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Abstract. In this paper we present new optimality results for the Delaunay triangula- 
tion of a set of points in •d. These new results are true in all dimensions d. In 
particular, we define a power function for a triangulation and show that the Delaunay 
triangulation minimizes the power function over all triangulations of a point set. We 
use this result to show that (a) the maximum min-containment radius (the radius of 
the smallest sphere containing the simplex) of the Delaunay triangulation of a point 
set in R a is less than or equal to the maximum min-containment radius of any other 
triangulation of the point set, (b) the union of circumballs of triangles incident on 
an interior point in the Delaunay triangulation of a point set ties inside the union 
of the circumballs of triangles incident on the same point in any other triangulation 
of the point set, and (c) the weighted sum of squares of the edge lengths is the smallest 
for Delaunay triangulation, where the weight is the sum of volumes of the triangles 
incident on the edge. In addition we show that if a triangulation consists of only 
self-centered triangles (a simplex whose circumcenter falls inside the simplex), then it 
is the Delaunay triangulation. 

1. Introduction 

A triangle in R d is a d-dimensional simplex (d-simplex), which is defined by its 
(d + 1) vertices, and a triangulation of a set of  points in R d is a simplicial 
decomposit ion of  the convex hull of  the point set where the vertices of the triangles 
are contained in the point  set. The Delaunay triangulation of a set of  points in R d 
is defined to be the tr iangulation such that the circumsphere of every triangle in 
the triangulation contains no point  from the set in its interior. Such a triangulation 
exists for every point  set in •d, and it is the dual of  the Voronoi  diagram I-8]. The 
triangulation is unique if the points are in general position. (Throughout  this paper  



190 v.T. Rajan 

we assume that, unless otherwise stated, the points are in general positions. Hence, 
for example, no (d + 2) points are cospherical. Degeneracies can be handled using 
techniques such as those described in [9].) 

In R 2 the Delaunay triangulation has been studied extensively and many of its 
properties are known El], [8], [17]: 

(a) Among all triangulations of a set of points in ~2, the Delaunay triangulation 
lexicographically maximizes the minimum angle, and also lexicographically 
minimizes the maximum circumradii. 

(b) If every triangle in a triangulation is nonobtuse, then it is the Delaunay 
triangulation. 

(c) A flip algorithm [13] exists which looks at the four vertices of two adjacent 
triangles and modifies the triangulation to ensure that it is locally Delaunay. 
This algorithm transforms any triangulation to the Delaunay triangulation 
in O(n 2) time and can be used as an incremental algorithm. 

(d) Optimal O(n log n) time divide-and-conquer and plane-sweep algorithms 
are known and elegant data structures to support their implementation 
exist [10], [11], [17]. 

In three and higher dimensions, very few results are known [8]. A "lifting" 
transformation (discussed below) exists that allows the Delaunay-triangulation 
problem in R a to be transformed into a convex-hull problem in R a§ The 
convex-hull algorithms can therefore be used to obtain the Delaunay triangulation. 
However, until recently [16], no optimality results were known in three and higher 
dimensions. 

The Delaunay triangulation (and its dual Voronoi diagram) has been used 
extensively both in the design of efficient algorithms and in practical applications 
E8], [15]. Since the Delaunay triangulation has some optimal properties in R 2, 
and efficient global and incremental algorithms exist to construct them, they have 
been used in finite-element mesh generation as a way of yielding "good" meshes 
[21 [18]. A "good" mesh is loosely defined as the one whose elements are of 
uniform size and shape. We have used them in R 3 for the same purpose though 
no such properties were known [14]. 

In this paper we present optimality results for Delaunay triangulation of a set 
of points in R 4. We also show that some o~ the well-known properties of the 
Delaunay triangulation in R 2 mentioned above can, when appropriately defined, 
be generalized to the Delaunay triangulation in R d. We define a triangle to be 
self-centered if the circumcenter of the triangle lies inside or on its boundary. In 
R 2 all nonobtuse triangles are self-centered and vice versa and thus it is a 
generalization to R d of the nonobtuse triangle. We define the Min-Containment 
Sphere of a triangle to be the smallest sphere containing the triangle. In Section 
2 we show that, for a self-centered triangle, the rain-containment sphere is the 
same as the circumpshere. However, for a non-self-centered triangle, it is the 
circamsphere of one of the facets of the triangle, its center lies on the boundary, 
and its radius is less than the circumradius. (A facet of the triangle is a subsimplex 
of the triangle. Its circamsphere is the smallest sphere passing through its vertices.) 
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Fig. 1. The min-containment circle (solid) and the circumcircle (dashed) of a non-self-centered (obtuse) 
triangle in N 2. 

