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$Ab8tract$ . In convex $analysi8$ , if a convex function $f$ defined on a Banach

spaoe X $attain8$ its minimum at $x_{0}$ , then $0\in ff(x_{0})$ , the

subdifferential of $f$ at $x_{0}$ . Thus we study in this paper for

optimality conditions of a minimization problem of locally Lipschitz

objective subject to an inequality and equality constraints with values

in Banach spaces. We replaoe $f$ by the Lagrangian $L$ for a given

programming problem, and prove that the $Kuhn-Tucker/Fritz$ John

multiplier rule holds. That is,

$\theta\in\partial_{x}^{o}L(x_{0}, \lambda, \mu, \nu, K)$ ,

the generalized gradient of $L$ with respect to $x\in$ X.
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1. INTRODUCTION AND PRELIMINARIES

Many authors investigated the necessary and $8ufficient$ conditions for optimal

solutions of $conv\infty/concave$ programming $problem8$ with inequality and equality

constraints. These optimal conditions are essentially established in $Kuhn-Tucker/$

Fritz John multiplier rules for convex programming problems. For examples, one

can $con8ultL\dot{u}$ and Ho [8, Theorem 3.1], Kanniapan [6, Theorems 3.2 and 3.4];

Kanniapan and Sastry [7, Theorem 2.2]. See also Lai and Yang [9], and Minami [12]

etc. While the objective function and constraint functions are locally Lipschitz,

Hiriart-Urruty [4–5] and Clarke [1-2] have established some optimal conditions

for real valued functions. In thi $s$ paper, we shal investigate Fritz John multiplier

rule for Banach space-valued optimization problem of locally Lipschitz functions.

It is known that if a convex function $f$ on a Banach spaoe X attains its

minimum at $x_{0}$ , then $0\in\alpha(x_{0})$ , the subdifferential of $f$ at $x_{0}$ . For some related

optimization problems, one can refere to Lai and Lin [10-11], Yu [13] and Zowe

[14-15]. To study the necessary conditions of cone optimality in a programming

problem for locally Lipschitz functions with values in an ordered Banach space, we

will replaoe such $f$ by the Lagrangian $L$ for a given optimization problem and

prove that the Fritz John multiplier rule holds. That is,

$\theta\epsilon\partial_{x}^{o}L(x_{0}, \lambda, \mu, \nu_{1}K)$ ,

the generalized gradient of $L$ with respect to $x\in X$ . Our main result is established

in Theorem 2.3. It is a new expression of optimality condition for locally Lipschitz

functions on Banach spaces. The proof given here is interesting by using the

Ekeland variational principle.

For convenience, we start from definitions and basic properties about the

generalized gradient (cf. Clarke [2]). Let X be a real Banach space. A function

$f:X\rightarrow R$ , the real number field, is called locally Lipschitz of rank $K$ if, for any
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$x\in X$ , there is a neighborhood $U$ and a constant $K>0$ such that

$|f(z)-f(y)|\underline{\langle}K||z-y||$ for all $z,$ $y\in U$ . (1.1)

The generalized directional derzvative $f^{o}(x;v)$ of $f$ at $x\in X$ in the

direction $v$ is defined by

$f^{o}(xiv)=\lim s$ up $\ovalbox{\tt\small REJECT}_{t}f+tv-f$. (1.2)
$y9x$
$t\downarrow 0$

If $f$ is a localy Lipschitz function, then the lim sup in (1.2) exi$sts$ . The function
$v\rightarrow f^{o}(x;v)$ is positively homogeneous and convex such that

$|r_{(x;v)|}\underline{\langle}K||v||$ . (1.3)

The generalized gradient of $f$ at $x\in X$ , denoted by $\partial^{o}f(x)$ to distinguish

from the subdifferential $\partial f(x)$ in convex analysis, is defined to be the set of

elements ( $\in X^{*}$ such that

$<v,$ ( $>$ \langle $f^{o}(x;v)$ for al $v\in$ X. (1.4)

That is,

$\partial^{o}f(x)=$ { $(\epsilon X^{*};$ $<v,$ $(>$ \langle $P(x;v)$ for al $v\in X$}. (1.5)

From (1.3) and (1.4), it is immediate that

$\partial^{o}f(x)\subset KE_{*}$ (1.6)

where $E_{*}$ is the dosed unit ball of $X^{*}$ .

