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OPTIMALITY PRINCIPLES AND REPRESENTATION
FORMULAS FOR VISCOSITY SOLUTIONS

OF HAMILTON-JACOBI EQUATIONS
I. EQUATIONS OF UNBOUNDED AND DEGENERATE

CONTROL PROBLEMS WITHOUT UNIQUENESS
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(Submitted by: H. Ishii)

Abstract. We prove general optimality principles for semicontinuous viscosity
solutions of Hamilton-Jacobi equations. We also characterize the minimal nonneg-
ative supersolution and the maximal subsolution null on a closed given set for a
class of equations without uniqueness, including the degenerate eikonal equation
and the Bellman equation of the linear quadratic control problem.

1. Introduction. One of the main achievements of Crandall-Lions [6]
theory of viscosity solutions, was to give a notion of weak solution for first
order (and next also second order, see Crandall-Ishii-Lions [5] and the ref-
erences therein) fully nonlinear partial di↵erential equations providing exis-
tence and uniqueness in a wide class of problems. Yet there are non trivial
examples of equations interesting for the applications for which uniqueness
does not hold. This is well known for discontinuous solutions of boundary
value problems, but it is actually true even for continuous ones and also clas-
sical solutions of some equations in the whole space. Good examples for this
kind of phenomena are the eikonal equation and the Bellman equation of the
classical linear quadratic control problem. Both cases fit into the following
general framework

H(x, u(x),Du(x)) = sup
a2A

{�f(x, a) ·Du(x)�h(x, a)+k(x, a)u(x)} = 0, RN ,

(1.1)
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where A may be unbounded as well as the data functions f, h, k in the
parameter a. For a more detailed discussion about classes of equations that
can be written in the form (1.1), we refer to the examples in the next section.

Our purpose here is to develop some new insights about multiplicity of
viscosity solutions of (1.1). As promptly recognized, in the case k ⌘ 0
adding a constant to a solution gives another solution, but the nonuniqueness
problem is far less trivial as we will see in some examples, in particular
uniqueness may not hold when we ask our solutions to vanish on a given
set. We start proving new general optimality principles for semicontinuous
super and subsolutions of (1.1) which hold despite of the well posedness of
(1.1). Next, assuming h nonnegative, from these we derive representation
formulas and so a characterization of the minimal nonnegative supersolution
and the maximal subsolution which is null on some given set, as certain value
functions of control problems. We will also show that there is at most one
continuous solution once we prescribe its values on the set

Z = {x : H(x, 0, 0) = 0},

though existence may fail in general if some compatibility condition on the
data is not satisfied, and if the whole space is not reachable from Z by means
of the vector field �f(x, a). We do not deal with the existence problem in
full details however. Some results in this direction, for more special classes
of equations can be found in Lions [9] and Lions, Rouy, Turin [10]. Relating
viscosity solutions to value functions of optimal control problems (and dif-
ferential games) is a matter long studied in the literature, see e.g. Lions [9],
Lions, Souganidis [11], Ishii [8], and Evans, Ishii [7].

Most of the results we prove can be generalized, with some technical e↵ort,
to more complicated hamiltonians than H in (1.1), including those with inf-
sup or sup-inf type nonlinearity, using di↵erential games arguments similar
to the ones in the paper by the author [13], see also [14]. We will therefore
avoid doing this here for the sake of simplicity.

The outline of the paper is as follows. In Section 2 we discuss some exam-
ples that motivate our study. In Section 3 we prove optimality principles for
viscosity solutions of equation (1.1). In Section 4 we study the nonuniqueness
problem of equation (1.1) and revisit the examples of Section 2.

2. Preliminaries and examples. We start setting precise some as-
sumptions on the equation (1.1). We will assume that: A ⇢ RM is a closed
set, f : RN ⇥ A ! RN and h, k : RN ⇥ A ! R are continuous functions,



optimality principles and representation formulas 277

1  q < p, and for any R > 0 there are real numbers CR, LR, L > 0 such
that8>>>>>>>><

>>>>>>>>:

|f(x, a)� f(z, a)|  L(1 + |a|q)|x� z|,
|f(x, a)|  L(1 + |x|+ |a|q),
|h(x, a)� h(z, a)|  LR(1 + |a|p)|x� z|, for all x, z 2 RN , a 2 A,

CR|a|p � LR  h(x, a)  LR(1 + |a|p),
|k(x, a)� k(z, a)|  LR(1 + |a|q)|x� z|,
|k(x, a)|  LR(1 + |a|q), for all |x|, |z|  R, a 2 A.

(2.1)
Under the assumptions in (2.1), the hamiltonian H in (1.1) is locally Lip-
schitz continuous. This fact can be easily proved after observing that the
coercivity of h in (2.1) implies that for R > 0 fixed, there is a compact
AR ⇢⇢ A such that for all x, p 2 RN , u 2 R, |x|, |p|, |u|  R, we have

H(x, u, p) = max
a2AR

{�f(x, a) · p� h(x, a) + k(x, a)u}.

