
Optimality of Network Coding with Buffers
Bernhard Haeupler

RLE, CSAIL
Massachusetts Institute of Technology

Email: haeupler@mit.edu

MinJi Kim
RLE

Massachusetts Institute of Technology
Email: minjikim@mit.edu

Muriel Médard
RLE

Massachusetts Institute of Technology
Email: medard@mit.edu

Abstract—We analyze distributed and packetized implementa-
tions of random linear network coding (PNC) with buffers. In
these protocols, nodes store received packets to later produce
coded packets that reflect this information.

We show the optimality of PNC for any buffer size; i.e., we
show that PNC performs at least as good as any protocols with
the same buffer size. In other words, a multicast task completes
at exactly the first time in which in hindsight it was possible to
route information from the sources to each receiver individually
given the buffer constraint, i.e., that the buffer used at each node
never exceeds its buffer size.

This shows that PNC, even without any feedback or explicit
buffer management, allows to keep minimal buffer sizes while
maintaining its optimal performance.

I. INTRODUCTION

It is a classical result [1] that linear network coding is
optimal for multicast in any (acyclic) network and furthermore
that even choosing a random linear code suffices with high
probability [2], [3]. This rateless and self-adaptive nature of
random linear network coding has been shown particularly
beneficial in distributed settings with unstable or time-varying
network topologies. For these settings, a distributed and
packetized network coding (PNC) implementation has been
proposed [4], [5] in which nodes buffer all received packets
and forward random linear combinations of these packets
whenever they send a packet. The performance of PNC has
since been intensely studied [5]–[13].

More recently, PNC variants with finite buffers [14]–[16]
have been studied. Instead of storing and performing each
coding operation over all received packets, these variants
only buffer a small number of packets. This significantly
lowers the memory required and the computational complexity.
Nevertheless, the authors could show [16] that in many settings
the same order-optimal performance guarantees as for the PNC
protocol with infinite buffers are obtained.

This paper strengthens these results and shows that, for any
buffer size and on any network, the PNC protocol performs
optimally, i.e., as good as any other protocol with the same
amount of buffer can possibly perform. For the case of finite
buffers this shows that PNC, even without any feedback or
explicit buffer management, allows to keep minimal buffer

This material is based upon work supported by the Defense Advanced
Research Project Agency (DARPA) and Space and Naval Warfare Systems
Center Pacific under Contract No. N66001-11-C-4003. Any opinions, findings
and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the Defense
Advanced Research Project Agency and Space and Naval Warfare Systems
Center Pacific.

sizes without any loss in performance. In the case of the
original PNC protocol with infinite buffers, the optimality
does not come as a surprise and has been stated before.
Nevertheless, to our knowledge, this is the first formal proof
for its validity.

II. RELATED WORK

For PNC with infinite buffers, [9]–[12] give bounds on the
performance of (gossip) protocols in various network settings.
In some cases these upper bounds come within constants to
the lower bounds; thus, showing the order optimality of PNC
in expectation. References [5]–[8] show more strongly that,
in any static network with random losses, the performance of
PNC asymptotically matches the expected capacity up to an
arbitrarily small factor.

The pointwise and exact optimality of PNC in any network
was stated in [17] and in [18, p. 475] with a reference to
[2] but without a formal proof. The rather subtle problem
in applying [2] is that it only applies to acyclic networks
with stateless and memoryless nodes. To obtain an acyclic
graph one can consider the time-expanded graph of the node
transmissions/interactions and add extra infinite capacity edges
between each node and its next copy in time. Unfortunately,
while these edges seem to represent the fact that the nodes
store all received information over time, they do not have the
same operational meaning as edges in the acyclic networks
of [2] and the min-cut result of [2] does not directly extend
to networks with these infinite capacity edges. While it may
be plausible to alter the proof of [2] to take this concern
into consideration, we take a different approach. Our proofs
consist of a simple hypergraph transformation that exactly
captures how the nodes use their buffers. This reduction
allows us to apply the results of [2] in a simple black-box
manner. Furthermore, our reduction naturally extends to the
PNC protocols with finite buffers, which are the main focus
of this paper.