Let $f$ and $g$ be locally Lipschitz functions. From lim $sup(f+g)$ $\langle$

lim $supf+\lim$ $supg$ , one can get

$(f+g)^{o}(x;v)\underline{\langle}f^{o}(x;v)+g^{o}(x;v)$ (1.7)

for all $x,$ $v\in$ X. It follows that

$\partial^{o}(f+g)(x)\subseteq\partial^{o}f(x)+\partial^{o}g(x)$ . (1.8)

Note that if $f$ is a locally Lipschitz function of rank $K$ , it is easy to see that the
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generalized gradient $\partial^{o}f(x)$ possesses the following properties.

(1) $\partial^{o}f(x)\neq f$ is a convex, weak*-compact subset of $X^{*}$ and li $(||_{*}\underline{\langle}K$

for every $\zeta\epsilon\partial^{o}f(x)$ .
(2) If $f$ is also convex, then

fff$(x)=\alpha(x)$ for $x\in X$ , (1.9)

where

$\alpha(x)=$ { $(\epsilon X^{*}|<y-x,$ $(>\underline{\langle}f(y)-f(x)$ , for al $y\epsilon X$} (1.10)

stands for the subdifferential of $f$.
(3) If $f$ admits a Gateaux derivative Df(y) at $y\in U(x)$ , a neighborhood

of $x$, and Df: $X\rightarrow X^{*}$ is continuous, then $\partial^{o}f(x)=$ {Df(x)}.

(4) The generalized gradient $\partial^{o}f$ i8 an upper $semi-<ontinuous$ mapping

from point to set, that is, for any sequenoe $\zeta_{i}\in\partial^{o}f(x_{i}),$ $i=1,2,$ $\cdots$ ,

$x_{i}\rightarrow x$ and $(_{i}\rightarrow(\Rightarrow(\epsilon\partial^{o}f(x)$ . (1.11)

(5) If $x_{0}$ minimizes $f(x)$ over X, then

$0\in\partial^{o}f(x_{0})$ . (1.12)

In this paper, the main task is to show that (1.12) still holds if $f$ is replaoed

by a Lagrangian defined on a programming problem (P) (see later context) for

locally Lipschitz functions with values in ordered Banach spaces. Thi8 result

extends the Theorems 6.1.1 and 6.1.3 in Clarke [2], and Hiriart-Urruty [$S$ , Theorem

3.1]. In order to get this result, the technique of Ekeland variational principle (see

Ekeland [3]) is useful in our proof.

2. KUHN–TUCKER MULTIPLIER RULE FOR LIPSCHITZ FUNCTIONS ON

BANACH SPACES

Let X be a real Banach space, and let $Y,$ $Z$ and $W$ be reflexive real
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Banach spaces. Let $c_{Y}$ and $c_{Z}$ be closed convex cones of $Y$ and $Z$

respectively, and int $c_{Y}\neq 1$ . Suppose that

$f:X\rightarrow Y$ , $g:X\rightarrow Z$ and $h:X\rightarrow W$

are locally Lipschitz mappings. We consider the following programming problem

(P) $\{$

minimize $f(x)$

$s$ ubj ect to $g(x)\underline{\langle}\theta,$ $h(x)=\theta,$ $x\in E$ , a closed subset of X

where $\theta$ stands the zero vector in linear spaces. We $wil$ present a version of

Lagrangian multiplier rule for vector objective problem (P). We say that $x_{0}\in E$ is

a $minimal/weakly$ minimal solution for problem (P) if there does not exist other

feasible $x\in E$ such that

$f(x_{0})\in f(x)+c_{Y}/f(x_{0})\epsilon$ f(x)+int $c_{Y}$ .

