) = +1 and ϕ̄(x) + µ λ̄(x) < 0 ⇒ ϕ̄(x) < −µ,

and analogously we deduce that if ū(x) < 0, then ϕ̄(x) > µ. These three properties
are equivalent to (3.5b). Let us prove (3.5c). Taking into account (3.1), (3.5b), and
(3.5a), we obtain

ϕ̄(x) > µ ⇒ ū(x) < 0 ⇒ λ̄(x) = −1 ⇒ λ̄(x) = Proj[−1,+1]

(

−
1

µ
ϕ̄(x)

)

,

|ϕ̄(x)| ≤ µ ⇒ ū(x) = 0 ⇒ ϕ̄(x) + µ λ̄(x) = 0 ⇒ λ̄(x) = Proj[−1,+1]

(

−
1

µ
ϕ̄(x)

)

.

For the case ϕ̄(x) < −µ we can proceed as for the case ϕ̄(x) > µ, which completes
the proof of (3.5c).

The Lipschitz property of λ̄ follows from (3.5c) and from the fact that ϕ̄ ∈
W 2,p̄(Ω) →֒ C1(Ω̄). Finally, (3.5a) leads to the Lipschitz regularity of ū.

Remark 3.3. Let us point out that the relation (3.5b) implies the sparsity of local
optimal controls. This property was observed by [17] and it continues to hold in the
cases α = 0 or β = 0. Indeed, if α = 0, it is easy to deduce from (3.5a) that ū(x) = 0
if and only if ϕ̄(x) ≥ −µ, which also implies the sparsity. For β = 0, we have that
ū(x) = 0 if and only if ϕ̄(x) ≤ +µ.

In order to address the second-order optimality conditions we need to introduce
the critical cone. Given a control ū ∈ K for which there exists λ̄ ∈ ∂j(ū) satisfying
(3.4), we define

(3.6) Cū = {v ∈ L2(Ω) satisfying (3.7) and F ′(ū) v + µ j′(ū; v) = 0}

with

(3.7)

{

v(x) ≥ 0 if ū(x) = α,

v(x) ≤ 0 if ū(x) = β.

Proposition 3.4. The set Cū is a closed, convex cone in L2(Ω).
Before proving this proposition we have to establish the following lemma.
Lemma 3.5. Let ū ∈ K satisfy (3.4) along with some λ̄ ∈ ∂j(ū). Let v ∈ L2(Ω)

fulfill (3.7). Then

(3.8) F ′(ū) v + µ j′(ū; v) ≥ F ′(ū) v + µ

∫

Ω

λ̄(x) v(x) dx ≥ 0.

Moreover, if v ∈ Cū, then

(3.9) F ′(ū) v + µ

∫

Ω

λ̄(x) v(x) dx = 0 and j′(ū; v) =

∫

Ω

λ̄(x) v(x) dx.

Proof. The first inequality of (3.8) is an immediate consequence of (3.3). Let us
prove the second inequality. For every k ∈ N we define

vk(x) =

⎧

⎨

⎩

0 if α < ū(x) < α+
1

k
or β −

1

k
< ū(x) < β,

Proj[−k,+k](v(x)) otherwise,
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and ρk = 1/k2. Then it is easy to check that ū+ ρ vk ∈ K for every 0 < ρ < ρk. On
the other hand, |vk(x)| ≤ |v(x)| and vk(x) → v(x) hold for almost all x ∈ Ω; therefore
vk → v in L2(Ω). Now, from (3.4c) we infer

ρ

(

F ′(ū) vk + µ

∫

Ω

λ̄(x) vk(x) dx

)

=

∫

Ω

(ϕ̄+ ν ū+ µ λ̄)([ū + ρ vk]− ū) ≥ 0.

Finally, dividing the previous expression by ρ and passing to the limit as k → ∞, we
obtain the second inequality of (3.8).

Identities (3.9) are an obvious consequence of (3.8) and the equality satisfied by
the elements of Cū.

Remark 3.6. Let us observe that for any v ∈ L2(Ω) satisfying

j′(ū; v) =

∫

Ω

λ̄(x) v(x) dx,

the relations (3.1) and (3.2) imply that
∫

Ω0
ū

|v(x)| dx =

∫

Ω0
ū

λ̄(x) v(x) dx ⇒

∫

Ω0
ū

(

|v(x)| − λ̄(x) v(x)
)

dx = 0,

which leads to |v(x)| = λ̄(x) v(x) for almost all x ∈ Ω0
ū. In particular, (3.9) implies

that this identity holds for all the elements of Cū.
Proof of Proposition 3.4. It is obvious that Cū is a closed cone of L2(Ω). Let

us prove that it is convex. Given v1, v2 ∈ Cū and 0 < t < 1, it is clear that v =
t v1 + (1− t) v2 satisfies (3.7) and using the convexity of j we get

F ′(ū) v + µ j(ū; v) ≤ t
[

F ′(ū) v1 + µ j′(ū; v1)
]

+ (1− t)
[

F ′(ū) v2 + µ j′(ū; v2)
]

= 0.

The contrary inequality is a consequence of Lemma 3.5; hence v ∈ Cū.
Let us introduce some notation. We define

(3.10) d̄(x) = ϕ̄(x) + ν ū(x) + µ λ̄(x) ∈ C0,1(Ω̄),

the Lipschitz regularity of d̄ being a consequence of the regularity properties estab-
lished in Corollary 3.2. From (3.5a) we deduce as usual

(3.11)

⎧

⎪

⎨

⎪

⎩

ū(x) = α ⇒ d̄(x) ≥ 0,

ū(x) = β ⇒ d̄(x) ≤ 0,

α < ū(x) < β ⇒ d̄(x) = 0

and

{

d̄(x) > 0 ⇒ ū(x) = α,

d̄(x) < 0 ⇒ ū(x) = β

a.e. in Ω.
On the other hand, from (3.9) we have

∫

Ω

d̄(x) v(x) dx = F ′(ū) v + µ

∫

Ω

λ̄(x) v(x) dx = 0 ∀v ∈ Cū.

This identity, along with (3.7) and (3.11), leads to

(3.12)

∫

Ω

|d̄(x) v(x)| dx =

∫

Ω

d̄(x) v(x) dx = 0 ⇒ d̄(x) v(x) ≡ 0 ∀v ∈ Cū.

Now, we can formulate the second-order necessary optimality conditions as
follows.
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Theorem 3.7. Let us assume that ū is a local minimum of (P); then
F ′′(ū) v2 ≥ 0 for every v ∈ Cū.

Proof. Given v ∈ Cū we define for every k ∈ N

vk(x) =

⎧

⎨

⎩

0 if α < ū(x) < α+
1

k
or β −

1

k
< ū(x) < β or 0 < |ū(x)| <

1

k
,

Proj[−k,+k](v(x)) otherwise,

and ρk = 1/k2. Then, as in the proof of Lemma 3.5, we have that ū + ρ vk ∈ K

for every 0 < ρ < ρk and vk → v in L2(Ω). On the other hand, it is obvious that
vk(x) = 0 whenever v(x) = 0, and the sign of vk(x) coincides with the sign of v(x)
whenever vk(x) �= 0.

Let λ̄ be the unique element of ∂j(ū) associated with ū; see Corollary 3.2. Then,
by (3.9), j′(ū; v) =

∫

Ω
λ̄(x) v(x) dx holds. Consequently, we have |v(x)| = λ̄(x) v(x)

for x ∈ Ω0
ū, as observed in Remark 3.6. Moreover, d̄(x) v(x) ≡ 0 holds by (3.12).

Owing to the sign condition for vk, we obtain

(3.13) |vk(x)| = λ̄(x) vk(x) for a.a. x ∈ Ω0
ū and d̄(x) vk(x) ≡ 0 for a.a. x ∈ Ω.