Such regularity of the hamiltonian, however, is not enough to ensure a com-
parison theorem for viscosity solutions of equation (1.1), and in fact unique-
ness does not hold in general (for the definition of viscosity solution we refer,
for the reader’s convenience, to the end of this section). Under certain con-
ditions on the data, it looks interesting for the applications to characterize
certain particular solutions and get a-priori bounds for the whole class of
solutions. To do this, we will restrict ourselves to the case where

h(x, a) � 0, for all x 2 RN , a 2 A. (2.2)

When (2.2) holds, it is reasonable to look for the minimal nonnegative (su-
per) solution (the constant zero is in fact a subsolution so we expect at least
one nonnegative solution). Moreover, note that if some nonnegative solution
satisfies U(x) = 0 then necessarily 0 2 Z = {x : H(x, 0, 0) = 0} (since 0 is
a viscosity subdi↵erential of U at x, check this by the definition of viscosity
solution). Another interesting problem is therefore to characterize the max-
imal (sub) solution vanishing on some closed subset of Z. The set Z is a
sort of degenerate set for the equation (1.1) and we will implicitly assume
throughout the paper that Z 6= ;.

We proceed with a short collection of examples of equations having the
structure (1.1) and multiple solutions. We will revisit them shortly again at
the end of Section 4.
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Example 2.1. Consider the following equation arising in linear quadratic
control theory (an example of unbounded control problem)

�u� bx ·Du + |Du|2 � �|x|2 = 0, (2.3)

where �,� � 0 and 2b > �. This equation can be easily reduced to the form
(1.1) by observing that

|p|2 = max
a2RN

{�2a · p� |a|2}. (2.4)

However, if we look for solutions of (2.3) of the particular form u(x) = c|x|2,
we will find two of them, one nonnegative and one nonpositive if � > 0, the
null function and a nonpositive one if instead � = 0. We can see in particular
that the minimal nonnegative solution does not depend continuously on the
parameter � as this tends to zero.
Example 2.2. Consider the degenerate eikonal equation (we use here the
summation convention)

aij(x)uxiuxj + 2bi(x)uxi � h2(x) = 0, (2.5)

where aij = �ik�jk and � is symmetric. Also this class can be reduced to
the form (1.1) again by (2.4). Moreover if b(x) = 2�(x)b(x), for some vector
field b(·), then the parameter set A can be also chosen to be compact, since
now the equation is equivalent to

|�(x)Du + b(x)| = (h(x)2 + |b|2(x))1/2.

Nevertheless we cannot in general expect uniqueness of solutions vanishing
at the origin as the following special case shows. Consider the equation

|u0|2 = x2(1� x2)2, x 2 R,

and observe that Z = {�1, 0, 1}. Two nonnegative viscosity solutions of this
equation vanishing at the origin are

u1(x) =
⇢

g(x), |x|  1,
1/2� g(x), |x| > 1,

u2(x) =
⇢

g(x) ^ (1/4� g(x)), |x|  1,
1/4� g(x), |x| > 1,

,
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where g(x) = x2/2 � x4/4. The solution u1 assumes the value zero only at
zero, while u2 is zero on Z. As a matter of fact it is easily shown that there
are infinitely many nonnegative viscosity solutions u null at the origin and
satisfying u2  u  u1.
Example 2.3. A similar example is the following equation

I(x) (Du)� b(x) ·Du� h(x)2 = 0,

where I is nonnegative and  is convex with  (0) = 0. Therefore its Legendre
transform  ⇤ is nonnegative and we can rewrite the equation as

max
a2Dom( ⇤)

{�(b(x)� I(x)a) ·Du� (h(x)2 + I(x) ⇤(a))} = 0.

A particular case is the following equation which appears in shape from
shading problems, see Lions, Rouy, Turin [10], where nonuniqueness features
are pointed out and some results similar to ours are derived for this equation

I(x)(1 + |Du|2)1/2 � 1 = 0,

where I(x) 2 [0, 1]. This equation can in fact be rewritten as

max
|a|1

{�I(x)a ·Du� 1 + I(x)(1� |a|2)1/2} = 0.

Example 2.4. The next example comes from Fuller’s problem in control
theory. The equation is the following

|yDxu|+ |Dyu|� x2 = 0, R2.

Again this problem has at least two nonnegative viscosity solutions vanishing
at the origin. One is null only at the origin, while the other is zero on
Z = {(x, y) : x = 0}. If instead we change the equation to

�yDxu + |Dyu|� x2 = 0, R2,

then there is only one continuous, nonnegative viscosity solution attaining
the value zero at the origin and it is positive otherwise. Note that the set Z
remains unchanged.
Remark 2.5. Assume that in (1.1) A is compact and h ⌘ k, then our
equation is very much related to the one with k ⌘ 0 by means of the change
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of variables v = 1 � exp (�u). This change, known as Kruzkov transform,
is often helpful since nonnegative, extended real valued functions, become
bounded nonnegative functions. When we consider equations where k ⌘ 0
and require solutions to vanish at a certain point, then they may blow up
to +1 and therefore they may exist only locally. This problem becomes
irrelevant after the change of variables. This applies to all of the examples
above (the first one only for � = 0).
Remark 2.6. We have chosen to prove our results here only for equations
of the type (1.1) to simplify the presentation. With some additional tech-
nical e↵ort, the results of this paper can be extended to equations arising
in di↵erential games theory, where inf-sup (or sup-inf) type of nonlinearities
appear in (1.1). The class of equations for which our results hold therefore
contains those arising in nonlinear H1 control theory, and for this side of
the problem we refer the reader to the paper by the author [14], where most
of the game theoretic arguments can be found (see also [13]).

