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Abstract
The sensorimotor system is a product of evolution, development, learning, adaptation – processes
that work on different time scales to improve behavioral performance. Consequenly, many theories
of motor function are based on the notion of optimal performance: they quantify the task goals, and
apply the sophisticated tools of optimal control theory to obtain detailed behavioral predictions. The
resulting models, although not without limitations, has explained a wider range of empirical
phenomena than any other class of models. Traditional emphasis has been on optimizing average
trajectories while ignoring sensory feedback. Recent work has redefined optimality on the level of
feedback control laws, and focused on the mechanisms that generate behavior online. This has made
it possible to fit a number of previously unrelated concepts and observations into what may become
a unified theoretical framework for interpreting motor function. At the heart of the framework is the
relationship between high-level goals, and the realtime sensorimotor control strategies most suitable
for accomplishing those goals.

Optimality principles form the basis of many scientific theories. Their appeal lies in the ability
to transform a parsimonious performance criterion into elaborate predictions regarding the
behavior of a given system. Optimal control models of biological movement1–33 have
explained behavioral observations on multiple levels of analysis (limb trajectories, joint
torques, interaction forces, muscle activations or EMGs) and have arguably been more
successful than any other class of models. Their advantages are both theoretical and practical.
Theoretically, they are well justified a priori. This is because the sensorimotor system is the
product of evolution, development, learning, adaptation – all of which are in essence
optimization processes that continuously work to improve behavioral performance. Even if
skilled performance on a certain task is not exactly optimal, but is just “good enough”, it has
been made good enough by processes whose limit is optimality. Thus optimality provides a
natural starting point for computational investigations34 of sensorimotor function.

In practice, optimal control modeling affords unsurpassed autonomy and generality. Most
alternative methods in engineering control, as well as alternative models of the neural control
of movement, require as their input a detailed description of how the desired goal should be
accomplished. For example, the Equilibrium Point hypothesis35,36 explains how a reference
trajectory (presumably specified by the CNS) can be used to guide limb movement, but does
not tell us how such a trajectory might be computed in tasks more complex than pointing.
Similarly, the dynamical systems view37 emphasizes that the composite neuro-musculo-
skeletal system is a nonlinear dynamical system that can exhibit interesting phenomena such
as bifurcations, but does not predict what nonlinear dynamics we should observe in a new task.
In contrast, optimal control methods only require a performance criterion that describes what
the goal is, and fill in all movement details automatically – by searching for the control strategy
(or control law) that achieves the best possible performance. While the search process itself is
sometimes cast as a model of behavioral change22,23,32,38,39, most existing models focus
on the outcome of that search – which corresponds to skilled performance.

Before the powerful machinery of optimal control can be applied, the modeler has to decide
on: (1) a family of control laws under consideration along with a compatible musculo-skeletal
model; (2) a quantitative definition of task performance. Performance is measured as the time-

NIH Public Access
Author Manuscript
Nat Neurosci. Author manuscript; available in PMC 2006 July 5.

Published in final edited form as:
Nat Neurosci. 2004 September ; 7(9): 907–915.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



integral of some instantaneously defined quantity called a cost function. The cost is a scalar
function which depends on the current set of control signals (e.g. muscle activations) as well
as the set of variables describing the current state of the plant and environment (e.g. joint angles
and velocities, positions of relevant objects). The choice of cost has attracted a lot of attention
in the literature, and in fact optimality models are often named “Minimum X” where X can be
jerk, torque change, energy, time, variance. This choice is of course important, and not always
transparent (see below). But the more fundamental distinction used here to categorize existing
models – a distinction that leads to different views of sensorimotor processing – concerns the
type of control law.

The first category of models reviewed below focus on open-loop control: they plan the best
sequence of muscle activations (or joint torques, or limb postures), ignore the role of online
sensory feedback, and usually assume deterministic dynamics. Such models differ mainly in
the cost function they optimize, and often yield detailed and accurate predictions of behavior
averaged over multiple repetitions of a task. But open-loop optimization has two serious
limitations. First, it implies that the neural processing in the mosaic of brain areas involved in
online sensorimotor control does little more than play a prerecorded movement tape – which
is highly unlikely40. Second, it fails to model trial-to-trial variability30; the stereotypical
movement patterns it implies are much more common in constrained laboratory tasks than in
the real world41 – which is why such models have had limited impact in fields emphasizing
unconstrained behavior (e.g. Development, Kinesiology, Physical Therapy, Sports Science).

