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Abstract
Interactions between humans cause transmission of SARS-CoV-2. We demonstrate that heterogeneity in
human-human interactions give rise to non-linear infection networks that gain complexity with time.
Consequently, targeted vaccination strategies are challenged as such effects are not accurately captured
by epidemiological models assuming homogeneous mixing. With vaccines being prepared for global
deployment determining optimality for swiftly reaching population level immunity in heterogeneous local
communities world-wide is critical. We introduce a model that predicts the effect of vaccination into an
ongoing COVID-19 outbreak using precision simulation of human-human interaction and infection
networks. We show that simulations incorporating non-linear network complexity and local heterogeneity
can enable governance with performance-quanti�ed vaccination strategies. Vaccinating highly interactive
people diminishes the risk for an infection wave, while vaccinating the elderly reduces fatalities at low
population level immunity. Interestingly, a combined strategy is not better due to non-linear effects. While
risk groups should be vaccinated �rst to minimize fatalities, signi�cant optimality branching is observed
with increasing population level immunity. Importantly, we demonstrate that regardless of immunization
strategy non-pharmaceutical interventions are required to prevent ICU overload and breakdown of
healthcare systems. The approach, adaptable in real-time and applicable to other viruses, provides a
highly valuable platform for the current and future pandemics.

Main
As the COVID-19 pandemic is spreading around the world it is in�icting multi-dimensional damage to
humanity. Now, a year into the pandemic it is evident that traditional epidemiological and public health
interventions alone are not capable of eliminating the spread of SARS-CoV-2 without insurmountable
socio-economic and human costs. However, as of early december 2020 there are 3 major vaccine
candidates expected to be deployed before New Year1. Whilst these vaccines each seem to offer effective
protection against the virus their roll-out constitutes the single largest product launch in human history.
Limits on production and distribution renders it absolutely necessary to prioritize and structure the
deployment2–4. Furthermore, the European Commission recently concluded that “the successful
deployment and a su�cient uptake of such vaccines is equally important” rendering it critical to be able
to “monitor the performance of the vaccination strategies”5.

Human-human interaction networks (HHIN) are formed by physical proximity between individuals in time
and space and depend on the typical or exceptional behavior of humans (Fig. 1a). Respiratory diseases,
such as COVID-19 (Coronavirus Disease 2019), can spread within such HHIN by de�ning a sub-network of
infection emitters and receivers, iHHIN (infection HHIN). These networks are stochastic and evolve over
time in a non-linear manner. Consequently, the spread of SARS-CoV-2 in the population is a complex
system and must be analyzed accordingly.

Thus, to accurately and timely predict the trajectory of the disease in real-world scenarios, the
epidemiological community has already pleaded for new types of models that include motion of
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individual humans and their heterogeneous behavioral patterns, time-dependent infectivity as well as the
effect of non-pharmaceutical and pharmaceutical interventions such as vaccination6,7. Here, we provide a
theoretical quantitative framework for precision simulation of spatio-temporal SARS-CoV-2 transmission
and demonstrate its use in determining optimality in different vaccination strategies.

Heterogeneous Model Of Human-human Interaction And Covid-19 Infection Networks

To keep model complexity reasonable and yet accurately capture human behavior, we developed a
detailed agent-based geospatial model8, where every agent represents a human individual within a
realistic community (Fig. 1). We complemented a classical SIR model with the clinically described stages
of SARS-CoV-2 infection9 and COVID-19 disease and incorporated georeferenced information10,
demographic data11 and realistic daily schedules (full description in Supplementary Methods section X,
Supplementary Fig. 1–26, Supplementary Tables 1–26). This enables us to re�ect the current state of the
pandemic and to simulate realistic scenarios within concrete human populations; the respective HHIN
and iHHIN can be reconstructed from the simulations (Fig. 1a).