We end this section recalling the definition of viscosity solution. Let
w : ⌦ ! R,⌦ ⇢ RN open, be a locally bounded function. We define its
lower and upper semicontinuous envelopes as, respectively

w⇤(x) = lim
r!0+

inf {w(y) : |x� y|  r},

w⇤(x) = lim
r!0+

sup {w(y) : |x� y|  r}.

Definition 2.7. Let F : ⌦ ⇥ R ⇥ RN ! R be a continuous function. The
lower (resp. upper) semicontinuous function u : ⌦ ! R is a viscosity super-
(resp. sub-) solution of

F (x, u,Du) = 0, in ⌦, (2.6)

if for all ' 2 C1(⌦) and x 2 argminx2⌦(u� '), (resp. x 2 argmaxx2⌦(u�
')), we have

F (x, u(x),D'(x)) � 0, (resp. F (x, u(x),D'(x))  0).

We also say that D'(x) 2 D�u(x), the subdi↵erential of u at x (resp.
D'(x) 2 D+u(x), the superdi↵erential). A locally bounded function u is a
viscosity solution of (2.6) if u⇤ is a supersolution and u⇤ is a subsolution.

In “convex” problems, i.e., when the hamiltonian F is convex in the “Du”
variable as it happens in (1.1) (and therefore not for genuine game problems),
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a di↵erent notion of solution has been formulated and proved to be very
e↵ective, mainly in the case of discontinuous solutions (if the solution is
continuous, it is actually equivalent to the one of viscosity solution, otherwise
it is more restrictive, see e.g. Barron-Jensen [3] and Barles [1]). This idea
was proposed by Barron-Jensen [3], who proved new uniqueness results for
discontinuous solutions, and then simplified and developed by Barles [1] and
the author [12].
Definition 2.8. We say that a lower semicontinuous function u : ⌦! R is a
bilateral supersolution of (2.6) if for all ' 2 C1(⌦) and x 2 argminx2⌦(u�'),
we have

F (x, u(x),D'(x)) = 0.

3. Optimality principles for viscosity solutions. We start this
section recalling the control problem underlying equation (1.1). We consider
the controlled dynamical system

ẏ = f(y, a), y(0) = x 2 RN , (3.1)

and by our growth conditions, we will choose the admissible controls a(·) in
the set

A = Lp
loc(R+;A).

In a given time interval [0, t], to any trajectory yx(·; a) ⌘ y(·), solution of
(3.1), we associate the following payo↵ functional

J(t, x, a(·)) =
Z t

0
exp (�

Z s

0
k(y, a)dr)h(y, a)ds, (3.2)

that we will use to define various value functions.
When A is compact, we are also interested in a wider class of controls,

namely relaxed controls

µ 2 Ar = L1(R+;Ar),

where Ar = {µ : Radon probability measure on A}, and extend our system
by setting, for µ 2 Ar,

⌫r(x, µ) =
Z

A
⌫(x, a)dµ(a), ⌫ 2 {f, k, h}.
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It is easy to recognize that, when A is compact, the functions fr, hr, kr

satisfy conditions analogous to (2.1). Moreover the hamiltonian associated
to such new functions coincides with H in (1.1). For any µ 2 Ar, we indicate
by yr

x(·;µ) ⌘ yr
x(·) the trajectory solution of

ẏr = fr(yr, µ), yr(0) = x.

For any control µ(·) 2 Ar, we will consider the relaxed payo↵ given by

Jr(t, x, µ) =
Z t

0
exp (�

Z s

0
kr(y, µ)dr)hr(y, µ)ds.

We observe that if A is compact, then Ar is metrizable and compact in the
weak* topology as a subset of the dual of C(A; R). We will identify any
control a 2 A with the Dirac measure �a 2 Ar.
Definition 3.1. Let u : RN ! R be a function, we say that u satisfies
the upper optimality principle with respect to the optimal control problem
(3.1), (3.2) if

u(x) = inf
a2A

sup
t2R+

{J(t, x, a) + exp (�
Z t

0
k(y, a)ds)u(y(t))}. (3.3)

We say that u satisfies the relaxed upper optimality principle if

u(x) = inf
µ2Ar

sup
t2R+

{Jr(t, x, µ) + exp (�
Z t

0
kr(y, µ)ds)u(yr(t))}. (3.4)

We say that u satisfies the lower optimality principle if

u(x) = inf
a2A

inf
t2R+

{J(t, x, a) + exp (�
Z t

0
k(y, a)ds)u(y(t))}. (3.5)

Finally we say that u satisfies the relaxed lower optimality principle if

u(x) = inf
µ2Ar

inf
t2R+

{Jr(t, x, µ) + exp (�
Z t

0
kr(y, µ)ds)u(yr(t))}.

The purpose of this section is to prove optimality principles for viscosity so-
lutions of equation (1.1) in the generality of assumption (2.1). The localized
version of these results is presented in [15]. Precisely we prove the following
result.
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Theorem 3.2. Assume (2.1) and let u : RN ! R be a function. The
following hold.

(i) If u is an upper semicontinuous subsolution of (1.1), then it satis-
fies the lower optimality principle. It also satisfies the relaxed lower
optimality principle if A is compact.

(ii) If u is a continuous supersolution of (1.1), then it satisfies the upper
optimality principle.

