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Abstract

We propose a novel combination of optimization

tools with learning theory bounds in order to an-

alyze the sample complexity of optimal kernel

sum classifiers. This contrasts the typical learning

theoretic results which hold for all (potentially

suboptimal) classifiers. Our work also justifies

assumptions made in prior work on multiple ker-

nel learning. As a byproduct of our analysis, we

also provide a new form of Rademacher complex-

ity for hypothesis classes containing only optimal

classifiers.

1. Introduction

Classification is a fundamental task in machine learning

(Shalev-Shwartz & Ben-David, 2014; Daumé III, 2012;

Friedman et al., 2001). Kernel methods allow classifiers to

learn powerful nonlinear relationships (Shawe-Taylor et al.,

2004; Balcan et al., 2006). Optimization tools allow these

methods to learn efficiently (Soentpiet et al., 1999). Under

mild assumptions, kernels guarantee that learned models

generalize well (Bartlett & Mendelson, 2002). However, the

overall quality of these models still depends heavily on the

choice of kernel. To compensate for this, prior work consid-

ers learning how to linearly combine a set of arbitrary ker-

nels into a good data-dependent kernel (Sonnenburg et al.,

2006; Gönen & Alpaydın, 2011; Bach et al., 2004).

It is known that if the learned linear combination of ker-

nels is well behaved, then the kernel classifier generalizes

well (Cortes et al., 2010; 2009a; Argyriou et al., 2005). We

extend this body of work by proving that if our classifier

is optimal, then the linear combination of kernels is well

behaved. This optimality assumption is well justified be-

cause many common machine learning problems are solved

using optimization algorithms. For instance, in this paper
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we consider binary classification with Kernel Support Vec-

tor Machines (SVM), which are computed by solving a

quadratic programming problem. Specifically, we bound

the sample complexity of kernel classifiers in two regimes.

In the first, we are forced to classify using the sum of a set of

kernels. In the second, we choose which kernels we include

in our summation.

There exists substantial prior work considering learning

kernels. From the computational perspective, several theo-

retically sound and experimentally efficient algorithms are

known (Cortes et al., 2009b;a; Kivinen et al., 2004; Sinha

& Duchi, 2016; Duvenaud et al., 2013). Much of this work

relies on optimization tools such as quadratic programs

(Chen et al., 2009), sometimes specifically considering Ker-

nel SVM (Srebro & Ben-David, 2006). This motivates our

focus on optimal classifiers for multiple kernel learning.

The literature on sample complexity for these problems al-

ways assumes that the learned combination of kernels is

well behaved (Cortes et al., 2009c; 2012; 2013; Srebro &

Ben-David, 2006; Sinha & Duchi, 2016). That is, the prior

work assumes that the weighted sum of kernel matrices K̃
Σ

is paired with a vector α
Σ

such that α⊺

Σ
K̃

Σ
α

Σ
≤ C2 for

some constant C. It is unclear how C depends on the struc-

ture or number of base kernels. Our work provides bounds

that explains this relationship for optimal classifiers. Addi-

tionally, Rademacher complexity is typically used to control

the generalization error over all possible (not necessarily

optimal) estimators (Bartlett & Mendelson, 2002; Koltchin-

skii et al., 2002; Kakade et al., 2009). We differ from this

approach by bounding the Rademacher complexity for only

optimal estimators. We are not aware of any prior work that

explores such bounds.

Contributions. Our results start with a core technical

theorem, which is then applied to two novel hypothesis

classes.

• We first show that the optimal solution to the Ker-

nel SVM problem using the sum of m kernels is well

behaved. That is, we consider the given kernel ma-

trices K̃1, . . . , K̃m and the corresponding Dual Ker-

nel SVM solution vectors α1, . . . ,αm, as well as the

sum of these kernel matrices K̃
Σ

and its Dual Ker-

nel SVM solution vector α
Σ

. Using Karush-Kuhn-

Tucker (KKT) optimality conditions, we prove that
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α⊺

Σ
K̃

Σ
α

Σ
≤ 3m−0.58B2 provided that all base ker-

nels fulfill α
⊺

t K̃tαt ≤ B2 for some constant B. We

are not aware of any existing bounds of this kind, and

we provide Rademacher complexity analysis to lever-

age this result. Note that the previous bounds for the

Rademacher complexity in multiple kernel learning

assumes that α⊺

Σ
K̃

Σ
α

Σ
is bounded.