Let us analyze the case where x ∈ Ω+
ū . In this situation, since ρ |vk(x)| < ρkk ≤ 1/k

and vk(x) = 0 if 0 < ū(x) < 1/k, we necessarily have that ū(x) + ρ vk(x) ≥ 0 which,
along with the fact that λ̄(x) = 1, leads to

(3.14) |ū(x) + ρ vk(x)| − |ū(x)| = ρ vk(x) = ρ λ̄(x) vk(x).

Analogously, we obtain that |ū(x) + ρ vk(x)| − |ū(x)| = −ρ vk(x) = ρ λ̄(x) vk(x) when
x ∈ Ω−

ū . Thus, from this identity, (3.13), and (3.14) we conclude that

(3.15) j(ū+ ρ vk)− j(ū) = ρ

∫

Ω

λ̄(x) vk(x) dx ∀0 < ρ < ρk.

On the other hand, the second identity of (3.13) can be written as

(3.16) F ′(ū) vk + µ

∫

Ω

λ̄(x) vk(x) dx =

∫

Ω

d̄(x) vk(x) dx = 0.

Now, using the fact that ū is a local minimum and taking into account (3.15) and
(3.16), we infer for all ρ > 0 sufficiently small that

0 ≤ J(ū + ρ vk)− J(ū)

=

[

F (ū) + ρF ′(ū) vk +
ρ2

2
F ′′(ū) v2k + o(ρ2) + µ j(ū+ ρ vk)

]

−
[

F (ū) + µ j(ū)
]

= ρF ′(ū) vk +
ρ2

2
F ′′(ū) v2k + o(ρ2) + µ

[

j(ū+ ρ vk)− j(ū)
]

=
ρ2

2
F ′′(ū) v2k + o(ρ2) + ρ

{

F ′(ū) vk + µ

∫

Ω

λ̄(x)vk(x) dx

}

=
ρ2

2
F ′′(ū) v2k + o(ρ2).

Dividing the last expression by ρ2/2 and letting ρ ց 0, we obtain F ′′(ū) v2k ≥ 0.
Finally, passing to the limit when k → ∞, we conclude that F ′′(ū) v2 ≥ 0.
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We finish the section by proving the sufficient condition in Theorem 3.9 with a
minimal gap w.r.t. the necessary one proved in Theorem 3.7. Before we do so, we
recall that a natural assumption would be the positivity of the second derivative F ′′(ū)
on the critical cone Cū. Due to the L2 regularization term, this already implies that
F ′′(ū) is uniformly positive even on a larger cone. This is established in the next
theorem. Moreover, this second equivalent condition will be used for the numerical
analysis in section 4.

Theorem 3.8. Let ū ∈ K and λ̄ ∈ ∂j(ū) such that (3.4) hold. Then the following
statements are equivalent:

1. F ′′(ū) v2 > 0 for all v ∈ Cū \ {0}.
2. There exist τ > 0 and δ > 0 such that F ′′(ū) v2 ≥ δ ‖v‖2L2(Ω) for all v ∈ Cτ

ū ,
where

Cτ
ū = {v ∈ L2(Ω) satisfying (3.7) and F ′(ū) v + µ j′(ū; v) ≤ τ ‖v‖L2(Ω)}.

Proof. Since Cū ⊂ Cτ
ū , it is obvious that the second condition implies the first

one. Let us prove the other implication. We will proceed by contradiction. Then,
we assume that the first condition holds, but not the second. Hence, there exists a
sequence {vk}

∞
k=1 such that

vk ∈ C
1/k
ū and F ′′(ū) v2k <

1

k
‖vk‖

2
L2(Ω).

Since C
1/k
ū is a cone, we can divide vk by its L2(Ω) norm and, by taking a subsequence

if necessary, we can assume that

(3.17) vk ∈ C
1/k
ū , F ′′(ū) v2k <

1

k
, and vk ⇀ v in L2(Ω).

Since vk ∈ C
1/k
ū , then vk satisfies the sign conditions (3.7), and therefore v also

does. Then, (3.8) implies

(3.18) F ′(ū) v + µ j′(ū; v) ≥ 0.

On the other hand, using again that vk ∈ C
1/k
ū , we get

(3.19) F ′(ū) v + µ j′(ū; v) ≤ lim inf
k→∞

{

F ′(ū) vk + µ j′(ū; vk)
}

≤ lim inf
k→∞

1

k
= 0.

Inequalities (3.18) and (3.19), along with the sign condition (3.7) satisfied by v, imply
that v ∈ Cū. Now, we observe that Theorem 2.2 and the compactness of the em-
bedding W 2,p(Ω) ⊂ C(Ω̄) imply the compactness of the linear operator v ∈ L2(Ω) →
zv = G′(ū)v ∈ C(Ω̄). From this property along with the continuity and convexity of
v ∈ L2(Ω) → ‖v‖2L2(Ω), and the expression (2.8), we conclude that F ′′(ū) : L2(Ω) → R

is a weakly lower semicontinuous quadratic functional. Then, from (3.17) we infer

F ′′(ū) v2 ≤ lim inf
k→∞

F ′′(ū) v2k ≤ lim sup
k→∞

F ′′(ū) v2k ≤ 0,

which is only possible if v = 0 because of condition 1 of Theorem 3.8; therefore,
F ′′(ū) v2k → 0. However, vk ⇀ 0 in L2(Ω) implies the strong convergence zvk → 0 in
W 1,p̄(Ω). Therefore,

F ′′(ū) v2k =

∫

Ω

{

∂2L

∂y2
(x, ȳ) z2vk −

∂2a

∂y2
(x, ȳ) ϕ̄ z2vk + ν v2k

}

dx

=

∫

Ω

{

∂2L

∂y2
(x, ȳ) z2vk −

∂2a

∂y2
(x, ȳ) ϕ̄ z2vk

}

dx+ ν
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converges to ν, which is a contradiction.
Finally, we prove the sufficient second-order optimality condition.
Theorem 3.9. Let ū ∈ K and λ̄ ∈ ∂j(ū) such that (3.4) hold. Furthermore, let

us assume that F ′′(ū) v2 > 0 for all v ∈ Cū \ {0}; then there exist δ > 0 and ε > 0
such that

(3.20) J(ū) +
δ

4
‖u− ū‖2L2(Ω) ≤ J(u) ∀u ∈ K ∩Bε(ū),

where Bε(ū) denotes the L2(Ω) ball of center ū and radius ε.
Proof. Let ε > 0 and u ∈ K ∩Bε(ū) be given. We define

ρ = ‖u− ū‖L2(Ω) ≤ ε, v =
1

ρ
(u− ū).

A second-order Taylor expansion of F yields

F (u) = F (ū) + ρF ′(ū) v +
ρ2

2
F ′′(ū) v2 + ρ2

∫ 1

0

(1− t)
(

F ′′(ū+ t ρ v)− F ′′(ū)
)

v2 dt.

It follows from the continuity of F ′′ that the last term is of order o(ρ2). Using the
convexity of j, this shows

J(u)− J(ū) ≥ ρ
(

F ′(ū) v + µ j′(ū, v)
)

+
ρ2

2
F ′′(ū) v2 + o(ρ2).

In case v ∈ Cτ
ū , Theorem 3.8 and Lemma 3.5 imply

J(u)− J(ū) ≥
ρ2

2
δ + o(ρ2),

where δ > 0.
On the other hand, if v �∈ Cτ

ū , we have F ′(ū) v + µ j′(ū, v) ≥ τ , since v satisfies
(3.7). Hence, we have

J(u)− J(ū) ≥ ρ τ −
ρ2

2
‖F ′′(ū)‖ + o(ρ2).

This shows (3.20) for ε sufficiently small.