Using random linear network coding with limited buffers
was first considered in [14], albeit only for communication
in a two-hop network. In [15] this analysis was extended to
line-networks and an approximation scheme for determining
throughput and delay was given. In [16] the authors introduce
the use of network coding with finite buffers for general
topologies and shows that, in many settings, buffering only one
packet already leads to the same order optimal stopping times
for multicast as that of the PNC variant with infinite buffer.
Several other works propose schemes to reduce memory

2011 IEEE Information Theory Workshop

978-1-4577-0437-6/11/$26.00 ©2011 IEEE 533

requirements and the amount of data over which coding is
performed; [19], [20] show that buffers can be reduced by
deleting information that is already common to all receivers.
Unfortunately, this approach can not work in unstable or
dynamic networks without a non-trivial feedback mechanism.
Furthermore, the reduced buffer size achieved using this
method is often far from the theoretically minimal buffer
required. Spatial buffer multiplexing is another method to
reduce buffer sizes. Reference [21] shows that large networks
act as a shared buffer under the strong assumption that the
length of flow paths and the number of flows through each
node both grow polynomially.

Lastly, Theorem 3.9. in [13] states a result similar to
our main theorem for PNC but with a weaker bound. As
here adversarial schedules are used to prove bounds that
hold pointwise in any oblivious network setting. Instead of
proving PNC to be exactly capacity achieving with failure
probability ε = 1/poly(n), their result requires at least
k+p ·lmax ·(log k+log ε−1) capacity to guarantee the delivery
of k degrees of freedom, where p is the number of flow path
and lmax is the maximum length of one such path. In general,
p and lmax can be of the order of the capacity k itself or even
larger; making this bound quite loose.

III. NETWORK CODING REVIEW

In this section, we briefly review the classical network cod-
ing results and describe its adoption to a packetized distributed
setting, the PNC protocol.

A. Memoryless Network Coding Setting

In the memoryless network coding setting [1]–[3], a directed
acyclic circuit processes messages from a finite field Fq (or
alternatively Fl

q). A circuit is a directed acyclic hypergraph
C = (V,A). For each node v ∈ V , we denote Γ+(v) as the
incoming hyperedges, and Γ−(v) as the outgoing hyperedges.
For each e ∈ Γ−(v), v contains a coding vector ce ∈ FΓ+(v)

q .
We assume that there is only one node with exclusively
outgoing hyperedges, the source node s ∈ V . Assuming an
assignment of a message val(e) ∈ Fq to each hyperedge
e ∈ Γ−(s), the circuit C processes information as follows.
Each hyperedge can inductively be assigned a message in Fq
by using the rule that the vector associated with an outgoing
hyperedge e of v is ce · val(Γ+(v)). In this way, C defines
a linear transform T (Γ−(s), E′) ∈ FΓ−(s)×E′

q between the
messages val(Γ−(s)) and the messages assigned to any subset
of hyperedges E′ ⊆ E.

Reference [1] shows that if the field size q is large enough,
one can choose the ce such that the rank of T (Γ−(s), E′) is
equal to the min-cut between s and E′ in C. Then, any node v
with a min-cut of at least |Γ−(s)| can solve the linear system
described by T (Γ−(s),Γ+(v)) and decode all messages. Fur-
thermore, [2], [3] show that, with high probability, this remains
true even if the coding coefficients are chosen uniformly at
random. These are the classical results on (random linear)
network coding that started this line of research.

Note that, in this model, timing is irrelevant and each node
processes each message only once. References [1], [3] show
that this setting can be extended to non-acyclic circuits with
delays. Nonetheless, nodes remain stateless and memoryless,
which is why we refer to these networks as circuits.

B. PNC: Distributed Packetized Network Coding

We introduce the PNC protocol [4], [5] in which, in contrast
to the memoryless setting, nodes buffer received information
to later produce coded packets reflecting this information.