We provide Rademacher complexity bounds for two novel

hypothesis classes. As opposed to traditional Rademacher

bounds, our hypothesis classes only contain optimal clas-

sifiers. The traditional analysis when using a single kernel

provides an empirical Rademacher complexity bound of

O(BR√
n
), where n is the number of samples and kt(xi,xi) ≤

R2 bounds the radius of the samples in every feature space

(Bartlett & Mendelson, 2002).

• Kernel Sums: In the first set, Kernel SVM is re-

quired to use the sum of all m kernels. We show that

the empirical Rademacher complexity is bounded by

O(BR√
n
m0.208).

• Kernel Subsets: In the second set, Kernel SVM is al-

lowed to use the sum of any subset of the m kernels.

The classical analysis in this setting would pay a multi-

plicative factor of 2m−1. The approach we use instead

only pays with a factor of
√

ln(m). We prove that

the empirical Rademacher complexity is bounded by

O(
BR

√
ln(m)√
n

m0.208).

Note that these Rademacher bounds compare naturally to

the traditional single kernel bound. If we use a sum of m

kernels instead of just one kernel, then we pay a multiplica-

tive factor of m0.208. If we use any subset of kernels, we

only pay an extra factor of
√

ln(m). Thus, in this work,

we show that optimization tools such as KKT conditions

are useful in the analysis of statistical bounds. These opti-

mization bounds are leveraged by learning theoretic tools

such as Rademacher complexity, as seen in the second and

third bullet points. Overall, we obtain new bounds with

natural assumptions that connect the existing literature on

optimization and learning theory in a novel fashion. Ad-

ditionally, these bounds justify assumptions made in the

existing literature.

2. Preliminaries

Let S = {(x1, y1), . . . , (xn, yn)} denote a dataset of n

i.i.d. samples from some distribution D, where xi ∈ X
and yi ∈ {−1, 1} for some X . Let ‖ · ‖2 denote the ℓ2
vector norm and ‖ · ‖1 denote the ℓ1 vector norm. Let

[n] := {1, . . . , n} for any natural number n.

Let k : X × X → R denote a kernel function. In this

paper, we assume that all kernels fulfill |k(x,x)| < ∞
for all x ∈ X . We consider being given a set of kernels

k1, . . . , km. Let k
Σ
(·, ·) :=

∑m
t=1 kt(·, ·) denote the sum

of the m kernels. The above notation will be useful when

learning with kernel sums. Let P ⊆ [m]. Then define

k
P
(·, ·) := ∑

t∈P kt(·, ·) as the sum of kernels as described

by P . The latter notation will be useful when learning kernel

subsets.

Given a dataset S and a kernel kt, we can build

the corresponding kernel matrix Kt ∈ R
n×n, where

[Kt]i,j := kt(xi,xj). Further, we can build the

labeled kernel matrix K̃t, defined elementwise as

[K̃t]i,j := yiyjkt(xi,xj). To simplify notation, all our

results use labeled kernel matrices instead of standard ker-

nel matrices.

2.1. Separable SVM

We now present optimal kernel classification, first in the

separable case.

Definition 1 (Primal Kernel SVM). Given a dataset S =
{(x1, y1), . . . , (xn, yn)} and a feature map φ : X 7→ R

d,

the Primal Kernel SVM problem is equivalent to the follow-

ing optimization problem:

min
w

1

2
‖w‖22

s.t. 1− yiw
⊺φ(xi) ≤ 0 ∀i ∈ [n]

We will mainly look at the corresponding dual problem:

Definition 2 (Dual Kernel SVM). Given a dataset S =
{(x1, y1), . . . , (xn, yn)} and a kernel function k(·, ·) with

associated labeled kernel matrix K̃, the Dual Kernel SVM

problem is equivalent to the following optimization problem:

max
α

‖α‖1 −
1

2
α⊺K̃α

s.t. αi ≥ 0 ∀i ∈ [n]

Since the dual optimization problem is defined entirely

in terms of K̃, we can denote the optimal α as a func-

tion of the labeled kernel matrix. We write this as α =
DualSVM(K̃).