4. Finite element approximation of (P). The goal of this section is to study
the approximation of problem (P) by finite elements. Both the state and the controls
will be discretized. We prove the convergence of the discretization and derive some
associated error estimates. To this aim, we consider a family of triangulations {Th}h>0

of Ω̄, defined in the standard way, e.g., in [3, Chapter 3.3]. Due to the assumption
that Ω has a smooth boundary, the triangulation covers a polygonal approximation
Ωh. With each element T ∈ Th, we associate two parameters ρ(T ) and σ(T ), where
ρ(T ) denotes the diameter of the set T and σ(T ) is the diameter of the largest ball
contained in T . Define the size of the mesh by h = maxT∈Th

ρ(T ). To simplify the
presentation of the results, in what follows we suppose that Ω is convex. We also
assume that the following regularity assumptions on the triangulation are satisfied
which are standard in the context of L∞ error estimates.

(i) There exist two positive constants ρ and σ such that

ρ(T )

σ(T )
≤ σ,

h

ρ(T )
≤ ρ

hold for all T ∈ Th and all h > 0.
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(ii) Define Ωh = ∪T∈Th
T , and let Ωh and Γh denote its interior and its boundary,

respectively. We assume that Ωh is convex and that the vertices of Th placed on the
boundary Γh are points of Γ. From [15, estimate (5.2.19)] we know that

|Ω \ Ωh| ≤ Ch2.

We will use piecewise linear approximations for the states; thus we set

Yh = {yh ∈ C(Ω̄) | yh|T ∈ P1 ∀T ∈ Th, and yh = 0 on Ω̄ \ Ωh},

where P1 is the space of polynomials of degree less than or equal to 1.
The discrete version of (2.1) is defined as follows:

(4.1)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Find yh ∈ Yh such that ∀zh ∈ Yh,

∫

Ωh

⎡

⎣

n
∑

i,j=1

aij ∂xi
yh ∂xj

zh + a(x, yh) zh

⎤

⎦ dx =

∫

Ωh

u zh dx.

Thanks to the monotonicity of the nonlinear term of (4.1) and using Brouwer’s fixed
point theorem, it is easy to prove the existence and uniqueness of a solution yh(u) of
(4.1) for any u ∈ L2(Ωh).

Now, we define the space of discrete controls by

Uh = {uh ∈ L2(Ωh) : uh

∣

∣

T
= constant ∀T ∈ Th}.

Every element uh ∈ Uh can be written in the form

uh =
∑

T∈Th

uTχT ,

where χT is the characteristic function of T . The set of discrete feasible controls is
given by

Kh = {uh ∈ Uh : α ≤ uT ≤ β ∀T ∈ Th}.

Finally, the discrete control problem is formulated as follows:

(Ph)

{

min Jh(uh) = Fh(uh) + µ jh(uh),

uh ∈ Kh,

where Fh : L2(Ωh) −→ R and jh : Uh −→ R are defined by

Fh(u) =

∫

Ωh

L(x, yh(uh)) dx+
ν

2

∫

Ωh

u2
h dx and jh(uh) =

∫

Ωh

|uh| dx.

It is immediate that (Ph) has at least one solution and we have the following
first-order optimality conditions analogous to those of problem (P); see Theorem 3.1.

Theorem 4.1. If ūh is a local minimum of problem (Ph), then there exist ȳh, ϕ̄h ∈
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Yh and λ̄h ∈ ∂jh(uh) such that

∫

Ωh

⎡

⎣

n
∑

i,j=1

aij ∂xi
ȳh ∂xj

zh + a(x, ȳh) zh

⎤

⎦dx =

∫

Ωh

ūhzh dx ∀zh ∈ Yh,

(4.2a)

∫

Ωh

⎡

⎣

n
∑

i,j=1

aij ∂xi
zh ∂xj

ϕ̄h +
∂a

∂y
(x, ȳh) ϕ̄hzh

⎤

⎦dx =

∫

Ωh

∂L

∂y
(x, ȳh) zh dx ∀zh ∈ Yh,

(4.2b)

∫

Ωh

(ϕ̄h + ν ūh + µ λ̄h)(uh − ūh) dx ≥ 0 ∀uh ∈ Kh.

(4.2c)

It is an easy exercise to check that λ̄h can be written in the form

(4.3) λ̄h =
∑

T∈Th

λ̄T χT with

⎧

⎪

⎨

⎪

⎩

λ̄T = +1 if ūT > 0,

λ̄T = −1 if ūT < 0,

λ̄T ∈ [−1,+1] if ūT = 0,

where ūT are the coefficients of ūh,

ūh =
∑

T∈Th

ūT χT .

Inequality (4.2c) can be written in the form

∑

T∈Th

(
∫

T

ϕ̄h dx+ |T |
[

ν ūT + µ λ̄T

]

)

(uT − ūT ) ≥ 0 ∀α ≤ uT ≤ β,

which leads to the representation formula

(4.4a) ūT = Proj[α,β]

(

−
1

ν

[

1

|T |

∫

T

ϕ̄h dx+ µ λ̄T

])

.

Using (4.3) and (4.4a) and arguing as in the proof of Corollary 3.2, we can prove

(4.4b) ūT = 0 ⇔
1

|T |

∣

∣

∣

∣

∫

T

ϕ̄h dx

∣

∣

∣

∣

≤ µ ∀T ∈ Th

and

(4.4c) λ̄T = Proj[−1,+1]

(

−
1

µ |T |

∫

T

ϕ̄h dx

)

∀T ∈ Th.

As for the infinite dimensional case, this representation formula implies that λ̄h is
unique for a given local minimum ūh.

On the other hand, defining

(4.5) d̄h(x) = ϕ̄h(x) + ν ūh(x) + µ λ̄h(x),

D
o

w
n
lo

ad
ed

 0
8
/2

0
/1

3
 t

o
 1

9
3
.1

4
4
.1

8
5
.3

9
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

808 EDUARDO CASAS, ROLAND HERZOG, AND GERD WACHSMUTH

we get the analogous relations to (3.11)

(4.6)

⎧

⎪

⎨

⎪

⎩

ūT = α ⇒
∫

T
d̄h(x) dx ≥ 0,

ūT = β ⇒
∫

T d̄h(x) dx ≤ 0,

α < ūT < β ⇒
∫

T d̄h(x) dx = 0

and

{

∫

T
d̄h(x) dx > 0 ⇒ ūT = α,

∫

T d̄h(x) dx < 0 ⇒ ūT = β.

The rest of the section is divided into two parts. In the first part, we prove that
the family of problems (Ph) realizes a convergent approximation of problem (P) in a
two-fold sense: global solutions of (Ph) converge to global solutions of (P) and strict
local solutions of (P) can be approximated by local solutions of (Ph). In the second
part of the section, we prove some error estimates for these approximations.

4.1. Convergence of the discretizations. Before proving the convergence
of the solutions of (Ph) to solutions of (P), we need to establish some convergence
properties of the finite element approximation of the state and adjoint state equations.
The next result is well known; see [1], [5], and [16] and the references therein.

Lemma 4.2. Let u, v ∈ L∞(Ω) fulfill ‖u‖L∞(Ω) + ‖v‖L∞(Ω) ≤ M , and let yu,
yh(v), ϕu, and ϕh(v) be the solutions of (2.1), (4.1) (with u replaced by v), (2.9), and
(4.2b) (with ȳh replaced by yh(v)), respectively. Then the following a priori estimates
hold:

‖yu − yh(v)‖H1(Ωh) + ‖ϕu − ϕh(v)‖H1(Ωh) ≤ C
(

h+ ‖u− v‖L2(Ω)

)

,

(4.7a)

‖yu − yh(v)‖L2(Ωh) + ‖ϕu − ϕh(v)‖L2(Ωh) ≤ C
(

h2 + ‖u− v‖L2(Ω)

)

,

(4.7b)

‖yu − yh(v)‖L∞(Ωh) + ‖ϕu − ϕh(v)‖L∞(Ωh) ≤ C
(

h2−n/p̄| log h|+ ‖u− v‖L2(Ω)

)

.

