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1 Introduction

Let us consider a two-level hierachical system where the higher level (hereafter the
“leader”) and the lower level (hereafter the “follower”) must find vectors z € X
and y € Y, respectively, to minimize their individual objective functions F(z,y) and
f(z,y). The leader is assumed to select his decision vector z € X first and the
follower to select his decision vector y € Y after that, where X and Y are nonempty
subsets of R” and R™ respectively. Under these assumptions on the order of play,
the game will proceed as follows: Given any decision vector z € X chosen by the
leader, the follower will select his decision vector ¥ € Y (dependent on the decision
vector = chosen by the leader) to minimize his objective f(z,y) subject to contraints
g(z,y) < 0. Let the solution set of the lower level problem be S(x). Assume that the
game is co-operative, i.e., if the follower’s problem has several optimal solutions for a
given z, the follower allows the leader to choose which of them is actually used. Hence
the leader now chooses his optimal decision vection z € X and y € S(z) to minimize
his objective F(z,y). In other words, given any decision vector z € X chosen by
the leader, the follower faces the ordinary (single level) mathematical programming

problem parametered in x:
(7)) min  f(z,y)
st glz,y) L0
yey,
while the leader faces the bilevel programming problem:
BLPP min  F(z,y)
over x € X and all optimal solution y of (P,),

where F, f : Rm*™™ — R g : R™*™™ — R™ are C! (continuously differentiable)
functions.

The bilevel programming problem can be viewed as a two-person nonzero-sum
game with perfect information where the order of play is specified at the outset and
the players’ strategy sets are no longer assumed to be disjoint. Minmax problems
are special cases of bilevel programming problems where the sum of the objective
functions of the two players is equal to zero.

Although numerical algorithms have been studied for some special BLPPs, to

our knowledge, there are no applicable optimality conditions for the general bilevel
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programming BLPP to date. Bard [1] proposed a set of necessary conditions which
was shown to be invalid by Clark and Westerberg [4]. The purpose of this paper is
to fill this gap by providing applicable optimality conditions for bilevel programming
programming problems. Notice that if we define the value function of the lower level

programming problem as an extended value function V : X — R defined by
V(z) := inf{f(z,y) : g(x,y) <0}, (1)
yeY

where R := RU {—o0} U {+00} is the extended real line and inf{0} = +o0 by con-
vention. Then BLPP can be reformulated as the following single level mathematical

programming problem:
SLPP min  F(z,y)
st.  flz,y)—V(z)=0

g(z,y) <0

rze X, yey.

The significance of this formulation was elaborated by Chen and Florian in [3].
However, V(z) is not smooth in general even in the case where all problem data
F(z,y), f(z,y),g9(x,y) are smooth functions. In fact, under certain assumptions,
V(z) is known to be locally Lipschitz continuous. Therefore, nonsmooth anslysis
will be used to derive a Lagrange multipler rule. The difficulty with the derivation
of a necessary condition is with the constraint qualification. It will be shown that
the usual constraint qualifications for mathematical programming problems are not
applicable to SLPP (equivalently, for bilevel programming problems) and that the
calmness condition is the right constraint qualification condition. It will be shown
that for linear bilevel programming problems and minmax problems the calmness con-
dition is satisfied. Sufficient conditions for optimality are also given for the case where

the lower level problem (P;) is not subject to the inequality constraints g(z,y) < 0.

2 Nonsmooth analysis background

In this section we shall give a concise review of the material on nonsmooth analysis
which will be required. Our references are Clarke [5], [6] and Rockafallar [11].
Let C be a nonempty closed set in R®. A vector ( € R" is a prozimal normal

to C at point T € C if for t > 0 sufficiently small, the unique point of C' nearest to
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Z + t¢ (in the Euclidean norm) is Z. It is a limiting prozimal normal if there exist
points z* € C,z* — %, and proximal normals ¢* to C at z¥, such that ¢¥ — (. Let

the limiting proximal normal cone be the set
N¢(Z) := {¢ : ¢ is a limiting proximal normal to C at z}.

