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SUMMARY

Several optimality properties of Dorfman’s (1943) group testing procedure are derived for estimation of
the prevalence of a rare disease whose status is classified with error. Exact ranges of disease prevalence
are obtained for which group testing provides more efficient estimation when group size increases.
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1. INTRODUCTION

Aiming at more efficient screening of a rare disease, Dorfman (1943) proposed to test for the
syphilis antigen by first testing pooled blood samples, followed by retesting individuals in groups
found to be infected. This strategy and its variations developed later, often referred to as group
testing or pooled testing, have received substantial attention for efficient identification of an event
or estimation of the probability that the event occurs; see Sobel & Groll (1959), Sobel & Elashoff
(1975), Le (1981), Gastwirth & Hammick (1989), Chen & Swallow (1990), Farrington (1992),
Gastwirth & Johnson (1994), Hughes-Oliver & Swallow (1994), Litvak et al. (1994), Tu et al. (1995),
Barcellos et al. (1997), Brookmeyer (1999), Hung & Swallow (1999), Hughes-Oliver & Rosenberger
(2000) and Tebbs & Swallow (2003). An attractive feature of group testing is that retesting on individ-
uals is not necessary if one is only interested in estimation of the probability of a positive test.

Most of the developments and applications of group testing have assumed that the disease status can
be accurately determined without error. In this case, use of group testing can substantially reduce the cost
but will always yield estimation of prevalence less efficient than that based on the fully observed data, in
which the disease status is determined for each individual. A number of authors have investigated group
testing strategies with misclassification of the disease status; see, among others, Graff & Roeloffs (1972),
Hwang (1976), Burns & Mauro (1987) and Xie et al. (2001). Tu et al. (1995) showed that when the total
number of subjects is fixed, the asymptotic variance function of the resulting estimator decreases as the
number of subjects in each group increases, assuming that the prevalence of the disease is small enough.
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It is not clear, however, exactly how small the prevalence needs to be for group testing to become more
efficient, since Tu et al. (1995) only considered the limiting behaviour of the variance.

In this paper we further investigate the optimality properties of the group testing strategy in estimating
the prevalence of a disease. We show that, when the disease status is measured with error, group testing
with moderate group sizes provides more efficient estimation than the fully observed data over a wide
range of disease prevalences. When the number of groups is fixed, group testing also prevails over the
one-subject-per-group random sampling design for moderate disease prevalence.

2. OPTIMALITY OF THE ESTIMATION

2·1. Maximum likelihood estimation

We assume that the status of a disease D is measured with error, with specificity π0 = pr(M = 0 | D = 0)

and sensitivity π1 = pr(M = 1 | D = 1), where M = 0, 1 is the observed status of D. For the classification
to be of practical use we assume that 1/2 < π0, π1 � 1.

Suppose that k samples are pooled and that instead of observing M1, . . . , Mk , we observe M̃ =
max(M1, . . . , Mk). Thus, if M̃ = 0, then Mi = 0 for each i = 1, . . . , k. If M̃ = 1, then we conclude that
Mi = 1 for at least one subject in the group. We assume that misclassification of the disease is nondiffer-
entiable, independent of pooling and group sizes. This is a common assumption in practice. Write Di = 1
if the i th subject has the disease and 0 if otherwise. Define p = pr(D1 = 1), the prevalence of the dis-
ease, and assume that 0 < p < 1. It then follows from Tu et al. (1995) that pr(M̃ = 1) = π1 − r(1 − p)k ∈
(1 − π0, π1), where r = π0 + π1 − 1.