In R 2 the min-containment circle of an obtuse triangle is the circle with the longest 
edge as the diameter. (See Fig. 1.) The Cireumball of a triangle is the circumsphere 
and its interior. 

In Section 2 we define a power function for a triangulation and in Sec- 
tion 4 we show that the Delaunay triangulation minimizes the power function 
over all triangulations of a point set in ~d and use this to prove the following 
results: 

(a) The maximum min-containment radius of the Delaunay triangulation of a 
point set in R a is less than the maximum min-containment radius of any 
other triangulation of the point set. 

(b) The union of circumballs of the triangles incident on an interior point in 
the Delaunay triangulation of a point set lies inside the union of the 
circumballs of triangles incident on the same point in any other triangula- 
tion of the point set. For a point on the convex hull of the point set, this 
result is true provided only the portion of the union which lies in the interior 
cone of the convex hull at the point is considered. 

(c) The weighted sum of squares of the edge lengths is the smallest for Delaunay 
triangulations, where the weight is proportional to the sum of volumes of 
the triangles incident on the edge. The sum of these weights is independent 
of the triangulation, therefore, the weights can be normalized. 

In addition we obtain a generalization of a well-known property of the 
Delaunay triangulation in R 2 to the Delaunay triangulation in •a. Namely, if a 
triangulation consists of only self-centered triangles (nonobtuse triangles in R2), 
then it is the Delaunay triangulation. In [12] we discuss the application of the 
power function to the visualization of data on a Delaunay triangulation in R a and 
in [16] we discuss an incremental algorithm that can generate the Delaunay 
triangulation of any point set in R a. 

We have given algebraic proofs of our results so that they can be easily seen 
to be valid in all dimensions without resorting to geometric intuition. However, 
we have also provided geometric interpretations of the results. 
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2. An Optimization Problem Over a Triangle in ~ 

Given a set {P1, P2 . . . . .  Pd+l} of (d + 1) points in •d that define a triangle T, 
consider the function F(X) defined at every point X in the space: 

d+l d+l 
2, = 1, ~, ,~,V, = X, (1) 

i=l i= l  

d+l d+l 
f ( X )  = ~ ~i(Pi -  X) 2 :  ~ /~iP 2 - - X  2. (2) 

i=1 i=1 

The (d + 1) weights 2i (also called the barycentric coordinates of X) are uniquely 
determined by (1). Equation (2) defines F(X) to be the weighted average of the 
square of the distance to each of the triangle vertices. The bold symbols denote 
vectors and V 2 = V.  V denotes the square of the norm of a vector V. For a point 
X inside the triangle, all of the barycentric coordinates 2~ are positive and hence 
F(X) is also positive. At a vertex P~, 2~ = 1 and all other coordinates are zero, 
hence F(P3 = 0. The following lemma gives the F(X) at any point in space. 

Lemma 1. Let Xc and R denote the circumcenter and the circumradii of the triangle 
T, then the function F(X) at any point X in space is given by 

F ( X )  = R ~ - ( x  - x ~ )  ~ 

= (R 2 -- Xc 2) + 2Xc" X -- X 2, (3) 

and F(X) is maximized at the circumcenter X c with F(Xc) = R 2. 

Proof. By definition, ( P / -  Xc) 2 = R 2 for all i, hence the function F(X) at a point 
X is given by 

d+l  
F ( X )  = ~ ~,~(P, - X c )  - ( X  - Xc ) )  ~ 

i=1 

,x xc, + 

= R 2 - 2(X - Xc) 2 + (X - Xc) 2. 

Hence the result (3). The second part of the lemma follows immediately from this 
result. []  

We can give several geometric interpretations for F(X). The power of a point 
with respect to a sphere is the square of the length of the tangent from the point 
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to the sphere. For  points inside the sphere it is negative and is minus the square 
of half the length of the chord that has the point as the midpoint. From (3) we 
see that F(X) is minus the power of the point X with respect to the circumsphere 
of the triangle. Hence we take the liberty of calling F(X) the power function of the 
triangle. The following corollary is an immediate consequence of the above lemma. 