If $c_{Y}\neq Y$, then the set of minimal solutions is contained in the set of weakly

minimal $solution8$ . Thus we have only to derive the theorem for weakly minimal

solution only.

Let $Y^{*}$ be the dual spaoe of Y. The dual cone $c_{Y^{*}}$ of $c_{Y}$ is defined by

$c_{Y^{*}}=$ {$y^{*}\epsilon Y^{*}|<y,$ $y^{*}>\underline{\rangle}0$ for all $yCC_{Y}$}.

Let $T$ be a compact metric space, and for $x_{0}\in X$ , let the mapping: $t\in T\rightarrow r_{t}(x)$

be upper semicontinuous for $x$ near $x_{0}$ .
Now let $\{r_{t}(x):t\in T\}$ be a family of bounded locally Lipschitz functions

on X. Define a real valued function $r$ on X by

$r(x)=\max r_{t}(x)t\in T$ for $x\in$ X. (2.1)

Since, for each $t,$
$r_{t}$ is Lipschitz, we see that $r$ is also a Lipschitz function, thus

the image of the multimapping $M:x\in X\rightarrow 2^{T}$ , defined by,
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$M(x)=\{t\epsilon T;r_{t}(x)=r(x)\}$ for $x$ near $x_{0}$ (2.2)

is a nonempty, closed subset of T. For any $t\in T$ and $x\epsilon X$ , we define

$\partial_{[T]}^{o}r_{t}(x)=\overline{co}^{*}${ $(\epsilon X^{*}|(_{i}\in\partial^{o}r_{t_{i}}(x_{i})$ with $t_{i}\rightarrow t,$ $x_{i}\rightarrow x$ and $(i$ IN (}

(2.3)

where $\overline{\infty}^{*}$ is the weak* closed convex hul of the continuous linear functional in

$X^{*}$ .
A multifunction: $(\tau, x)\in TxX\rightarrow\partial^{o}r_{T}(x)$ is caled $(weak^{*})$ dosed at $(t, x_{0})$

if
$\partial_{[T]}^{o}r_{t}(x_{0})=\partial^{o}r_{t}(x_{0})$ . (2.4)

It is easy to characterize that

$ ff1^{T]^{r_{t}(x_{0})=\overline{CO}^{*}}}\cap$ $\cup\{\partial^{o}r_{t}(x_{i});||x_{i}-x_{0}||<\delta, ||t_{i}-t||<\delta\}$ . $(2.S)$

$\delta>0i$ $i$

For any $x\in X$ , the Theorem 2.8.2 and Theorem 2.7.5 of Clark [2] showed that:

Proposition 2.1. Under the above assumptions, it follows that

$ff_{r(x)c}\int_{T}\partial_{[T]}^{o}r_{t}(x)\mu(dt)$ . (2.6)

That is, for every $\zeta$ $\in$ $ff_{r(x)}$ there exist a measurable selection:

$t\in T\rightarrow\zeta_{t}\in\partial_{[T]}^{o}r_{t}(x)CX^{*}$ and a probability measure $\mu$ on $M(x)$ such that

$t\rightarrow(_{t}$ is weak* $\mu-i$ntegrable and for any $u\in X$ ,

$<u,$ $\zeta>=\int_{T}<u,$ $\zeta_{t}>\mu(dt)$ . (2.7)

We need Ekeland $s$ variational principle (Ekeland [3]) as follows:

Lmma 2.2. Let (V, d) be a complete metric space, and let $F:V\rightarrow R$ be

lower semi-continuous function which is bounded below. Given $\epsilon>0$ and
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$x_{0}\in V$ , if $F(x_{0})$ \langle $infF(v)+\epsilon$, then there exists an $x\in V$ such that

$d(x_{0}, x)\underline{\langle}\sqrt{\epsilon}$, $(2.8)_{1}$

$F(v)+\sqrt d(x, v)\underline{\rangle}F(x)$ for all $v\in$ V. $(2.8)_{2}$

We will apply this Lemma to the case of Banach spaoe $V=X$ and assume
$F$ been continuous. Thu8 we define a Lagrangian function associated with the

optimization problem (P) by

$L(x;\lambda, \mu, \nu, K)=<f(x),$ $\lambda>+<g(x),$ $\mu>+<h(x),$ $\nu>+K||(\lambda, \mu, \nu)||d_{E}(x)$