(iii) If A is compact and u is a lower semicontinuous supersolution of
(1.1), then it satisfies the relaxed upper optimality principle. If the
sets {(f(x, a), h(x, a), k(x, a)) : a 2 A} are convex for all x 2 RN ,
then the upper optimality principle holds.

(iv) If u is a lower semicontinuous bilateral supersolution of (1.1) then
both u and u⇤ satisfy the lower optimality principle (and the state-
ments (ii), (iii) apply to u as well).

Remark 3.3. It is clear by the statement that the problem for super and
subsolutions is not symmetric. As it is well known in control theory, dealing
with subsolutions of (1.1) is quite easier than with supersolutions, less reg-
ularity is required and a stronger result can be obtained. Such a symmetry
does not occur for example in di↵erential games problems.

Observe that bilateral supersolutions are lower semicontinuous and
nonetheless satisfy the lower optimality principle, which by (i) is expected
to be attained by upper semicontinuous functions.

Proof. 1. We start considering (iii) and a lower semicontinuous superso-
lution U : RN ! R of (1.1). We will point out during the proof how to
simplify the argument if U is continuous and prove (ii). We introduce a
change of variables. Let ⇢ : R ! R+ be a smooth, bounded function such
that 0 < ⇢̇ M and ⇢(s)! 0 as s! �1. Consider the function

u(z) = u(x, r, s) = ⇢(exp (�s)U(x) + r),

then by the usual rules of change of variables (as for example in Crandall-
Lions [6]), we can easily prove that u is a viscosity supersolution of

sup
a2A

{�F (z, a) ·Dzu(z)} � 0, RN+2, (3.6)

where F = (f, e�sh, k)/(1 + |a|p) (note that we renormalize the extended
vector field by the factor (1 + |a|p)).
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2. We continue the proof under a simplifying assumption, namely we
suppose that

|F (z, a)� F (z0, a)|  L|z � z0|, z, z0 2 RN+2, a 2 A. (3.7)

We also consider an increasing sequence of continuous, nonnegative functions
'n : RN+2 ! R such that

u = sup
n
'n.

(We agree to choose the constant sequence, i.e. 'n ⌘ u, if u is continuous).
For any fixed � > 0, since u is nonnegative, it is also a supersolution of the
equation (quasi variational inequality)

�u + min{sup
a2A

{�F (z, a) ·Dzu}, u� (1 + �)'n} � 0, RN+2, (3.8)

for all n 2 N. Holding (3.7), equation (3.8) has a unique viscosity solution
which is in fact continuous. As a matter of fact the assumptions of the
comparison theorem for viscosity solutions are satisfied (see e.g. Crandall,
Ishii, Lions [5]). Moreover by more or less standard dynamic programming
arguments, as we will outline in the appendix, such solution can be proven
to be the value function

V �(z) = inf
a2A

sup
⌧2R+

exp (��⌧)'n(z(⌧)), (3.9)

where z(·) ⌘ zz(·, a) is the trajectory corresponding to the following dynam-
ical system

ż(⌧) = F (z(⌧), a(t(⌧))), z(0) = z,

where a 2 A and t(·) = ⌧�1(·), ⌧(t) =
R t
0 (1 + |a|p)ds. By our construction,

if z = (x, 0, 0) such a trajectory is provided by the following formula

z(⌧) = (yx(t(⌧); a), J(t(⌧), x, a(·)),
Z t(⌧)

0
k(y, a)dt). (3.10)

Comparison theorem applied to (3.8) then gives, for all T > 0

u(z) � V �(z) � inf
a2A

sup
⌧2[0,T ]

exp (��⌧)'n(z(⌧))

� exp (��T ) inf
a2A

sup
⌧2[0,T ]

'n(z(⌧)).
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As �! 0+ we therefore obtain,

u(z) � inf
a2A

sup
⌧2[0,T ]

'n(z(⌧)), for all T > 0, n 2 N. (3.11)

If u is continuous, last formula (which holds with 'n ⌘ u) is good for now
and we can skip to part 3 of this proof. Otherwise we have to take the limit
as n ! +1. In order to do so we will assume A compact and use relaxed
controls. We observe that, as easily checked

u(z) = lim inf
n!+1,z0!z

'n(z0). (3.12)

For fixed n by (3.11) we can find an 2 A such that, indicating zn(·) ⌘
zz(·; an),

u(z) + 1/n � 'n(zn(⌧)), for all ⌧ 2 [0, T ].

If we use the weak* compactness of Ar, we can find a sequence ank ! µ 2 Ar

as nk ! +1, weak* in L1([0, T ];Ar) and then using (3.12) and the fact
that znk(·; ank)! zr(·;µ) uniformly in [0, T ], we conclude that

u(z) � inf
µ2Ar

sup
⌧2[0,T ]

u(z(⌧)). (3.13)

If moreover the sets {(f(x, a), h(x, a), k(x, a)) : a 2 A} are convex for all
x 2 RN , then by Filippov’s Theorem, see Castaing-Valadier [4], it is well
known that relaxed trajectories can be also obtained by means of usual
measurable controls, so we can even obtain the corresponding of (3.13) with
A instead of Ar.

3. So far we proved that

u(z) � inf
a2B

sup
⌧2[0,1]

u(z(⌧)), (3.14)

where B = A or Ar according to the fact that U is continuous or not (a
notation that we use hereafter in the proof). Let now " > 0, from (3.14) we
can find b0 2 B so that

u(z) + "/2 � sup
⌧2[0,1]

u(z0(⌧)).