The second category of models focus on closed-loop control: they construct the sensorimotor
transformation (or feedback control law) that yields the best possible performance when motor
noise as well as sensory uncertainty and delays are taken into account. These models predict
not only average behavior, but also the task-specific sensorimotor contingencies that the CNS
uses to make intelligent adjustments online. Such adjustments enable biological systems to
“solve a control problem repeatedly rather than repeat its solution”41, and thus afford
remarkable levels of performance in the presence of noise, delays, internal fluctuations, and
unpredictable changes in the environment. Optimal feedback control has recently made it
possible to unify a wide range of concepts and observations (e.g. kinematic regularities, motor
synergies and controlled parameters, end-effector control, motor redundancy and structured
variability, impedance control, speed-accuracy trade-offs) into a cohesive theoretical
framework. It may further allow several important extensions: principles for hierarchical
sensorimotor control33,42,43, automated inference of task goals given movement data44–
46, and neuronal models of spinal24,28,29 as well as motor cortical function47 (see also Box
1).

Open-loop optimization: Models of average behavior
The majority of existing optimal control models1–23 predict average movement trajectories
or EMGs, by optimizing a variety of cost functions. Ideally, the cost assumed in an optimal
control model should correspond to what the sensorimotor system is trying to achieve. But
how can this be quantified? A rare case where the choice of cost is transparent are behaviors
that require maximal effort – e.g. jumping as high as possible19, or producing maximal
isometric fingertip force20. Here one simply optimizes whatever subjects were asked to
optimize, under the constraint that each muscle can produce limited force. The model
predictions agree with data19,20, especially in well-controlled fingertip force experiments
where fine-wire EMGs from all participating muscles have been obtained20.

In many cases however, the cost that is relevant to the sensorimotor system may not directly
correspond to our intuitive understanding of “the task”, and so its detailed form should be
considered a (relatively) free parameter. A recent attempt to measure that parameter, in a virtual
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aiming task48, suggests a cost for final position error that is quadratic when the error is small
but saturates for larger error. It would be very useful to have a general data analysis procedure
that infers the cost function given experimental data and a biomechanical model. Some results
along these lines have been obtained in the computational literature44–46, but a method
applicable to Motor Control is still lacking. In the absence of empirically derived costs
researchers have experimented with a variety of definitions, and found that motor behavior is
near-optimal with respect to costs that are flexible and task-dependent. Below, open-loop
models are sub-divided according to the cost they optimize.

Energy
Detailed optimal control modeling has its longest history in Biomechanics, and locomotion in
particular, where most models minimize energy used by the muscles 1–7. While precise models
of metabolic energy consumption that reflect the details of muscle physiology are rare, a
number of cost functions that increase supra-linearly with muscle activation yield realistic and
generally similar predictions4. Some models use optimization in a limited sense: they start
with the experimentally measured kinematics of the gait cycle, and compute the most efficient
muscle activations or joint torques that could cause the observed kinematics3,5. Avoiding this
limitation leads to more challenging dynamic optimization problems1,6. In a recent model6
incorporating 23 mechanical degrees of freedom and 54 muscle-tendon actuators, only the
initial and final posture of the gait cycle were specified empirically. The optimal sequences of
muscle activations, joint torques, and body postures were then obtained by minimizing total
energy. Considering how many details were predicted simultaneously (after 10000 hours of
CPU time!), the agreement with kinematic, kinetic, and EMG measurements is striking6.