Assume that there are k messages from Fl
q distributed to

the nodes. If the PNC protocol is used in a network, any node
u communicates by sending packets that contain vectors from
Fk+l

q and maintains a subset Su ⊂ Fk+l
q of received packets.

Initially, Su is empty for all nodes u. When node u initially
knows the ith message si ∈ Fl

q, it adds the vector (ei, si) to
Su, where ei is the ith unit vector in Fk

q . If node u is requested
to send a packet it sends a random vector from the span of
Su. Note that this description is completely independent of
any assumption on the network.

If enough communication takes place among nodes for the
system to “mix”, then for each node u the subspace spanned
by Su will converge to the k dimensional subspace of Fk+l

q
given by the k input vectors. Each node can then use Gaussian
elimination to recover the input messages.

References [9]–[12] provide upper bounds on how quickly
this “mixing” happens for specific (stochastic) communication
models. In this work, we prove a stronger statement that the
mixing happens with high probability in optimal time for any
communication history.

IV. NETWORK MODEL: TIME EXPANDED HYPERGRAPHS

We consider discrete or continuous time dynamic net-
work topologies where communication links are established
synchronously and/or asynchronously. Nodes can potentially
send data at different and highly non-regular rates. Links are
assumed to have varying delays. We also incorporate broadcast
constraints that arise in wireless settings. Our model applies
to any static or stochastic model, including arbitrary stochastic
link failures, and to adversarial worst-case communication
schedules chosen by an oblivious adversary. All these models
specify a (distribution over) communication schedules that is
independent from the randomness in the coding coefficients.
We shall prove a pointwise optimality, i.e., for any instance
of a communication schedule, PNC achieves optimal perfor-
mance. Therefore, throughout the rest of the paper, we assume
that there is a specific given communication schedule on which
we have to give an optimality proof.

Each communication schedule can be specified as a se-
quence of events, where a node sends or receives packets.
We assume that, at each time, a node either transmits or
receives a packet. We capture these events using the following
definition of a time expanded communication hypergraph. This
notion of time expanded hypergraph has been previously used
under different names, e.g., continuous trellis [8] or adversarial
schedule [13].

2011 IEEE Information Theory Workshop

534

Definition IV.1 (Time Expanded Hypergraph). Consider a
network with n nodes, and denote this set of nodes as V .
A communication schedule from time 0 to t among nodes in
V is captured by the following time expanded hypergraph
G = (V, V ′, A). Let v ∈ V be a node in the network. We
create a vertex copy vt′ ∈ V ′ for every time t′ ∈ [0, t]
when the node v receives or sends at least one packet. If v is
transmitting at time t′ to nodes u1, u2, ..., ub with associated
delay ∆1,∆2, ...,∆b respectively, we create a single hyper-
edge (vt′ , {u1

t′+∆1
, u2

t′+∆2
, ..., ub

t′+∆b
}) ∈ A.

Given a network, we consider the following (distributed)
many-to-many multicast problem. Messages are generated
at nodes in the network. A message can be generated at
(multiple) different times at multiple nodes. The goal is to
disseminate all the messages to all nodes (or a subset of
destination nodes D ⊆ V) as fast as possible. One example of
an application of this problem could be a source distributing a
large file (which is divided into small parts) to many receivers.
Another application is in sensor networks, where each sensor
transmits its measurements at different times.

To formalize this problem, we assume that there are exactly
k messages that are vectors of Fl

q. We assume that the nodes
employ the PNC protocol of Section III-B. Note that this
requires each message to have a unique identifier that is
known to every node at which the messages is generated.
We incorporate the message generation in our network model
using the following additional definition.

Definition IV.2. Let G = (V, V ′, A) be a communication
schedule of a network in which k messages m1, . . . ,mk ∈ Fl

q
are generated. We alter G by adding a supersource node s
to V ′. Furthermore for each message mi that is generated
by nodes u1, u2, ... at time t1, t2, ... we add a hyperedge
(s, {u1

t1 , u
2
t2 , ...}) to A.