Corollary 1. The point X lies inside, on, or outside the circumsphere of T if and 
only if the power function F(X) is positive, zero, or negative, respectively. 

Another interpretation of the power function is given by the following 1emma, 
which uses the lifting transformation introduced by Edelsbrunner and Seidel [7]. 

Lemma 2. Consider the transformation ~(P)~-~ (P, p2) which lifts points in ~d onto 
the paraboloid z = p2 in R d+ 1. A triangle in ~d is lifted to a triangle lying on a 
hyperplane in ~d+ 1. Then F(X) is the vertical distance of the hyperplane above the 
paraboloid at the point X. 

Proof Let the equation of the plane containing the triangle in ~ § 1 be given by 
z = A + B.  X where A is a constant and B is a constant d-dimensional vector. 
The vertical distance (i.e., the distance along the z-axis) of this plane above the 
paraboloid z = X  2 at a point X in R d is z ( X ) = A + B ' X - X  2. The d + l  
constants A, B can be uniquely determined by the fact that both the plane 
and the paraboloid pass through the set of d + 1 points in Rd+l: {(Pi, P2), 
i = 1 . . . . .  d + 1}, hence z(P~) = 0, i = 1 . . . . .  d + 1. Since F(X) has the same form 
and F(PI) = 0, it follows that z(X) = F(X). []  

If the triangle is self-centered, then the weights 2~ > 0 at the circumcenter. For  
a non-self-centered triangle one or more of the values of 2~ at the circumcenter 
will be negative. 

Lemma 3. I f  the domain of X is the triangle T (i.e., 2i > 0), then F(X) is maximized 
at the center of the rain-containment sphere of the triangle (X = Xc) and the value 
ofF(X) at that point is the square of the min-contaiment-radius (r2). 

Proof The problem of finding the smallest sphere containing a set of points is 
given by: Minimize (r 2) subject to (PI - X) 2 < r z. By setting S = r 2 - X 2 we get 
the quadratic programming problem: Minimize (S + X 2) subject to the linear 
constraints S + 2Pi" X - p2 > 0. The dual [41 [6] of this quadratic programming 
problem is: Maximize F(X) (equation (2)) subject to (1) and an additional constraint 
~.i > 0. Thus the min-containment sphere problem and the constrained optimiza- 
tion problem are duals of each other and hence the result. [] 

Thus, for a self-centered triangle, the circumsphere is the smallest sphere 
spanning the triangle. If we move the center of the sphere away from any of the 
vertices, the radius of the minimum spanning sphere will increase. For a non-self- 
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centered triangle, the constrained maximum of (3) is the point where the smallest 
sphere centered at the circumcenter touches the triangle. Let this sphere touch the 
facet f of the triangle at point X c. The sphere centered at X c with radius square 
F(Xc) is the circumsphere of f .  It is the smallest sphere spanning f.  It also contains 
the remaining vertices of the triangle in its interior. (See Fig. 1.) 

Lemma 4. Let fi be a unit vector in the direction of a ray starting at a vertex P~ 
of the triangle T and directed toward its interior. Then the gradient of the power 
function F(X) at the vertex in the direction fi is equal to the length of the chord of 
the circumsphere of T in the direction ft. 

Proof The gradient of the power function F(X) at P, in the direction fi is 
ft. VF(X) = 2ii. (X c -- Pi). A point at a distance tr from the point P~ in the direction 
fl is given by P, + aft. Substituting this into the equation for the circumsphere of 
the triangle yields the two roots a = 0 and tr = 2fi" (X c - P,) corresponding to the 
two intersection points of the chord through P~ in the direction fi with the 
circumsphere of T. [] 

Lemma 5. The integral of the power function F(X) over the triangle T is equal to 
the sum of squares of the lengths of the edges of the triangle times its volume times 
a constant. 

d Proof From (1) we get X = Pd+l + ZI=I 2i (P i -  Pd+l). Therefore the integral 
of a function f(X) over the triangle is given by 

~Af( X ) dX = J f~ d2~ 1 d2df(X), (4) 

where the Jacobian is a d x d determinant: 