Smoothness
Energy minimization alone fails to account for average behavior in arm movements8, eye
movements17, and some full-body movements such as standing from a chair11. The usual
remedy in such cases is a smoothness cost, that penalizes the time-derivative of hand
acceleration9,10,12,13 (i.e. jerk), or joint torque14,15, or muscle force11. These models are
less “ecological”: while the nervous system has obvious reasons to care about energetic
efficiency or accuracy, it is much less clear a priori why smoothness might be important.
Nevertheless, smoothness optimization has been rather successful in predicting average
trajectories – particularly in arm movement tasks. The idea was first introduced in the
minimum-jerk model9,10, where it accounts for the straight paths and bell-shaped speed
profiles of reaching movements, as well as a number of trajectory features in via-point tasks
(where the hand is required to pass through a sequence of “via-points”). A more accurate but
also more phenomenological model fits the speed profiles of arbitrary arm trajectories, by
computing the minimum-jerk speed profile along the empirical movement path12. It also
captures the inverse relationship between speed and curvature, better than the 2/3 power
law49 previously used to quantify that phenomenon. The minimum-jerk model has been
extended to the task of grasping, by using a cost that includes the smoothness of each fingertip
trajectory plus a term that encourages perpendicular approach of the fingertips to the object
surface13. This model of independent fingertip control explains many observations from
grasping experiments (in particular the effects of object size on hand opening and timing),
without having to invoke the previously proposed separation between hand transport and hand
shaping. Smoothness optimization has also been formulated on the level of dynamics – by
minimizing the time-derivative of joint torque14,15. Interestingly, despite the nonlinear
dynamics of the arm, the hand reaching trajectories predicted by this model are roughly straight
in Cartesian space; in fact, their mild curvature agrees with experimental data. The minimum
torque-change model also accounts for the lack of mirror symmetry observed in some via-point
tasks14,15 – a phenomenon inconsistent with models that ignore the nonlinear arm dynamics.
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Accuracy
The above models yield average behavior that achieves the task goals accurately. But one can
be perfectly accurate on average and yet make substantial variable errors on individual trials.
Within the limits of open-loop optimization, this issue was addressed by the minimum variance
model16 where the sequence of muscle activations is planned so as to minimize the resulting
variance of final hand positions (i.e. endpoint variance). Note that motor noise is known to be
control-dependent – its magnitude is proportional to muscle activation21,50,51 – and so the
choice of control signals affects movement variability. This form of optimization is loosely
related to smoothness: nonsmooth movements require abrupt changes of muscle force, which
require large EMG signals (to overcome the low-pass filtering properties of muscles), which
lead to increased control-dependent noise. Indeed, this model predicts reaching trajectories
very similar to the (successful) predictions of the minimum torque-change model, and also
accounts for the inverse speed-curvature relationship found in elliptic movements49. It will be
interesting to see if the more general relationship between path and speed, that is captured by
the path-constrained minimum-jerk model12, can also be explained. The minimum variance
model predicts, in impressive detail, the magnitude-dependent speed profiles of saccadic eye
movements16,17. For eye movements the predictions are also accurate on the level of muscle
activations, but it is not yet clear if the same holds for arm movements. An extension to obstacle
avoidance tasks18 accounts for the empirical relationship between the direction-dependent arm
inertia and the margin by which the hand clears the obstacle52; this is another phenomenon
inconsistent with kinematic models. Note that in addition to average trajectories the minimum
variance model also predicts the pattern of variability; but since it ignores feedback, and
variability is significantly affected by feedback (especially in movements of longer duration),
the latter prediction is less reliable.

Multi-attribute costs
Exploration of simple costs has illuminated the performance criteria relevant in different tasks.
But the true performance criterion in most cases is likely to involve a mix of cost terms53.
Even if accuracy in the minimum variance sense16 can completely subsume smoothness
optimization, it is clear that energetics is also a factor in many tasks. A cost function combining
accuracy (under control-dependent noise) and energy was used to predict muscle directional
tuning, i.e. how the activation of individual muscles varies with the direction of desired net
muscle force21. Under quite general assumptions, it was shown analytically that the optimal
tuning curve is either a full cosine or a truncated cosine – as observed empirically54. Cosine
tuning curves (for wrist muscles) were also predicted by a recent model that only minimizes
energy22.

While open-loop models tend to optimize simple costs subject to boundary constraints (e.g.
hand position, velocity and acceleration specified at the beginning and end of the
movement10), such constraints are inapplicable to stochastic problems where the final state is
affected by noise. Instead, stochastic models have to use final accuracy costs in addition to
whatever costs are defined during the movement30,31. The modeler then has the non-trivial
task of assigning relative weights to quantities that have different units (e.g. metabolic energy
and endpoint error). It may be possible to automate this, using an algorithm55 that converts
probabilistic constraints (e.g. a threshold on endpoint variance) into mutli-attribute costs. Note
that such costs can significantly enrich optimality models: different weight settings yield
different predictions, which can be tested experimentally by varying the relative importance
of different aspects of task performance. The speed-accuracy trade-offs discussed below are
an example of that. Also, the weights that define a multi-attribute cost could be used as
command signals by higher-level control centers; this may play an important role in future
optimality models that have hierarchical structure (see last section).
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Closed-loop optimization: Models of sensorimotor integration
Instead of focusing on average behavior, which reflects neural information processing rather
indirectly, sensorimotor integration can be modeled much more directly via closed-loop
optimization24–27,30–33. Here both sensory and motor noise are incorporated in the
biomechanical model, and the optimization is performed over the family of all possible
feedback control laws. As explained next, this class of models can address all phenomena that
open-loop models address, and much more.