V. OUR RESULTS

Given an adversarial schedule and an initial message distri-
bution, the network capacity between the source and any node
at any time can be determined. To do so, one enriches the
time expanded hypergraph by memory-edges, which capture
the possibility that nodes store knowledge over time. This is
achieved by connecting each node vt in the time expanded
hypergraph to its next copy in time vt′ with an edge with
capacity equal to the amount of information that v can store,
i.e., its buffer size µ (in packets). We assume for simplicity
that all nodes have the same amount of memory µ. If all
nodes have unlimited buffers, we follow [8] and set µ = ∞.
We call this enriched time expanded hypergraph the (natural)
information flow graph and denote it by Gµ. The next lemma
confirms the intuition that the information flow graph indeed
represents an upper-bound on the amount of information that
can be transmitted by any protocol.

Lemma V.1. Let G be the time expanded hypergraph for a
communication schedule and let Gµ be its natural information
flow graph. The min-cut between the supersource s and a node

vt in Gµ is an upper bound on the amount of information that
any protocol can transmit from the sources to node v by time
t if all nodes have an active memory of at most µ.

Given this simple min-cut bound on the achievable point-
to-point capacity the interesting question is which protocols
achieve it. It is tempting to apply the results form the mem-
oryless setting [2] to conclude that PNC and its finite buffer
variants achieve this bound. Unfortunately this is not valid.
It is, e.g., not difficult to find protocols that do not achieve
this capacity, e.g., the shift-register finite memory network
coding protocol in [14]. In the what follows we provide a
correct, general and simple approach to base the optimality of
protocols on [2]:

A. General Approach

We show that, for many network coding protocols, it is
possible to systematically transform the time expanded hyper-
graph into a circuit that exactly captures how the protocol uses
the buffers. Given a protocol, a communication schedule, and
the corresponding circuit, we prove optimality in three steps.
We first show that the circuit indeed simulates the execution
of protocol; then apply the results from [2] for memoryless
circuits to show that the protocol achieves the min-cut of this
circuit with high probability; and finally show that the min-cut
of the circuit is the same as the min-cut in Gµ.

To describe our transforms, we note that many network
coding protocol proposed so far [4], [14], [16] are composed
of two elementary operations: 1) coding packets together by
taking a random linear combination of them, and 2) buffering
packets. While the coding operation is already naturally cap-
tured by the memoryless circuits we show that the storing oper-
ation can be simulated by extending a hyperedge (representing
a transmission) to all future versions of the recipient(s). Using
this observation, we define a hypergraph transformation (.)X
for any given protocol implementation X . This transformation
takes a time expanded hypergraph G and transforms it to the
hypergraph GX that exactly captures the execution of protocol
X on the communication schedule G. Note that the hypergraph
transformation (.)X does not just depend on the size of the
buffer X uses but has to be carefully designed to match the
implementation details of protocol X .

B. Protocols and their Transformations

In this section, we describe the transforms for several
protocols. We start with the PNC-protocol from Section III-B
and then cover two network coding protocols described in
[16]: the µ-recombinator and the µ-accumulator protocols.
Both protocols are highly efficient variants of PNC, for which
any node only stores µ packets in its buffer. Besides reducing
the required memory resources, this also improves the com-
putational cost of network coding, because of the reduced
amount of information each coding operation is performed
over. The two protocols differ in the way the new set of µ
packets is obtained after a reception of a new packet (and/or
generation of a new packet). The µ-recombinator simply picks
µ random packets from the span on the stored packets and

2011 IEEE Information Theory Workshop

535

(a) Network transactions over time (b) Time expanded hypergraph (c) Information flow hypergraph (d) PNC Transform

Fig. 1: An example network G with V = {a, b, c, d}. In Figure 1a, the network communication history is shown in sequence.
The link delays are shown on the edges. In Figure 1b, the time expanded hypergraph of the network in Figure 1a is shown
assuming that node b and c start with a message at time t1. In Figure 1c, we show the corresponding natural information flow
graph G∞. In Figure 1d shows the corresponding PNC transform GPNC .

the received packets while the more efficient µ-accumulator
randomly combines the incoming packet with each of the µ
stored packet individually. The next two definitions present the
transformations for the PNC protocol and the µ-recombinator
protocol.