(2.9)

where $||(\lambda, \mu, \nu)||=||\lambda||_{Y^{*}}+||\mu||_{Z^{*}}+||\nu||_{W^{*}}$ is the norm of $Y^{*}rZ^{*}lW^{*}$ ,

$K>0$ is a constant no less than the Lipschitz constant of the Lipschitz function

$(f_{1}g, h)$ and $d_{E}(x)=d(x, E)=\inf${ $||$ x-y $||;y\in E$}.

The following theorem is main which is a new expression for optimality in

infinite dimensional case. The proof is new and is interesting by applying the

Ekeland variational principle.

Theorem 2.3. Let $x_{0}$ be a weakly minimal solution of problem (P). Then,

for a suitable constant $K>0$ , there exist $\lambda\in C_{Y^{*}},$ $\mu\in c_{Z^{*}},$
$\nu\in W^{*}$ , not al zero,

$s$uch that

$\theta\epsilon\partial_{x}^{o}L(x_{0};\lambda, \mu, \nu, K)$ (2.10)

and

$<g(x_{0}),$ $\mu>=0$ (2.11)

where $f_{x}$ stands the generalized gradient with respect to the variable $x\in$ X.

Proof. For convenience, we let

$T=$ {$t=(\lambda,$ $\mu,$ $\nu)\epsilon C_{Y}*1c_{z*}1W^{*}$ ; II $t$ II $=1$ }. (2.12)
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Since $Y,$ $Z$ and $W$ are reflexive Banach $\epsilon pace8$ , the unit sphere of $Y^{*}zZ^{*}uW^{*}$

is weak $(=weak^{*})$ compact. It follows that for any $\epsilon>0$ , the function $F:X\rightarrow R$

defined by

$F(x)=\max t<(f(x)-f(x_{0})+\epsilon u, g(x),$ $h(x)),$ $t>$

$t\in T$

; $u\epsilon int(C_{Y})$ and II $u||=1$} (2.13)

is $wel$ defined.

Evidently, $F$ is Lipschitz near $x_{0}$ and $F(x_{0})=\epsilon$ . Indeed, sinoe $x_{0}$ is

feasible and so $g(x_{0})\underline{\langle}\theta,$ $h(x_{0})=\theta$, thus the maximum in (2.13) is attained if

$t=(\lambda, \mu, \nu)$ is taken to be $\mu=\nu=0,$ $||\lambda||=1$ and $<u,$ $\lambda>=||u||=1$

(Hahn–Banach Theorem) whenever $u\epsilon$ int $(C_{Y})$ with $||u||=1$ .
Claim that $F$ is a positive function on E.

For if $F(x)\underline{\langle}0$ , it would imply that

$<f(x)-f(x_{0})+\epsilon u,$ $\lambda>\underline{\langle}0$ , $\lambda\in C_{Y^{*}}$ (2.14)

$<g(x),$ $\mu>\underline{\langle}0$ , $\mu\epsilon C_{Z^{*}}$ (2.15)

and $<h(x),$ $\nu>\underline{\langle}0$ , $\nu\epsilon W^{*}$ . (2.16)

Sinoe $\nu\in W^{*}$ is arbitrary, $<h(x),$ $\nu>=0$ , and sinoe $W^{*}$ separates the points on
$W$ , we have $h(x)=0$ . It folows that

$f(x)-f(x_{0})+\epsilon u\in(-C_{Y})$ and $g(x)\underline{\langle}\theta$.

This shows that $x$ is stil a better solution than $x_{0}$ for problem (P) which

contradicts the fact that $x_{0}$ is a weakly minimal solution of (P).