Consider now a lower semicontinuous function ¢ : R* — R U {400} and a point
T € R™ where ¢ is finite. The epigraph of ¢ is the set

epip(z) == {(z,0) € R* x R:a > ¢(z)).
A limiting subgradient of ¢ at T is the set

08(Z) = {¢: (¢, —1) € Nepig(Z, $(2))}-

A singular limiting subgradient of ¢ at Z is the set

5%¢(z) = {¢ 1 (¢,0) € Nepig(Z, $(%))}-

We shall say that ¢(-) is Lipschitz continuous near z provided that there exist a
constant K > 0 and an open neighborhood O, of x such that

6(z") - $(=*)| < Kllz' — 2% Vz!,2® € O,

The limiting subgradient is a smaller object than the Clarke generalized gradient.
In fact, if ¢ is Lipschitz continuous near z, we have 8¢(z) = cod¢(z), where & and
coA denote the Clarke generalized gradient and convex hull of set A respectively.
For the definition and the precise relation between the limiting subgradient and the
Clarke generalized gradient, the reader is referred to Clarke [6] and Rockafellar [11]
for more details.

The following proposition summarizes the requisites regarding limiting subgradi-

ents and Clarke normal cones.

Proposition 2.1 (a) If C is a nonempty closed convex set, the Clarke normal cone
to C, denoted by N¢ coincides with the normal cone in the sense of convex

analysis, i.e., any vector { € N¢(Z) if and only if

{¢,z-I) <0, VzeC.

(b) [Proposition 1.2, Clarke [6]] The function ¢(-) is Lipschitz near z if and only if
0>¢(z) = {0}.



(¢) [c.f. Proposition 2.2.4, Clarke [5]] The function ¢(-) is continuously differen-
tiable on an open neighborhood of z if and only if d¢(z) is single valued on that
neighborhood. In this case, the limiting subgradient coincides with the usual

gradient.

(d) [Proposition 1.5, Clarke [6]] Let ¢ and ¢ : R* — R U {+oc0} be lower semi-
continuous functions finite at z, with 6®°¢(z) N —8=y(z) = {0}. Then we
have

(¢ +9)(z) C Op(x) + dy(). (2)

(e) For any a > 0, one has

Let us now consider the general mathematical programming problem in the form

(P) minimize  f(z)
subject to  h(2) =0
g9(z) <0
lz e C,
where f : R* - R, h: R* - R, g: R* - R™, C C R*. We assume that C is a
closed subset of R™, each funtion f, h, g is Lipschitz continuous near any given point
of C and h(z) = (h1(2), -, (2)),9(2) = (g1(2),- - -, gm(2)). We allow [ or m = 0 to
signify the case in which there are no explicite equality or inequality constraints. In
these cases it is clear that they can be ignaed.
Imbed (P) in a parametrized family P(u,v) of mathematical programming prob-
lems:
P(u,v) min  f(2)
s.t. h(z)+u=0
g(z)+v <0
ze C.

Hypothesis (H) Suppose that the solution to problem (P) exists and the sets {z :
f(2) <r|h(z)] <1,g9(2) <1,z € C} are compact for all r € R.



Define the value function of Problem (P) V : R x R™ — RU {+o0} by
V(u,v) :=inf{f(z) : h(z) +u=0,9(z) +v <0,z € C}.

Note that Hypothesis (H) implies that the minimum in the above expression is
attained finitely, unless the feasible set for P(u,v) is empty, in which case V(u,v) =
+o0. .

Let X denote the set of all solutions to Problem (P).

Let z be feasible for (P). The set of normal multipliers corresponding to z is
M*(2) := {(r,5) : 0 € 8f(2) + 8(s, h(2)) + 8(r, g(2)) + Ne(2),r > 0, {r, g(2)) = 0}
and the set of abnormal multipliers corresponding to z is

MO(2) := {(r,s) : 0 € B(s, h(2)) + B(r, g(2)) + Ne(2),r 2 0, {r,g(2)) = 0}.

The following theorem which is buried in [Theorem 6.5.2, Clarke [5]] gives an
estimate of AV (0,0) and 6V (0,0) in terms of Lagrange multipliers.

Theorem 2.1 Under Hypothesis (H), V is lower semicontinuous and one has
4V (0,0) C U.exM'(2) (3)
82V (0,0) C U,esM°(2). (4)
Proof. In the proof of [Theorem 6.5.2, Clarke [5]], if we replace the generalized gradi-
ent O by the limiting subgradient 8, the argument goes through without modification
and we have the above conlusion. [

Similarly, define W (u) := inf{f(z) : h(z) + u = 0,g(z) < 0,z € C'}. The methods
and results of [Theorem 6.52., Clarke [5]] can be used to give the following result.