Optimal feedback control – a unifying framework
What is optimal feedback control, and how is it related to optimal open-loop control? Both
optimization procedures start with a cost defining the task goals, as well as an initial state (fig
1). Open-loop optimization then yields a “desired” movement. Since open-loop control makes
little sense in the presence of noise, the movement plan is usually thought to be executed by a
feedback controller – which uses some servo mechanism to cancel the instantaneous deviations
between the desired and actual state of the plant. That mechanism however is predefined, and
is not taken into consideration in the optimization phase. In contrast closed-loop optimization
treats the feedback mechanism as being fully programmable, i.e. it constructs the best possible
transformation from states of the plant and environment into control signals. The resulting
controller does whatever is needed to accomplish the task: instead of relying on preconceived
notions of what control schemes the sensorimotor system might use, optimal feedback control
lets the task and biomechanical model dictate the control scheme that best suits them. This may
yield a force-control scheme in an isometric task where a target force level is specified, or a
position-control scheme in a postural task where a target limb position is specified; but in less
trivial tasks the optimal control scheme will generally be one that we do not yet have a name
for. Such flexibility, however hard to grasp, matches the flexibility and resourcefulness
apparent in motor behavior41.

The numerical methods used to approximate optimal feedback controllers are rather
involved56–61, and computationally expensive. One class of such methods – Temporal
Difference Reinforcement Learning60 – have been used with remarkable success to model
many aspects of reward-related neural activity62–65. Almost all available methods are based
on the fundamental concept of long-term performance, quantified by an optimal cost-to-go (or
value) function. For every state and point in time, this function tells us how much cost (or
reward) is expected to accumulate from now until the end of the movement, assuming we
behave optimally. Box 1 clarifies the optimal cost-to-go function, its importance in the
computation of optimal controls, and its potential role in future analyses and models of motor
cortical activity.

The above discussion implied that feedback controllers map actual states into control signals.
But when the state of a stochastic plant is observable only through delayed and noisy sensors,
the controller has to rely on an internal estimate of the state (fig 1b). The resulting controls are
optimal only when the state estimator is also optimal, i.e. Bayesian. Such an estimator takes
into account sensory data, recent control signals, knowledge of plant dynamics, as well as its
earlier output, and weights all these sources of information regarding the current state in
proportion to their reliability. In modeling practice one typically uses a Kalman filter – which
is the optimal estimator when the plant dynamics are linear and the noise is Gaussian, and
provides a good approximation in other cases58. A number of studies suggest that perception
in general66, and online state estimation in particular67–69, are based on the principles of
Bayesian inference. A key feature of optimal estimators is their ability to anticipate state
changes before the corresponding sensory data has arrived. This requires either explicit or
implicit knowledge of plant dynamics, i.e. an “internal model”. There is a growing body of
both psychophysical70–73 and neurophysiological74,75 evidence in support of this notion,
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although critics point out that some of it is rather indirect76. The formation of internal models
through adaptation was initially interpreted in the context of movement planning70; recent
results77–81 however paint a much more complex picture, and suggest39 the kind of flexibility
that optimal feedback control affords. Note that here I am only referring to what are usually
called internal forward models – as distinguished from internal inverse models. The latter are
thought to transform task goals into motor commands; but since this is the job of a controller,
I believe the “inverse model” terminology should be avoided.

