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Optimality Conditions for a Specific 
Class of Truncated Kautz Series 

Albertus C. den Brinker 

Abstract-Kautz functions constitute a basis in L2 and can 
be used for filter synthesis starting from a prescribed transient 
response. In a practical situation, only truncated series are used 
and thus the speed of convergence of such series is of importance. 
This convergence speed is a function of the parameters. The 
Kautz functions that are considered can be generated by a line 
of identical Nth-order allpass sections. The optimality conditions 
for the parameters of this specific class of truncated Kautz series 
are established solely on the basis of the orthonormality and the 
polynomial character of the basis functions. 

I. INTRODUCTION 

AUTZ FUNCTIONS [l], [2] are a special case of K orthonormal functions. These can be used in signal 
analysis and filter synthesis. In the case of filter synthesis, 
networks are designed starting from a prescribed transient 
response instead of prescribed frequency characteristics; for a 
discussion on this issue see [ 11. More recently, adaptive filters 
on the basis of Kautz functions have been proposed [3]-[5].  

In practice, a truncated Kautz series will be used and the 
question arises which parameters provide the best approxima- 
tion to a given function by a fixed number of expansion terms. 
This question has already been answered for a Laguerre series 
[6]-[lo] which can be interpreted as a Kautz series governed 
by a single pole. In this paper, these results are extended to 
the more general class of Kautz functions that is specified in 
Section 11. Some consequences of the orthonormality and the 
recurrent pole set for the derivatives of the basis functions 
with respect to the parameters are discussed in Section 111. 
These results are subsequently used to derive the optimality 
conditions (Section IV). A discussion concludes the paper. 

11. THE CONSIDERED KAUTZ FUNCTIONS 

The set of causal functions { f ; ( t ) ;  i = 1, 2, . . .} having a 
Laplace transform 

with % { p i }  < 0 (R denotes the real part of a complex number) 
is a set of orthonormal functions and are called Kautz functions 
[1]. If the poles p ,  are all distinct, the Kautz functions form 
an orthonormal basis in L2(R+) under the Szasz condition 
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Fig. 1. A Kautz filter on the basis of JYth-order allpass sections 

We consider a specific case of Kautz functions where we have 
N recurrent poles p , + ~  = p ,  (i 2 1) and with the restrictions 
that p ,  # pl for i # 1 and 1 5 i , l  5 N and that the first 
N poles are real-valued or occur in complex-conjugated pairs. 
It is known that in this case the Szhz  condition still holds 
and it can be shown that these Kautz functions constitute an 
orthonormal basis in L2(R+) [12]. If N = 1 (i.e., all identical 
poles) we have as a special case the Laguerre functions. 

The considered Kautz functions can be generated as the 
impulse responses of the filter bank shown in Fig. 1. The 
filter bank consists of a line of allpass filters W with transfer 
function 

We repeat, all poles are distinct, and they are real-valued 
or occurring in complex-conjugated pairs. Furthermore, the 
allpass filter is stable: %{p,} < 0 for all i .  The filter line is 
tapped by filters V where V has one input and N outputs. The 
vector vl( t )  (see Fig. 1) contains the N impulse responses of 
this filter where 

The impulse responses u l L ( t ) ,  i = I, . . . , N ,  are the result of an 
orthonormalization procedure on the functions e x p { p i t }  [this 
is slightly more general than the specification by the Laplace 
transform in (l)]. Thus, the first N basis functions are linear 
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combinations of the functions exp{pit} or in matrix notation 

exP{Plt) 
vi(t)  = Q (  i ) (5) 

ex??{pNt> 

where Q is a N x N matrix dependent on the poles (but not on 
the variable t )  such that (VI, U:) = I ,  where I is the identity 
matrix and (., .) denotes an inner product matrix containing 
inner products with respect to the time t .  For convenience, we 
require that all impulse responses v ~ i ( t )  are real-valued. 