Henoe $x_{0}$ satisfies

$F(x_{0})$ \langle
$\inf_{x\in E}F(x)+\epsilon$ . (2.17)

Applying Ekeland variational principle (Lemma 2), theoe i8 a point $v=v_{\epsilon}\in X$

such that

$||v-x_{0}||<\sqrt{}$ $(2.18)_{1}$
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$F(x)+\sqrt{}||x-v||\underline{\rangle}F(v)$ for all $x\in$ E. $(2.18)_{2}$

Owing $f$ is Lipschitz, we can let $K$ be a constant larger than the Lipschitz

constant $K_{F}$ of F. Actualy, $K\underline{\rangle}K_{F}+\sqrt{}$, the $Lip8chitz$ constant of the function

$x\rightarrow F(x)+\sqrt{}||$ x-v 11 for $x$ near $v$ . (2.19)

Since the above function attains to its minimum at $x=v$ , it follows from that $v$

also minimizes the function

$x\rightarrow F(x)+\sqrt{}||$ x-v $||+Kd_{E}(x)$ . (2.20)

Let $G(x)=F(x)+Kd_{E}(x)$ . Then, by (2.9), (2.13) and (2.12), we have that

$G(x)=$ max $\{L(x;\lambda, \mu_{1}\nu, K)-<f(x_{0}), \lambda>+<\epsilon u, \lambda>\}$ . $(2.21)$

$(\lambda,\mu,\nu)=t\epsilon T$

It folows that the function (2.20) can be written by

$x\rightarrow G(x)+\sqrt{}||$ x-v $||$ . (2.22)

This function is also Lipschitz and attains to its minimum at $x=v$. Henoe, for a

sufficient small $\epsilon>0$ , by (1.6) we have

$\theta\epsilon\partial^{o}G(v)+\partial^{o}(\sqrt{}||\cdot||)(\theta)c\partial^{o}G(v)+\sqrt E_{*}$ (2.23)

sinoe $\partial^{o}(f+g)(x)C\partial^{o}f(x)+\partial^{o}g(x)$ for Lipschitz functions $f$ and $g$ and

$\partial^{o}||||(\theta)cF_{*}$ , (see (1.8) and (1.9)) where $B_{*}$ is the closed unit ball of $X^{*}$ .

Claim: $\partial^{o}G(v)c\partial_{x}^{o}L(v, t_{V}, K)$ . At first we show that the mapping

$(t, z)\rightarrow\partial_{x}^{o}L(z, t, K)$ (2.24)

$i8$ closed, that is, (2.4) holds:

$\partial_{[T]}^{o}L(x, t, K)=\partial_{x}^{o}L(x, t, K)$ .

To see thi $s$ fact, for any $t_{1},$ $t_{2}\in T$ , the mapping

$x\rightarrow L(x, t_{1}, K)-L(x, t_{2}, K)=(t_{1}-t_{2})\cdot(f, g, h)(x)$
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is Lipschitz of rank $K$ ‘11 $t_{1}-t_{2}||$ near $v$ where $K$ stands Lipschitz constant of

the function $(f, g, h)$ . From the elementary property (1.6) of generalized gradient

we have that

$ff_{x}[(t_{1}-t_{2})\cdot(f_{1}g, h)](x)CK$ ‘
$||t_{1}\dashv_{2}||F_{*}$ . (2.25)

Henoe as the same reason of (2.23), it folows that

$ff_{X}L(x, t_{1}, K)c\partial_{X}^{o}L(x, t_{2}, K)+K’||t_{1}-t_{2}||F_{*}$ . (2.26)

Since the generalized gradient of a Lipschitz function is upper semicontinuous in $x$

and by (2.3) and (2.5), we see that (2.24) is closed. Therefore the maximal function

$F(v)(>0)$ defined in (2.13) is attained at some point $t_{V}\in T$ so does for G.