While the distinction between open- and closed-loop control was traditionally seen as a
dichotomy worth debating, it is increasingly realized that one is simply a special case of the
other82. Because the optimal feedback controller is driven by an optimal state estimate rather
than raw sensory input, it responds appropriately to any information supplied by the estimator
– regardless of whether that information reflects immediate sensory data, or past experiences,
or predictions about the future. The anticipative capabilities of the estimator allow the controller
to counteract disturbances before they cause errors – by generating net muscle force when the
direction and time course of the disturbance are predictable70,83, or by adjusting muscle
coactivation (and thereby limb stiffness and damping) when only the magnitude of the
disturbance is known78,84. It is technically straightforward to incorporate an open-loop control
signal in the feedback control law, by treating time as another state variable; however,
adaptation experiments85 reveal a strong preference for associating time-varying forces with
limb positions and velocities rather than time. Optimal feedback control yields a servo
controller when the task explicitly specifies a limb trajectory to be traced, and approaches open-
loop control when sensory noise or delays become very large. Thus the differences between
the two classes of models are most salient when: (i) the movement duration allows time for
sensory-guided adjustments; (ii) the task goal can be achieved by a large variety of movements.
Most everyday behaviors have these properties.

Scaling laws and online corrections
Stochastic optimal control explains one of the most thoroughly investigated properties of
discrete movements: the scaling of duration with amplitude and desired accuracy86,87. This
scaling is quantified by Fitts’ law, which states that movement duration is a linear function of
the logarithm of movement amplitude divided by target width. Fitts’ law is predicted by both
intermittent88 and continuous25 optimal feedback control models of reaching. The essential
ingredient of these models is the control-dependent nature of motor noise21,50,51 – which
makes faster movements less accurate. The recent minimum-variance model16 also predicts
Fitts’ law, via open-loop optimization. But feedback control explains25 an important additional
observation: the increased duration of more accurate movements is due to a prolonged
deceleration phase, making the speed profiles significantly skewed89. Such skewing is optimal
because the largest motor commands (and consequently most of the control-dependent noise)
are generated early in the movement, and so the feedback mechanism has more time to detect
and correct the resulting errors.

Optimal feedback control provides a natural framework for studying the responses to
experimentally-induced perturbations. In human standing, various features of ankle-hip
trajectories observed during postural adjustments have been explained27. The smooth
correction of the hand movement towards a displaced target82 – which occurs even when
subjects are unaware of the displacement – is also well explained25. An interesting
phenomenon, that appears to contradict optimality models (as well as other models90), is the
systematic under-compensation for target displacements introduced late in the movement91.
But this turns out to have an explanation39, as follows. The feedback controller is optimized
for a world where targets do not jump. So it takes advantage of stationarity – by lowering
positional feedback gains towards the end of a reaching movement, and using negative velocity
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and force feedback to stop without oscillation. Consequently, large positional errors introduced
in the stopping phase are not fully compensated.

Redundancy, synergies, uncontrolled manifolds, and minimal intervention
A recent theory of motor coordination30,92, based on optimal feedback control, brings together
a number of key ideas which have stimulated Motor Control research since the pioneering work
of Bernstein41. Here they are illustrated intuitively in context of the simplest redundant task
(fig 2); for a mathematically precise description see92.

Redundancy means that the same goal can be achieved in many different ways – e.g. many
limb trajectories can bring the fingertip to the same target. This is characteristic of most
everyday tasks41 and raises the problem of choosing one out of all possible solutions, i.e. the
“redundancy problem”. Such abundance of solutions is actually beneficial to the sensorimotor
system (since it makes the search for a solution more likely to succeed), but is a problem for
the researcher trying to understand how this choice is made. An appealing aspect of optimal
control is the principled manner in which it resolves redundancy – by choosing the best possible
control law. The latter is usually well defined: in the presence of noise, different feedback
controllers yield different performance even when the resulting average behavior is the
same42. Mathematical analysis reveals that optimal feedback controllers resolve redundancy
online. They obey a “minimal intervention” principle: make no effort to correct deviations
away from the average behavior unless those deviations interfere with task performance30,
92. This is because acting (and making corrections in particular) is expensive – due to control-
dependent noise and energy costs. It follows that solving a redundant task according to a
detailed movement plan (e.g. tracking a prespecified reach trajectory) is a suboptimal strategy,
regardless of how the plan is chosen. It also follows that experimentally-induced perturbations
should be resisted in a goal-directed manner, so that task performance is recovered although
the corrected movement may differ from baseline; this has been observed repeatedly41,93–
95.