Similarly to (4), the vectors vm(t) ,  m 1 2.3 ,  . . . , contain 
N impulse responses with vm(t)  = (vml( t ) ,  . . . , v , ~ ( t ) ) ~  = 
vm-l( t )  * w(t), where w(t) is the inverse Laplace transform 
of W ( s )  and * denotes convolution. Consequently, all basis 
functions 'umi ( t )  are real-valued. Furthermore, the mth vector 
contains impulse responses that are linear combinations of 
products of, at most, (m  - 1)-order polynomials in t and 
exponential functions cxp{p,t}. 

111. PROPERTIES OF THE BASIS FUNCTIONS 

The orthonormality of the basis functions can be expressed 
as (um, U T )  = 6mjI,  where Smj  is the Kronecker delta. From 
the derivative of this orthonormality condition it is found that 
in the case of a real-valued pole 

and, especially, the inner product matrix (dv,/dpl, ?I:) is 
skew-symmetrical. The N x N matrices A i \  are introduced 
as 

(7) 

For the sake of clarity it is noted that the indexes m and j do 
not indicate entries in a matrix A('). 

From (5) it is concluded that the vector dvl/dpl is a linear 
combination of products of, at most, first-order polynomials in 
t and exponential functions. Thus, dvl/apl can be expressed 
in the vectors VI and 212: 

(8) avi/dpi = Ay,)vi + A12v2 ( 1 )  

and so Ai: = AI:) = 0 for j > 2. Extending this reasoning, it 
is found that A$ = AI: = 0 for j > m + 1. Consequently, 
the derivative of the mth vector with respect to pole p1 can be 
written as a combination of just three vectors: 

avm/a~ i  = A t ) , n r - I ~ m - ~  + Am,,vm ( 1 )  + Am,m+lvm+~ ( 1 )  (9) 

for m > 1. 

find for the derivative of the m + 1 basis vector 
Using the recurrence relation vm(t) = vm-I(t) * w(t)  we 

where {Tw} means m times a convolution by w. Taking 
m = 1 in combination with (9) it is clear that V I  * dw/apl 
can be written as a linear combination of the first three basis 
vectors. To this end, the matrices D!;, Df) and Dv) are 
introduced: 

Thus the whole infinite set of matrices A(') is expressed in 
just the three matrices A??, D t )  and A!,). 

and 
A$),m+l) is considered in more detail. Taking the derivative 
of (5 )  with respect to pl yields 

The matrix At2 (and, implicitly, the matrices 

(15) aQ 
= --&-'VI 8Pl  + Qltexp{plt}. 

where Ql stands for a vector identical to the lth column of Q. 
The last term in (15) is a first-order polynomial in t multiplied 
by an exponential function and can be written as a linear 
combination of v1 and 212: 

Qzt  exp(plt} = E y ) v l  + Ef)v2  (16) 

E t )  and E!) being matrices. Since Qz does not depend on t ,  
both E?) and E:) have rank 1. Comparing (16) to (8) gives 
A?,) = aQ/aplQ-' +E?) and A?,) = E t ) .  Thus, all matrices 

( 1 )  

dyadic product. 
If pl is a complex-valued pole, the situation is slightly 

different. It was assumed that in this case there is a T (I 5 
T 5 N )  such that pl = p: = a+gp (3 = n, /3 > 0). We are 
now no longer interested in A(') and A(') but in derivatives 
of the basis functions with respect to CI: and p. Similarly to 
(8), we express these derivatives in the basis functions itself 
dv~/dcu = A$y)vl +AZ)v2 and dvi/dp = A$f)vl +A$:)va. 
From (15) we have [13] 

and AE),m+I have rank 1 and can be written as a 
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We now introduce the vectors dl  and d2 by Taking the derivative of EM with respect to pl gives 

t exp{pit} = d T q +  dTup. (19) 

Since the vectors u1 and 712 contain real-valued functions only, 
the vectors dl and dz are complex-valued. From (19) it follows 
that 

Since (19) and (20) describe linearly independent functions, 
the vectors d j  and dj* are linearly independent 0 = 1, 2). 
Similarly to (16) we now introduce 

where 

(with S denoting the imaginary part of a complex number). 
Since the matrix Q is regular, the vectors Ql and Q, are 
linearly independent. This implies that the matrices A e )  = 
E?) and A$$) = E$’) both have rank 2. 