Let n be the number of groups being tested, each of size k, the number of subjects in the group. Let
n1 � n be the number of groups that test positive and define λ = n1/n, the observed proportion of positive
groups. Then the maximum likelihood estimate is

p̂ = 1 −
[
π1 − min{π1, max(1 − π0, λ)}

r

]1/k

(1)

with asymptotic variance

var( p̂) = σ 2(p, k, n) = {π1 − r(1 − p)k}{r(1 − p)k + 1 − π1}
nr2k2(1 − p)2(k−1)

. (2)

See Tu et al. (1995) and Hepworth (1996), among others.
From the variance formula (2) we notice that for fixed group size k and misclassification rates, var( p̂)

decreases as the number n of groups increases. Therefore the precision of p̂ can be improved by increasing
the number of groups, which may be infeasible in epidemiological studies due to cost constraints.

2·2. Optimality with a fixed number of groups

Of particular interest is the relative efficiency of group testing to a random sample of size n, or the
one-sample-per-group design, assuming that the number n of groups is fixed. This situation often occurs
in practice when only a limited number of test-kits or assays are available due to cost constraints. The
random sampling design randomly selects n subjects from the population, with disease status observed
for each subject. Thus the random sampling design results in an estimate of p, given by (1) with k = 1,
with variance σ 2(p, 1, n) = (π0 − r p)(1 + r p − π0)/(nr2), derived from (2) by straightforward algebraic
manipulation.

PROPOSITION 1. Consider σ 2(p, k, n) as defined in (2). Let n, k1 and k2 be integers and 1 � k2 < k1.
Then σ 2(p, k1, n)/σ 2(p, k2, n) is a monotone increasing function of p.
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Proof. The derivative of log{σ 2(p, k1, n)/σ 2(p, k2, n)} with respect to p is given by f (k1; 1 − π1) +
f (k1;−π1), where

f (x; s) = s

1 − p

{
x

r(1 − p)x + s
− k2

r(1 − p)k2 + s

}
(x � k2).

Since the derivative of f (x; 1 − π1) with respect to x is positive, f (x; 1 − π1) is monotone increasing in
x and thus f (k1; 1 − π1) > f (k2; 1 − π1) = 0. Furthermore, the derivative of f (x;−π1) with respect to
x has the same sign as g(p) = π1 − r(1 − p)x + r x(1 − p)x log(1 − p), whose derivative with respect
to p is −r x2(1 − p)x−1 log(1 − p) > 0. Thus g(p) is monotone increasing, implying limp→1 g(p) =
π1 > g(p) > limp→0 g(p) = 1 − π0 � 0. Therefore f (x;−π1) is also monotone increasing in x and thus
f (x;−π1) > f (k2;−π1) = 0. This completes the proof. �

PROPOSITION 2. Assume that the conditions in Proposition 1 hold. Then there exists some unique 0 <

p0 < 1 such that σ 2(p0, k1, n) = σ 2(p0, k2, n) and

σ 2(p, k1, n)

{
< σ 2(p, k2, n) (p < p0),

> σ 2(p, k2, n) (p > p0).

Proof. Straightforward manipulations lead to

lim
p

σ 2(p, k1, n)

σ 2(p, k2, n)
=

⎧⎪⎨
⎪⎩

∞ (p → 1),

k2
2/k2

1 < 1 (p → 0, π0 < 1),

k2/k1 < 1 (p → 0, π0 = 1).

The proposition thus follows because σ 2(p, k1, n)/σ 2(p, k2, n) is a continuous function of p and is mono-
tone increasing in p. �

With respect to the random sampling we have the following result.

THEOREM 1. Let k � 2 and 0 < p0 < 1 be such that σ 2(p0, k, n) = σ 2(p0, 1, n). Then group testing
with group size k and number n of groups is more efficient in estimating the disease prevalence p than a
random sample of size n if and only if p < p0.

2·3. Optimality with a fixed number of subjects

Next we consider the situation in which the total number of subjects nk is fixed. The issue under inves-
tigation is then to find k for which group testing improves the precision in estimating p when compared
with the fully observed data, that is, data with disease status observed for each of the nk subjects. The
problem reduces to comparing σ 2(p, k, n) with σ 2(p, 1, nk). Theorem 3 of Tu et al. (1995) proved that
for π0 < 1 and fixed nk the variance function (2) is monotone decreasing in k when p is small. It follows
that for π0 < 1 and small p, σ 2(p, k, n) < σ 2(p, 1, nk) for k � 2. However, the authors did not discuss
how small p needs to be for the inequality to hold. We provide the following results to address this.