(4.7c)

Moreover, if uh ⇀ u weakly in Lp(Ω), with p > n/2, then yh(uh) → yu and ϕh(uh) →
ϕu in H1

0 (Ω) ∩ C(Ω̄) strongly and J(u) ≤ lim infh→0 Jh(uh) holds.
Remark 4.3. Given a sequence {uh}h>0, with uh ∈ Lq(Ωh) and 1 ≤ q ≤ +∞,

we say that uh ⇀ u weakly in Lq(Ω) (respectively, weakly∗ in L∞(Ω) if q = ∞) if
u ∈ Lq(Ω) and

∫

Ωh

g uh dx →

∫

Ω

g u dx ∀g ∈ Lq′(Ω).

The above definition is equivalent to the weak (or weak∗) convergence of any extension

{ũh}h>0 ⊂ Lq(Ω) of {uh}h>0 such that ũh|Ω\Ωh

(∗)
⇀ 0 when h → 0. Since |Ω \Ωh| → 0

when h → 0, this is, in particular, the case if we extend uh by an Lq(Ω) function
independent of h.

We also say that {uh}h>0 is bounded in Lq(Ω) if there exists a bounded extension
{ũh}h>0 ⊂ Lq(Ω), which is equivalent to the boundedness ‖uh‖Lq(Ωh) ≤ C for all
h > 0 and some C > 0.

Now we have the first convergence theorem.
Theorem 4.4. For every h > 0 let ūh be a global solution of problem (Ph), then

the sequence {ūh}h>0 is bounded in L∞(Ω) and there exist subsequences, denoted in
the same way, converging to a point ū in the weak⋆ L∞(Ω) topology. Any of these
limit points is a solution of problem (P). Moreover, we have
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(4.8) lim
h→0

{

‖ū− ūh‖L∞(Ωh) + ‖λ̄− λ̄h‖L∞(Ωh)

}

= 0 and lim
h→0

Jh(ūh) = J(ū),

where λ̄ ∈ ∂j(ū) is given by (3.5c) and λ̄h ∈ ∂jh(ūh) is given by (4.4c).
Proof. The sequence {ūh}h>0 is clearly bounded in L∞(Ω). Let us assume that,

for a subsequence denoted in the same way, ūh ⇀ ū weakly⋆ in L∞(Ω) when h → 0.
Let ũ be a solution of (P) and take ũh ∈ Kh defined by

ũT =
1

|T |

∫

T

ũ(x) dx ∀T ∈ Th.

Since ũ ∈ C0,1(Ω̄) (see Corollary 3.2), we know that ‖ũ − ũh‖L∞(Ωh) → 0. Then,
using that ū ∈ K, ũh ∈ Kh, ūh is a solution of (Ph), and ũ is a solution of (P), we
get with the help of Lemma 4.2 that

J(ũ) ≤ J(ū) ≤ lim inf
h→0

Jh(ūh) ≤ lim sup
h→0

Jh(ūh) ≤ lim sup
h→0

Jh(ũh) = J(ũ).

The above inequalities imply that ū is a solution of (P) and Jh(ūh) → J(ū). On
the other hand, from Lemma 4.2 we infer

lim
h→0

∫

Ωh

L(x, ȳh) dx =

∫

Ω

L(x, ȳ) dx,

where ȳh and ȳ are the states associated with ūh and ū, respectively. Therefore

lim
h→0

{ν

2
‖ūh‖

2
L2(Ωh)

+ µ ‖ūh‖L1(Ωh)

}

=
ν

2
‖ū‖2L2(Ω) + µ ‖ū‖L1(Ω).

From this convergence and the weak convergence ūh ⇀ ū (for an arbitrary extension
of ūh to Ω) in L2(Ω) we deduce that ūh → ū strongly in L2(Ω). Now, Lemma 4.2
implies that ȳh → ȳ and ϕ̄h → ϕ̄ in H1(Ω) ∩ C(Ω̄). From formula (4.4c), for every
T ∈ Th we deduce the existence of xT ∈ T such that

λ̄T = Proj[−1,+1]

(

−
1

µ |T |

∫

T

ϕ̄h dx
)

= Proj[−1,+1]

(

−
1

µ
ϕ̄h(xT )

)

,

and therefore

‖λ̄− λ̄h‖L∞(Ωh) = max
T∈Th

‖λ̄− λ̄h‖L∞(T )

≤ max
T∈Th

max
x∈T

∣

∣

∣

∣

Proj[−1,+1]

(

−
1

µ
ϕ̄(x)

)

− Proj[−1,+1]

(

−
1

µ
ϕ̄(xT )

)

∣

∣

∣

∣

+ max
T∈Th

∣

∣

∣

∣

Proj[−1,+1]

(

−
1

µ
ϕ̄(xT )

)

− Proj[−1,+1]

(

−
1

µ
ϕ̄h(xT )

)

∣

∣

∣

∣

,

and thus

(4.9) ‖λ̄− λ̄h‖L∞(Ωh) ≤
1

µ
Lϕ̄h+

1

µ
‖ϕ̄− ϕ̄h‖L∞(Ωh) → 0,

where Lϕ̄ is the Lipschitz constant of ϕ̄. Finally, using (4.4a) and (3.5a), we can argue
in a similar way to conclude that ‖ū− ūh‖L∞(Ωh) → 0.

The next theorem is a kind of reciprocal result to the previous one for local solu-
tions. It is important from a practical point of view because it states that every strict
local minimum of problem (P) can be approximated by local minima of problems (Ph).
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Theorem 4.5. Let ū be a strict local minimum of (P); then there exists a
sequence {ūh}h>0 of local minima of problems (Ph) such that (4.8) holds.

Proof. Let ū be a strict local minimum of (P); then there exists ε > 0 such that
ū is the unique solution of

(4.10) min
u∈K∩B̄ε(ū)

J(u),

where Bε(ū) is a ball in Lq(Ω) and all the elements of Uh are extended to Ω by taking
uh(x) = ū(x) for any x ∈ Ω \ Ωh. We will distinguish two cases: q = 2 or q = ∞;
recall the comments made at the beginning of section 3. Let us consider the discrete
problems

(Pεh) min
u∈Kh∩B̄ε(ū)

Jh(u).

For every h sufficiently small, the problem (Pεh) has at least one solution. Indeed, the
only delicate point is to check that Kh ∩ B̄ε(ū) is not empty. To this end, we define
ûh ∈ Uh by

ûT =
1

|T |

∫

T

ū(x) dx ∀T ∈ Th.

Then, thanks to the Lipschitz regularity of ū, we have ‖ū− ûh‖L∞(Ω) → 0; therefore,
û ∈ Kh ∩ B̄ε(ū) for any h ≤ h0 and some h0 > 0 sufficiently small.

Let ūh be a solution of (Pεh) for h ≤ h0. Then we can argue as in the proof
of Theorem 4.4 to deduce that any subsequence of {ūh}h≤h0

converges strongly in
L2(Ω) to a solution of (Pε). Since this problem has a unique solution, we have
‖ū − ūh‖L2(Ω) → 0 for the whole sequence as h → 0. If q = 2, this implies that the
constraint ūh ∈ B̄ε(ū) is not active for h small, and hence ūh is a local solution of
(Ph) and (4.2) is fulfilled. Therefore, we proceed as in the proof of Theorem 4.4 to
deduce (4.8).