Let z1 = z0(1; b0), then again from (3.14) we can find b1 2 B so that

u(z1) + "/22 � sup
⌧2[0,1]

u(z1(⌧)).
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We proceed recursively and by an induction argument easily conclude that
if we define

b(t) = bn(t), for [t] = n,

then b 2 B and the corresponding trajectory satisfies u(z) + " � u(zz(⌧ ; b)),
for all ⌧ � 0. Therefore, as " is arbitrary, we conclude

u(z) = inf
a2B

sup
⌧2R+

u(z(⌧)),

since the other inequality is obvious by choosing ⌧ = 0. By the definition
of u and the representation (3.10) of the trajectories z(·), we then easily
conclude (ii) and (iii) by computing u(x, 0, 0).

4. We now study the general case where (3.7) does not hold and use a
localization argument. For n 2 N, we consider the family of smooth functions
⇣n : RN+2 ! R such that 0  ⇣n  1, ⇣n ⌘ 1 in B(0, n) ⇢ RN+2, ⇣n ⌘ 0 in
B(0, n+1)c, |D⇣|  2 and define Fn = ⇣nF . Then it is clear that from (3.6)
our function u is also a supersolution of

sup
a2A

{�Fn(z, a) ·Du} � 0, RN+2, (3.15)

and that Fn satisfies (3.7). Therefore by what we just proved in part 3, we
can state that

u(z) = inf
b2B

sup
⌧2R+

u(zn(⌧)),

where zn is the trajectory corresponding to the vector field Fn, i.e.

żn(⌧) = Fn(zn(⌧), b(t(⌧))), zn(0) = z

for b 2 B. Then we get, for all n 2 N,

u(z) = inf
b2B

sup
⌧2[0,⌧n

z )
u(z(⌧)), z 2 B(0, n)

where ⌧n
z (b) = inf{⌧ � 0 : |zn(⌧)| = n}. We can easily conclude from here

using an induction argument similar to the one in part 3, which used (3.14)
instead.

5. If u is an upper semicontinuous subsolution, then the proof proceeds
similarly as in parts 1 and 2, except that in this case there is no di�culty to
pass to the limit as n! +1 in the corresponding inequality of (3.11) which
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holds for any control and not only for optimal ones, and there is no need of
using relaxed controls to conclude (i).

6. Part (iv) of the statement remains to be shown. Let U : RN ! R be
a lower semicontinuous bilateral supersolution of (1.1), then it is easily seen
that also u constructed as in part 1 is a bilateral supersolution of (3.15) for
any n 2 N. Now we use the inf-convolution as in Barles [1], and for ",K > 0,
we define

u"(z, ⌧) = inf
y2RN+2

{u(y) + exp (�K⌧)|y � z|2/"2}.

By standard arguments, we can prove that, if K is su�ciently large but
independent of " (actually K can be choosen as twice the best Lipschitz
constant of Fn), u" is a continuous subsolution of

v⌧ + sup
a2A

{�Fn(z, a) ·Dzv}  0, RN+3. (3.16)

If we apply (i) to such equation, we get

u"(z, ⌧0) = inf
a2A

inf
⌧2R+

u"(zn(⌧), ⌧0 � ⌧).

Therefore since u"(zn(⌧), ⌧)  u(zn(⌧)), we conclude as "! 0+ that

u(z) = sup
">0

u"(z, 0)  inf
a2A

inf
⌧2R+

u(zn(⌧)),

the first equality being a well known property of nonlinear convolution. Then
the result for u follows as in part 4. On the other hand, if we pass to the
limit in (3.16) as " ! 0, using the fact that u⇤(x) = lim supy!x,"!0 u"(y),
for all ⌧ , and the stability of viscosity solutions as in Barles, Perthame [2],
see also Crandall, Ishii, Lions [5] and the author [12], we obtain that u⇤ is a
subsolution of (1.1) so we can apply part (i) to get the rest of the statement.

4. Representation formulas for viscosity solutions. In this section
we apply the results of the previous one and get representation formulas for
solutions of the Hamilton-Jacobi equation (1.1). Let us consider the two
value functions

V1(x) = inf
a2A

Z +1

0
exp (�

Z t

0
k(y, a)ds)h(y, a)dt,

V r
1(x) = inf

µ2Ar

Z +1

0
exp (�

Z t

0
kr(y, µ)ds)hr(y, µ)dt.

Note that by our assumptions (2.1) and (2.2), V1(x) (or V r
1(x)) is nonneg-

ative but not necessarily finite.
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Theorem 4.1. Assume (2.1) and (2.2).
(i) If U : RN ! R is a nonnegative, continuous viscosity supersolution of

(1.1), then U(x) � V1(x). Therefore if V1 is continuous in RN , then
it is the minimal continuous, nonnegative viscosity (super)solution of
(1.1).

(ii) If A is compact and U : RN ! R is a nonnegative, lower semicontin-
uous viscosity supersolution of (1.1), then U(x) � V r

1(x). Therefore
if such a supersolution exists, then V r

1 is lower semicontinuous and
the minimal nonnegative, lower semicontinuous (super)solution of
(1.1). If moreover the sets {(f(x, a), h(x, a), k(x, a)) : a 2 A} are
convex for all x 2 RN , then the result holds for V1 = V r

1.