PROPOSITION 3. Consider σ 2(p, k, n) as defined in (2) where 0 < p < 1. Let k1, k2, n1 and n2 be inte-
gers such that k1 > k2 � 1 and n1k1 = n2k2.

(a) If π0 = 1, then σ 2(p, k1, n1) > σ 2(p, k2, n2).
(b) If π0 < 1, then there exists some unique 0 < p0 < 1 such that σ 2(p0, k1, n1) = σ 2(p0, k2, n2) and

σ 2(p, k1, n1)

{
< σ 2(p, k2, n2) (p < p0),

> σ 2(p, k2, n2) (p > p0).
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Table 1. Values of p0 below which group testing is more efficient than random
sampling/fully observed data

k = 2
π1 = 0·85 0·90 0·95 0·99

π0 = 0·85 0·543/0·247 0·568/0·255 0·606/0·265 0·662/0·276
0·90 0·537/0·216 0·563/0·222 0·602/0·229 0·657/0·238
0·95 0·531/0·167 0·557/0·171 0·596/0·176 0·651/0·181
0·99 0·524/0·085 0·552/0·086 0·591/0·088 0·646/0·090

k = 5
π1 = 0·85 0·90 0·95 0·99

π0 = 0·85 0·357/0·156 0·376/0·161 0·405/0·169 0·457/0·177
0·90 0·352/0·136 0·371/0·140 0·401/0·146 0·451/0·152
0·95 0·345/0·106 0·365/0·108 0·395/0·112 0·445/0·116
0·99 0·338/0·054 0·359/0·055 0·390/0·056 0·439/0·057

k = 10
π1 = 0·85 0·90 0·95 0·99

π0 = 0·85 0·239/0·105 0·252/0·109 0·272/0·115 0·312/0·122
0·90 0·235/0·092 0·248/0·095 0·268/0·100 0·307/0·105
0·95 0·229/0·072 0·242/0·074 0·263/0·077 0·302/0·080
0·99 0·223/0·037 0·236/0·038 0·258/0·039 0·296/0·040

Proof. If n1k1 = n2k2, then

σ 2(p, k1, n1)

σ 2(p, k2, n2)
= k1

k2

σ 2(p, k1, n1)

σ 2(p, k2, n1)
.

The variance ratios do not involve n1 and n2, so it follows from Proposition 1 that
σ 2(p, k1, n1)/σ

2(p, k2, n2) is also a monotone increasing function in p. Moreover

lim
p

σ 2(p, k1, n1)

σ 2(p, k2, n2)
=

⎧⎪⎨
⎪⎩

∞ (p → 1),

k2/k1 < 1 (p → 0, π0 < 1),

1 (p → 0, π0 = 1).

Thus (a) and (b) follow. �

THEOREM 2. Let n and k be integers and 0 < p0 < 1 be such that σ 2(p0, k, n) = σ 2(p0, 1, nk). Then
group testing with size k and number n of groups is more efficient in estimating the disease prevalence p
than a random sample of size nk if and only if p < p0 and π0 < 1.

Therefore, when the disease status is measured with error, group testing yields more efficient estimation
of the disease prevalence than both random sampling and fully observed data, if the disease prevalence is
relatively low.