J = 10x /0~ , l  = 

i i  -- Pd+ 1 
P2 -- Pd+ 1 

- -  V d + l  

(5) 

and is a constant. Setting f(X) = 1 we obtain the volume of the triangle to be 
V = J /d! .  Setting 

d + l  d + l  d + l  i - I  

f ( X ) = F ( X ) =  ~ 2 , p 2 _  ~ 2 2 p 2 _ 2  ~ ~ ~2jP~.Pj  
i = 1  1=1 i = 1  j = l  
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we obtain 
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fa  F(X)dX = j(a~l\i=~ P~ f~  d2'2i(l - 2~)a/(d-1)! 

d li-1 f) ) --2 E P, " P; d2,)., d2;2,(1 - 2, - 2jld- 2/(d - 2)! 
i=1 j = l  

=(J/(d+2)!) d E p2_2  2 P,'PJ 
i=1 /=1 j = l  

= (V/(d + 1)(d + 2)) (P, - Pi) 2 . 
j = l  

Hence the lemma. [] 

3. Delaunay Triangulation 

A triangle T is defined to be Delaunay valid with respect to a point P if P does 
not lie inside the circumsphere of T. From Corollary 1 it follows that a triangle 
T is Delaunay valid with respect to a point P if and only if the power function 
of the triangle satisfies the relation Fr(P ) < 0. The inequality is strict if the points 
are in general position. A triangle T in a triangulation of a set of points is called 
a Delaunay triangle if T is Delaunay valid with respect to every point in the set. 
A triangulation of a set of points is called the Delaunay triangulation of the point 
set if every triangle in the triangulation is a Delaunay triangle. In this section we 
consider the properties of two adjacent triangles that are Delaunay valid with 
respect to each other's vertices. We define these triangles to be Delaunay valid 
with respect to each other. In the next section we consider the properties of the 
Delaunay triangulation of a general set of points. 

Let T1 = [ P l , . . . ,  Pd, Pa+l] and T 2 = [P1 . . . .  , Pd ,  P d + 2 ]  be two adjacent trian- 
gles in R d that lie on the opposite sides of their common face f = [PI . . . . .  Pal- 
The circumspheres of the triangles T1 and T 2 pass through the vertices of the face 
f and intersect on the circumsphere of facet f lying in the hyperplane H: 
containing f .  Let X: and R: be the circumcenter and the circumradii of the 
circumsphere of f.  Choose a coordinate system so that the origin is located on 
H: and one of the coordinate axes, say the z-axis, is perpendicular to Hf. Let the 
coordinates of a point be X = (x, z) where x denotes the d - 1 coordinates in H:. 
Hence X: = (x:, 0). Let Xr, = (xr,, zr,) and let Rr, be the circumcenter and the 
circumradii of the triangle T~ (i = 1, 2). The following lemma gives a relation 
between these quantities. 

Lemma 6. Xr, = x / and  R~, = R} + z~-, for both i = 1, 2. Hence Fi(X) = Fi(x, z) = 
(R} - x}) + 2 x .  x :  + 2 z z r ,  - X ~ 
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Proof For a point X = (x, 0) e H: the power function Fi(X) of the triangle T~ is 
identical to the power function f(x)  of the facet f since they both represent the 
solution to (1) and (2) in the subspace spanned by the vertices of the facet f.  Hence 
F,(x, 0) = R 2, -- (x 2, + z2,) + 2x.  x r , -  x 2 - R~ - x~ + 2x" x :  -- x 2. Making term- 
by-term comparison yields the results. The second part is an immediate con- 
sequence of the first part. []  

The result can be interpreted as saying that the circumcenter Xr, lies on the 
normal to H: passing through Xf. Let T~ lie in the positive half-space z > 0 and 
hence T 2 lies in the negative half-space. We say that T~ and T2 lie above and below 
H:, respectively. Let the coordinates of the two points not lying in H: be 
Pd+I = (xa+l, za+l) and Pa+2 =(Xa+2, Zd+2), respectively, then it follows that 
Zd+ ~ > 0 and za+ 2 < O. 