To reduce complexity of the HHIN, each human individual is associated with a speci�c physical location
at each time point. These locations are speci�c for the community such as homes, work places, schools,
hospitals, and public places12 (Fig. 1b). The entire population is initialized with demographic census data
resulting in representative age distributions and household compositions. An individual is de�ned by its
household, age, weekly schedule, and health status. The schedule speci�es the individual’s presence in
different locations (Fig. 1c-e). Schedules change with health state and imposed interventions. The health
states for individuals are de�ned as: susceptible (S), infected (I), recovered (R) or deceased (D). Infected
individuals (I) can obtain sub-states specifying their condition as pre- or asymptomatic (plain I),
diagnosed (Id), hospitalized (IdH), or being in an ICU (IdICU) (Fig. 1f). During simulations, individuals’ health
states, presence at locations, interactions with other individuals and infection transmissions are recorded
at each time step. This makes the stochastic HHIN and iHHIN traceable and amenable to theoretical
analysis and implementation of different intervention strategies such as vaccination. In order to evaluate
the effect of (non-)pharmaceutical interventions, we simulated a baseline scenario representing an
uncontrolled outbreak (Fig. 1g,h). The history of infection events de�nes the basic reproduction number
(R-value), and is thus an emergent property of our model (Fig. 1i). The R-value also depends on the
infectivity, which can be reduced by general interventions such as protective gear, hygiene and social
distancing. Non-pharmaceutical interventions modify the infection dynamics, exempli�ed for lockdown
and reopening (Fig. 1j, Supplementary Figures S10-S15). Also the level of compliance in the population
with interventions in�uences their effect, e.g. on infection numbers in a manner consistent with reality
(Fig. 1k, Supplementary Fig. 9). Importantly, simulations of speci�c interventions reveal bimodality, i.e.
lead to qualitatively different outcomes (the infection ceases in some simulations, while generating a
strong second wave in others, Fig. 1l).

The HHIN comprise three different classes of interactions, namely those that: (i) cannot lead to
transmission of infection (e.g. between two S or between two I), (ii) can potentially result in transmission
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(interaction between S and I without successful transmission), and (iii) result in transmission of infection
from I to S, which de�nes the iHHIN (Fig. 2a).

The HHIN and iHHIN are age- and occupation dependent. Analysis of age-speci�c interaction patterns
reveals strong interactions within households, indicated by overrepresentation of interactions within and
between adjacent age cohorts (partnerships) and parent-child related age-cohorts (Fig. 2b, center and off-
center diagonals). Underaged individuals, as well as the working population, show stronger interaction
with members of the same group, as apparent from rectangular interaction patterns representing school
and workplaces. This resembles real-world interaction patterns14,15, but strongly differs from
homogeneous mixing models (Supplementary material). The distribution of interactions per occupation
reveals that underaged in general have more interactions than others, even than public workers (Fig. 2c).

As a consequence, infection transmission in the baseline scenario re�ects the interaction patterns
yielding high infection transmission numbers within households and within the group of underaged,
medium infection transmission between working adults and lower infection rates among pensioners,
when sorted by age (Fig. 2d). Sorting infections according to occupation uncovers that underaged most
likely infect other underaged and adults, while adults predominantly emit to other adults, and pensioners
mostly infect each other. However, public workers emit towards other public workers and pensioners and,
hence, create an infection hub between the groups (Fig. 2e). We also �nd that underaged are signi�cantly
overrepresented as emitters, followed by adults, while pensioners are underrepresented (Fig. 2f). Public
workers are slightly underrepresented as emitters, while teachers and medical professionals belong to the
average. These interaction and infection patterns can change signi�cantly when non-pharmaceutical
interventions are applied (Supplementary material).

The stochasticity within the iHHIN can be recognized from the impact of an individual infection event,
which may either not give rise to further infection events or further grow the network. We observed that
70% of infections originate from only 20% of the infected population and that 70% do not spread the
infection further, which agrees with the Pareto-principle13. The iHHNI exhibits emergent patterns, which
help to understand infection spread and provide a basis to e�ciently interrupt infection transmission, as
discussed below.

Quantifying The Performance Of Targeted Immunization Strategies

Vaccination of the human population against COVID-19 is considered the single largest product launch in
human history. This immense logistical challenge necessitates careful prioritization in order to swiftly
reach maximal suppression of the disease and also save lives16. Given that effective vaccines are
becoming available soon, but not for everybody at the same time, we can now use the model that has
been trained for different communities and for different non-pharmaceutical intervention scenarios
(supplementary material) to predict the effect of pharmaceutical intervention scenarios. To this end, it is
critical for the community to de�ne which speci�c objective applies when searching for optimal targeted
immunization strategies4. Here, we analyze three alternatives: (i) minimize the number of fatalities, (i)
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reduce the number of infections in total or in a period of time, and (iii) reduce the number of
hospitalizations or individuals requiring intensive-care treatment to prevent a collapse of the health
system.

We simulated seven scenarios for different fractions of vaccinated individuals (Fig. 3) obtaining the ratio
of infected individuals (Fig. 3a), the proportion of fatalities (Fig. 3b), the likelihood of an emerging
infection wave, which also provides a measure for the robustness of strategy against infection waves
(Fig. 3c), and the maximum number of individuals simultaneously requiring an ICU (Fig. 3d).

