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Abstract 

We investigate the impact of switching penalties on the nature of optimal 
scheduling policies for systems of parallel queues without arrivals. We study two 

types of switching penalties incurred when switching between queues: lump sum 
costs and time delays. Under the assumption that the service periods of jobs in a 

given queue possess the same distribution, we derive an index rule that defines an 

optimal policy. For switching penalties that depend on the particular nodes involved 
in a switch, we show that although an index rule is not optimal in general, there is an 
exhaustive service policy that is optimal. 
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SECONDARY 90B35 

1. Introduction 

We consider a system of N parallel queues and a single server attending them. There are 

no arrivals: we are concerned with the scheduling of the jobs initially present in the system. 
We seek a non-preemptive, non-idling scheduling policy which minimizes the sum of an 

expected discounted holding cost and an expected discounted switching penalty (switching 
cost or switching delay) incurred whenever the server moves from one queue to another. 

The novel feature of this work is the determination of optimal stochastic scheduling 

policies when penalties are incurred for changes in resource allocation. Whereas 

stochastic scheduling problems without switching cost have received much attention 

(see for example Baras et al. (1985); Buyukkoc et al. (1985); Dempster et al. (1982); 
Gittins (1989); Klimov (1974), (1978); Lai and Ying (1988); Nain (1989); Nain et al. 

(1989); Varaiya et al. (1985); Walrand (1988); and references therein), there is little work 

on optimal scheduling and resource allocation with switching penalties (see Agrawal 
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et al. (1988), (1990); Glazebrook (1980); Gupta et al. (1987); and Hofri and Ross (1987)). 
The reason, it appears, is the difficulty of such problems. The inclusion of switching 

penalties changes the fundamental features of even simple scheduling problems, and 

most of the simple and intuitively appealing results reported in the first set of references 

cited above no longer hold. Until now, most of the research on stochastic scheduling and 

resource allocation with switching penalties has concentrated on performance evalu- 

ation of ad hoc policies for systems with switching delays (see for example Baker and 

Rubin (1987), Browne and Yechiali (1989), Eisenberg (1972), Ferguson and Aminetzah 

(1985), Murata and Takagi (1986), Sykes (1970), and Takagi (1986)). 

From an applications perspective, queueing models such as the one considered in this 

paper capture the essence of fundamental issues encountered in manufacturing, com- 

puter, and communication networks as well as the scheduling of research projects (see 

Dempster et al. (1982); Gittins (1989); Glazebrook (1980); Hofri and Ross (1987); 

Takagi (1986); and Walrand (1988) and the references therein). One feature of many 

applications that is notably absent from our formulation is that of job arrivals. The 

problem with arrivals and switching penalties is difficult and researchers have only 

partially characterized optimal policies for special cases of two parallel queues (see Gupta 
et al. (1987) and Hofri and Ross (1987)). We derive optimal scheduling policies for a 

model of N parallel queues with switching penalties, linear holding costs, general service 

distributions, and no arrivals. Thus, our work differs from that of Gupta et al. (1987) and 

Hofri and Ross (1987). It is also different from Glazebrook (1980) who identifies certain 

conditions on the service distribution for which existing algorithms (see Glazebrook and 

Gittins (1981) and Sidney (1975)) can be used to solve stochastic scheduling problems 
with precedence constraints and switching costs associated with individual jobs. 

This paper is organized as follows. We formulate the problem precisely in Section 2. In 

Section 3, we prove that only exhaustive policies can be optimal. For switching penalties 
that do not depend on the particular transition, we show in Section 4 that optimal 

policies are characterized by indices and calculate these indices for the problem with 

switching cost and with switching delay. 

2. Problem formulation 

We consider a system of N queues (nodes) and a single server; alternatively, one may 
think of a single queue and server with N classes of jobs. We are concerned only with the 

scheduling of the jobs initially present in the system. The N queues are differentiated by 
service distribution and holding cost. The lengths of the service periods for all jobs are 

mutually independent random variables. The service period of a job of type n 

(n = 1, 2,. , N) possesses a general distribution with mean l/l, (assume 
0 < l/, < c). For every job of type n, an instantaneous holding cost c, is incurred until 

the instant the job leaves the system. 
In addition to holding costs, we assess a penalty for switching. Two optimization 

problems are considered; one treats lump sum switching costs and the other switching 

delays. These penalties are defined as follows. For the switching cost problem, a 
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switching cost, Ki > 0, is incurred at each instant the server completes a job of node i 

and then serves a job of node j. We require that for all i, j, E { 1, 2, . *, N), 

(2.1) K,i <K, + Kil 

For the switching delay problem, a random length of time, Dij, is required to switch from 

queue i to j; thus, the holding cost incurred during the switching delay is the implicit 

penalty. The successive delays resulting from a transition from node i toj are assumed to 

be positive i.i.d. random variables with a general distribution and finite mean. For a 

given parameter a > 0, it is also assumed that for all i, j, E { 1, 2, . *, N), 

(2.2) E{exp( - 
aDio)} > E{exp( - a(Di + Dlj))}. 