Optimal feedback control confirms Bernstein’s intuition41 that the substantial yet structured
variability of biological movements is not due to sloppiness, but on the contrary, is an indication
that the sensorimotor system is exceptionally well designed. If we think of body configurations
as being vectors in a multi-dimensional state space (fig 2), a redundant task is one where the
state vector can vary in certain directions without interfering with the goal. A control law that
obeys the minimal intervention principle has the effect of “pushing” the state vector
orthogonally to the redundant directions. The state is also being perturbed by motor noise, and
so the probability distribution of observed states reflects the balance of these two influences.
When motor noise is isotropic, the resulting covariance ellipse is elongated in redundant
directions. Such effects have been observed in a wide range of behaviors30,41,96–98, and were
recently quantified by the “uncontrolled manifold” method for comparing task-relevant vs.
redundant variances96. Note that optimal feedback control literally creates an uncontrolled
manifold: there are directions in which the control law does not act. A different control law
that acts in all directions, e.g. by pushing the state towards the center of the plot in fig 2, can
further reduce variance in the redundant direction but only by increasing variance in the task-
relevant direction. Thus, allowing large variability in the redundant direction is necessary for
achieving optimal performance. Note however that variability structure does not necessarily
arise from redundancy; instead it may reflect structure in motor noise. An example is the
distribution of reach endpoints – which is known to be elongated in the (non-redundant)
movement direction99,100. This is likely due to the fact that muscles pulling along the
movement are more active, and therefore more affected by control-dependent noise. In
movements of longer duration the anisotropy of endpoint distributions is reduced99,100,
probably because the feedback controller has more time to make corrections. Optimal feedback
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control reproduces39 these findings for the reasons just outlined. Another example is template-
drawing, where the variance of hand position is modulated similarly to hand speed (both in
experimental data and optimal control simulations30) even though the drawing task suppresses
positional redundancy.

Lack of control action in certain directions implies correlations among control signals (fig 2 is
an extreme case where the two controls are always equal). Principal Components Analysis
(PCA) on a correlated dataset always yields a small number of principal components (PCs)
that account for a large percentage of the variance. Thus, optimal feedback control predicts
that PCA-related methods applied to EMG data will find evidence for reduced dimensionality
– which is indeed the case101,102. Such PCs correspond to the idea of motor synergies41,
103, or high-level “control knobs” thought to affect a few important features of the state while
leaving many others uncontrolled. This is precisely what the control law in fig 2 does: it extracts
from the two-dimensional state vector a single task-relevant feature, and generates controls
which selectively affect that feature. Fig 3 illustrates the emergence of synergies and structured
variability in a more complex task (see legend). By representing the feedback controller as a
neural network, we can see more clearly how it compresses the 12-dimensional state vector
into just two task-relevant features, and then expands them into a vector of 5 control signals
(whose variance can therefore be accounted for by only two PCs). We also see the emergence
of movement regularities that reflect biomechanical structure rather than control objectives.

Hierarchical sensorimotor control in the context of optimality
Sensorimotor function results from multiple feedback loops that operate simultaneously:
tunable muscle stiffness and damping provide instantaneous feedback; the spinal cord
generates the fastest neural feedback; slower but more adaptable loops are implemented in
somatosensory and motor cortices, visuo-motor loops involve parietal cortex, etc. The different
latencies may be arranged so that slower but more intelligent loops respond to perturbations
just when the faster loops are about to run out of steam104. An important step towards
understanding how this complex mosaic produces integrated action was Bernstein’s
analysis105, translated in part only recently106. It suggested a four-level functional hierarchy
for human motor control: posture and muscle tone, muscle synergies, dealing with three-
dimensional space, and organizing complex actions that pursue more abstract goals. It also
suggested that any one behavior involves at least two levels of neural feedback control: a
leading level that monitors progress and exploits the many different ways of achieving the goal,
and a background level that provides automatisms and corrections without which the leading
level could not function. Note that although the task-relevant features illustrated in fig 2 and
3 are reminiscent of a higher level of control, all feedback models discussed so far involved a
single sensorimotor transformation.