Proof. The comparisons in (i) and (ii) are an immediate consequence of
Theorem 3.2 (ii) and (iii), respectively. The fact that V1 and V r

1, if lo-
cally bounded, are viscosity solutions of (1.1) can be obtained by rather
standard methods, directly for V r

1 or if A is compact, or after using the
reparametrization of trajectories as in the proof of Theorem 3.2 otherwise.
Indeed considering the system

y0(⌧) = f(y(⌧), a(t(⌧)))/(1 + |a(t(⌧))|p),

using the dynamic programming principle, one first shows that V1 is a
viscosity solution of

sup
a2A

{(�f(x, a) ·Du� h(x, a) + k(x, a)u)/(1 + |a|p)} = 0, RN .

To conclude we then use the coercivity assumption on h in (2.1) which
implies that for R > 0 fixed, there is a compact AR ⇢⇢ A such that for all
x, p 2 RN , u 2 R, |x|, |p|, |u|  R, we have

H(x, u, p) = max
a2AR

{�f(x, a) · p� h(x, a) + k(x, a)u}. ⇤

The previous result shows that the value function of the infinite horizon
control problem provides the smallest nonnegative solution of our equation.
Moreover V1 and V r

1 locally bounded is a necessary condition for existence
of global nonnegative continuous or lower semicontinuous supersolutions,
respectively. When k ⌘ 0, this roughly amounts to stability properties of
the set Z with respect to the vector field f .
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In the following we will consider a closed subset

T ⇢ Z = {x : H(x, 0, 0) = 0},

and, for a 2 A, define the exit-time from T c, i.e.

tx(a) = inf{t � 0 : yx(t; a) 2 T }.

We also consider for x 2 RN the set of admissible controls

Ax = {a 2 A : tx(a) < +1}.

We need to remark that in general the set Ax might be empty. As a matter
of fact, the condition Ax 6= ; for all x 2 RN is sometimes called global
attainability of the set T with respect to the vector field f .

Theorem 4.2. Assume (2.1) and (2.2).
(i) If U : RN ! R is an upper semicontinuous viscosity subsolution of

(1.1), which is null on T , then

U(x)  VT (x) = inf
Ax

Z tx(a)

0
exp (�

Z t

0
k(y, a)ds)h(y, a)dt.

Therefore if VT is finite, locally bounded and continuous on T , then
it is upper semicontinuous in RN and the maximal subsolution of
(1.1), null on T .

(ii) If U : RN ! R is a lower semicontinuous bilateral supersolution of
(1.1), which is null on T , then U  VT . Therefore if VT is finite and
locally bounded, then (VT )⇤ is the maximal viscosity supersolution of
�H(x, u(x),Du(x)) � 0 in RN , vanishing on T .

Proof. Everything follows similarly to the proof of Theorem 4.1 as a conse-
quence of Theorem 3.2. The function U in the statement is not necessarily
nonnegative. When U is nonnegative, the assumptions in (i) imply that U is
continuous at the points of T , while this is not necessarily true for (ii). In or-
der to prove that, when real valued and locally bounded, (VT )⇤ is a bilateral
supersolution, one can use the backward dynamic programming principle,
introduced by the author [12]. (For some more details see also the proof of
Proposition 4.1 in [15]). ⇤

As a consequence of the previous result, the following verification theorem
holds.
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Corollary 4.3. Let x 2 RN and assume (2.1), (2.2). Suppose that there
are a 2 A and a function U : RN ! R, null on T , which is either an upper
semicontinuous subsolution of (1.1) or a lower semicontinuous supersolution
of �H(x, u(x),Du(x)) � 0, in RN , such that

Z tx(a)

0
exp (�

Z t

0
k(y, a)ds)h(y, a)dt  U(x).

Then a is an optimal control for VT .

In the following we prescribe the values of our solution on Z by means of
a continuous function g : Z ! R+. We start with the following Lemma.

Lemma 4.4. Assume (2.1), (2.2) and that for all " > 0 there is C" > 0
such that

h(x, a) � C"(1 + |a|q) > 0,

for all x 2 RN satisfying dist(x,Z) � ", and a 2 A. Suppose moreover
that there is � > 0 such that |f(x, a)|  L(1 + |a|q), for all x satisfying
dist(x,Z)  �, and a 2 A (this in particular can be deduced from the other
assumptions if Z is bounded). Then for all a 2 AZ 1

0
h(y, a)dt < +1,

implies dist(y(t),Z)! 0, as t! +1.

Proof. It is clear by the assumption that lim inft!+1 dist(y(t),Z) = 0. We
then argue by contradiction and suppose that there are " > 0 2"  �, and
an increasing sequence tn ! +1 such that

dist(y(t2n),Z) = 2", dist(y(t2n+1),Z) = ",

dist(y(t),Z) 2 [", 2"] for t 2 [t2n, t2n+1].

Therefore we get

"  |y(t2n)� y(t2n+1)|  L

Z t2n+1

t2n

(1 + |a|q)dt.