Lemma 7. The two adjacent triangles T 1 and T 2 are Delaunay valid with respect 
to each other if and only if zrl > zr :  

Proof The two triangles are Delaunay valid with respect to each other if and 
only if T 1 is Delaunay valid with respect to Pa+z, and T 2 is Delaunay valid with 
respect to Pa+l. Since Pd+2 is a vertex of T2, F2(Pa+2) = 0. T1 is Delaunay valid 
with respect to Pd+2 if and only if FI(Pa+2) < 0. That is, FI(Pd+2) -- F2(Pa+2) = 
2(Zr~ -- zr~)za+2 < 0. Since ze+2 < 0, this is true if and only if zr~ -> zr:. Simi- 
larly, we can show that T2 is Delaunay valid with respect to Pd+ 1 if and only if 

ZT 1 ~ ZT2. [] 

Lemma 8. I f  T 1 and T 2 are two adjacent self-centered triangles, then they are 
Delaunay valid with respect to each other. 

Proof Since the triangles are self-centered, Zrl > 0 and zr2 < 0. Therefore 
ZTI ~ ZT2 , and the result follows from Lemma 7. [] 

Lemma 9. Let T~ and T 2 be two adjacent Delaunay valid triangles lying above and 
below, respectively, their common face f . I f  X is a point above the plane H: of f ,  
then FI(X) > F2(X). In addition, if the point ~ is in the circumsphere of T2, then it 
lies in the circumsphere of T 1. 

Proof The coordinates of the point X = (x, z) with z > 0. F l ( X ) -  F2(X)= 
2 z ( z r , -  Zr2)> 0 from Lemma 6 and 7. The equality occurs only in case of 
degeneracy when the d + 2 vertices of the two trinagles are cospherical. If the 
point X lies in the circumsphere of T 2, then F2(X ) > 0. Hence, FI(X ) > 0 and 
therefore X lies in the circumsphere of T1. [] 

4. An Optimization Problem Over a Set of  Points 

In this section we discuss the properties of the Delaunay triangulation of a general 
set of points. In particular we show that the Delaunay triangulation minimizes 
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the power function and use this result to prove several properties of the Delaunay 
triangulation. 

Let Sp = (P~, P2 . . . . .  P,} be a set of n points in R d with a convex hull denoted 
by CHS r Consider the function f(X) defined over the domain C H S /  

h, _> O, ~ h/= 1, ~ h/P/= X, (6) 
i = 1  i = 1  

F(X,X)= ~, h i ( P / - x )  2= ~, h/P 2 - x  2, 
i = X  i = 1  

(7) 

f(X) = Min~ F(X, g). (8) 

F(X, Z,) is the weighted average of the distance square to the points with weights 
hi. For a fixed point X, (6) provides (d + 1) constraints, hence, (n - (d + 1)) weights 
h/can be varied independently, f(X) is the minimum for a fixed X over this choice 
of weights. One (not necessarily optimal) choice of weights would be to give 
nonzero weights to only some set of (d + 1) points (whose convex hull contains 
X, cf. (6)) and set the remaining ( n -  (d + 1)) weights to zero. In this case the 
function F(X, Z,) = F(X) where F(X) is the power function of the triangle defined 
by the chosen (d + 1) points. 

Lemma 10. At Min~ F(X, ~,) for a fixed point X the only nonzero values of h i occur 
for the vertices of the Delaunay triangle containing the point X. Thus f(X) is given 
by Lemma 1: 

f(X) = F(X) = R 2 -- (X - Xc) 2, (9) 

where Xc and R are the circumcenter and circumradius of the Delaunay triangle 
containing X. 

Proof To prove this result we use the following well-known result I-3], I-7] which 
is a consequence of Corollary 1 and Lemma 2. Consider the transformation 
~(p)~__,(p, p2) which lifts the points in R d onto the paraboloid z = p2 in R d§ 
The point Sp is lifted to a set of points Ep = {(PI, p2), (P2, P~) . . . . .  (p,, p2)} in 
Ra + 1. Take the lower part of the convex hull of Y.p. Project this back into ~a and 
we get the Delaunay triangulation, ~ ,  of Sp. 