Theorem 2.2 Under Hypothese (H), W is lower semicontinuous and one has
OW(0) C Usex{s : 0 € 8f(2) + O(s, h(2)) + 8{r,9(2)) + Ne(2),

r > 0,(r,g(z)) = 0}
5°°W(O) C Uses{s:0€ (s, h(z)) + d(r,g(2)) + Nc(z),

r20,(rg(z)) = 0}.

For convenience, we now state a generalized Lagrange multiplier rule [Theorem
6.1.1 of Clarke [5]] for Problem (P).



Theorem 2.3 (Fritz-John type Lagrange multiplier rule) Let Z solve (P). Then there
exist A € {0,1}, r > 0 and s not all zero, such that

0 € Mf(Z) + Z s:0hi(2) + Zfrjagj(z) + Ng(2)

(r,g(z)) = 0.

Theorem 2.3 however does not ensure the existence of a normal multiplier. It is
important in practices to find the condition under which the multiplier rule holds in
a normal form since a _mu'ltiplier rule in an abnormal form may not provide‘ useful.
information regarding optimality due to the fact that the function being minimized
is not involved. Various constraint qualifications have been proposed in the literature
under which the multiplier rule holds in a normal form (see Bazaraa et al. [2] and
Peterson [10] for the smooth case and Hiriart-Urruty [8] for the nonsmooth case). The
following constraint qualification called calmness condition, first introdued by Clarke

and Rockafellar lays claim to be the weakest constraint qualification.

Definition 2.1 Let z solve (P). The problem (P) is calrrvx» at z provided that there
exist positive § and M such that, for all (u,v) in 6B, for all z € Z + 6B which are

feasible for P(u,v), one has
f(2) = F(2) + Mll(x, )] 2 0.

The following theorem [Proposition 6.4.4, Clarke [5]] gives a Lagrange multiplier

rule in a normal form.

Theorem 2.4 (Kuhn-Tucker type Lagrange multiplier rule) Let Z solves (P). If
either M°(z) = {0} or (P) is calm at z, then the conclusion of Theorem 2.3 holds
with A = 1.

Remark 2.1 The constraint qualification of the type M%(Z) = {0} is in fact a
generalization of the well-known linear independence, Mangasarian-Fromowitz and
Slater conditions since it is obvious that linear independence of Vh;(z), Vg;(2),i =
1,---,0,5 € {1,--+,m},g;(2) = 0 implies M°(Z) = {0} and it was shown in Clarke
[5] that if either the Mangasarian-Fromowitz or the Slater condition holds, then
M%) = {0}. Moreover, it was shown (c.f. [Corollary 5 of Clarke [5]]) that if
MP°(2) = {0}, then (P) is calm at 2. Therefore, the calmness condition is weaker
than the constraint qualification M°(z) = {0}. In fact it is strictly weaker since
there are situations where M°(Z) # {0} but problem (P) is calm at z. It will be

demonstrated later that bilevel programming problems belongs to this category.



3 Differentiability of the value function of the

lower level problem

In this section, we study the (generalized) differentiability of the value function for
the lower level mathematical progamming problem.

Thoughout this paper, suppose the following assumptions hold for BLPP (equiv-
alently for SLPP):

(A1) F, f, g are continuous differentiable.
(A2) The solution to the BLPP are in the interior of X x Y.

Since V(z) is in general nondifferentiable regardless of assumptions made on g, SLPP
is in general a problem with nonsmooth problem data even though the original BLPP
has smooth problem data. Since the nonsmoothness of SLPP only appears in V(z)
under assumption (A1), we now discuss the (general) differentiablity of V(z). To
apply the multiplier rules (Theorem 2.2 and Theorem 2.3), we must find conditions
under which V() is locally Lipschitz continuous. Thanks to Theorem 2.2, we have
the following result. |

Let y be feasible for (F,), i.e. y € Y and g(z,y) < 0. Let A € {0,1}. The index

A multiplier set corresponding to y is
M3 (y) = {m: 0=V, f(z,9) + Vyg(z,y)"m, ™2 0,({m,g(z,y)) = 0}.