Recall that Karush-Kuhn-Tucker (KKT) conditions are nec-

essary and sufficient for optimality in convex optimization

problems (Boyd & Vandenberghe, 2004). We can express

the KKT conditions of the Primal Kernel SVM as follows:

Primal Feasibility:

1− yiw
⊺φ(xi) ≤ 0 ∀i ∈ [n] (1)

Stationarity:

w =
n
∑

i=1

αiyiφ(xi) (2)
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Dual Feasibility:

αi ≥ 0 ∀i ∈ [n] (3)

Complementary Slackness:

αi(1− yiw
⊺φ(xi)) = 0 (4)

The above KKT conditions will be used with learning theo-

retic tools in order to provide novel generalization bounds.

2.2. Non-separable SVM

The primal and dual SVMs above assume that the given

kernel is able to separate the data perfectly. Since this is not

always the case, we also consider non-separable data using

ℓ2 slack variables:

Definition 3 (Primal Kernel SVM with Slack Variables).

Given C > 0, a dataset S = {(x1, y1), . . . , (xn, yn)}, and

a feature map φ : X 7→ R
d, the Primal Kernel SVM prob-

lem is equivalent to the following optimization problem:

min
w

1

2
‖w‖22 +

C

2
‖ξ‖22

s.t. 1− yiw
⊺φ(xi) ≤ ξi ∀i ∈ [n]

ξi ≥ 0 ∀i ∈ [n]

Definition 4 (Dual Kernel SVM with Slack Variables).

Given C > 0, a dataset S = {(x1, y1), . . . , (xn, yn)} and

a kernel function k(·, ·) with associated labeled kernel ma-

trix K̃, the Dual Kernel SVM problem is equivalent to the

following optimization problem:

max
α,ξ

‖α‖1 −
1

2
α⊺K̃α− 1

2
‖ξ‖22

s.t. 0 ≤ αi ≤ Cξi ∀i ∈ [n]

We denote the solution to the Dual SVM with Slack Vari-

ables using parameter C as α = DualSVMC(K̃).

2.3. Rademacher Complexity for Kernels

We use Rademacher complexity to bound the sample com-

plexity of kernel methods. The empirical Rademacher com-

plexity of a hypothesis class F with dataset S is defined

as

R̂S(F) = E
σ

[

sup
h∈F

(

1

n

n
∑

i=1

σih(xi)

)]

where σ ∈ {−1,+1}n is a vector of Rademacher variables.

Bartlett and Mendelson introduced the analysis of sample

complexity for kernel methods via Rademacher complexity

when using one kernel (2002). Bartlett and Mendelson

considered the following hypothesis class of representer

theorem functions:

F :=

{

x 7→
n
∑

i=1

αik(x,xi),xi ∈ X ,α⊺Kα ≤ B2

}

(5)

Each element of F is defined in terms of a dataset

x1, . . . ,xn and an α vector. Bartlett and Mendelson showed

that the probability of misclassification is bounded by the

empirical risk of misclassification with a γ-Lipschitz loss

plus a Rademacher term:

Theorem 1 (Bartlett & Mendelson 2002). Fix n ≥ 0, γ ∈
(0, 1), and δ ∈ (0, 1).

Let S = {(x1, y1), . . . , (xn, yn)} be a dataset of n i.i.d.

samples from D. That is, let S ∼ Dn. Define the γ-Lipschitz

Loss function

ψ(x) :=











1 x < 0

1− x
γ 0 ≤ x ≤ γ

0 x > γ

Let ε := ( 8γ + 1)
√

ln(4/δ)
2n . Then with probability at least

1− δ over the choice of S , for all f ∈ F we have

Pr
(x,y)∼D

[yf(x) ≤ 0] ≤ 1

n

n
∑

i=1

ψ(yif(xi)) +
2

γ
R̂S(F) + ε

In this paper, our interest is in bounding this R̂S(F) term

under reasonable assumptions on F . We specifically con-

sider two hypothesis classes defined over a set of m kernels.