If q = ∞, then (4.2a) and (4.2b) hold and (4.2c) has to be replaced by

(4.11)

∫

Ωh

(ϕ̄h + ν ūh + µ λ̄h)(uh − ūh) dx ≥ 0 ∀uh ∈ Kh ∩ B̄ε(ū).

Let us define αε(x) = max{α, ū(x) − ε}, βε(x) = min{β, ū(x) + ε}, and

αεT = max
x∈T

αε(x), βεT = min
x∈T

βε(x) ∀T ∈ Yh.

Then (4.11) is equivalent to

(
∫

T

ϕ̄h dx+ |T |
[

ν ūT + µ λ̄T

]

)

(uT − ūT ) ≥ 0 ∀αεT ≤ uT ≤ βεT , ∀T ∈ Th,

which leads to the representation formula analogous to (4.4a),

ūT = Proj[αεT ,βεT ]

(

−
1

ν

[

1

|T |

∫

T

ϕ̄h dx+ µ λ̄T

])

= Proj[αεT ,βεT ]

(

−
1

ν

[

ϕ̄h(xT ) + µ λ̄T

]

)

∀T ∈ Th.
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The representation formula (4.4c) is still valid, which leads to the convergence ‖λ̄ −
λ̄h‖L∞(Ωh) → 0 as proved in Theorem 4.4. On the other hand, it is obvious that

Proj[α,β]

(

−
1

ν
[ϕ̄(x) + µ λ̄(x)]

)

= Proj[αε(x),βε(x)]

(

−
1

ν

[

ϕ̄(x) + µ λ̄(x)
]

)

∀x ∈ Ω.

Also we have

|αε(x) − αεT | ≤ max
x∈T

ū(x)−min
x∈T

ū(x) ≤ Lūh ∀x ∈ T, ∀T ∈ Th,

where Lū is the Lipschitz constant of ū. An analogous inequality is valid for βε(x)−
βεT . Finally, we have for any x ∈ T , with T ∈ Th,

|ū(x) − ūh(x)| ≤ |ū(x) − ū(xT )|+ |ū(xT )− ūT |

≤ Lūh+
∣

∣

∣
Proj[αε(xT ),βε(xT )]

(

−
1

ν

[

ϕ̄(xT ) + µ λ̄(xT )
]

)

− Proj[αεT ,βεT ]

(

−
1

ν

[

ϕ̄h(xT ) + µ λ̄T

]

)
∣

∣

∣

≤ Lūh+ |αε(xT )− αεT |+ |βε(xT )− βεT |

+
1

ν

{

|ϕ̄(xT )− ϕ̄h(xT )|+ µ |λ̄(xT )− λ̄T |
}

≤ 3Lūh+
1

ν

{

‖ϕ̄− ϕ̄h‖L∞(Ωh) + µ ‖λ̄− λ̄h‖L∞(Ωh)

}

→ 0.

Hence, we have that ‖ū − ūh‖L∞(Ωh) → 0 as h → 0; therefore, the constraint ūh ∈
B̄ε(ū) is not active for small h. Consequently ū is a local minimum of (Ph).

4.2. Error estimates. In this section, {ūh}h>0 denotes a sequence of local min-
ima of problems (Ph) such that ‖ū − ūh‖L∞(Ωh) → 0 when h → 0, ū being a local
minimum of (P); see Theorems 4.4 and 4.5. The goal of this section is to obtain
estimates of ū− ūh in the L2 and L∞ norms. As we did in the proof of Theorem 4.5,
we extend all the functions uh ∈ Uh to Ω by taking uh(x) = ū(x) for every x ∈ Ω\Ωh.
Analogously we extend λ̄h to Ω by setting λ̄h(x) = λ̄(x) for x ∈ Ω\Ωh. Now, we recall
that Corollary 3.2 implies that ū, λ̄ ∈ C0,1(Ω̄), where λ̄ ∈ ∂j(ū) and (ū, λ̄) satisfies
(3.4) along with the state ȳ and the adjoint state ϕ̄ associated with ū.

To derive the error estimates we are going to begin by invoking the first-order
optimality conditions (3.4c) and (4.2c). Taking u = ūh in (3.4c), we get

(4.12) F ′(ū)(ūh − ū) + µ

∫

Ω

λ̄ (ūh − ū) dx =

∫

Ω

(ϕ̄+ ν ū+ µ λ̄)(ūh − ū) dx ≥ 0.

Now, for any uh ∈ Kh, we deduce from (4.2c) that

F ′
h(ūh)(uh − ūh) + µ

∫

Ω

λ̄h (uh − ūh) dx =

∫

Ωh

(ϕ̄h + ν ūh + µ λ̄h)(uh − ūh) dx ≥ 0.

From here we get

(4.13) F ′(ūh)(ū − ūh) +
[

F ′
h(ūh)− F ′(ūh)

]

(ū− ūh) +
[

F ′
h(ūh)− F ′(ū)

]

(uh − ū)

+ F ′(ū)(uh − ū) + µ

∫

Ωh

λ̄h (uh − ūh) dx ≥ 0.
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Adding (4.12) and (4.13) we deduce that

(4.14)
[

F ′(ūh)− F ′(ū)
]

(ūh − ū) ≤
[

F ′
h(ūh)− F ′(ūh)

]

(ū− ūh)

+
[

F ′
h(ūh)− F ′(ū)

]

(uh − ū) + F ′(ū)(uh − ū) + µ

∫

Ω

λ̄ (uh − ū) dx

+ µ

∫

Ω

(λ̄− λ̄h)(ūh − ū) dx+ µ

∫

Ω

(λ̄h − λ̄)(uh − ū) dx

for any uh ∈ Kh. This inequality is crucial in the proof of error estimates. To deal with
the left-hand side of (4.14) we need ū to satisfy the sufficient second-order condition
F ′′(ū) v2 > 0 for every v ∈ Cū \ {0}, or, equivalently (see Theorem 3.8),

(4.15) ∃δ > 0 and ∃τ > 0 such that F ′′(ū) v2 ≥ δ ‖v‖2L2(Ω) ∀v ∈ Cτ
ū .

Lemma 4.6. Let us assume that (4.15) holds. Then, there exists hδ > 0 such that

(4.16)
δ

2
‖ū− ūh‖

2
L2(Ωh)

≤
[

F ′(ūh)− F ′(ū)
]

(ūh − ū) ∀h ≤ hδ.

Proof. Using the mean value theorem we obtain

[

F ′(ūh)− F ′(ū)
]

(ūh − ū) = F ′′(ū+ θh(ūh − ū))(ūh − ū)2.

On the other hand, since F is of class C2 in L2(Ω), there exists ε > 0 such that

∣

∣

[

F ′′(ū)− F ′′(v)
]

(ūh − ū)2
∣

∣ ≤
δ

2
‖ūh − ū‖2L2(Ωh)

if ‖ū− v‖L2(Ω) < ε.

From the convergence ‖ū − ūh‖L∞(Ωh) → 0, we deduce the existence of hε > 0 such
that ‖ū− ūh‖L2(Ω) < ε for h ≤ hε. Then, the last two relations lead to

[

F ′(ūh)− F ′(ū)
]

(ūh − ū)

≥ F ′′(ū)(ūh − ū)2 −
∣

∣

[

F ′′(ū+ θh(ūh − ū))− F ′′(ū)
]

(ūh − ū)2
∣

∣

≥ F ′′(ū)(ūh − ū)2 −
δ

2
‖ūh − ū‖2L2(Ωh)

∀h ≤ hε.