Now consider a point (~7= 1 hiPi, ~-~n= 1 2/P2) = (X, F(X, X) + X2), subject to the 
conditions in (6). This is a general point inside the convex hull of Zp. The minimum 
of F for a fixed X is given by the point with the lowest z coordinate, hence the 
point on the lower convex hull of Y,p. This triangle (d-facet in •d + x) is the Delaunay 
triangle containing X. [] 

Theorem 1. Among all the triangles with vertices in Sp and containing the point 
X, the Delaunay triangle minimizes the power function F(X) of the triangle at the 
point. 
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Proof. Every triangle containing the point X defines a particular (unique) choice 
of 2 t in (6) and (7), namely, set 2i to be nonzero only at the vertices of the triangle. 
By Lemma 10, the choice that minimizes F(X, k) and hence the power function 
F(X) is the Delaunay triangle. [] 

Given any triangulation J- of Sp we can define the function Fg-(X) at each 
point X in CHSp as the power function F(X) of the point X with respect to the 
triangle Tr ~ that contains the point X. Let F~(X) define the corresponding 
function for the Delaunay triangulation ~. Then it follows from Theorem 1 that, 
at every point X, 

F~(X) < Fa-(X). (10) 

The equality holds only when the element (the triangle or the facet of a triangle) 
in the ~ that contains the point X is also present in ~. We can use this result to 
derive several optimality properties of the Delaunay triangulation. 

Theorem 2. The maximum min-containment radius of the Delaunay triangulation 
is less than or equal to the maximum min-containment radius of any other triangula- 
tion of the point set. 

Proof. Let Xr and Xo respectively represent the points in CHSp where Fer(X) 
and F~(X) attain their respective maxima. Let rr and r v be respectively the 
maximum rain-containment radii of the triangulations f f  and ~, respectively. 
From Lemma 3, the square of the min-containment radius of a triangle T is the 
maximum of the power function over the triangle and hence its maxima for the 
triangulation ~r is equal to the maxima of Fer(X). The same is true for the 
Delaunay triangulation. Hence, 

r2r = Fer(Xr) > Fer(Xo) > F~(XD) = r~. (11) 

Hence the result. Notice that (in the nondegenerate situation) the equality holds 
only if X r = Xo and the element (triangle or the facet of a triangle) containing Xo 
in ~ is also present in ~. [] 

While Theorem 2 is true in all dimensions, the lexicographical version of the 
theorem is not true even in R 2. A counterexample to this was given by Edels- 
brunner. In Fig. 2 both the Delaunay triangulation and the non-Delaunay 
triangulation of this set of four points have the same maximum min-containment 
diameter, given by the bottom edge in the figure. However, the non-Delaunay 
triangulation has a smaller second-largest value for the min-containment diameter 
(given by the dashed diagonal) than does the Delaunay triangulation (given by 
the solid diagonal). 
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Fig. 2. The Delaunay triangulation (solid line) and the triangulation that lexicographically minimizes 
the maximum min-containment radius (dashed line) for a set of four points in R 2. 

Theorem 3. The union of circumballs of triangles incident on an interior point in 
the Delaunay triangulation of a point set lies inside the union of the circumballs of 
triangles incident on the same point in any other triangulation of the point set. For 
a point on the convex hull of the point set, this result is true provided only the portion 
of the union which lies in the interior cone of the convex hull at the point is considered. 

Proof. P~ ~ Sp is a vertex of both triangulations, therefore F~(P~) = Ff(P~) = 0. 
However, at a point X e CHS~ in the immediate neighborhood on P~, F~(X) < 
F:r(X). Let fi be a unit vector in the direction of a ray from the vertex P~. If P~ is 
on the convex hull of the point set CHSp, then Ii is toward the interior of CHS r 
Then the gradient of the power function in the direction fi satisfies the inequality 
ft. VF~(pi) < II. VFer(Pi). The equality is true only if the element containing the 
initial part of fi is common to ~ and ~. Hence, from Lemma 4, the circumsphere 
of the triangle in ~ incident on P~ and containing fi does not extend beyond the 
corresponding circumsphere in 3- in the direction ft. By Lemma 9, the Delaunay 
spheres of the adjacent triangles in ~ that are incident on Pi also do not extend 
beyond this. By choosing fi in every direction from a point Pi in the interior of 
CHSp we get the first part of the theorem. If P~ is on CHSp, then we choose fi to 
be toward the interior, and we get the second part of the result. Notice that in 
both cases the equality of the two unions occurs only if every triangle in 3- incident 
on P~ is a Delaunay triangle. []  