By (2.2) and the assumption, this implies thatZ 1

0
h(y, a)dt �

X
n

Z t2n+1

t2n

h(y, a)dt � C"
X

n

Z t2n+1

t2n

(1 + |a|q)dt = +1,

a contradiction.
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Theorem 4.5. Suppose that all the assumptions of Lemma 4.4 hold true,
k ⌘ 0 and let g be as above. Then there is at most one continuous, nonneg-
ative viscosity solution U : RN ! R of (1.1) such that U(x) = g(x) on Z
and U is continuous, uniformly for x 2 Z. By U continuous, uniformly for
x 2 Z we mean that for any " > 0 there is � > 0 such that x 2 Z, y 2 RN

and |x � y|  � implies |U(x) � U(y)|  ". This is always satisfied if Z is
bounded). If moreover A is compact and U, V are viscosity solutions of (1.1)
and continuous, uniformly for x 2 Z, then U, V are continuous in RN .

Proof. Let U, V be two continuous solutions, the proof is similar if A is
compact. By Theorem 3.2 (i) we have

U(x) = inf
a2A

inf
t2R+

{J(t, x, a)+U(y(t))}  inf
a2A

{
Z 1

0
h(y, a)dt+lim inf

t!+1
U(y(t))}.

By Theorem 3.2 (ii) we also get that

V (x) = inf
a2A

sup
t2R+

{J(t, x, a) + V (y(t))}.

Fix " > 0 and let a 2 A be such that

V (x) + " �
Z 1

0
h(y, a)dt + lim sup

t!+1
V (y(t)).

Therefore by Lemma 4.4 and the fact that V is nonnegative, we obtain

dist(y(t),Z)! 0, as t! +1.

Let us also consider an increasing sequence tn ! +1 such that

V (y(tn))! lim sup
t!+1

V (y(t)).

Then passing to a subsequence if necessary, we either get y(tn) ! y 2 Z,
or |y(tn))| ! +1 as n ! +1. In both cases, using the fact that U, V are
continuous, uniformly for x 2 Z and coincide on Z, we obtain V (x) + " �
U(x) for arbitrary " > 0. Exchanging the roles of U, V , we conclude.

Remark 4.6. The existence issue for the problem in Theorem 4.5 is tech-
nically more complicated and, from the point of view of this paper, less
interesting. Two questions are involved. One is the real valuedness and the
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continuity of the appropriate value function candidate to solve it, and this
is nontrivial if the discount factor k is degenerate. The second is the need of
some compatibility condition on the given function g, because, as Theorems
4.1 and 4.2 and the construction of the minimal and maximal solutions show,
we have to fulfill a priori necessary conditions for existence.

With the same proof of the previous result, we can prove the following
statement which explains why the second equation of Example 2.4 has a
unique solution vanishing at the origin.

Corollary 4.7. In the assumptions of Theorem 4.5, suppose moreover that
the closed subset T ⇢ Z is attractive for the vector field f in the following
sense: if a 2 A is such that dist(y(t),Z) ! 0, as t ! +1, then in fact
dist(y(t), T ) ! 0 as t ! +1. Then there is at most one continuous,
nonnegative viscosity solution U , which is continuous, uniformly for all x 2
T and such that U = g on T .

The next interesting property of propagation holds specifically for bilat-
eral supersolutions.

Theorem 4.8. Assume (2.1), (2.2) and let U be lower semicontinuous and
a bilateral supersolution of (1.1). Assume that there is an optimal control
a 2 A: (i) optimal for the value function

inf
a2A

sup
R+

J(t, x, a) + exp (�
Z t

0
k(y, a)ds)U(y(t)) (= U(x)),

if either U is continuous or A is compact and the sets

{(f(x, a), h(x, a), k(x, a)) : a 2 A}

are convex for all x 2 RN ; or
(ii) optimal for the value function

inf
µ2Ar

sup
R+

Jr(t, x, µ) + exp (�
Z t

0
kr(y, µ)ds)U(y(t)),

if A is compact. Then the map t ! J(t, x, a) + exp (�
R t
0 k(y, a)ds)U(y(t))

is constant.
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Proof. By Theorem 3.2 (iii) and the assumption (if A is compact for ex-
ample), for the given a we have

U(x) = inf
µ2Ar

sup
t2R+

Jr(t, x, µ) + exp (�
Z t

0
kr(y, µ)ds)U(y(t))

= sup
t2R+

J(t, x, a) + exp (�
Z t

0
k(y, a)ds)U(y(t)).

Moreover by Theorem 3.2 (iv) we also have

U(x) = inf
a2A

inf
t2R+

J(t, x, a) + exp (�
Z t

0
k(y, a)ds)U(y(t)) 

 inf
t2R+

J(t, x, a) + exp (�
Z t

0
k(y, a)ds)U(y(t)),

from which the result follows. ⇤

Remark 4.9. The previous statement shows once again why optimal trajec-
tories of control problems have to be considered generalized characteristics
of the corresponding Bellman equation. Recall also that if U is continu-
ous, then U bilateral supersolution is equivalent to viscosity solution (as for
example follows from our optimality principles). The existence of optimal
trajectories can be automatically obtained, as in the proof of Theorem 3.2,
by classical methods and Filippov’s Theorem if A is compact and the sets
{(f(x, a), h(x, a), k(x, a)) : a 2 A} are convex for all x 2 RN .
Conclusions. We now go back and discuss our examples in view of the
results we proved. In the following we indicate T = {0}. Note that all of the
dynamical systems we consider below are globally controllable to the origin,
meaning that there are a nonnegative, continuous function ! : R+ ! R, null
at the origin, and a locally bounded function C : RN ! R+, such that for
all x 2 RN there are ax 2 A, tx � 0 satisfying yx(tx) = 0, tx  !(|x|),
||ax||Lp(0,tx)  C(x). Moreover there is a control a 2 A such that f(0, a) = 0
and h(0, a) = 0. A consequence of these facts is that the value functions V1
and VT introduced above in this section are locally bounded, vanishing and
are continuous at the origin, as easily checked.