Proposition 3.1 Suppose X, # @ and all solutions to (P;) lie in the interior of Y.
If M2(%,) = {0}, then V(z) is Lipschitz continuous near x and

AV (z) C {Vof(z,y) + Vag(z,y)Tr: for some y € T, and 7 € M2(y)},
where MY(E,) := Uyes, M2 (y).
Proof. Using an observation due to Rockafellar, we can rewrite (FP;) as follows:

min  f(a,y)
s.t.  gla,y) <0
a—x=10

yeY.



Then we have

= i . < — = .
V() (a,yr)nel)r{lxy{f(a,y) g(a,y) £0,a —x =0}

Application of Theorem 2.2 and Proposition 2.1 to the above problem leads to the
following estimates:
OV (z) C Uyer,{s:0=V.f(z,y) + Vog(z,y) 7 —s,
0=Vyf(z,y) + Vyg(z,9)'n
™20, (r,g(x,y)) = 0} (5)
8°V(z) C Uyen,{s:0=V.g(z,y)Tr—s,
0= Vyg(z,y)'n
™ 20,(m g(z,y)) = 0}. (6)
It is easy to see that the assumption M2(%,) = {0} implies that the right hand side
of (6) is equal to {0}. Hence 0V (z) = {0}. Therefore by virtue of (b) of Proposition

2.1, V(z) is Lipschitz continuous near z. By rearranging the right hand side of (5),
we have the desired inclusion. =

Remark 3.1 If the lower level problem (P;) has a unique solution (%) and a unique
optimal multiplier 7 at 4 i.e., &, = {7} and M}(3) = {r}, then V(z) is C! and

VV(z) =V f(z,9) + Vzg(:p,g)Tw.
If the solutions of (P,) lie in the interior of its constraint set, then

OV (z) C {Va.f(z,y),s0me y € T, }.

4 Necessary optimality conditions for BLPP

In this section, we give generalized Lagrange rules for BLPP and study the issue of
constraint qualification.

The following Fritz-John type optimality conditions can be obtained readily from
the nonsmooth Lagrange multiplier rule (Theorem 2.3), the estimates for the limiting
subgradients of the value function V(z) (Proposition 3.1) and the fact that 0V (z) =
codV (z).



Theorem 4.1 Let (x,y) solves BLPP. Suppose that M2(X,) = {0}. Then there
ezists A € {0,1}, 7 > 0, s > 0 not all zero, integers I, J, Aij 20, 20 12 Aij =1,
Yi € Xy, mi; > 0 such that

0= AVoF'(x,y) + Vag(@,9) 7 + [V f(2,9) = 3 X;(Vaf (@, %) + Vag(z,3:) Tmis)]

if

0= AVyF(z,y) + Vyg(z,y) 1 + sV, f(z,7)
(r,g(z,y)) =0,

= Vyf(z,4:) + Vyg(x, 3:) Tmis
(mij, g(z, 1)) = 0.

It should be noted that s > 0 results from the fact the feasible solutions of SLPP
is the same as those satisfying the constraints with f(x y) — V(z) < 0 instead of
flz,y) —V(z) = 0.

Now we focus our attention on the problem of constraint qualification. We
first show that the usual constraint qualifications, i.e. the linear independence,

Mangasarian-Fromowitz, and Slater conditions do not hold in general for SLPP.

1. The linear independence condition and its nonsmooth extension.
Since all data of SLPP are differentiable in y, the linear independence condition or

its nonsmooth extension require that the vectors

Vyf(x,y), vygi(zay)7i € I_a

where I = {i|g;(z,y) = 0,3 = 1, ...,m} be independent. On the other hand, M%(%,) =
{0} implies that MX(Z,) # @ (see the proof of Proposition 3.1), i.e. there exist
r; > 0,4 € I such that
Vo f(z,y) + Zrivygi(m,y) =0.
i€l
This is a contradiction. Therefore, the linear independence condition and any of its

nonsmooth extension do not hold for SLPP.