Definition V.2 (PNC transform). The PNC-transform GPNC
of a time expanded hypergraph G = (V, V ′, A) is formed
by replacing every hyperedge e ∈ A by its memory closure
e. Here the memory-closure of a hyperedge e = (vt, Re) =
(vt, {u1

t1, u
2
t2 , ...u

b
tb}) ∈ A is defined as e = (vt, Re) where

Re = {ut′ | ∃u, t : ut ∈ Re and t′ ≥ t}. In other words, we
extend every hyperedge e to include all future copies of the
recipients.

Definition V.3 (µ-recombinator transform). The µ-recombina-
tor transform Gµ-recombinator of a time expanded hypergraph
G = (V, V ′, A) is formed by adding µ edges from every vertex
vt ∈ V ′ to its next copy in time vt′ where t′ is the smallest
t′′ > t with vt′′ ∈ V ′.

Note that the two transforms, GPNC and Gµ−recombinator,
have an intuitive structure. Extending a hyperedge in GPNC
can be interpreted as changing the storage operation of nodes
to requesting/receiving the exact same packet again whenever
the “stored” packet is used. For Gµ−recombinator, the µ memory-
edges represent that the µ buffered packets are used to generate
the next µ random packets to be kept.

Note that, in general, the network transforms are not
necessarily as natural and straight-forward as suggested by
Definitions V.2 and V.3. One has to be very careful to specify
and map all implementation details. Indeed, the transform
presented in Definition V.3 does not exactly capture the pro-
tocol described in [16] but instead also recombines its stored
packets whenever a packet is send. For simplicity, we consider
this variant of the recombinator protocol here. As a final
example for a slightly more complicated transformation, we
pictorially describe the µ-accumulator transform. We consider
the implementation described in [14], [16] in which a random
multiple of the received packet(s) is added to each stored
packet. Its network transform Gµ-accumulator is formed by first
taking the GPNC and then replacing each node according to
the template in Figure 2.
C. Simulation and Optimality Proofs

Showing that a protocol implementation and its induced
hypergraph transformation match follows by a straight forward

Fig. 2: Template for (.)µ-accumulator with µ = 3: The µ
black nodes represent the buffer and the gray nodes represent
transmissions.

induction. We give such a proof for the PNC protocol; the
proofs for the µ-accumulator or µ-recombinator are similar.

Theorem V.4. Consider a network using the PNC protocol,
and let G be the corresponding time-expanded hypergraph
with supersource s. Consider the PNC transform GPNC as
a circuit as in Section III-A. If the coding vectors for this
circuit are selected independently and uniformly from Fq
then this simulates the behavior of the PNC protocol. The
message associated with each circuit hyperedge e = (vt, Re)
in GPNC is the message sent by node v at time t. Furthermore,
the messages on the incoming hyperedges of vt in GPNC
correspond to the messages buffered by node v at time t.

Proof: For sake of space only sketch the proof: In order
to prove that the circuit GPNC simulates the execution of
the PNC protocol, we need to specify carefully how the
randomness is used on both sides. For the PNC protocol we
assume that a node keeps all received packets (and does not,
e.g., keep only innovative packets) and creates any coded
packet by drawing random coding coefficient for the packets
in the order they were received. We similarly fix the process
of choosing the random coding vectors for the circuit to make
it match with the PNC protocol.