Note that (2.2) is implied by the assumption that Dij is stochastically smaller than 

D,/ + D. 

The class of admissible strategies is taken to be the class G of non-idling, non- 

preemptive, and non-anticipative scheduling policies. (The switching delay is con- 

sidered part of the act of service, not idling.) With R + (Z +) denoting the non-negative 

reals (integers), let {Xn (t): t E R + } be the right-continuous queue length process of node 

n E { 1, 2, . *, N) at time t (we include the node n customer, if any, in service at time t). 

We denote the vector of initial queue lengths by x = (x,, x2,. , xN)= X(O -)E(Z +)N. 

Let ng(t) be a right-continuous process which describes the location of the server at 

time t under policy g. For both the switching cost problem and the switching delay 

problem, the objective is to characterize a policy which minimizes an infinite horizon 

expected discounted cost due to holding and switching. Specifically, let Fg = 

{t E+: n g(t-) = i, ng(t) =j) be the set of random switching instants under policy g 

corresponding to a transition from i to j; we see that UiN., Fig contains at least N- 1 

elements and at most (, xn - 1). For the problem of switching costs, the expected 

a-discounted cost J(g) due to policy g E G is defined as 

(2.3) J(g) - E { e- cnXg(t)dt+ f Kje-t IX(0-)=x} 
n=l 1 i,j=1 t eli,a 

The objective is to characterize a policy g*EG that minimizes J(g). In the case of 

switching delay, the cost to be minimized is 

(2.4) J(g) - E{ f exp(- at) X cnXn(t)dt I X(0) = x . 
[JO~~~ n=l 

Without loss of optimality (see Ross (1983)), the minimization of both problems can be 

restricted to the class G PM C G of pure Markov policies. 

3. Optimality of exhaustive policies 

We begin with a fundamental structural property characterizing an optimal policy for 

either problem. First we need the following. 
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Definition 1. A policy g is said to be exhaustive if according to g the server never 

leaves a node before completing the service of all the customers at that node. 

Theorem 1. Only exhaustive policies can be optimal. 

Proof. The following arguments apply to either the case of switching cost or 

switching delay. 

Suppose g (g E G PM) is a policy that is not exhaustive. Then, there exists at least one 

queue, say q, such that after g begins service in q it moves to another node before 

completing the service of all customers present in q, and returns to q later on. Suppose 

that according to g it takes p visits to node q to serve all of its customers. Then for 

i = 1, 2,. ., p, let: (1) q 
i be the number of customers served during the ith visit to node 

q; (2) Sq be the time when g starts serving node q for the ith time; (3)f/ be the time when 

g leaves node q for the ith time; (4) Sq (fq) denote the last service completion epoch 

under g before Sq (fq); and (5) Sq ( f ) denote the first service completion epoch under g 

after sq (fq ). We construct two modifications of g, g(l) E GPM and grl) E GPM, which are 

illustrated in Figure 1. 

k - . 
Policy gI(') 

,3- ~ Policy g 

1- 

k -- - - 

Policy gr( 

I q _ _ _ _ 

s .fl -f fi 2 s2 g2 Time 

Figure 1. Illustration of policies gr(l) and gl(1) 

Consider the policy g/(l) with the following characteristics: (1) g/{() is the same as g up 

to time/; (2) fromfJ until s - ( f - 
fl ), g1l) follows the same schedule as g does from 

fJ up to s2; (3) at 2 - (f - f ), g(l) switches to node q; and (4) from time s2 on, gand 

gl(l) are the same. 
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Similarly, consider the policy gr(l) with the following characteristics: (1) gr(l) is the 

same as g until fJ; (2) at fJ, gr(l) remains at node q to serve one additional customer; 

(3) from fq + (q2 _ s2) up to S2, gr(l) follows the same schedule as g does from j up to 

s2; and (4) from S2 on, gr(l) and g are the same. 

We now compare policies gl(l) and gr(l) to g. Noting that the service periods are 

mutually independent and denoting by J(y) the expected discounted cost incurred by 

any policy y, we obtain 

(3.1) J(gl()) - J(g) = E{exp(- afC)}E-{ (1)}, 

(3.2) J(g) - J(gr()) = E{exp( - a f)}E{(.qr(l). 