2. The Magasarian-Fromowitz condition and its nonsmooth extension.
Since all data of SLPP are differentiable in y, the Magasarian Fromowitz condition

and its nonsmooth extension would imply that
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(a) Vyf(z,y) #0

(b) There exists a vector v € R™ such that

(Vyf(m,y),v) = 0
(Vy9i(z,y),v) <0,ifiel

On the other hand since y is an optimal solution of (B,), there exist r > 0 such that -
Vyf(@y) +2_riVygi(z,y) = 0.
iel
If all 7; = 0, this contradicts (a). If there is a j € I such that r; # 0, by taking
the inner product with v of both sides in the equation above, a contradiction to (b)
results. So the Magasarian Fromowitz condition and any of its nonsmooth extension
will not hold for SLPP.
3. The Slater condition

The Slater condition does not apply to SLPP due to the existence of the equality
constraint f(z,y) — V(z) =0.

In fact, the following Proposition demonstrates that any constraint qualification
which implies M°(X) = {0} does not hold for SLPP.

Proposition 4.1 Suppose that M2(X,) = {0}, then M°(Z), the abnormal multiplier

set of SLPP, contains nonzero element.

Proof. V(z,y) € %, y is a solution of P, i.e. y € &,. Since M2(Z,) = {0}, there
exist 7 > 0, m € M1(y) such that

0=V,f(z,y) + Vyg(z,y) ' n

<.7T7g($’y.)> = 0.

Since V., f(z,y) + Veg(z,y)Tr € 8V (z) C 8V (z) by Proposition 3.1, we have

0 € Vy(z,y)'n+ (Vflz,y) —0V(z))
0 = (mg(z,y),7=>0.

That is (7, 1) € M°(z,y), therefore (M"(z,y)\{0}) # 0. B
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The discussion above indicates the difficulty with the constraint qualification for
SLPP. We now state the Kuhn-Tucker type necessary optimality condition for SLPP.

It is a direct consequence of Theorem 2.4 and Proposition 3.1.

Theorem 4.2 Let (z,y) be a solution of SLPP. Suppose that M2(%;) = {0}. If
SLPP is calm at (z,y), then the conclusion of Theorem 4.1 holds with A\ = 1.

The calmness condition for SLPP is defined in terms of the following fully perturbed

problem

P min  F(z,y)

st.  flz,y)—V(E)+u=0 (7)
9(z,y) +v <0 (8)
zeX,yey,

and it is known (c.f. Clarke [5]) that the concept of calmness is closedly related to a
numerical technique called “exact penalization”. Since it is not a easy task to check a
problem is calm, we now search for certain weaker constraint qualification. Since the
calmness condition is related to the exact penalization for both constraints (7) and
(8) and it is clear from the above discussion that the infeasibility of M°(z,y) = {0}
results from the very constraint (7), we may consider the following partially perturbed

problem:
P, min  F(z,y)
st.  flr,y)—V()+u=0

g(z,y) <0

ze X, yev.

Definition 4.1 Let (z,y) solves SLPP. SLPP is partially calm at (z,y) provided that
there exist 6 > 0 and M > 0 such that, for all w in 6B, for all (z',y') € (z,y) + 6B

<z 3 P 3 \ D
which are feasible for |

w , We hav
F',y) - F(z,y) + Mu| > 0.

It is easy to see that the partial calmness condition is weaker than the calmness
condition and therefore easier to check.
The concept of partial calmness is actually equivalent to the “exact penalization”

as shown in the following proposition.



Proposition 4.2 Suppose (z,y) solves SLPP. Then SLPP is partially calm at (z,y)
if only if (z,y) is a local optimal solution to the following penalized problem
SLPP min  F(z,y) + M(f(z,y) — V(z))
st.  glz,y) L0
zeX,yey,

where M > 0. _
Proof. The conclusion follows easily from the fact that f(z,y) — V(z) > 0. |

Since the penalized problem SLPP does not have the troublesome constraint
f(z,y) — V(z) = 0, we may assume the constraint qualification of the type M°(L) =

{0} holds and obtain from Theorem 2.4 the following Kuhn-Tucker condition for
BLPP.

Let (x,y) be a solution to the penalized problem S LPP, the abnormal mulitiplier
set corresponding to (z,y) is
M°(z,y) = {r € R™:1 > 0,Vg(z,y)"r = 0, (r,g(z,3)) = 0}.