Then $G(v)=L(v, t_{V}, K)-<f(x_{0}),$ $\lambda>+<\epsilon u,$ $\lambda>$ has generalized gradient:

$Pc(v)C\partial_{X}^{o}L(v, t_{V}, K)$ .
From (2.23),

$\theta\epsilon\partial_{X}^{o}L(v, t_{V}, K)+\sqrt F_{*}$ . (2.27)

Letting $\epsilon\downarrow 0$ , there corresponds a subsequenoe
$t_{v_{\alpha}}$

convergent to an element

$t=(\lambda, \mu, \nu)$ in T. In this case $v=v_{\epsilon}$ converges to $x_{0}$ . Consequently, &om the

dosedness of $(t, v)\rightarrow\partial_{x}^{o}L(v, t, K)$ , the expression (2.27) should imply that

$\theta\epsilon\partial_{x}^{o}L(x_{0}, t, K)$ whenever $\epsilon l0$ .

Note that in general, $<g(v_{\epsilon}),$
$\mu(\epsilon)>\leqq 0$ , but in the above construction

$<g(v_{\epsilon}),$ $\mu\langle\epsilon$) $>$ is nonnegative, and as $\epsilon\downarrow 0$ , the limit is also $0$ , this proves

$<g(x_{0}),$ $\mu>=0$ . The proof is completed. $0$

3. REMARKS ON SOME ALTERNATIVE CONCLUSIONS FOR FINITE

DIMENSIONAL CASES
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Throughout this section, we consider that the range spaces of functions in

problem (P) are finite dimensional spaces. That is, in (P), $Y=R^{n},$ $Z=R^{m}$ and
$W=R^{k}$ . Some known results are reduced from Theorem 2.3. Hiriart-Urruty $[S$ ,

Theorem 3.1] established a Fritz John type optimal condition $a8$ follows.

Theorem 3.1. ([5]). Let $x_{0}$ be a local minimum of $f:X\rightarrow R$ in problem

(P) with $X=R^{N}=E,$ $Y=R$ . Then there exist $\lambda\in R_{+},$ $\mu\in R_{+}^{m}$ and $\nu\epsilon R^{k}$ , not

all zero, such that
$m$ $k$

$\left\{\begin{array}{l}\theta\epsilon\partial^{o}(\lambda f+2\mu_{i}g_{i}+2 \nu_{j}h_{j})(x_{0})\\i=1j=1\end{array}\right.$

and $<g(x_{0}),$ $\mu>=0$ .
(3.1)

If $E\sigma X=R^{N}$ $i8$ an additional closed $sub8et$ in problem (P), then the

distanoe function $d_{E}(x)=$ in $f||$ x-y $||$ is Lipschitz of rank 1 and $\theta\in Pd_{E}(x)$ for
$x\epsilon E$

every feasible point $x$ of problem (P). Sinoe the set $N_{E}(x)$ of normal cone to $E$

at $x$ is a closed convex cone generated by $\partial^{o}d_{E}(x)$ , the Fritz John type condition

of Theorem 3.1 turns to the folowing corollary.

Corollary 3.2. ([5, Corollary 3.2]). Like the assumptions in Theorem 3.1 if

$x_{0}$ is a local solution of problem (P) with E E X, then we have

$m$ $k$

$\left\{\begin{array}{l}\theta\epsilon\lambda\partial^{o}f(x_{0})+2\mu_{i}\partial^{o}g_{i}(x_{0})+2\nu_{j}\partial^{o}h_{j}(x_{0})+N_{E}(x_{0})\\i=1j=1\end{array}\right.$

and $<g(x_{0}),$ $\mu>=0$ .

(3.2)

If the constrained inequality $g(x)\underline{\langle}\theta$ in problem (P) has Slater condition,
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that is, there exists a feasible point $\tilde{x}$ such that $g(\tilde{x})<\theta$, then the Kuhn-Tucker

optimality condition holds, that is, $\lambda=1$ . This result is established in Theorem 4.1

of Hiriart-Urruty [5].

The above results hold for X being a real Banach space(cf. Clarke [2]). In

the following part, we always assume that X is a real Banach space.