For high vaccination levels (here more than  of the population immunized), the strategy to vaccinate the
most interactive individuals �rst is most effective for all three objectives. For lower vaccination levels, we
identify a clear tradeoff between different strategies depending on the objective, i.e. attenuation of the
infection wave, preventing fatalities, or avoiding ICU overload. Aiming for a reduced number of infections,
it is most effective to vaccinate the most interactive individuals �rst, as it reduces the probability for an
emerging infection wave, and thus increases systemic robustness. It outperforms vaccination by
forecasting of infected individuals in a pre-simulated baseline scenario. Random vaccination
underperforms compared to the other two strategies, in agreement with6,17, but outperforms household-
wise and sorted-by-age vaccination. Group-wise vaccination according to the overrepresentation in the
infection dynamics performs near average. While most strategies reduce the fraction of infection down to
zero at 90% vaccination or lower, this is not achieved by age-sorted vaccination. The reason is that young
individuals always keep interacting, leading to infection spread among the remaining susceptibles;
infection networks never fully dissolve. Individuals of similar age frequently form sub-networks that
remain unperturbed by vaccination of other individuals who do not belong to that same age group.

To reduce fatalities, the age-sorted strategy is very effective at low vaccination levels and outperforms all
other strategies signi�cantly (Supplementary Fig. 22). However, for the high vaccination levels at which
other strategies display population level immunity, those other strategies surpass vaccination by age (�rst
the interactives, then the forecasted and random strategies), since this strategy is not able to suppress
deaths completely before 100% population level immunity is reached. Interestingly, for low to average
levels of immunization also the per-household strategy is effective in reducing the death toll. This is due
to the fact that elderlies who are more likely to die from COVID-19 typically live in households of 1–2, and
thus pro�t early from this strategy. Note that the strategy to immunize by overrepresentation leaves the
other groups fully susceptible, which leads to the bumpy infection and death curves. The “combined”
strategy integrates the two strategies that either best reduce infections (i.e. by interaction) or death toll
(by age), however it outperforms neither.

The simulations also clearly reveal a problem of strategies that focus on vaccination only (Fig. 3d): with
the objective to reduce the occupancy of ICUs, vaccination by age performs best at less than ∼58% but
vaccination by interactivity is best above this level. However, below 63% vaccination, none of these
strategies is able to prevent overload of ICU capacity, without additional non-pharmaceutical
interventions. Importantly, our model has not implicitly included an increased death rate if ICUs are
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overloaded. Hence, the death toll would be even higher than predicted if ICU demands cannot be met.
While the ICU capacities may vary in different locations, the problem remains that ICU demand and
capacity differ widely for all strategies at stages of partial vaccination. This implies that non-
pharmaceutical interventions should be considered to accompany the vaccination process in order to
prevent the collapse of the healthcare system.

In conclusion, there is not a single number for the vaccination percentage ensuring population level
immunity. Instead, this number depends entirely on the chosen strategy, i.e. according to age, interactivity
and occupation of the already vaccinated or recovered individuals. Importantly, it also depends both on
the heterogeneity of the population and on the speci�c virus, its virulence and infectiousness. In
particular, lower infectivity will decrease the required vaccination coverage to achieve population level
immunity (Supplementary Fig. 23). Recently, it was demonstrated that > 70% of a population can be
infected during an uncontrolled outbreak, which is above the reported theoretical population level
immunity threshold for SARS-CoV-218. These observations are supported by the values our model
predicts.

As long as we cannot ensure vaccination of about  of the population, it is not possible to serve all
objectives to reduce deaths, ICU demand and infection levels at the same time equally well. Above this
value, vaccination of individuals sorted by their interactivity shows to be most successful for all three
objectives.

Since vaccination is not mandatory in most countries, high levels of vaccination of the population can
only be reached if most people volunteer. Lack of commitment of the population would be partially
comparable to lack of compliance to lockdown interventions (Fig. 1k): if 25% of the population refuse
vaccination (irrespective of the reason), the effects are similar to non-su�cient dose numbers with the
same strategy-dependent effects on infection spreading, ICU overload, or fatalities.