Theorem 4.3 Let (z,y) solves BLPP and SLPP is partially calm at (x,y). Suppose
that M°(S,) = {0}. If M°(z,y) = {0}. Then the conclusion of Theorem 4.1 holds
with A=1 and s > 0.

Remark 4.1 If the Slater condition holds for the penalized problem, conditions
MO(3,) = {0} and M°(z,y) = {0} are both satisfied automatically.

5 An illustrative example

In this section we give an example for which the partial calmness condition is satisfied.

Consider the problem

(Py) min x + y(z) where y(zx) solves
-1<2<1
St i ns ,..2
_111_11;%1 Ty T Y.

The solution of the lower level problem is
{z} if —1<z<1
Y = {1} ifz>1
(-1} ifz<-L

13



Its value function is

—z? if —1<z<1
V)= (1-xz)*—2° ifz>1
(1+z)% — z? if x < 1.

The equivalent formulation SLPP is

min zT+y
(z,y)ER?
s.t. (x—73)*=0
-1<z<1
~1<y< L

It is obviously that (x,y) = (—1,—1) is an optimal solution.

Now we consider the penalized problem -

(FPy) min z+y+ M(z —1y)?
s.t. -1<z<1
-1<y<l1

where M > 0.

Since the above problem is convex, the necessary and sufficient optimality con-
dition for the above problem is the existence of @ > 0,4 > 0,y > 0,6 > 0 such
that

14+2k(z—y)+a—-F=0

1+2k(y—x)+v7—-6=0

r=-1,y=—1,y=a=1, f=56=2Iis asolution of this system. Hence the above

problem is partially calm at (z,y) = (-1, -1).
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6 Optimality conditions for the minmax problem

and the linear bilevel programming problem

6.1 Minmax problem

The well studied minmax problem (c.f. Shimizu and Aiyoshi [13] and Schmitendorf
[12]) is defined as follows

(P2) min  max{(z,y) : g(z,y) < 0}

st.  g(z,y) L0.

Assume that ¢(z,y) : B* — R,g(z,y) : B* — R™ are C", the solutions to

max{¢(z,y) : g(z,y) < 0}

yeY
exist and the solutions of (FP,) lie in the interior of X x Y. As it was mentioned in
section 1, the minmax problem is a special case of BLPP with — f(z,y) = F(z,y) =
¢(z,y). Let V(z) := min{—-¢(z,y) : g(z,y) <0, y € Y}. Then the minmax problem
is equivalent to the following problem

(P,) min  —V(z)
st.  g(z,y) <0

zeX,yeY
which can be rewritten as

(F2)  min  F(z,y)+ (flz,y) - V(z))
st.  g(z,y) <0
reX,yeY.

Therefore, the minmax problem is partially calm at any solution (z, y).

Theorem 4.3 for the minmax problem can be stated as follows:

Theorem 6.1 Let (z,y) solves the minmaz problem. Suppose that M2(Z,) = {0}
and M%(z,y) = {0}. Then there ezists r > 0, integers I,J, \i; > 0, S0, Zj:l Aij =
1, yi € Xz, mi; > 0 such that
0= Vaglz,)Tr+ > Aj(Ved(z, 1) — Vaglz,y:) T7i5)
9]
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0= vyg(xa y)Tr
0= Vyd(z,u:) — Vyg(z,y:) i
(r,g(z,y)) =0

(mij, 9(x, %)) = 0.

6.2 The linear bilevel programming problem
The linear bilevel programming problem is formulated as follows.
LBLPP zré%gl F(z,y(x)) = ax + by(x) where y(z) solves
min  flz,y) =czt+dy

st. g(z,y) =Cx+ Dy—q<0,

where a € R™,be R™, C € R™™ D € R™™ gq¢e R™

We make the following usual assumptions: the set
S={(z,y) € R*: Cx+ Dy < q}

is bounded and has nonempty interior.

The equivalent formulation of problem LBLPP is

SLBLPP min  az+ by
st. cx+dy—V(z)=0
Cx+Dy—q<0
x € R™, ye R™,
where V(z) := min{cz +dy : Cx+ Dy — ¢ < 0,z € R™, y € R™}.
Proposition 6.1 Let (x,y) solves the LBLPP, then SLBLPP is partially calm at
(z,3).