If we prove that ūh− ū ∈ Cτ
ū for every h small enough, then (4.16) follows from (4.15)

and the previous inequality. Therefore, the rest of the proof is devoted to showing
that ūh − ū ∈ Cτ

ū for every h sufficiently small. Let us define

vh =
ūh − ū

‖ūh − ū‖L2(Ω)
;

then there exist an element v ∈ L2(Ω) and a sequence hk → 0 such that vhk
⇀ v

in L2(Ω). It is obvious that each vh satisfies (3.7), and thus v also does. On the
other hand, (4.8) and Lemma 4.2 imply that ‖d̄ − d̄h‖L∞(Ωh) → 0, where d̄ and d̄h
are defined by (3.10) and (4.5), respectively. From (3.11), we know that ū(x0) = α
whenever d̄(x0) > 0. Moreover, there exist ρ > 0 and hρ > 0 such that d̄h(x) > 0 for
almost all x ∈ Ω satisfying |x − x0| < ρ and h ≤ hρ < ρ. Then, (4.6) implies that
ūh(x0) = α too; hence vh(x0) = 0 for h ≤ hρ and almost all x0 satisfying d̄(x0) > 0.
Analogously, we can prove that vh(x0) = 0 for h small enough if d̄(x0) < 0. We have
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that vhk
⇀ v in L2(Ω0), where Ω0 = {x ∈ Ω : d̄(x) �= 0}. And also we have vhk

(x) → 0
pointwise for almost every x ∈ Ω0. Consequently, v = 0 in Ω0 holds (see [12, p. 207]),
and therefore

(4.17) F ′(ū) v + µ

∫

Ω

λ̄ v dx =

∫

Ω

d̄ v dx =

∫

Ω

|d̄||v| dx = 0.

Now, we study the limit of j′(ū; vhk
). First we observe that

(4.18) lim
k→∞

{

∫

Ω+
ū

vhk
dx−

∫

Ω−

ū

vhk
dx

}

=

∫

Ω+
ū

v dx−

∫

Ω−

ū

v dx.

The limit in the integral over Ω0
ū is more complicated. First, we observe that (3.5b)

implies

Ω0
ū = {x ∈ Ω : |ϕ̄(x)| ≤ µ}.

If |ϕ̄(x0)| < µ, then arguing as above we have that |ϕ̄h(x)| < µ for |x − x0| < ρ and
h ≤ hρ < ρ; hence (4.4b) implies that ūh(x0) = 0 for h ≤ hρ. Thus, we have that
vhk

(x) → 0 for |ϕ̄(x)| < µ, which leads to v(x) = 0 in the same set.
If ϕ̄(x0) = µ, then (3.5c) implies that λ̄(x0) = −1. Consequently λ̄h(x) < 0 in

a neighborhood of x0 for every h small; hence with (4.3) we get that ūh(x0) ≤ 0 for
every small h. Thus vhk

(x) ≤ 0 whenever ϕ̄(x) = µ and h is small, and hence v(x) ≤ 0
in the same set. Analogously we obtain that vhk

(x) ≥ 0 whenever ϕ̄(x) = −µ and h
is small, and consequently v(x) ≥ 0. These results lead to

(4.19) lim
k→∞

∫

Ω0
ū

|vhk
| dx = lim

k→∞

{

∫

Ω+
µ

|vhk
| dx+

∫

Ω−

µ

|vhk
| dx

}

= lim
k→∞

{

−

∫

Ω+
µ

vhk
dx+

∫

Ω−

µ

vhk
dx

}

= −

∫

Ω+
µ

v dx+

∫

Ω−

µ

v dx =

∫

Ω0
ū

|v| dx,

where

Ω+
µ = {x ∈ Ω0

ū : ϕ̄(x) = +µ} and Ω−
µ = {x ∈ Ω0

ū : ϕ̄(x) = −µ}.

From (4.18), (4.19), and the fact that λ̄(x) = +1 (respectively, −1) for x ∈ Ω−
µ

(respectively, Ω+
µ ), we deduce that

(4.20) lim
k→∞

j′(ū; vhk
) = j′(ū; v) =

∫

Ω

λ̄ v dx.

From identities (4.17) and (4.20) it follows that

lim
k→∞

{F ′(ū) vhk
+ µ j′(ū; vhk

)} = F ′(ū) v + µ j′(ū; v) = 0.

This equality holds for any weakly convergent subsequence of {vh}h>0; therefore

lim
h→0

{

F ′(ū) vh + µ j′(ū; vh)
}

= 0.

Consequently, given τ > 0 satisfying (4.15), there exists hτ > 0 such that

F ′(ū) vh + µ j′(ū; vh) ≤ τ ∀h ≤ hτ .
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From this inequality and the definition of vh we conclude that

F ′(ū)(ūh − ū) + µ j′(ū; ūh − ū) ≤ τ ‖ūh − ū‖L2(Ω),

which concludes the proof of ūh − ū ∈ Cτ
ū . Thus, inequality (4.16) holds for any

h ≤ hδ = min{hε, hτ}.
Combining (4.14) and (4.16), and assuming that ū satisfies the second-order suf-

ficient condition (4.15), we get

(4.21)
δ

2
‖ū− ūh‖

2
L2(Ωh)

≤
[

F ′
h(ūh)− F ′(ūh)

]

(ū − ūh)

+
[

F ′
h(ūh)− F ′(ū)

]

(uh − ū) + F ′(ū)(uh − ū) + µ

∫

Ω

λ̄ (uh − ū) dx

+ µ

∫

Ω

(λ̄− λ̄h)(ūh − ū) dx+ µ

∫

Ω

(λ̄h − λ̄)(uh − ū) dx

for any uh ∈ Kh. The rest of the section is devoted to estimating the right-hand side
of the above inequality. To deal with the first two terms we give the following lemma.

Lemma 4.7. Let u, v ∈ L∞(Ω) be bounded by a constant M > 0 and let w ∈
L2(Ω), with w(x) = 0 in Ω \ Ωh. Then, there exists CM > 0 such that

(4.22)
∣

∣[F ′
h(v)− F ′(u)]w

∣

∣ ≤ CM

(

h2 + ‖u− v‖L2(Ω)

)

‖w‖L2(Ω).

Proof. If we denote by ϕh(v) and ϕu the discrete and continuous adjoint states
associated with v and u, respectively, we have

∣

∣[F ′
h(v)− F ′(u)]w

∣

∣ =

∣

∣

∣

∣

∫

Ω

(ϕh(v) + ν v)w dx−

∫

Ω

(ϕu + ν u)w dx

∣

∣

∣

∣

≤
(

‖ϕh(v)− ϕu‖L2(Ω) + ν ‖v − u‖L2(Ω)

)

‖w‖L2(Ω).

Now, it is enough to use (4.7b) to deduce (4.22) from the above inequality.
Using (4.22) and Young’s inequality we can estimate the first two terms in (4.21) by

[

F ′
h(ūh)− F ′(ūh)

]

(ū− ūh) +
[

F ′
h(ūh)− F ′(ū)

]

(uh − ū)

≤ C
{

h2‖ūh − ū‖L2(Ωh) +
[

h2 + ‖ūh − ū‖L2(Ωh)

]

‖uh − ū‖L2(Ωh)

}

≤
δ

4
‖ūh − ū‖2L2(Ωh)

+ C′
{

h4 + ‖uh − ū‖2L2(Ωh)

}

.

From this inequality and (4.21) we infer

δ

4
‖ū− ūh‖

2
L2(Ωh)

≤ C′
{

h4 + ‖uh − ū‖2L2(Ωh)

}

+ F ′(ū)(uh − ū) + µ

∫

Ω

λ̄ (uh − ū) dx

+ µ

∫

Ω

(λ̄− λ̄h)(ūh − ū) dx+ µ

∫

Ω

(λ̄h − λ̄)(uh − ū) dx(4.23)

for any uh ∈ Kh. Let us introduce a convenient element ũh ∈ Kh which approxi-
mates ū. We define

ũh =
∑

T∈Th

ũT χT , where ũT =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

IT

∫

T

ū(x) dx if IT �= 0,

1

|T |

∫

T

ū(x) dx otherwise,
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with

IT =

∫

T

d̄(x) dx.