First, we consider optimal kernel sum classification, where

we must use the sum of all m given kernels:

F
Σ
:=

{

x 7→
n
∑

i=1

αiyikΣ
(x,xi),xi ∈ X , yi ∈ {−1, 1},

α = DualSVM(K̃
Σ
),

α
⊺

t K̃tαt ≤ B2 ∀t ∈ [m]

}

(6)

Second, we consider optimal kernel subset classification,

where we are allowed to use the sum of any subset of the m

given kernels:

F
P
:=

{

x 7→
n
∑

i=1

αiyikP
(x,xi),xi ∈ X , yi ∈ {−1, 1},

P ⊆ [m],α = DualSVM(K̃
P
),

α
⊺

t K̃tαt ≤ B2 ∀t ∈ [m]

}

(7)

Note that yi is not present in Bartlett and Mendelson’s hy-

pothesis class in Equation 5, but it is in Equation 6 and
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Equation 7. Regardless, F
Σ

and F
P

do not allow for a more

general set of α vectors. This is because αi is allowed to be

both positive and negative in F . However, in F
Σ

and F
P

,

α is a dual optimal vector. Dual Feasibility implies αi ≥ 0.

Thus, by explicitly mentioning yi in the definitions of F
Σ

and F
P

, we are stating that αi in F equals αiyi in F
Σ

and

F
P

.

Initial Rademacher complexity bounds for learning with a

single kernel assume that α⊺K̃α ≤ B2 (Bartlett & Mendel-

son, 2002). Previous lines of work on multiple kernel learn-

ing then assume that α⊺

Σ
K̃

Σ
α

Σ
≤ C2 for some constant C

(Cortes et al., 2010; 2009a; Sinha & Duchi, 2016; Srebro

& Ben-David, 2006). We are interested in proving what

values of C are reasonable. To achieve this, we assume

that α
⊺

t K̃tαt ≤ B2 for all base kernels and show that

α⊺

Σ
K̃

Σ
α

Σ
is indeed bounded.

In Section 3, we leverage our assumption that α is optimal

to build this bound on α⊺

Σ
K̃

Σ
α

Σ
. In Section 4, we demon-

strate how our bound can augment existing techniques for

bounding the Rademacher complexities of Equation 6 and

Equation 7. That is, we bound R̂
S
(F

Σ
) and R̂

S
(F

P
).

3. SVM Bounds for Sums of Kernels

In this section, we leverage KKT conditions and SVM op-

timality to control the value of α⊺K̃α as the number of

kernels grows. To start, we consider a single kernel k:

Lemma 1. Let α = DualSVM(K̃) for some kernel matrix

K̃. Then ‖α‖1 = α⊺K̃α.

Proof. This proof follows from the KKT conditions pro-

vided in Section 2. We start by substituting Stationarity

(Equation 2) into Complementary Slackness (Equation 4).

For all i ∈ [n],

0 = αi(1− yiw
⊺φ(xi))

0 = αi

(

1−
(

∑n

j=1
αjyjφ(xj)

)⊺

yiφ(xi)
)

0 = αi

(

1−
∑n

j=1
αjyiyjφ(xj)

⊺φ(xi)
)

0 = αi −
n
∑

j=1

αiαjyiyjφ(xj)
⊺φ(xi)

αi =

n
∑

j=1

αiαj [K̃]i,j

We can then take the sum of both sides over all i:
n
∑

i=1

αi =

n
∑

i=1

n
∑

j=1

αiαj [K̃]i,j

‖α‖1 = α⊺K̃α (8)

Note that
∑n

i=1 αi = ‖α‖1 since Dual Feasibility (Equa-

tion 3) tells us that αi ≥ 0.

Lemma 1 is mathematically meaningful since at the optimal

point α, the Dual SVM takes objective value exactly equal

to 1
2α

⊺K̃α. This connects the objective value at the optimal

point to the term we want to control. With this in mind, we

now move on to consider having two kernels k1 and k2.

Theorem 2. Let S = {(x1, y1), . . . , (xn, yn)} be a dataset.