Proof.
Step 1. First we prove that for sufficiently large M > 0, any solution of the following

problem
SLBLPP min F(z,y)+ M(f(z,y) — V(z))
st.  glz,y) <0

re R" ye R™
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must satisfy f(x,y) = V(z).
Indeed, suppose (z*, y*) is a solution of the original problem LBLPP, then f(z*,y*) =
V(z*). Therefore, for any solution (z,y) to problem SLBLPP, we have

F(CL‘,y) + M(f(CE, y) - V(.’E)) < F(xiyy*)'

Since S is bounded, we have

floy) - Vie) < LERDZT@) B

where K is some positive constant. Thus as M — oo, we have f(x,y) — V(z) — 0.
However, since the function F(z,y) + M(f(z,y) — V(x)) is concave in (x,y) , the
solutions of problem SLBLPP occur at the extreme points of polytope S. Hence,
for some large finite value of M, say M*, we have f(z,y) = V(z).

Step 2. We now show that a solution to the original problem LBLPP is a solu-
tion of the penalized problem SLBLPP for sufficiently large M > 0. Indeed, if'a
solution of the original problem LBLPP (z*,y*) is not a solution of the penalized
problem for any M > 0. Then for M > 0, there exists a solution to the penalized

problem (xp,yas) such that

F(zm,ym) + M(f(zm,ym) = Vi) < Fz*,y7)

9(zrm,ym) £0

Ty € R™, yp € R™.
From step 1, for a sufficiently large M > 0 we have f(zs,ys) = V(zg) thus
F(zg,ys) < Flz*,y*). This contradicts with the fact that (z*,y*) is a solution
of the original problem LBLPP. Thus problem LBLPP is partially calm. [

We now present the Kuhn-Tucker necessary optimality condition (Theorem 4.2)
for the LBLPP in the following form.

Theorem 6.2 Let (z,y) be a solution to LBLPP. Then there ezist v > 0,M > 0,
’I:TLtGQETS I, J, /\ij > O,E.{Zl E}-Izl Aij =1, Tij >0 Y € Y. such that
0= CLT + CTT - A/[CT Z /\ij7rij
7
0=b"+D"r+ Md"
(r,Cx+Dy—-q)=0
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0 = dT -+ DTﬂ'ij
(mij, Cx + Dy; — q) = 0.

The following conterexample was given by Clark and Westerberg [4] to show that the

necessary optimality conditions proposed by Bard [1] were not valid.

min - — 4y(x) where y(x) solves
wr Y
s.t. —2x4+y<0

204+ 5y - 108 <0
2 —-3y+4<0
This problem is a linear bilevel programming problem, the optimal solution is (19, 14).
According to Theorem 6.2, at (19, 14), there must exist 7 > 0,7 > 0 such that
0=1-—2r; +2ro + 2rs — M[—2m; + 272 + 273]
O:—4+T1+57‘2—37‘3+M
0:1+7F1+57T2-37T3
ry=0,m12>20,7r3>0, M=>0
T = 017T2 Z 0,7T3 Z 0.
The above system is indeed satisfied by (x,y) = (19,14), M = 1/2, (ry,72,73) =
(O, 13/16, 3/16) and (T(’],Tl'z,ﬂ';;) == (0, 1,2)
Bard’s necessary condition for the same problem is as follows
1—2T1+2')"2+2T3:0
-‘4+T1+5T2—3T‘3+J\/[:O

AL

N fa}
U, M u.

v
v
v

o= ) - N
Ti=VU, Tg Z U, T3

It is clear that it is impossible to find r; = 0, 7o > 0, r3 > 0 satisfying the above

system.
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7 Sufficient optimality conditions

In this section, we give sufficient optimality conditions for the following bilevel pro-
gramming problem:
(Ps) Irél)r(l F(z,y(x)) where y(x) solves

min  f(z,9).

Note that (Ps) is a BLPP without inequality constraint ¢(z,y) < 0.
In addition to assumptions (A1) and (A2), we assume that F’ and f are C2.