Discussion
Our work is timely and enables data-driven geospatial-temporal, stochastic, individualized network-based
evaluation of the integrated impact of human endeavours to quantify non-linear effects of non-
pharmaceutical intervention scenarios and optimality in targeted immunization strategies. It suggests
that the COVID-19 infection network is a sparse small network (iHHIN) compared to the overall population
interaction network (HHIN). Thus, models based on homogenous mixing or averaging statistical models
are likely to be of limited use19,20 since they fail to capture nonlinearity and complexity emerging from
stochastic and sparse events in�uenced by individual human behavior as has been pointed out
previously21–24. Remarkably, the heterogeneous model offers insight into the bimodal behavior of SARS-
CoV-2 infection dynamics and demonstrates that effective interventions require strict execution
(stringency) and careful temporal control (timing).
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A general limiting factor in disease modelling, which also holds true for this work, is that the transition
probabilities for the propagation of e.g. COVID-19 are intrinsically incomplete and evolving
(Supplementary Table 24,25–29). A caveat in our study is the setting of relatively small European
communities with a limited number of schools, work- and public places. Another limitation of the current
version of our approach is that it does not entail inter-community transport (travel) nor immunization of
travelers, as has been suggested to be made mandatory by some airlines and may reduce epidemics30.
Nevertheless, as we show that human interaction and infection transmission creates dynamic stochastic
networks which should be exploited to �ght the pandemic. Consequently, the optimization of vaccination
strategies can be supported by network-based, location- and situation-speci�c analysis. We demonstrated
that there is a tradeoff between different strategies for low levels of vaccination (vaccination by age
minimizes fatalities, while vaccination by interactivity reduces infection events). However, at high
vaccination coverage, vaccination by interaction prevails. It is important to note that the vaccination level
giving rise to population level immunity is not a unique number but depends on the vaccination strategy.
Our conclusions depend on the demographic structure and the heterogeneity in the interaction patterns
and it can be assumed that the stronger the heterogeneity in interactions the better vaccination by
interaction will perform. In summary, the situation remains complex and not fully predictable, e.g. due to
bimodality/multimodality of intervention outcomes.

Practically, to implement the strategy by interaction one could exploit the information that tracing apps
collect on mobile phones for simulation-based governance. Targeted immunization in the midst of an
ongoing outbreak likely performs differently, since infection spreading might already reach the vulnerable
subgroups and spread further in their subnetworks. Vaccination of the population is a process in time,
especially in the global context. But locally, signi�cant vaccination coverage may be achieved fast in
some countries or towns. The optimal vaccination strategy depends on the supply of vaccines, the
demographic structure, local behavioral costumes, and the capacity to realize the speci�c strategy. This
coincides with the statement by the European Commission that the objectives of such strategies have to
be “in the beginning on decreasing death rates and disease burden from the COVID-19 pandemic and
ensuring the continuation of essential services, later in the vaccination deployment process this may shift
to the reduction of wider societal and economic restrictions and impact. Such �exibility in terms of
changing objectives should be envisaged by countries when preparing their vaccination strategies”5. In
future, forecasting of the effect of vaccination shall be combined with prior simulation of the ongoing
surge of infections and the effect of hitherto applied non-pharmaceutical interventions to precisely cover
the situation in speci�c communities at the time when a vaccine becomes available.

In a post-covid world it is clear that communities and governments world-wide require smarter and real-
time based simulation support for conducting governance for keeping research, education, economies
and society functional during disease outbreaks by minimizing lockdowns, travel bans, civil non-
compliance and catastrophic socio-economic impact of non-pharmaceutical interventions. To achieve
this new paradigms for modeling of infection networks that capture the nonlinear complexity and
stochasticity will be important, beyond targeted immunization strategies. Finally, the public could also be
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better prepared through education. From a philosophical point of view it may be helpful to encourage
John Nash inspired self-governance of citizens so they realize that within a society, individuals are best
off if they make the best decision they can, taking into account the decisions of other individuals.

Methods
The concept of geospatial demographic heterogeneous agent-based model, the estimation of parameters
for the stochastic transitions between states, and details of the simulations are detailedly represented in
the Supplementary materials.

Declarations
ACKNOWLEDGMENTS

We wish the populations of Gangelt, Heinsberg, Epping, and Vaxholm all the best and would like to point
out that the model remains an abstraction and it is neither a repetition of history nor can it be traced back
to real individuals, thus safe-guarding the privacy of the public.

Funding: This work was supported by the Deutsche Forschungsgemeinschaft (DFG: Cluster of Excellence
MATH+, TRR 175) and by the German Ministry of Education and Research (BMBF, Liver Systems
Medicine (LiSyM) network grant) and by the People Programme (Marie Skłodowska-Curie Actions) of the
European Union’s Horizon 2020 Programme under REA grant agreement no. 813979 (‘Secreters’). XEF is
supported with a postdoctoral grant from CONACYT (CVU 420248). RL is supported by a BMBF GO-Bio
initial grant 031B0988.