Now ũh is extended to Ω by setting ũh(x) = ū(x) for x ∈ Ω \ Ωh.
Lemma 4.8. The following statements hold:
1. ũh ∈ Kh,

2. ‖ũh − ū‖L∞(Ωh) ≤ Ch,

3. F ′(ū)(ũh − ū) + µ
∫

Ω λ̄ (ũh − ū) dx =
∫

Ω d̄ (ũh − ū) dx = 0.
The proof of this lemma follows the steps of [6, Lemma 4.8]. Indeed, λ̄ does not

play any role in the proof. The only thing to take into account is that ū and d̄ are
Lipschitz functions. Inserting this control ũh into (4.23) we get

(4.24)
δ

4
‖ū− ūh‖

2
L2(Ωh)

≤ C
[

h2 + h ‖λ̄h − λ̄‖L2(Ωh)

]

+ µ

∫

Ω

(λ̄− λ̄h)(ūh − ū) dx.

Let us estimate λ̄− λ̄h. By the estimates (4.9) and (4.7c) we infer

‖λ̄− λ̄h‖L∞(Ωh) ≤ C
[

h+ ‖ūh − ū‖L2(Ωh)

]

.

Inserting this estimate into (4.24) and using once again Young’s inequality we get

(4.25)
δ

8
‖ū− ūh‖

2
L2(Ωh)

≤ Ch2 + µ

∫

Ω

(λ̄− λ̄h)(ūh − ū) dx.

Finally, we estimate the last term.
Lemma 4.9. The following inequality holds:

(4.26)

∫

Ω

(λ̄− λ̄h)(ūh − ū) dx ≤ 0.

Proof. By (3.1), (4.3), and the property ūh = ū in Ω \ Ωh, we get

∫

Ω

(λ̄− λ̄h)(ūh − ū) dx =

∫

Ω

λ̄ (ūh − ū) dx+

∫

Ωh

λ̄h(ū− ūh) dx

≤ ‖ūh‖L1(Ω) − ‖ū‖L1(Ω) + ‖ū‖L1(Ωh) − ‖ūh‖L1(Ωh) = 0.

With (4.25) and (4.26) we have proved the following theorem.
Theorem 4.10. Let ū be a local minimum of problem (P) and let {ūh}h>0 be

a sequence of local minima of problems (Ph) such that ‖ū − ūh‖L∞(Ωh) → 0. Let us
assume that (4.15) holds. Then there exists a constant C > 0 independent of h such
that ‖ūh − ū‖L2(Ωh) ≤ Ch.

Finally, combining this theorem with (4.7c) and (4.9) and the representation
formulas for ū and ūh we get the following result.

Corollary 4.11. Under the assumptions of Theorem 4.10, we have

‖ūh − ū‖L∞(Ωh) + ‖λ̄h − λ̄‖L∞(Ωh) + ‖ȳh − ȳ‖L∞(Ωh) + ‖ϕ̄h − ϕ̄‖L∞(Ωh) ≤ Ch,

for some constant C > 0 independent of h.
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5. A variational discretization of (P). In this section we consider a partial
discretization of (P). As in section 4, we consider a triangulation of Ω under the same
hypotheses; Yh is defined in the same way leading to the same discrete state equation
(4.1). However, we do not discretize the controls and we set Uh = L∞(Ω). Rather, the
controls are implicitly discretized by the representation formula; see (5.1). This idea
was introduced by Hinze [13] and was called variational discretization of the control
problem. This discretization is numerically implementable (although the discretized
problem continues to be an infinite dimensional optimization problem) thanks to the
fact that the optimal control ūh is a projection of the adjoint state, which is piecewise
linear, translating this property to ūh. This incomplete discretization leads to an error
estimate of ū− ūh of order h2 in the L2(Ωh) norm as we will prove in this section.

The problem (Qh) is defined as follows:

(Qh)

{

min Jh(uh) = Fh(uh) + µ jh(uh),

uh ∈ K,

where Fh : L2(Ωh) −→ R and jh : L1(Ωh) −→ R are defined as in section 4. The
proof of the existence of a solution ūh of (Qh) is the same as for the problem (P). The
optimality conditions satisfied by a local minimum of (Qh) are given by Theorem 4.1
with Kh replaced by K. This change leads to the same relations formulas proved in
Corollary 3.2, i.e.,

ūh(x) = Proj[α,β]

(

−
1

ν

(

ϕ̄h(x) + µ λ̄h(x)
)

)

,(5.1a)

ūh(x) = 0 ⇔ |ϕ̄h(x)| ≤ µ,(5.1b)

λ̄h(x) = Proj[−1,+1]

(

−
1

µ
ϕ̄h(x)

)

.(5.1c)

These expressions are valid for every x ∈ Ωh. Also we have

⎧

⎪

⎨

⎪

⎩

λ̄h(x) = +1 if ūh(x) > 0,

λ̄h(x) = −1 if ūh(x) < 0,

λ̄h(x) ∈ [−1,+1] if ūh(x) = 0.

Theorem 4.4 is valid for the problem (Qh). Let us mention the only two changes
in the proof. First, given a solution ũ of (P), we do not need to introduce ũh as we
did in the proof; we just take ũh = ũ because now Kh = K. On the other hand, using
(3.5c) and (5.1c) we have that

‖λ̄−λ̄h‖L∞(Ωh) =
∥

∥

∥
Proj[α,β]

(

−
1

µ
ϕ̄
)

−Proj[α,β]

(

−
1

µ
ϕ̄h

)∥

∥

∥

L∞(Ωh)
≤

1

µ
‖ϕ̄−ϕ̄h‖L∞(Ωh)

and

‖ū− ūh‖L∞(Ωh) ≤
1

ν

∥

∥(ϕ̄+ µ λ̄)− (ϕ̄h + µ λ̄h)
∥

∥

L∞(Ωh)
.

With these changes the proof follows the same steps. Theorem 4.5 is also valid. In
fact, its proof is easier for the new problem (Qh) by using the properties (5.1). For
instance, in the definition of (Pε) we have to replace Kh by K; then it is obvious that
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ū is a feasible control of (Pε). We consider the functions αε and βε and we get from
(4.11) that

ūh(x) = Proj[αε,βε]

(

−
1

ν
[ϕ̄h(x) + µ λ̄h(x)]

)

.

Moreover, from the definition of αε and βε we also have

ū(x) = Proj[αε,βε]

(

−
1

ν
[ϕ̄(x) + µ λ̄(x)]

)

.

From the last two inequalities we deduce that

‖ū− ūh‖L∞(Ωh) ≤
1

ν
‖(ϕ̄+ µ λ̄)− (ϕ̄h + µ λ̄h)‖L∞(Ωh).

With these observations the proof of Theorem 4.5 is immediate. Finally, we have the
following error estimates.

Theorem 5.1. Let ū be a local minimum of problem (P) and let {ūh}h>0 be a
sequence of local minima of problems (Qh) such that ‖ū − ūh‖L∞(Ωh) → 0. Let us
assume that (4.15) holds. Then there exists a constant C > 0 independent of h such
that

‖ū− ūh‖L2(Ωh) + ‖λ̄− λ̄h‖L2(Ωh) ≤ Ch2,(5.2a)

‖ū− ūh‖L∞(Ωh) + ‖λ̄− λ̄h‖L∞(Ωh) ≤ Ch2−n
p̄ | log h|,(5.2b)

‖ȳ − ȳh‖L2(Ωh) + ‖ϕ̄− ϕ̄h‖L2(Ωh)

+ h
(

‖ȳ − ȳh‖H1(Ωh) + ‖ϕ̄− ϕ̄h‖H1(Ωh)

)

≤ Ch2,(5.2c)

‖ȳ − ȳh‖L∞(Ωh) + ‖ϕ̄− ϕ̄h‖L∞(Ωh) ≤ Ch2−n
p̄ | log h|.(5.2d)

Proof. Arguing as in the previous section we see that the inequality (4.14) is valid
for any uh ∈ K. Then we select uh = ū and (4.14) becomes

[

F ′(ūh)− F ′(ū)
]

(ūh − ū) ≤
[

F ′
h(ūh)− F ′(ūh)

]

(ū− ūh) + µ

∫

Ω

(λ̄− λ̄h)(ūh − ū) dx.