Let k1, k2 be kernel functions. Define k1+2(·, ·) := k1(·, ·)+
k2(·, ·). Let K̃1, K̃2, K̃1+2 be their labeled kernel matrices

and α1,α2α1+2 be the corresponding Dual SVM solutions.

Then we have

α
⊺

1+2K̃1+2α1+2 ≤ 1

3
(α⊺

1K̃1α1 +α
⊺

2K̃2α2)

Furthermore,

α
⊺

1+2K̃1+2α1+2 ≤ 2

3
max{α⊺

1K̃1α1,α
⊺

2K̃2α2} (9)

Proof. First recall that if α = DualSVM(K̃), then for all

other dual feasible α′,

‖α′‖1 −
1

2
α′⊺K̃α′ ≤ ‖α‖1 −

1

2
α⊺K̃α (10)

Also note that K̃1+2 = K̃1 + K̃2. We start the proof by

looking at the Dual SVM objective for k1+2, and distribut-

ing over the labeled kernel matrices:

‖α1+2‖1 −
1

2
α

⊺

1+2K̃1+2α1+2

= ‖α1+2‖1 −
1

2
α

⊺

1+2(K̃1 + K̃2)α1+2

= ‖α1+2‖1 −
1

2
α

⊺

1+2K̃1α1+2

− 1

2
α

⊺

1+2K̃2α1+2

We now introduce an extra ‖α1+2‖1 term by adding zero.

This allows us to form two expressions that look like Dual

SVM Objectives.

‖α1+2‖1 −
1

2
α

⊺

1+2K̃1+2α1+2

= ‖α1+2‖1 −
1

2
α

⊺

1+2K̃1α1+2

− 1

2
α

⊺

1+2K̃2α1+2

+ ‖α1+2‖1 − ‖α1+2‖1

=

(

‖α1+2‖1 −
1

2
α

⊺

1+2K̃1α1+2

)

+

(

‖α1+2‖1 −
1

2
α

⊺

1+2K̃2α1+2

)

− ‖α1+2‖1
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We then apply Inequality 10 to both of these parentheses:

‖α1+2‖1 −
1

2
α

⊺

1+2K̃1+2α1+2

≤
(

‖α1‖1 −
1

2
α

⊺

1K̃1α1

)

+

(

‖α2‖1 −
1

2
α

⊺

2K̃2α2

)

− ‖α1+2‖1

Reorganizing the above equation, we get

2‖α1+2‖1 −
1

2
α

⊺

1+2K̃1+2α1+2

≤
(

‖α1‖1 −
1

2
α

⊺

1K̃1α1

)

+

(

‖α2‖1 −
1

2
α

⊺

2K̃2α2

)

(11)

Next, we use Lemma 1 to simplify all three expression that

remain:

• 2‖α1+2‖1 − 1
2α

⊺

1+2K̃1+2α1+2 = 3
2‖α1+2‖1

• ‖α1‖1 − 1
2α

⊺

1K̃1α1 = 1
2‖α1‖1

• ‖α2‖1 − 1
2α

⊺

2K̃2α2 = 1
2‖α2‖1

Returning to our bound from Inequality 11, we have

3

2
‖α1+2‖1 ≤ 1

2
‖α1‖1 +

1

2
‖α2‖1 (12)

Once we rearrange the constants in Inequality 12, we com-

plete the proof.

The constant of 2
3 in Inequality 9 is advantageous. Since

this ratio is below 1, we can recursively apply this theorem

to get a vanishing fraction. As m increases, we should now

expect α⊺

Σ
K̃

Σ
α

Σ
to decrease. We formalize this notion in

the following theorem, where we consider using the sum of

m kernels.

Theorem 3. Let S = {(x1, y1), . . . , (xn, yn)} be a

dataset. Let k1, k2, . . . , km be kernel functions. Define

k
Σ
(·, ·) :=

∑m
t=1 kt(·, ·). Let K̃1, . . . , K̃m, K̃Σ

be their

labeled kernel matrices and α1, . . . ,αm,αΣ
be the corre-

sponding Dual SVM solutions. Then we have

α⊺

Σ
K̃

Σ
α

Σ
≤ 3m− log

2
(3)

m
∑

t=1

α
⊺

t K̃tαt

Furthermore,

α⊺

Σ
K̃

Σ
α

Σ
≤ 3m− log

2
(3/2) max

t∈[m]
α

⊺

t K̃tαt

In the special case that m is a power of 2, we have

α⊺

Σ
K̃

Σ
α

Σ
≤ m− log

2
(3)

m
∑

t=1

α
⊺

t K̃tαt

≤ m− log
2
(3/2) max

t∈[m]
α

⊺

t K̃tαt

Proof sketch. We provide an intuitive proof form = 8. The

full proof is in Appendix B.