Author contributions: Conceived the project: RL, EK. Conceptual work on the model: BG, SOA, OB, JAHW,
XEF, RL, EK. Programming: BG, SOA, OB, JAHW, AK, LB, JELH, MKa, RMT, MS. Analysis and computational
experiments: BG, SOA, OB, JAHW, XEF, AK, MKa, RMT, MS, EK. Data collection: XEF, JELH, MKb, LM, HP,
PSS. Wrote the paper: BG, OB, JAHW, XEF, MKb, MS, RL, EK. All authors agreed on the �nal version of the
manuscript.

Competing interests: Authors declare no competing interests.

Data and materials availability: All data is available in the main text or the supplementary materials.” The
code is available at https://tbp-klipp.science/GERDA/code/

References
1. Kaur, S. P. & Gupta, V. COVID-19 Vaccine: A comprehensive status report. Virus Res. 288, 198114

(2020).

2. Sadanand, S. Vaccination: the present and the future. Yale J. Biol. Med. 84, 353–359 (2011).

3. Hardt, K. et al. Vaccine strategies: Optimising outcomes. Vaccine 34, 6691–6699 (2016).

http://paperpile.com/b/hHsY69/Itw4
http://paperpile.com/b/hHsY69/Itw4
http://paperpile.com/b/hHsY69/Itw4
http://paperpile.com/b/hHsY69/Itw4
http://paperpile.com/b/hHsY69/jIa9o
http://paperpile.com/b/hHsY69/jIa9o
http://paperpile.com/b/hHsY69/jIa9o
http://paperpile.com/b/hHsY69/jIa9o
http://paperpile.com/b/hHsY69/oHojk
http://paperpile.com/b/hHsY69/oHojk
http://paperpile.com/b/hHsY69/oHojk
http://paperpile.com/b/hHsY69/oHojk
http://paperpile.com/b/hHsY69/oHojk
http://paperpile.com/b/hHsY69/oHojk


Page 10/15

4. Subbaraman, N. WHO GETS A COVID VACCINE FIRST? ACCESS PLANS ARE TAKING SHAPE. Nature
585, (2020).

5. EUROPEAN COMMISSION. Preparedness for COVID-19 vaccination strategies and vaccine
deployment. (2020).

�. Britton, T., Ball, F. & Trapman, P. A mathematical model reveals the in�uence of population
heterogeneity on herd immunity to SARS-CoV-2. Science eabc6810 (2020)
doi:10.1126/science.abc6810.

7. Bouffanais, R. & Lim, S. S. Cities — try to predict superspreading hotspots for COVID-19. Nature 583,
352–355 (2020).

�. Goldenbogen, B. et al. Geospatial precision simulations of community con�ned human interactions
during SARS-CoV-2 transmission reveals bimodal intervention outcomes. medRxiv
2020.05.03.20089235 (2020) doi:10.1101/2020.05.03.20089235.

9. Karagiannidis, C. et al. Case characteristics, resource use, and outcomes of 10 021 patients with
COVID-19 admitted to 920 German hospitals: an observational study. The Lancet Respiratory
Medicine 8, 853–862 (2020).

10. OpenStreetMap. https://www.openstreetmap.org.

11. Zensusdatenbank - Ergebnisse des Zensus 2011. https://ergebnisse.zensus2011.de.

12. Chang, S. et al. Mobility network models of COVID-19 explain inequities and inform reopening.
Nature (2020) doi:10.1038/s41586-020-2923-3.

13. Sun, K. et al. Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2. medRxiv
2424, 2020.08.09.20171132 (2020).

14. Zhang, J. et al. Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China.
Science 368, 1481–1486 (2020).

15. Mossong, J. et al. Social contacts and mixing patterns relevant to the spread of infectious diseases.
PLoS Med. 5, 0381–0391 (2008).

1�. Lambert, J. et al. COVID-19 vaccine distribution’s ‘last mile’ poses huge challenges.
https://www.sciencenews.org/article/covid19-coronavirus-vaccine-last-mile-logistics-p�zer-moderna
(2020).

17. Gomes, M. G. M. et al. Individual variation in susceptibility or exposure to SARS-CoV-2 lowers the
herd immunity threshold. medRxiv (2020) doi:10.1101/2020.04.27.20081893.

1�. Buss, L. F. et al. Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely
unmitigated epidemic. Science (2020) doi:10.1126/science.abe9728.