Now, using an inductive proof over the time (or the topo-
logical depth of the nodes in G), we can show that GPNC
simulates the PNC protocol. Firstly, the messages associated
with the outgoing hyperedges of the supersource s are by def-
inition the messages generated by the sources. Now consider
a node v at time t. We assume, without loss of generality, that
no node sends a packet when it has not received or generated a
message. Thus, vt has at least one incoming hyperedge from
another node ut′ where t′ < t. By construction of GPNC ,
the incoming hyperedges to vt are from all nodes that have
sent a packet to v before time t. By induction hypothesis, the
incoming hyperedges of v correspond to the messages stored
in v in the PNC protocol at time t. Since both the circuit
GPNC and the PNC protocol linearly combine packets using

2011 IEEE Information Theory Workshop

536

the same random coefficients, the hypothesis holds for the
packets created at node v at time t.

Given GX as a representation of the execution of X on the
communication schedule G it is easy to state and proof an
equivalent of Lemma V.1: The amount of source information
transmitted from s to v at time t via protocol X is at most
the (s, vt)-min-cut in GX . More interestingly, since GX is
memoryless, we can directly apply the results of [2] to show
the converse:

Lemma V.5. Let G be the time expanded hypergraph for a
communication schedule and let GX be its transform for the
network coding protocol X . With probability 1−ε, the amount
of information transmitted from the sources to node v by time
t is exactly the min-cut between the supersource s and a node
vt in GX . Here ε = O(1/ poly(n)) is an arbitrarily small
inverse polynomial probability given that the coefficient size
log q used in X is Θ(logn).

All that is left to check is that for the protocols presented
here this min-cut is indeed the same as the information
theoretical optimum as given by Gµ in Lemma V.1:

Lemma V.6. Let G be any time expanded hypergraph with
supersource s. The min-cut between the supersource s and
any node vt is the same in G∞ and GPNC . Furthermore, the
same is true for Gµ, Gµ-recombinator, and Gµ-accumulator.

Proof: We begin with considering the min-cuts of G∞

and GPNC . For this we transform any integral flow in G∞

to a valid flow in GPNC and vice versa. Then, we use the
min-cut max-flow theorem. The transformation operates on
each path in a flow decomposition separately and repeatedly
removes flow from ∞-edges. Consider a flow-carrying unit-
capacity hyperedge (ut, wt′) with an ∞-capacity memory-
edge (wt′ , wt′′) immediately following it (t < t′ < t′′).
We eliminate such ∞-edges one-by-one by rerouting the flow
directly through ut to wt′′ using the extended hyperedges in
GPNC . This process is flow preserving, respects capacities,
and eliminates all ∞-edges since every flow path starts with an
unit-capacity outgoing hyperedge of s. It can be verified that
this transformation is also reversible; thus, gives a bijection
between integral (s, vt)-flows in G∞ and integral (s, vt)-flows
in GPNC . This finishes the proof for GPNC .

For Gµ-recombinator, one can use the same strategy, and re-
route the flow over the µ-capacity memory-edges in Gµ to
the µ unit-capacity edges in Gµ-recombinator.

Similarly, for Gµ-accumulator, we first re-route the flow over
the µ-capacity memory-edges in Gµ via the extended hy-
peredges in Gµ-accumulator created by the PNC transformation.
After the PNC transformation, Gµ-accumulator is formed by
replacing each node according to the template in Figure 2.
In Gµ-accumulator, we can re-route the flows of each replaced
node since each node vt in Gµ carries at most µ-units of flow.
This is true by construction: if a node v is receiving at time t,
node vt has one out-going memory-edge with capacity µ; if
a node v is transmitting at time t, then node vt has only one
in-coming memory-edge with capacity µ.

Putting everything together finishes our main theorem:

Theorem V.7. Assume a network and communication model
in which the random coding coefficients are independent from
the communication schedule. With high probability, the µ-
recombinator, and the µ-accumulator protocols disseminate
exactly the maximum amount of information from the sources
to every node that any protocol using µ memory could have
disseminated. The same holds for PNC and algorithms with
unlimited memory.