If we take a triangle in R 2 with rays emanating from its vertices toward the 
interior of the triangle, then every point in the interior of the circumdisk of the 
triangle will be covered by one or more of these rays. Therefore, in R 2, a corollary 
of Theorem 3 is that the union of circumdisks of all triangles in a Delaunay 
triangulation is contained in the union of circumdisks of all triangles in any other 
triangulation. However, in three and higher dimensions, this corollary is not true. 
If we take a tetrahedron in R 3 with rays emanating from its vertices toward its 
interior, then there are portions of the circumball of the tetrahedron (along each 
edge of the tetrahedron and just outside the tetrahedron) that are not covered by 
these rays. Therefore, Theorem 3 cannot be used to generalize this corollary to 
higher dimensions. In fact, it is possible to construct a counterexample to this 
corollary in R 3 using five points in three dimensions. Place three points on the 
xy-coordinate plane at unit distances from the origin, and place two points on the 
z-axis, above and below the xy-plane, each at less than unit distances from the 
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Fig. 3. The z = 0 section of the triangulation of a set of five points in R 3 showing the circumspheres 
of the Delaunay (solid circles) and non-Delaunay (dashed circle) triangulations of the five points. Three 
of the points lie equidistant from the origin in the z = 0 plane and the two other points lie closer, on 
the z-axis above and below the plane. 

origin. Then the Delaunay triangulation of these five points consists of three 
tetrahedra. Figure 3 shows the z = 0 section of the tetrahedra and the circumballs 
and shows that the circumballs of the Delaunay tetrahedra can extend beyond 
the circumballs of the two non-Delaunay tetrahedra. Hence the condition on the 
second part  of Theorem 3 is necessary for three and higher dimensions. 

Theorem 4. The weighted sum of squares of the edge lengths, where the weight is 
proportional to the sum of volumes of the triangles incident on the edge, is the smallest 
for Delaunay triangulations. 

Proof. Integrate inequality (10) over the CHS r By Lemma 5, each triangle in 
each triangulation contributes to the integral an amount  equal to the sum of the 
squares of edge lengths of its edges times the volume of the triangle divided by 
the constant (d + 1Xd + 2). Thus the total integral is the weighted sum of squares 
of the edge lengths of each triangulation, with the weight equal to the sum of the 
volumes of the triangle incident on each edge. Notice that since each triangle has 

d + 1 edges, the sum of the weights is equal to times the sum of the 
2 2 

volumes of the triangles. The sum of the volumes of the triangles is equal to the 
volume of CHS r Thus, the sum of these weights is independent of the triangula- 
tion, therefore the weights can be normalized. Notice that 3-  and ~ may in general 
have a different number of triangles and a different number of edges. Also that 
the inequality is strict, unless both triangulations are Delaunay. []  

Theorem 5. I f  a triangulation consists of only self-centered triangles, then it is the 
Delaunay triangulation of that point set. 

Proof. Suppose we are given a triangulation of Sp consisting of only self-centered 
triangles. Then, from Lemma 8, every pair of adjacent triangles satisfies the 
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Delaunay condition. If we project the triangles using ~(P) defined above, then this 
states that the resulting surface in R d+ 1 is convex locally. Since a surface that is 
locally convex everywhere is globally convex it follows that we have generated 
the convex hull. [] 

This theorem shows that if a point set has a self-centered triangulation, it is 
unique and can be found by constructing the Delaunay triangulation of the point 
set. 

5. Discussion 

This paper provides several optimality results for Delaunay triangulation in R d. 
It suggests that the Delaunay triangulation is the most compact one in the sense of 

(1) having the smallest min-containment circle, 
(2) having the circumspheres of triangles incident on an interior point being 

closest to the point, and 
(3) having the smallest weighted average of the squares of edge lengths with 

appropriate weights. 

These optimality results are new and were not known even in ~2. (Although an 
R 2 version of Theorem 2 is implicit in Lemma 2 of I-5].) Even the methods used 
to prove them are different from the ones used to prove other optimality results 
in R 2. Those results are proven using the flip algorithm 1"8]. The optimality results 
shown in this paper provide a justification for the use of the Delaunay triangulation 
for the construction of meshes in R 3. 
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