Since m is a power of two, we can label each of the base

kernels with length ℓ = log2(m) = 3 bitstrings:

k000 k001 k010 k011 k100 k101 k110 k111

Then, for each pair of kernels that differ only in the last

digit, define a new kernel as their sum. For instance, define

k10(·, ·) := k100(·, ·) + k101(·, ·). Repeat this process all

the way to the root node.

k000 k001 k010 k011 k100 k101 k110 k111

k00 k01 k10 k11

k0 k1

k
Σ

By Theorem 3, we know that

α⊺

Σ
K̃

Σ
α

Σ
≤ 1

3
(α⊺

0K̃0α0 +α
⊺

1K̃1α1)

Going down one level, by applying Theorem 3 again, we

know that

α
⊺

0K̃0α0 ≤ 1

3
(α⊺

00K̃00α00 +α
⊺

01K̃01α01)

Therefore, by similarly applying Theorem 3 to α
⊺

1K̃1α1,

we can combine these claims:

α⊺

Σ
K̃

Σ
α

Σ
≤
(

1

3

)2

(α⊺

00K̃00α00 +α
⊺

01K̃01α01+

α
⊺

10K̃10α10 +α
⊺

11K̃11α11)

We can then continue until all 8 kernels are included:

α⊺

Σ
K̃

Σ
α

Σ
≤
(

1

3

)3 m
∑

t=1

α
⊺

t K̃tαt
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Note that the exponent of 1
3 is the depth of the tree, equiv-

alent to the length ℓ of our bitstring labels. In the general

case, we have

α⊺

Σ
K̃

Σ
α

Σ
≤
(

1

3

)log
2
(m) m
∑

t=1

α
⊺

t K̃tαt

= m− log
2
(3)

m
∑

t=1

α
⊺

t K̃tαt

This completes the analysis if m is a power of 2. If we do

not have an exact power of two number of kernels, then our

tree has depth ℓ− 1 for some leaves. Therefore, we place a

floor function around log2(3):

α⊺

Σ
K̃

Σ
α

Σ
≤
(

1

3

)⌊log
2
(m)⌋ m

∑

t=1

α
⊺

t K̃tαt

≤ 3

(

1

3

)log
2
(m) m
∑

t=1

α
⊺

t K̃tαt

= 3m− log
2
(3)

m
∑

t=1

α
⊺

t K̃tαt

To achieve the final result, we bound the summation with

m
∑

t=1

α
⊺

t K̃tαt ≤ mmax
t∈[m]

α
⊺

t K̃tαt

and simplify the resulting expression.

We take a moment to reflect on this result. It has been well

established that the generalization error of kernel classifiers

depends on α⊺

Σ
K̃

Σ
α

Σ
(Cortes et al., 2009c; 2012; 2013;

Srebro & Ben-David, 2006; Sinha & Duchi, 2016). Theo-

rem 3 shows that this term actually decreases in the number

of kernels. In the next section, we show how this theorem

translates into generalization error results.

4. Rademacher Bounds

In this section we apply Theorem 3 to bound the

Rademacher complexity of learning with sums of kernels.

To better parse and understand these bounds, we make two

common assumptions:

• Each base kernel has a bounded Dual SVM solution:

α
⊺

t K̃tαt ≤ B2 ∀t ∈ [m]

• Each vector has a bounded ℓ2 norm in each feature

space:

kt(xi,xi) ≤ R2 ∀t ∈ [m], i ∈ [n]

The classical bound in (Bartlett & Mendelson, 2002) on

the Rademacher complexity of kernel functions looks at a

single kernel, and provides the bound

R̂S(F) ≤ BR√
n

where the hypothesis class F is defined in Equation 5. Our

bounds are on the order of BR√
n
m0.208. That is, when moving

from one kernel to many kernels, we pay sublinearly in the

number of kernels.