REFERENCES

[1] S. Li, R. Yeung, and N. Cai, “Linear network coding,” Transactions on
Information Theory (TransInf), vol. 49, no. 2, pp. 371–381, 2003.

[2] T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
Transactions on Information Theory (TransInf), vol. 52, no. 10, pp.
4413–4430, 2006.

[3] R. Koetter and M. Médard, “An algebraic approach to network coding,”
Transactions on Networking (TON), vol. 11, no. 5, pp. 782–795, 2003.

[4] P. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proc. of the
41st Allerton Conference on Communication Control and Computing,
vol. 41, 2003, pp. 40–49.

[5] D. Lun, M. Médard, R. Koetter, and M. Effros, “On coding for reliable
communication over packet networks,” Physical Communication, vol. 1,
no. 1, pp. 3–20, 2008.

[6] ——, “Further results on coding for reliable communication over packet
networks,” in Proc. of the International Symposium on Information
Theory (ISIT), 2005, pp. 1848–1852.

[7] D. Lun, “Efficient operation of coded packet networks,” Ph.D. disserta-
tion, Massachusetts Institute of Technology, 2006.

[8] Y. Wu, “A trellis connectivity analysis of random linear network coding
with buffering,” in Proc. of the International Symposium on Information
Theory (ISIT), 2006, pp. 768–772.

[9] S. Deb, M. Médard, and C. Choute, “Algebraic gossip: a network
coding approach to optimal multiple rumor mongering,” Transactions
on Information Theory (TransInf), vol. 52, no. 6, pp. 2486 – 2507, 2006.

[10] D. Mosk-Aoyama and D. Shah, “Information dissemination via network
coding,” in Proc. of the International Symposium on Information Theory
(ISIT), 2006, pp. 1748–1752.

[11] M. Borokhovich, C. Avin, and Z. Lotker, “Tight bounds for algebraic
gossip on graphs,” in Proc. of the International Symposium on Informa-
tion Theory (ISIT), 2010, pp. 1758–1762.

[12] B. Haeupler, “Analyzing Network Coding Gossip Made Easy,” Proc. of
the 43nd Symposium on Theory of Computing (STOC), 2011.

[13] P. Maymounkov, N. Harvey, and D. Lun, “Methods for efficient network
coding,” in Proc. of the 44th Allerton Conference on Communication,
Control, and Computing, 2006.

[14] D. S. Lun, P. Pakzad, C. Fragouli, M. Médard, and R. Koetter, “An
analysis of finite-memory random linear coding on packet streams,” in
Proc. of the International Symposium on Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks (WiOpt), 2006, pp. 1–6.

[15] B. Vellambi, N. Torabkhani, and F. Fekri, “Throughput and latency in
finite-buffer line networks,” Information Theory, IEEE Transactions on,
vol. 57, no. 6, pp. 3622–3643, 2011.

[16] B. Haeupler and M. Médard, “One Packet Suffices - Highly Efficient
Packetized Network Coding With Finite Memory,” in Proc. of the
International Symposium on Information Theory (ISIT), 2011.

[17] R. Yeung, “Avalanche: A Network Coding Analysis,” Communications
in Information & Systems, vol. 7, no. 4, pp. 353–358, 2007.

[18] ——, Information theory and network coding. Springer Verlag, 2008.
[19] J. Sundararajan, D. Shah, and M. Médard, “On queueing in coded

networks-queue size follows degrees of freedom,” in IEEE Information
Theory Workshop on Information Theory for Wireless Networks (ITW),
2007, pp. 1–6.

[20] K. Sundararajan, D. Shah, and M. Médard, “ARQ for network coding,”
in Proc. of the IEEE International Symposium on Information Theory
(ISIT), 2008, pp. 1651–1655.

[21] S. Bhadra and S. Shakkottai, “Looking at Large Networks: Coding
vs. Queueing,” in Proc. of the 25th IEEE International Conference on
Computer Communications (INFOCOM), 2007, pp. 1–12.

2011 IEEE Information Theory Workshop

537