19. Maier, B. F. & Brockmann, D. Effective containment explains subexponential growth in recent
con�rmed COVID-19 cases in China. Science 368, 742–746 (2020).

20. Kermack, W. O., McKendrick, A. G. & Walker, G. T. A contribution to the mathematical theory of
epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a
Mathematical and Physical Character 115, 700–721 (1927).

http://paperpile.com/b/hHsY69/we1zZ
http://paperpile.com/b/hHsY69/we1zZ
http://paperpile.com/b/hHsY69/we1zZ
http://paperpile.com/b/hHsY69/we1zZ
http://paperpile.com/b/hHsY69/5ctPI
http://paperpile.com/b/hHsY69/5ctPI
http://paperpile.com/b/hHsY69/5ctPI
http://paperpile.com/b/hHsY69/Ujvdt
http://paperpile.com/b/hHsY69/Ujvdt
http://paperpile.com/b/hHsY69/Ujvdt
http://dx.doi.org/10.1126/science.abc6810
http://paperpile.com/b/hHsY69/Ujvdt
http://paperpile.com/b/hHsY69/Wz4kP
http://paperpile.com/b/hHsY69/Wz4kP
http://paperpile.com/b/hHsY69/Wz4kP
http://paperpile.com/b/hHsY69/Wz4kP
http://paperpile.com/b/hHsY69/2Eymt
http://paperpile.com/b/hHsY69/2Eymt
http://paperpile.com/b/hHsY69/2Eymt
http://paperpile.com/b/hHsY69/2Eymt
http://paperpile.com/b/hHsY69/2Eymt
http://dx.doi.org/10.1101/2020.05.03.20089235
http://paperpile.com/b/hHsY69/2Eymt
http://paperpile.com/b/hHsY69/FjsDo
http://paperpile.com/b/hHsY69/FjsDo
http://paperpile.com/b/hHsY69/FjsDo
http://paperpile.com/b/hHsY69/FjsDo
http://paperpile.com/b/hHsY69/FjsDo
http://paperpile.com/b/hHsY69/FjsDo
http://paperpile.com/b/hHsY69/mUrMF
https://www.openstreetmap.org/
http://paperpile.com/b/hHsY69/mUrMF
http://paperpile.com/b/hHsY69/vw94B
https://ergebnisse.zensus2011.de/
http://paperpile.com/b/hHsY69/vw94B
http://paperpile.com/b/hHsY69/3DQAE
http://paperpile.com/b/hHsY69/3DQAE
http://paperpile.com/b/hHsY69/3DQAE
http://paperpile.com/b/hHsY69/3DQAE
http://paperpile.com/b/hHsY69/3DQAE
http://dx.doi.org/10.1038/s41586-020-2923-3
http://paperpile.com/b/hHsY69/3DQAE
http://paperpile.com/b/hHsY69/4VumV
http://paperpile.com/b/hHsY69/4VumV
http://paperpile.com/b/hHsY69/4VumV
http://paperpile.com/b/hHsY69/4VumV
http://paperpile.com/b/hHsY69/4VumV
http://paperpile.com/b/hHsY69/4VumV
http://paperpile.com/b/hHsY69/tALId
http://paperpile.com/b/hHsY69/tALId
http://paperpile.com/b/hHsY69/tALId
http://paperpile.com/b/hHsY69/tALId
http://paperpile.com/b/hHsY69/tALId
http://paperpile.com/b/hHsY69/tALId
http://paperpile.com/b/hHsY69/o3mMy
http://paperpile.com/b/hHsY69/o3mMy
http://paperpile.com/b/hHsY69/o3mMy
http://paperpile.com/b/hHsY69/o3mMy
http://paperpile.com/b/hHsY69/o3mMy
http://paperpile.com/b/hHsY69/o3mMy
http://paperpile.com/b/hHsY69/EXVm
http://paperpile.com/b/hHsY69/EXVm
http://paperpile.com/b/hHsY69/EXVm
https://www.sciencenews.org/article/covid19-coronavirus-vaccine-last-mile-logistics-pfizer-moderna
http://paperpile.com/b/hHsY69/EXVm
http://paperpile.com/b/hHsY69/jNrBy
http://paperpile.com/b/hHsY69/jNrBy
http://paperpile.com/b/hHsY69/jNrBy
http://paperpile.com/b/hHsY69/jNrBy
http://paperpile.com/b/hHsY69/jNrBy
http://dx.doi.org/10.1101/2020.04.27.20081893
http://paperpile.com/b/hHsY69/jNrBy
http://paperpile.com/b/hHsY69/KYxN
http://paperpile.com/b/hHsY69/KYxN
http://paperpile.com/b/hHsY69/KYxN
http://paperpile.com/b/hHsY69/KYxN
http://paperpile.com/b/hHsY69/KYxN
http://dx.doi.org/10.1126/science.abe9728
http://paperpile.com/b/hHsY69/KYxN
http://paperpile.com/b/hHsY69/b7Cma
http://paperpile.com/b/hHsY69/b7Cma
http://paperpile.com/b/hHsY69/b7Cma
http://paperpile.com/b/hHsY69/b7Cma
http://paperpile.com/b/hHsY69/VnlWQ
http://paperpile.com/b/hHsY69/VnlWQ
http://paperpile.com/b/hHsY69/VnlWQ
http://paperpile.com/b/hHsY69/VnlWQ