Obviously Lemmas 4.6, 4.7, and 4.9 are still valid; then applied to the previous in-
equality we obtain the estimate ‖ū− ūh‖L2(Ωh) ≤ Ch2. This estimate combined with
(4.7a) and (4.7b) proves (5.2c). Now (5.2d) is an immediate consequence of (4.7c) and
the estimate obtained for the controls. The L∞(Ωh) estimate for the controls follows
from (5.2d) and the representation formulas (3.5a) and (5.1a). Finally, the estimates
for λ̄− λ̄h are consequences of the estimates (5.2c) and (5.2d) and the representation
formulas (3.5c) and (5.1c).

6. Numerical validation. The purpose of the numerical examples is to verify
the theoretical results of the full discretization (section 4) and variational discretiza-
tion approaches (section 5). Let us fix the parameters of problem (P). The domain
Ω = B1(0) ⊂ R

2 is the unit circle, and the state equation (2.1) is given by

−∆y + y3 = u in Ω,

y = 0 on Γ.
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The part L of the objective is the standard tracking type functional, i.e., L(x, y) =
1
2 (y − yd(x))

2 with yd(x1, x2) = 4 sin(2 π x1) sin(π x2) e
x1 . For the remaining param-

eters we choose

ν = 2 · 10−3, α = −12,

µ = 3 · 10−2, β = 12.

The adjoint equation (3.4b) is now given by

−∆ϕ̄+ 3 ȳ2 ϕ̄ = ȳ − yd in Ω,

ϕ̄ = 0 on Γ.

The FEM library FEniCS [10, 14] and the Computational Geometry Algorithms Li-
brary (CGAL) [7] were used for all discretization related aspects of the implementa-
tion.

6.1. Full discretization. As described above, we employ continuous piecewise
linear (P1) discretizations of the state y and adjoint state ϕ and a piecewise constant
approximation (P0) of the control u. Now, the discretized optimality conditions for
(Ph) are as follows:

(6.1) Find (yh, ϕh, uh) ∈ Yh × Yh × Uh such that
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∫

Ωh

∇yh · ∇zh + y3h zh dx =

∫

Ωh

uh zh dx ∀zh ∈ Yh,

∫

Ωh

∇ϕh · ∇zh + 3 y2h ϕh zh dx =

∫

Ωh

(yh − yd) zh dx ∀zh ∈ Yh,

uT = Proj[α,β]

(

−
1

ν

[

ϕT − Proj[−µ,µ](ϕT )
]

)

on all T ∈ Th,

where ϕT = 1
|T |

∫

T ϕh dx is the mean value of ϕh on T . Note that we have inserted

(4.4c) into (4.4a). The nonlinear system (6.1) is solved via a semismooth Newton
method and for a sequence of different meshes, similar to [17]. An example for the
discretized optimal control on two different meshes is displayed in Figure 6.1. The
error with respect to the solution on the finest grid (h∗ = 2−8) is shown in Table 6.1.
It confirms the linear rate of convergence w.r.t. h. The error in the L∞ norm falls
below 12 = β − 0 = 0 − α only as soon as the relatively small margin between the
parts of the domain where ū ∈ {α, 0, β} is resolved by the mesh. Note also that the
meshes for this example are not nested.

We remark that the analysis above carries over to problems defined on a convex
polygonal domain Ω; see Remark 2.4. Indeed, we observe the same convergence rates
for the case Ω = (0, 1)2 ⊂ R

2 with all other problem data unchanged; see Table 6.1.
The finest grid in this case was h∗ = 2−9.

6.2. Variational discretization. As described above, we employ continuous
piecewise linear (P1) discretizations of the state y and adjoint state ϕ and a variational
approximation of the control u, i.e., Uh = L∞(Ω). Now, the discretized optimality
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Fig. 6.1. Optimal control ūh for the case of full discretization on the unit circle, h = 2−3,
and h = 2−8. Dark blue and dark red areas correspond to ūh = ±12 and gray areas to ūh = 0.
(References to color apply to online version only.)

Table 6.1

L2 and L∞ errors in the control on the unit circle and the unit square in case of full discretiza-
tion. The error was computed against the solution on the finest grid, using h∗ = 2−8 on the unit
circle and h∗ = 2−9 on the unit square.

Unit circle Unit square
h ‖ūh − ūh∗‖

L2 ‖ūh − ūh∗‖L∞ ‖ūh − ūh∗‖
L2 ‖ūh − ūh∗‖L∞

2−1 10.8288 14.8802 8.3472 12.0000
2−2 6.9220 12.0000 5.8162 12.0000
2−3 3.5205 12.0000 2.8185 12.0000
2−4 1.6310 12.0000 1.5246 12.0000
2−5 0.8463 8.3641 0.7899 9.9094
2−6 0.4300 5.1796 0.3983 5.0352
2−7 0.2360 2.9225 0.1989 2.1658
2−8 0.0896 0.7267

conditions for (Qh) are as follows:

(6.2) Find (yh, ϕh) ∈ Yh × Yh such that
⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫

Ωh

∇yh · ∇zh + y3h zh dx =

∫

Ωh

uh(ϕh) zh dx ∀zh ∈ Yh,

∫

Ωh

∇ϕh · ∇zh + 3 y2h ϕh zh dx =

∫

Ωh

(yh − yd) zh dx ∀zh ∈ Yh,

where we use the relationship between uh and ϕh

(6.3) uh(ϕh) = Proj[α,0]

(1

ν
(−ϕh + µ)

)

+ Proj[0,β]

(1

ν
(−ϕh − µ)

)

,

due to (5.1). The nonlinear system (6.2) is solved via a semismooth Newton method
and for a sequence of different meshes.

The error in ϕ with respect to the solution on the finest grid (h∗ = 2−8) for the
unit circle is shown in Table 6.2. It confirms the quadratic rate of convergence w.r.t. h.
By the Lipschitz continuity of the projection (6.3) with Lipschitz constant 1/ν,
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the same convergence order holds for the control ūh. Since the computed controls
uh have kinks on the triangles of the mesh and since the meshes are not nested, com-
puting the actual error in uh would be rather complicated. Table 6.2 shows the results
for the unit square with a finest grid size h∗ = 2−9.

Table 6.2

L2 and L∞ errors in the adjoint state on the unit circle and unit square in case of variational
discretization.

Unit circle Unit square
Mesh size h ‖ϕ̄h − ϕ̄h∗‖

L2 ‖ϕ̄h − ϕ̄h∗‖L∞ ‖ϕ̄h − ϕ̄h∗‖
L2 ‖ϕ̄h − ϕ̄h∗‖L∞

2−1 0.041365 0.125195 0.049961 0.175814
2−2 0.015961 0.053100 0.021283 0.072157
2−3 0.005115 0.021832 0.006799 0.026508
2−4 0.001160 0.004785 0.001816 0.007255
2−5 0.000287 0.001297 0.000461 0.001843
2−6 0.000068 0.000372 0.000114 0.000461
2−7 0.000014 0.000092 0.000027 0.000113
2−8 0.000006 0.000026
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