Theorem 7.1 Let (x*,y*) be feasible for (Ps). If there ezist s > 0, § € L.+ such that

0 = VuF(@@,y") +s(Vaf(a',y") — Vaf(".9)) ©)
0 = V,F(z*y") +sVyf(z*,y7) (10)
and the matriz
52

W'[F(x’y) +s(f(z,v) — flz,7))]

s positive semidefinite for any x € R™,y € R™, then (z*,vy*) is optimal solution to
(Ps).
Proof. Take any 2° € X and y° € 0. By Taylor’s theorem, we have
F(2%, %) + s(£(2°,9°) = (= 9)) — F(a',y*) — s(f(2*,9") — f(2*, 7))
= [VF("y") - s(Vf(z",y") = Vo f(z*,9) x {0D][(=°,¢°) - (", 9")]
1 *  k\]— 62 —
+§[($an0) - (l‘ Y )] IW[F(QI,:U) + S(f(ll?,y) - f(m)y))](x,y):(z,g)
(2% y°) — (z",9")]

where (Z,7) = p(2°,4°) + (1 - p)(z*,3*), 0 < p < 1. Since the first term on the right
hand side of the above equation is zero by virtue of (9) and (10) and the second term

on the right hand side is greater and equal to zero by assumption, we have
F(z%4°) +s(f(a°,9°) = f(«°,9)) 2 F(z",y") = s(f(z",y") = f(z*,)) (1)
By definition of g, we have
f(@*,g) = min f(2",y) = f{2",y").
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Therefore,
f(x*,y*)—f( ay) 0. (12)
Since

f(x 1y) > Hél)r,lf( ’y) = f(movyo)

and s > 0, we have
s(f(z°,9°) - f(2°,9)) < 0. (13)
By virtue of (11 ), (12) and (13), we have

F(z°3y°) 2 F(z°,9°) +s(f(2°,9°) = f(«",9)) = Fla*,y").
That is , (z*,y*) is an optimal solution for (Fs). B

Theorem 7.2 Let x* € X. Suppose that Ly« = {y*} is a singleton. If
0=VF("y") (14)

and W%F(m*,y*) is positive definite for (z*,y*), then (x*,y*) is a strict local min-
imum point of (Ps).

Proof. If (z*,y*) is not a strict local minimum point, there exists a sequence of

feasible points {zk,yr} converging to {z*, y*} such that for each k,
Fze,ye) < F(e7,y7). (15)

Write each (zk,yk) in the form (zk, ye) = (x*,y*) + Sesk where |si| = 1 and 6 > 0 for
each k. Clearly, 6, > 0 &, — 0 since X+ is a singleton and yx € ¥, and the sequence
{8k}, being bounded, must have a convergent subsequence converging to some s*. For
convenience of notation, we assume that the sequence {sx} is itself convegent to s*.
Now by Taylar’s theorem, we have
82

9(z,y)?
where (Zk, Jk) = p(ze, ye) + (1 — p){z*,y*), 0 < p < 1. By the first order condition

1 -~
F(zg, yx) — F(z*,y") = VF(*,y")6rsk + 552521 F(Zk, Ur)sk

(14) and the assumption (15), we have

52
—528 e )F(ﬂﬁk,yk) <0

which yields a contradiction as k — co. Therefore (z*,3*) is a strict local minimum

point of (P3) and the proof of the theorem is complete.
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8 Conclusion and future research

In this paper, we have identified the difficulty in deriving optimality conditions for the
BLPP. For the neccessary conditions, we have shown that the usual constraint quali-
fications do not hold for BLPP and the right constriant qualification is the calmness
condition. Moreover, we have shown that the calmness condition is satisfied automat-
ically for the linear bilevel programming problem and the minmax problem. Since
the calmness condition is not expressed explicitely in terms of the original problem
data, it is highly desirable to search for conditions in terms of the original problem
data which will lead to the calmness condition. It is known that the concept of
calmness condition is closely related to the exact penality method. Recently Mar-
cotte and Zhu [9] proposed the exact penalty method for general bilevel programming
problem by using gap function approach. For the linear bilevel programming the dif-
ference f(x,y) — V(z) coincides with the gap function of the lower problem G(z,y)
(see Hearn [7] for the definition). If f(z,y) is convex in y for fixed z, the inequality
G(z,y) > f(z,y) — V(z) always holds. Hence the exact penalty method using the
value function implies the exact penalty method using the gap function formulation
for the convex case, and it is not true conversely. The search for sufficient conditions

of BLPP with constrianted lower level problem is also a subject of the future study.
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