Page 11/15

21. Ferguson, N. M. et al. Strategies for containing an emerging in�uenza pandemic in Southeast Asia.
Nature 437, 209–214 (2005).

22. Stonedahl, F. & Wilensky, U. NetLogo Virus on a Network model. Center for Connected Learning and
Computer-Based (2008).

23. Chao, D. L., Halloran, M. E., Obenchain, V. J. & Longini, I. M., Jr. FluTE, a publicly available stochastic
in�uenza epidemic simulation model. PLoS Comput. Biol. 6, e1000656 (2010).

24. Gomez, J., Prieto, J., Leon, E. & Rodriguez, A. INFEKTA: A General Agent-based Model for
Transmission of Infectious Diseases: Studying the COVID-19 Propagation in Bogotá-Colombia.
medRxiv (2020).

25. Ahn, D.-G. et al. Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for Novel
Coronavirus Disease 2019 (COVID-19). J. Microbiol. Biotechnol. 30, 313–324 (2020).

2�. Esakandari, H. et al. A comprehensive review of COVID-19 characteristics. Biol. Proced. Online 22, 19
(2020).

27. Pascarella, G. et al. COVID-19 diagnosis and management: a comprehensive review. J. Intern. Med.
288, 192–206 (2020).

2�. Zhou, M.-Y. et al. From SARS to COVID-19: What we have learned about children infected with COVID-
19. Int. J. Infect. Dis. (2020).

29. Vellas, C., Delobel, P., de Souto Barreto, P. & Izopet, J. COVID-19, Virology and Geroscience: A
Perspective. J. Nutr. Health Aging 24, 685–691 (2020).

30. Chinazzi, M. et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus
(COVID-19) outbreak. Science 368, 395–400 (2020).

Figures

http://paperpile.com/b/hHsY69/USktH
http://paperpile.com/b/hHsY69/USktH
http://paperpile.com/b/hHsY69/USktH
http://paperpile.com/b/hHsY69/USktH
http://paperpile.com/b/hHsY69/USktH
http://paperpile.com/b/hHsY69/USktH
http://paperpile.com/b/hHsY69/EJ7eh
http://paperpile.com/b/hHsY69/EJ7eh
http://paperpile.com/b/hHsY69/EJ7eh
http://paperpile.com/b/hHsY69/YB1pn
http://paperpile.com/b/hHsY69/YB1pn
http://paperpile.com/b/hHsY69/YB1pn
http://paperpile.com/b/hHsY69/YB1pn
http://paperpile.com/b/hHsY69/vmNgm
http://paperpile.com/b/hHsY69/vmNgm
http://paperpile.com/b/hHsY69/vmNgm
http://paperpile.com/b/hHsY69/5f1f9
http://paperpile.com/b/hHsY69/5f1f9
http://paperpile.com/b/hHsY69/5f1f9
http://paperpile.com/b/hHsY69/5f1f9
http://paperpile.com/b/hHsY69/5f1f9
http://paperpile.com/b/hHsY69/5f1f9
http://paperpile.com/b/hHsY69/92Bob
http://paperpile.com/b/hHsY69/92Bob
http://paperpile.com/b/hHsY69/92Bob
http://paperpile.com/b/hHsY69/92Bob
http://paperpile.com/b/hHsY69/92Bob
http://paperpile.com/b/hHsY69/92Bob
http://paperpile.com/b/hHsY69/xyNX9
http://paperpile.com/b/hHsY69/xyNX9
http://paperpile.com/b/hHsY69/xyNX9
http://paperpile.com/b/hHsY69/xyNX9
http://paperpile.com/b/hHsY69/xyNX9
http://paperpile.com/b/hHsY69/xyNX9
http://paperpile.com/b/hHsY69/CgnHZ
http://paperpile.com/b/hHsY69/CgnHZ
http://paperpile.com/b/hHsY69/CgnHZ
http://paperpile.com/b/hHsY69/CgnHZ
http://paperpile.com/b/hHsY69/CgnHZ
http://paperpile.com/b/hHsY69/QyDSF
http://paperpile.com/b/hHsY69/QyDSF
http://paperpile.com/b/hHsY69/QyDSF
http://paperpile.com/b/hHsY69/QyDSF
http://paperpile.com/b/hHsY69/LIH1F
http://paperpile.com/b/hHsY69/LIH1F
http://paperpile.com/b/hHsY69/LIH1F
http://paperpile.com/b/hHsY69/LIH1F
http://paperpile.com/b/hHsY69/LIH1F
http://paperpile.com/b/hHsY69/LIH1F