We first see this with our bound on the Rademacher com-

plexity of the kernel sum hypothesis class R̂S(FΣ
) defined

in Equation 6:

Theorem 4. Let S = {(x1, y1), . . . , (xn, yn)} be a

dataset. Let k1, . . . , km be kernel functions. Define

k
Σ
(·, ·) :=

∑m
t=1 kt(·, ·). Let K̃1, . . . , K̃m, K̃Σ

be their

labeled kernel matrices and α1, . . . ,αm,αΣ
be the corre-

sponding Dual SVM solutions. Then,

R̂S(FΣ
) ≤ 1

n

√

√

√

√3m− log
2
(3)

(

m
∑

t=1

Tr[K̃t]

)

m
∑

t=1

α
⊺

t K̃tαt

Furthermore, if we assume that α
⊺

t K̃tαt ≤ B2 and

kt(xi,xi) ≤ R2 for all t ∈ [m] and i ∈ [n], then we

have

R̂S(FΣ
) ≤ BR√

n

√

3m(1−log
2
(3/2)) ∈ O

(

BRm0.208

√
n

)

Our proof parallels that of Lemma 22 in (Bartlett & Mendel-

son, 2002), and a full proof is in Appendix C. The key

difference between Bartlett and Mendelson’s proof and ours

is the assumption that α is optimal, allowing us to apply

Theorem 3.

Next, we consider learning which kernels to sum. In this

setting, we allow an algorithm to pick any subset of kernels

to sum, but require that Kernel SVM is used for prediction.

This is described by the hypothesis class F
P

defined in

Equation 7. Because the algorithm can pick any arbitrary

subset, we are intuitively bounded by the worst risk over all

subsets of kernels. Specifically, Theorem 4 suggests that

the risk of F
P

is bounded by the risk of a subset with size

m. That is, the risk of F
P

is bounded by the risk of using

all kernels. Our next theorem makes this intuition precise,

because we only pay an asymptotic factor of
√

ln(m) more

when considering all possible subsets of kernels instead of

only one subset of kernels.

Theorem 5. Let S = {(x1, y1), . . . , (xn, yn)} be a dataset.

Let k1, . . . , km be kernel functions. Consider any P ⊆ [m].
Define k

P
(·, ·) :=

∑

t∈P kt(·, ·). Let K̃1, . . . , K̃m, K̃P
be

their labeled kernel matrices and α1, . . . ,αm,αP
be the
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corresponding Dual SVM solutions. Assume kt(xi,xi) ≤
R2 and α

⊺

t K̃tαt ≤ B2 for all t ∈ [m] and i ∈ [n]. Then,

R̂S(FP
) ≤ BR

√

3eη0 m(1−log
2
(3/2)) ⌈ln(m)⌉√

n

∈ O

(

BRm0.208
√

ln(m)√
n

)

where η0 = 23
22 .

If we tried to build this bound with the classical analyti-

cal method found in Lemma 22 of (Bartlett & Mendelson,

2002), we would have to deal with a difficult supremum

over the 2m distinct choices of kernels. This would inflate

the bound by a multiplicative factor of
√
2m = 2m−1. How-

ever, our proof instead follows that of Theorem 1 in (Cortes

et al., 2009c). This more complicated proof method allows

us to pay a factor of
√

ln(m) to separate supremum over

the choice of kernels and the expectation over the σ vector.

This separation allows us to invoke Theorem 3. However,

this proof technique also prevents us from building a claim

as general as Theorem 4, instead only providing bounds

using B and R. The full proof is found in Appendix D.

5. Bounds for Non-separable Data

Recall the Primal and Dual SVMs with ℓ2 slack variables

from Section 2. Now we show that if C = 1
2 , then all the

other bounds hold using non-separable SVM instead of the

separable one. We achieve this by mirroring Theorem 2,

which is used by all other results in this paper.

Theorem 6. Let S = {(x1, y1), . . . , (xn, yn)} be a dataset.