The values of p0 in Theorems 1 and 2 depend on the group size k, the sensitivity π1 and specificity
π0, but not on the number n of groups. For selected values of sensitivity π1, specificity π0 and group size
k, values of p0 in Theorem 1 and Theorem 2 are presented in Table 1. Both cases reveal some common
features. For fixed k and π1, p0 decreases as π0 increases; for fixed k and π0, p0 increases as π1 increases;
and for fixed π0 and π1, p0 decreases as k increases. The range of p0 values for the group testing to be
more efficient is wider if compared with a random sample of size n than if compared with fully observed
data. This reflects the fact that for fixed group sizes and misclassification rates, the precision of estimation
increases as the number of subjects increases.
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3. EXAMPLE: ESTIMATION OF HUMAN IMMUNODEFICIENCY VIRUS PREVALENCE

Human immunodeficiency virus is a lentivirus that causes acquired immunodeficiency syndrome, and is
present as both free virus particles and as a virus within infected immune cells. According to the Morbidity
and Mortality Weekly Report of the United States Centers for Disease Control and Prevention (2009), the
prevalence per 100 000 population of human immunodeficiency virus infection in the U.S.A. is about
2388·2 among black men and 394·6 among white men, yielding p ≈ 0·024 and 0·004, respectively.

Suppose we wish to estimate the prevalence by applying group testing to a given number of black men
and white men, and that the presence of the human immunodeficiency virus is detected by an enzyme-
linked immunosorbent assay, with 95% sensitivity and 90% specificity, close to what was reported in
Weiss et al. (1985). With p = 0·024 or 0·004, group testing with group sizes up to k = 15 yields more
efficient estimation of the prevalence than fully observed data by assaying each individual.

However, the group sizes for which group testing is more efficient differ between the two groups. By
plotting the variance (2) against group size, we found that group testing achieves minimum variance with
group size k = 15 for black men and k = 93 for white men; see Fig. 1 in the Supplementary Material. Thus
a group testing strategy that is optimal for estimating prevalence among white men may suffer from loss
of efficiency if used to estimate prevalence among black men. For example, the variance with k = 90 is
more than three times the variance with k = 15; see Fig. 2 in the Supplementary Material.

Another example provided in the Supplementary Material concerns estimation of gene-environment
interaction in a case-control study.

4. DISCUSSION

4·1. Finite-sample results

For a given sample size, exact variance, bias and mean squared error of the maximum likelihood estimate
can be calculated using binomial distributions. We found it extremely difficult to derive conditions under
which one group testing strategy performs better than another in terms of the exact results. Furthermore,
unlike the asymptotic case, we suspect that such a condition also involves the number of groups.

We further investigated the accuracy of the values of p0 for small sample sizes in terms of the exact
variance, bias and mean squared error. The numerical results are presented in the Supplementary Material.
They indicate that caution needs to be exercised when using the asymptotic results for relatively small
sample sizes. It appears that the ranges of p over which group testing performs better are smaller than
those based on large-sample variance.

4·2. Adaptive designs

The optimal group size depends on the disease prevalence p to be estimated and the sensitivity π1 and
specificity π0, which are often unknown. The values of these parameters must be specified in order to
determine a proper group size k. However, the group size thus determined can result in much less efficient
estimation if the parameters are misspecified. It is therefore desirable to develop procedures that are less
sensitive to the specified values of the unknown parameters. To this end, adaptation of Stein’s (1945)
two-stage sampling procedure may be promising. Hughes-Oliver & Swallow (1994) and Ridout (1995)
investigated the performance of such adaptive strategies for group testing without misclassification, and
Hepworth & Watson (2009) presented methods to reduce the bias of the maximum likelihood estimate
upon completion of such a scheme. For group testing with misclassification, we expect that these types of
adaptive strategies may provide for efficient estimation when little a priori information exists about π0, π1

and p. This is an area of future research.

4·3. Differentiable misclassification

Throughout we have assumed that misclassification is known, and is unaffected by pool size, disease
status, and other factors. These assumptions may well be violated in practice, with testing errors depending
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on disease status and/or pool size; see, e.g., Zhang et al. (2008) and Cahoon-Young et al. (1989). Further
research is needed to extend the results derived in the present paper to differentiable misclassification.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes more details on estimation of human
immunodeficiency virus prevalence, an example on using group testing to estimate gene-environment
interaction in case-control studies, and some finite-sample results.
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