The random variable .t(1) represents the difference in holding costs and switching 

penalties associated with the control actions of gl() and g t n and g between and after time is 

shiftedfj units to the left. Similarly, the term yr(l) reflects the difference in holding costs 

and switching penalties associated with the control actions of gr(l) and g between fq and 

S2 when time is shiftedfq units to the left. Since service periods at each node are i.i.d., 

l/(1) is equal to ir(l) in distribution. Consequently, E{p'(l))} = E( r(l)) A ER and 

(3.3) J(gl(l))- J(g) = dA, 

(3.4) J(g) -J(gr()) = b,A, 

where dl and b1 are positive constants. We consider two cases: A > 0 and A < 0. 

Case I: A > 0. Then, gr(l) performs better than g. Based on gr(l), define a new policy 

gr(2) by the same modification that produced gr(l) from g. Then, 

(3.5) (gr(l)) 
- 

J(gr(2)) 
= b2A 

for some positive constant b2; and since A - O, gr(2) performs better than gr(l). Proceed- 

ing in this way, define policies gr(3), gr(4),. , gr(q2- 1), gr(q2) Then for allj = 1, 2,. ?, q2 - 1, 

there are constants bj such that 

(3.6) J(g r(j))- J)(gr()) 
= 

bjA, 

(3.7) J(gr(q2-l) - J(gr(q2)) bq2(A + e) 

for some e > 0, because g'r(2) requires at least one less switch than gr(q2-1). Suppose that 

gr(q2-l) switches from node i to q at time J and then from q to j at J2. If i = j, either 

condition (2.1) or (2.2) guarantees that the resulting transition from i to j under gr(q2) at 

timefq represents a strictly positive cost saving over gr(q2- ). Consequently, when A > 0, 

we can improve the performance of policy g by adopting gr(q2) which has the following 

characteristics: (1) its first visit to node q occurs at s ; (2) the number of customers 

served during its first visit to q is q1 + q2; and (3) after J2, gr(q2) is the same as g. 
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= 

bjA, 

(3.7) J(gr(q2-l) - J(gr(q2)) bq2(A + e) 
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for some d2> 0, and since A < 0, gl(2) performs better than gI(l). Proceeding in this way, 

define policies gl(3), gl(4),. * , g(ql-' ), gl(q'). Then for all j = 1, 2,. *, q- 1, there are 

positive constants dj such that 

(3.9) J(gIli) 
- 

J(gO 
- 
1) 

= 
djA, 

(3.10) J(gl(ql)) 
_ 

J(gl(q'- )) < dq, A. 

Note that either (2.1) or (2.2) implies (3.10), since gl(q') saves at least one switch over 

g q' - 1). Therefore, when A < 0, we can improve the performance of policy g by adopting 

g(q') which has the following properties: (1) its first visit to node q occurs at s2 

li-l aq(i), where aq(i) is the service duration of the ith customer served in node q; 

(2) the number of customers served during its first visit to node q is q + q2; and (3) after 

s2, gl(q,) is the same as g. 

In either of the above cases, we can improve performance by a policy which during its 

first visit to node q serves q + q2 customers. Applying (p - 1) times the whole argument 

so far, we continually improve system performance and thereby produce a policy which 

serves node q exhaustively. 

The same procedure can be applied to other nodes that are not exhaustively served to 

prove that only exhaustive policies can be optimal. 

As a consequence of Theorem 1, an optimal policy prescribes exactly N - 1 switches. 

Theorem 1 provides a reduction in the class of policies which are candidate solutions to 

the optimization problem. The number of policies in G PM is large and depends on the 

initial queue lengths. Theorem 1 limits the search to the set GE of exhaustive pure 

Markov policies. Since GE contains N! policies, it would be interesting to determine 

further structure. 

4. Optimality of index policies 

In this section, we prove that index rules are optimal for the problems formulated in 

Section 2 under the following additional assumption: for all i,j E { 1, 2, * ., N), the 

switching costs are equal, 

(4.1) Ki = K, 

and the switching delays are all drawn from a common distribution so that 

(4.2) Di =D, 

with successive switching delays being independent. 

In the case of zero switching cost and no switching delay, it is known (Proposition 

8.2.2 of Walrand (1988)) that the policy that serves jobs in decreasing order of ciu, 

minimizes the total expected holding cost. Such a c,u-rule that serves each queue in an 

exhaustive manner incurs (N - 1) switches. Since every policy requires at least (N - 1) 

switches, it follows that in the case of switching cost and a = 0, it is optimal to serve the 

nodes exhaustively in decreasing order of ci,i. Thus, we concentrate on the scheduling 
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problem of switching delays with discount parameter a _ 0 and on the switching cost 

problem with a > 0. 