Let k1, k2 be kernel functions. Define k1+2(·, ·) := k1(·, ·)+
k2(·, ·). Let K̃1, K̃2, K̃1+2 be their labeled kernel matrices

and α1,α2,α1+2 be the corresponding Dual SVM solu-

tions with parameter C = 1
2 . Then we have

α
⊺

1+2K̃1+2α1+2 ≤ 1

3
(α⊺

1K̃1α1 +α
⊺

2K̃2α2)

Furthermore,

α
⊺

1+2K̃1+2α1+2 ≤ 2

3
max{α⊺

1K̃1α1,α
⊺

2K̃2α2}

The proof mirrors the proof of Theorem 3, except for some

careful book keeping for the slack vectors ξ1, ξ2, and ξ1+2.

Again, it is the KKT conditions that allow us to bound and

compare the ξ vectors of the three Dual SVM problems.

The full proof is in Appendix A.

With Theorem 6, we can reproduce all other results without

any changes to the original proofs. Further, this sort of

bound on C being a constant is common in learning theory

literature such as PAC Bayes (McAllester, 2007).

6. Experiment

We show some experimental results that verify our core the-

orem, i.e. Theorem 3. Our experiment uses 8 fixed kernels

from several kernels families. We have 5 radial basis kernels,

1 linear kernel, 1 polynomial kernel, and 1 cosine kernel.

All our data is generated from a mixture of 4 Gaussians.

Two of the Gaussians generate the positive class while the

other 2 generate the negative class.

We generate n = 300 samples in R
50. For each of the 8

base kernels, we solve the Dual Kernel SVM problem, and

empirically verify that α
⊺

t K̃tαt ≤ 320 = B2.

Then, we arbitrarily permute the kernel matrices. We solve

the Dual Kernel SVM problem with the first kernel matrix

denoted as K̃
Σ,1

. Then we solve the SVM with the sum of

the first two kernels, denoted as K̃
Σ,2

, and so on until we

sum all 8 kernels. Let α
Σ,m

denote the dual solution vector

corresponding sum of the first m of the 8 kernels. That is,

α
Σ,m

:= DualSVM(K̃
Σ,m

) = DualSVM

(

m
∑

t=1

K̃t

)

After solving each SVM problem, we keep track of the value

of α⊺

Σ,m
K̃

Σ,m
α

Σ,m
value. We then plot this value against

the two bounds provided by Theorem 3:

α⊺

Σ,m
K̃

Σ,m
α

Σ,m
≤ m− log

2
(3)

m
∑

t=1

α
⊺

t K̃tαt

≤ m− log
2
(3/2)B2

Figure 1 shows the difference between the true

α⊺

Σ,m
K̃

Σ,m
α

Σ,m
and the two bounds above. We can ob-

serve that the true curve decreases roughly at the same rate

as our bounds.

7. Conclusion

Here we discuss possible directions to extend our work.

First, in the context of classification with kernel sums, we

are not aware of any efficient and theoretically sound algo-

rithms for learning which kernels to sum. Additionally, we

believe that optimality conditions such as KKT are neces-

sary to build meaningful lower bounds in this setting.

One could also analyze the sample complexity of kernel

products. This idea is experimentally considered by (Duve-

naud et al., 2013). This problem is notably more difficult

since it requires understanding the Hadamard product of

kernel matrices.

More generally, there is little existing work that leverages

optimality conditions to justify assumptions made in learn-

ing problems. In this paper, KKT tells us that we can control
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Figure 1. Empirical value and bounds of α⊺

Σ,m
K̃

Σ,m
α

Σ,m
in our

experiment. The blue curve is the empirical α⊺

Σ,m
K̃

Σ,m
α

Σ,m
.

The brown curve corresponds to m
− log2(3)

∑m
t=1 α

⊺

t K̃tαt. The

red curve corresponds to m
− log2(3/2)B

2.

the quantity α
Σ
K̃

Σ
α

Σ
, justifying the assumptions made in

prior work (Cortes et al., 2009c; Srebro & Ben-David, 2006;

Sinha & Duchi, 2016). We believe that this overall idea is

general and applies to other convex optimization problems

and classes of representer theorem problems, as well as

other learning problems.
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