Specifically, in Example 2.1, by the particular structure of the problem
with f(x, a) = 2a + bx linear and h(x, a) = |a|2 + �|x|2 quadratic, one
immediately realizes that both value functions are quadratic functions, i. e.
satisfy V (x) = |x|2V (x/|x|) if x 6= 0. Then by Theorem 4.5, V1 = VT when
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� 6= 0, while they are obviously di↵erent when � = 0 (note that in this case
Z = RN ).

In the special case presented in Example 2.2, taking the square root of
both terms, one obtains the equivalent equation |u0| = |x||1� x2|. Since we
can rewrite this equation in the form (1.1) with the choice of A = [�1, 1],
Theorem 4.5 implies that V1 and VT are continuous and characterized by
their values on Z. Clearly V1 ⌘ 0 on Z, therefore must coincide with u2,
while VT is null only at the origin. Moreover choosing the control a(t) = �1
for t 2 [0, 1], a(t) = 0 afterwards, it follows that VT (1)  1/4. Similarly
VT (�1)  1/4 and being VT the maximal solution vanishing on T by The-
orem 4.2, we deduce that it must coincide with u1.

The special case of Example 2.3 coming from shape from shading problems
has the properties we mentioned at the beginning of the remark only if I(x) 2
(0, 1], which is some limitation to the result. In this case Z = {x : I(x) = 1},
A = {x : |x|  1} is compact, and Theorem 4.5 applies if we assume moreover
that for all " > 0 we have I(x)  1�C" < 1 for all x satisfying dist(x,Z) > ",
for some C" > 0, and I is Lipschitz continuous. For this special structure of
the equations the results in Theorem 4.5 were known and can be found in
Lions, Rouy, Tourin [10].

For the first equation of Example 2.4, one easily sees directly that V1
and VT are di↵erent. As much as the second equation is concerned, it does
not fit into the assumptions of Lemma 4.4, but that statement still holds,
due to the special structure of the system, again by a direct computation we
skip. Moreover we can apply Corollary 4.7 with A compact to deduce that
V1 = VT and they are continuous.

Appendix. In this section we outline how to prove that value functions
like

V (z) = inf
a2A

sup
R+

exp (��⌧) (z(⌧)),

W (z) = inf
a2A

inf
R+

exp (��⌧)'(z(⌧)),
(A.1)

where ż = F (z, a), z(0) = z,  ,' : RN ! R are continuous, F is also
continuous and |F (z, a) � F (z0, a)|  L|z � z0|, satisfy certain Hamilton-
Jacobi equations in the viscosity sense, precisely

min{�V + sup
a2A

{�F (z, a) ·DV }, V �  } = 0,

max{�W + sup
a2A

{�F (z, a) ·DW}, V � '} = 0,
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respectively. Let us consider the value function in (A.1) as an example. The
arguments are similar for the other. This is the usual discounted obstacle
problem, where the obstacle is given by the function '. The key fact is a
proper dynamic programming principle.

Proposition A.1. The value function in (A.1) satisfies the following: for
all ⌧ � 0

W (z)  inf
a2A

exp (��⌧)W (zz(⌧)). (A.2)

Moreover, if W⇤(z) < '(z), there is " > 0 such that for all sequences zn ! z
satisfying W (zn)!W⇤(z) the equality holds in (A.2) for all zn, ⌧ such that
|zn � z|  ", ⌧ 2 [0, "].

Proof. The first statement is almost trivial. We outline the proof of the
second using a contradiction argument. Assume that W⇤(z) < '(z) and we
can find sequences zn ! z, W (zn)!W⇤(z), ⌧n ! 0, 0 < "n ! 0 such that

W (zn) + "n  inf
a2A

exp (��⌧n)W (z(⌧n)).

Then by definition of W (zn) there is an 2 A such that

inf
R+

exp (��⌧)'(zzn(⌧)) < W (zn) + "n  exp (��⌧n)W (zzn(⌧n)).

Using the control an(·+ ⌧n), in the righthandside we then get

inf
⌧2R+

exp (��⌧)'(z(⌧)) < W (zn) + "n

 exp (��⌧n) inf
⌧2R+

exp (��⌧)'(zz(⌧n)(⌧)),

and therefore there is sn 2 [0, ⌧n] such that

exp (��sn)'(z(sn)) W (zn) + "n.

Using Gronwall estimates we can prove that |zzn(sn; an) � z|  o(1) as
n ! +1. By the continuity of ' and passing to the limit as n ! +1, we
conclude

'(z) W⇤(z),

a contradiction. ⇤
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From Proposition A.1, standard arguments will lead to the conclusion,
see for example Ishii [8], Barles-Perthame [2] or the author [13].
Acknowledgment. The author wishes to thank Martino Bardi for interest-
ing conversations and for proposing a couple of examples that we presented
in Section 2. The author also thanks the referee, whose very careful reading
of this and the companion paper [15], with many comments and remarks,
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