IV. OPTIMALITY CONDITIONS 

Since the vectors vm(l) (m = 1 , 2 , . . . )  constitute an 
orthonormal basis in L2 (R+) ,  any causal square-integrable 
function h(t)  can be expressed as h( t )  = E:=, c:u,(t). G~ 
is called the Kautz vector spectrum and can be calculated by an 
inner product c,  = (h ,  U,). In the remainder only real-valued 
functions h(t)  are considered, and thus the vector spectrum is 
real-valued as well. 

Considered are truncated Kautz series according to h( t )  z 
f~ ( t )  = CZ==, czv, ( t )  . Given a fixed number of terms ( M )  
we search for an optimality condition for the set of poles, i.e., 
by which poles do we obtain the “best” possible representation 
in this finite series? The “best” representation is defined as that 
which maximizes the energy in the approximating function 

The energy E in h(t)  is given by E = (h ,h)  and the 
energy EM in the approximating function f M  is given by 
EM = ( f ~ ,  f ~ )  = E:==, czcm.  The last equality stems 
from the orthonormality relation. Optimality conditions are 
sought which apply to the set of poles that maximizes E M .  

If a certain set of poles { p z }  yields this maximum then 

.fM ( k ) .  

- = o  dEM 
8Pl 

M 
d E M  T d c W ~  

~ = 2 c,--, 
8Pl m=l 8Pl  

From (9) and c ,  = (h ,  U,) we find 

Substituting (25) in (24) and using (7) gives 

For real-valued poles this expression must be zero for each 1. 
Thus, if the poles are such that CM = 0 or c ~ + 1  = 0, then 
the energy function EM of a Kautz series of M terms has 
an extremum or saddle point for this particular set of poles. 
The same observation holds if complex-conjugated pole pairs 
are allowed [13]. For N = 1 and N = 2 with a complex- 
conjugated pole pair, CM = 0 or CM+I = 0 are the only 
solutions of (23) [6]-[lo]. In general, other solutions exist; 
these depend on the specific orthonormalization matrix Q and 
are not considered here. 

V. CONCLUSION 

Approximations by Kautz functions governed by a recurrent 
set of poles have been considered. An explicit expression 
for the derivatives of the approximating energy function with 
respect to its free parameters (the poles) has been derived. This 
gradient is of a very simple form. Our analysis extends pre- 
viously reported work on optimality conditions for Laguerre 
functions [6]-[SI and the Kautz functions considered in [9] 
and [lo]. It was also shown that the derivatives of higher order 
basis vectors U ,  can be easily established once the derivative 
of the first vector of basis functions is known, see (12)-(14). 
The present results can be easily adapted to the discrete-time 
Kautz functions [14], since the analysis in Section I11 only 
uses the orthonormality and the polynomial character of the 
basis functions [ 151. 

For a given function h( t )  and specific values for N and 
M ,  the presented analysis gives the derivatives of the basis 
functions with respect to the parameters and can consequently 
be used to establish the optimal poles numerically by a 
gradient-oriented search method. For a fixed number N x M ,  
an increase in N results in more degrees of freedom and 
thus, in general, in a better approximation. On the other hand, 
an increase in N results in a more complicated optimization 
procedure. Furthermore, many functions can be associated 
with a single time-scale at which relevant changes occur. This 
implies that in many instances only a venj limited number N 
of free poles suffices to obtain a good approximation. 

for each p l ,  assuming real-valued poles. The extension to 
complex-conjugated pole pairs can be easily established as 
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