Our development is based on the following ideas. We first show that minimizing the 

cost of a policy as defined by (2.3) or (2.4) is equivalent to maximizing a reward obtained 

by serving the jobs in the system. After obtaining explicit expressions for the reward 

earned under a given exhaustive policy, we show that for each queue it is possible to 

define a measure of reward rate that incorporates the holding cost savings and switching 

penalty associated with serving that queue. Thus, we convert the problem of maximizing 
the reward into a multi-armed bandit problem. For this problem we know from Gittins 

(1989), Chapter 3, that an optimal policy is characterized by an index rule. We derive 

explicit formulas for the indices of the queues for the switching cost problem and the 

switching delay problem. 
We develop expressions for expected discounted reward in the case that a > 0 -for both 

the switching cost problem and the switching delay problem. For the switching cost 

problem with a > 0 and g E G E, we can rewrite (2.3) as 

N 

J(g)= X cnxna-'-K 
n=l 

(4.3) 

- n~ E{J exp(- at)Cn Y(t)dt-Kexp(-atg(n)), 

where (x,x2,x .,xN) are the initial queue lengths; {Yg(t), t 0} is the process 

describing the number of departures from node n through time t; and tg(n) denotes the 

random time at which g initiates the service of node n. Minimization of J(g) is 

equivalent to the maximization of the reward R (g) over the class of exhaustive policies 
G E, where 

(4.4) R(g) E { r exp( - at)CnYg(t)dt - Kexp(- at(n)). 

We introduce some notation to write R (g) more explicitly. Let the time at which the kth 

departure of { Y(t), t > 0} occurs be denoted by tg(n) + fn,k, where fn,k = Zi n(j) 

and an(j) denotes the length of the jth service period in node n. With 

Sn 
a 

E{exp( - aa,(l))}, we note that the i.i.d. nature of service periods in node n yields 

E{exp( - 
afn,k)} = S. Let Cn(xn) denote the holding cost saved by serving xn jobs in n 

beginning at time 0: 

(4.5) Cn(xn) =E cf n exp( - at)dt 
k-l 1 k 

(4.6) = Cna -ISn( -Sn)-'(1 Sn). 

Then, we can write the reward of policy g as 

N 

(4.7) R(g) = Y E{exp( - at(n))}(C(xn) - K). 
n-=I 
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The analysis of the problem with switching delay closely follows that above. For 

g E G E and a > 0, the reward is 

N 

(4.8) R(g) = E E{exp(-atg(n)))C,(xn). 
n=I 

The time g begins node n, t g(n), is taken to include any switching delays incurred prior 

to processing node n. 

Based on (4.7) and (4.8), the effects of holding cost savings and switching penalties can 

be combined to yield an equivalent constant reward rate: the ratio of expected 
discounted reward earned serving a queue to the expected discounted time required to 

effect the switch and to clear the queue. With a > 0, the reward rates for the switching 
cost problem and switching delay problem are given by 

(4.9) V= Cn(xn)-K =cS(l -Sn) - -aK(l - S-)- , 

E{ exp(-at)d t 

Cn(X,) cnSn(l -Sn)- (1 -SO) 

E { exp( - at)dt 1 
- 

SXE{exp( - aD)) 

respectively, where rz = fn,x is the total processing time of xn jobs in node n. The 

original problem with switching cost (switching delay) is now equivalent to a standard 

multi-armed bandit problem, where the constant reward rate of arm n (n = 1, 2, * * *, N) 

is given by (4.9) ((4.10)). This constant reward rate also gives the dynamic allocation 

index of arm n. Thus, Theorem 3.6 of Gittins (1989) justifies the following result. 

Theorem 2. An index rule is optimal: serve the queues exhaustively in decreasing 

order of the dynamic allocation indices vn for the switching cost problem and ,v for the 

switching delay problem. 

Following the method discussed in Section 3.6 of Gittins (1989), it is straightforward 

to prove that an index policy is optimal for the problem with switching delay and a = 0. 

The index of node n is given by 

(4.11) v9n = Cn#n(X n -)/(X,nln- + E{D). 

This rule represents the familiar cui index multiplied by the fraction of time over which 

useful work is performed. 

For fixed a, the index of each node reveals the tradeoff between the initial queue 

length, the switching penalty, and the expected discounted reward rate (i.e. cS( 1 - S) -') 

received by serving a given queue. The longer the queue, the less is the penalty incurred 

due to switching. Hence, higher priority should be given to queues with a sufficiently 

large number of customers and high cS(1 - S) - , so that the overall reward received by 

serving the queue is maximized. If K = 0 and D = 0, Theorem 2 states a generalized 

version of the c,u-rule. On the other hand, if the holding costs and service distributions 

The analysis of the problem with switching delay closely follows that above. For 
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are the same for all queues, the above discussion indicates that the optimal policy should 

proceed in order of decreasing queue length. 

We conclude by noting that for a > 0 and exponential service distributions with rate 

Un for node n, (4.9) and (4.10) give 

aK 
(4.12) v =c-ua aK 

1 - 
(Un/((a+ Un))xn 

(4.13) Vn = Cn#na -( n+ 
f)x 

1 - (Ul/(a + Un))XE (exp( 
- 

aD) 
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