In problem (P) a feasible point $x_{0}$ is a Pareto (resp. weak $y$ Pareto)

optimal solution if there is no other feasible point $x$ such that

$\left\{\begin{array}{ll}f_{j}(x) \langle f_{j}(x_{0}) & (resp. f_{j}(x)<f_{j}(x_{0})), j=1,2, \cdots, n\\with f_{i}(x)\neq f_{i}(x & ) for at least one i.\end{array}\right.$ (3.3)

Note that this definition is different $hom$ Clarke [2, P. 230]. In Clarke [2],

the Pareto optimum is just the weakly Pareto optimum in our sense. Evidently,

any weakly Pareto optimal solution is also a Pareto optimal solution for

$multiob\dot{p}$ctive programming problem, and they coincide with the usual optimal

solution in the case of singlc valucd $ob\dot{p}$ctivc function.

Lcmma 3.1 of Kanniapan $[0]$ is establishcd in the case of convex functions. It

holds also in the case of local Lipschitz functions.

Lmma 3.3. A feasible solution $x_{0}$ of problem (P) i8 a Pareto optimal

solution if and only if $x_{0}$ solves the $8ubproblem(P_{i}),$ $i=1,2,$ $\cdots,$ $n$ defined by

$(P_{i})$ $\left\{\begin{array}{ll}minimize & f_{i}(x)\\8 ubj e ct t & x\in F_{i},\end{array}\right.$

where $F_{i}=$ {$x\epsilon F;f_{j}(x)\underline{\langle}f_{j}(x_{0})$ for $j=1,$ $\cdots,$ $n,$ $j\neq i$ } (3.4)

and $F=\{x\epsilon X_{1}\cdot g(x)\underline{\langle}\theta, h(x)=\theta\}nE$ (3.5)
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is the feasible set of (P).

Proot Observe that if for some : $\epsilon\{1, \cdots, n\},$
$x_{0}$ does not minimize $f_{i}$ for

problem $(P_{i})$ , then there is a feasible solution $x$ for problem (P) such that

$f_{j}(x)\underline{\langle}f_{j}(x_{0})$ for $j\neq i$ , $h(x)=\theta$, $g(x)\underline{\langle}\theta$ and $f_{i}(x)<f_{i}(x_{0})$ .

$Thi88hows$ that $x_{0}$ is not a Pareto optimal solution of (P). Conversely, if $x_{0}$

does not $8olve$ problem (P), then we can find a feasible solution $x\neq x_{0}$ such that

$f(x)\underline{\langle}f(x_{0})$ with at least one component, $s$ay $f_{i}$ , such that $f_{i}(x)<f_{i}(x_{0})$ . This

shows that $x_{0}$ does not minimize $f_{i}$ over $F_{i}$ . $0$

Employing Lemma 3.3, we can easily extended the Theorem 6.1.3 of Clarke

[2] from weakly Pareto optimum to Pareto optimum as folows.

Theorem 3.4. Let $x_{0}$ be a Pareto optimal solution of problem (P) with

$X=E$ , a Banach spaoe. Then there exist $\lambda\in R_{+}^{n}$ and $\nu\in R^{k}$ , not all zero, such

that

$\left\{\begin{array}{l}\theta\epsilon\partial^{o}(<f,\lambda>+<g, \mu>+<h, \nu>)(x_{0})\\<g(x_{0}),\mu>=0\end{array}\right.$ (3.6)

Proof. By Lemma 3.3, $x_{0}$ is also an optimal solution of problem $(P_{i})$ for

some $i$ . Applying Theorem 3.1 to the single-valued objective function $f_{i}$ with

inequality constraints:

$g(x)\underline{\langle}\theta$ and $f_{j}(x)-f_{j}(x_{0})\underline{\langle}0$ for $j=1,2,$ $\cdots,$ $n$ , $j\neq i$ ,

we have that there exist $\lambda_{j}\underline{\rangle}0,$ $j=1,2,$ $\cdots,$ $n,$ $j\neq i$ and $\lambda_{i}>0,$ $\mu\in R_{+}^{m},$
$\nu\in R^{k}$

not al zero $s$uch that $<g(x_{0}),$ $\mu>=0$ and
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$\theta\epsilon\partial^{o}(\lambda_{i}f_{i}+2\lambda_{j}(f_{j}-f_{j}(x_{0}))+<g, \mu>+<h, \nu>)(x_{0})j\neq i$