Page 12/15

Figure 1

The nonlinear network effects of SARS-Cov2 outbreaks can only be quanti�ed with non-homogenous
spatio-temporal models of individual human behavior. a, Human-human interactions create dynamic
stochastic networks in space and time. b, The model uses data of real-world communities with annotated
buildings, demography, and statistics on daily occupations (Movie 1). c, Individuals move between
locations to meet other individuals, d, Schedules de�ne typical behavior and where-abouts of individuals.
e, Individuals, locations, and time span a multidimensional space for stochastic simulations. f, An
individual’s health status can be susceptible - S, infected - I, recovered - R, deceased - D, and infection sub-
states a- or presymptomatic (plain I), diagnosed (Id), hospitalized (IdH), in intensive care (IdICU). g,
Simulation of uncontrolled baseline scenario for a town (here German town Gangelt with 10.351
individuals), starting from 4 infected individuals; dynamics of states S, I, R, and D over approx. 12 weeks
(100 replicates, colors as in f). h, Dynamics of I, Id, IdH, and IdICU (colors as in f). i, The R-value as
emergent model property for different values of the model parameter infectivity, which may change with
interventions such as mask wearing or keeping distance. j, Simulated performance of an intervention:
lockdown (8 days after �rst infection) and reopening (after 5 weeks). k, Compliance (in % of population)
with the lockdown leads to less total infection. l, Bimodality: whether lockdown and reopening lead to
high or low infection numbers depends on the reopening time. For a range of reopening times, high/low I
are obtained in a certain ratio, indicating uncertainty in the outcome.
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Figure 2

Interaction and infection networks provide novel insight into SARS-CoV-2 spreading and a basis for
intervention. a, Infection networks in the modeled community unfolding within 300 hours. b, Heatmap of
daily interactions between age groups exhibiting overrepresentation of interactions among underaged
and within families. c, Distributions of total and unique interactions for individuals with different
occupations. d, Heatmap of daily infection numbers between age groups for the baseline scenario. e,
Likelihoods to transmit the infection from emitters to receivers sorted by occupation. f,
Overrepresentation of occupation groups in infection transmission (number of receivers within the group
relative to average number of receivers). UA - Underaged, AD - adults (age groups 20-65 excluding PW, MP,
and TE), PW - public workers, MP - medical professionals, TE - teachers, PE - pensioners.
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Figure 3

Complexity of COVID-19 outbreaks illuminate alternate paths to optimality in vaccination strategies:
Comparison of strategies using different selection criteria for the vaccination of individuals: “random” -
randomly selected individuals, “forecasted” - individuals forecasted to be infected in a pre-simulated
baseline scenario, “overrepresentation” - groups overrepresented as emitters (Fig. 2f), “interaction” - by
interaction frequency starting with the highest, “household” - per household starting with one inhabitant
at a time, “age” - by age starting with the oldest, and “combined” - �rst elderly people (>60 yrs)
subsequently by interaction frequency. In all cases, fractions between 0.5 and 0.9 of the population have
been set to be vaccinated according to the applied criteria at the starting point. a, Fraction of infected
people over the time course (relative to the remaining number of susceptible at start), b, Fraction of
deceased (relative to susceptible at start). c, Fraction of simulation runs, which exhibited an infection
wave (l> 80 subsequent infections) after the vaccination. d, Maximum number of individuals requiring
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simultaneously an ICU at some point in time during the simulation. The black line indicates the capacity
of ICU beds (assuming the German number of roughly 30.000 per 82 million inhabitants). A,B,D) Lines
and shaded area represent mean values and con�dence intervals, respectively (CI=95%, N=100).
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