$c\#(<\lambda, f>+<g, \mu>+<h, \nu>)(x_{0})$

sinoe the generalized gradient of a constant function is zero, that is, $\partial^{o}(\lambda_{j}f_{j}(x_{0}))(x_{0})$

$=\{0\}$ for all $j$ . This proves the theorem. $0$

Like (3.2), the expression (3.6) can be written in $\uparrow 18eparated^{1\uparrow}$ form

$m$ $m$ $k$

$\left\{\begin{array}{l}\theta\epsilon 2\lambda_{i}\partial^{o}f_{i}(x_{0})+l\mu_{j^{ff}}g_{j}(x_{0})+2\nu_{\ell}\partial^{o}h_{\ell}(x_{0})\\i=1j=1\ell=1\\m\end{array}\right.$

and $l\mu_{j}g_{j}(x_{0})=0$ .
(3.6)

$j=1$

If $EfX,$ $x_{0}$ is a weakly Pareto optimal solution of problem (P), then the

stationary condition (3.6) of Theorem 3.4 should be (a corollary of Theorem 2.3)

$\theta\epsilon\partial_{x}^{o}(<f, \lambda>+<g, \mu>+<h, \nu>+\tau d_{E}(\cdot))(x_{0})$

$c2n\lambda_{i}\partial^{o}f_{i}(x_{0})+m2\mu_{j}\partial^{o}g_{j}(x_{0})+2k\nu\#h\ell l_{0}^{X})+N_{E}(x_{0})$ . (3.7)
$i=1$ $j=1$ $k1$

Here $\tau>0$ is some constant and $|\lambda|+|\mu|+|\nu|=1$ . This result was
established by Minami [10, Theorem 3.1] (cf. also Clark [2, theorem 6.1.1]).

$Re$cently, Lai and Ho [8, theorem 3.1] established Fritz John type optimal

condition for convex programming problem in matrix forms. We now can apply the

stationary condition (3.7) to establish a similar type for generalized gradient in

matrix forms which we state as follows.

hheorem 3.5. Let $x_{0}$ be a weakly Pareto optimal solution (equivalently
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that $x_{0}$ is a Pareto optimun and there is a feasible point $\tilde{x}$ such that $g(\tilde{x})<\theta)$

for problem (P) with $E\sigma$ X. Then there exist matrices

$\lambda=(\lambda_{ij})_{n_{I}n}$ , $\lambda_{ij}\underline{\rangle}0$ ,

$\mu=(\mu_{1j})_{nrm}$ , $\mu_{1j}\underline{\rangle}0$

$\nu=(\nu_{ij})_{n_{l}k}$ $\nu_{ij}\epsilon R$

not all zero matrices such that

$\lambda$ $=0$ for $i\neq j$

ij

$\left\{\begin{array}{ll}\theta\epsilon & \partial^{o}f(x_{0})+\mu\partial^{o}g(x_{0})+\nu\partial^{O}h(x_{0})+N_{E}(x_{0})\\and & \mu\cdot g(x_{0})=\theta,\end{array}\right.$

here, $\partial^{o}f(x_{0})=(\partial^{o}f_{1}(x_{0}), \cdots, \partial^{o}f_{n}(x_{0}))^{T}$ is an $n$ column vector,

$\#_{g(x_{0})}$ and $\partial^{o}h(x_{0})$ are, respectively, $m$ and $k$ column vectors;

$N_{E}(x_{0})$ is n-tuple of $N_{E}(x_{0})$ in $(X^{*})^{n}$ ;

and $N_{E}(x_{0})$ is the normal cone difined in (3.7).

Remark. The stationary condition $\theta\epsilon\partial^{o}L$ of (2.10) in Theorem 2.3 can not

imply the $\uparrow\uparrow separated^{11}$ condition like (3.7) did.
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