Computational modeling that aims to capture the essense of feedback control hierarchies – via
optimization29,33,42,43 or otherwise107 – is still in its infancy. Anatomically specific
models29,42 emphasize the distinction between spinal and supra-spinal processing and take
into account our partial understanding of spinal circuitry; such models may prove very useful
in elucidating spinal cord function, especially in lower species. Models33,43 that aim to explain
complex behavior emphasize a functional hierarchy: the low level of neural feedback augments
or transforms the dynamics of the musculo-skeletal system, so that the high level “sees” a
composite dynamical system that is easier to (learn how to) control optimally. One way to
construct an appropriate low level is through unsupervised learning – which captures the
statistical regularities present in the flow of motor commands and corresponding sensory
data43. Note that unsupervised learning has a long history in the sensory domain108 where it
has been used to model neural coding in primary visual cortex109 as well as the auditory
nerve110. Another approach is inspired by the minimal intervention principle: if we guess the
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task-relevant features that the optimal feedback controller will use in the context of a specific
task, then we can design a low level feedback controller that extracts those features, sends them
to the high level, and maps the descending commands (which signal desired changes in the
task features) into appropriate muscle activations33. When coupled with optimal feedback
control on the high level, both of these approaches yield hierarchical controllers that are
approximately optimal – at a fraction of the computational effort required to optimize a non-
hierarchical feedback controller33,43. Related ideas have also been pursued in robotics111,
112. Apart from modeling sensorimotor function, such hierarchical methods hold promise for
real-time control of complex robotic prostheses as well as electrical stimulators113 implanted
in multiple muscles.

A number of “end-effector” control models26,88,114–117, formulated in the context of
reaching tasks, are related to the present discussion. They postulate kinematic feedback control
mechanisms that monitor progress of the hand towards the target, and issue desired changes
in hand position or joint angles. These models do not specify how muscles are activated by a
low-level controller. In the stochastic iterative correction model88, the hand and target
positions are compared and corrective submovements towards the target are (intermittently)
generated; submovement magnitudes are chosen so as to minimize control-dependent noise.
The vector-integration-to-endpoint model116 is similar, except that here the comparison is
continuous, and the hand-target vector is multiplied by a time-varying GO signal which maps
distance into speed. The minimum-jerk10 model of trajectory planning has also been
transformed into a feedback control model: at each point in time, a new minimum-jerk
trajectory appropriate for the remainder of the movement is computed (starting at the current
state), and its initial portion is used for instantaneous control26. The latter is an example of
model-predictive control – an approach gaining popularity in engineering118. Two related
models114,117 take us a step further – to the level of joint kinematics. An earlier model114
proposed that each joint is moved autonomously, in proportion to how much moving that joint
alone affects the hand-target distance. In retrospect, the joint increments computed in this way
correspond to the gradient (i.e. list of partial derivatives) of the hand-target distance with respect
to the joint angles. However, the idea of gradient-following was formalized and compared to
data only recently 117. A related (although rather abstract) approach to coordination in the
presence of redundancy is afforded by Tensor Network Theory115. Note that the latter models
are in effect optimization models: the gradient is the minimal change in joint angles that results
in unit displacement of the hand towards the target.

It is not yet clear how the predictions of hierarchical models of optimal sensorimotor control
will differ from non-hierarchical ones. But as the following example illustrates, consideration
of low-level feedback loops may be essential for reaching correct conclusions. One of the most
prominent arguments36 in favor of trajectory planning is the observation119 that a limb
perturbed in the direction of a target “fights back”, as if to return to some moving virtual
attractor. This is indeed inconsistent with kinematic feedback control that always pushes the
hand towards the target. But in the context of hierarchical optimal control, the phenomenon
has a simple explanation that does not involve a hypothetical trajectory plan: (i) neural feedback
is delayed while tunable muscle stiffness and damping act instantaneously; (ii) the neural
controller knows that, and coactivates muscles preemptively so as to ensure an immediate
response when unexpected perturbations arise; (iii) muscles are dumb feedback controllers
which, once coactivated, resist perturbations both away from the target and towards it. Thus,
a response which appears task-inappropriate from a kinematic perspective may actually be
optimal when muscle properties, noise, sensorimotor delays, and the need for stability are taken
into account42.
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Fig 1. Schematic illustration of open- and closed-loop optimization
(a) The optimization phase, which corresponds to planning or learning, starts with a
specification of the task goal and the initial state. Both approaches yield a feedback control
law, but in the case of open-loop optimization the feedback portion of the control law is
predefined and not adapted to the task. (b) Either feedback controller can be used online to
execute movements, although controller 2 will generally yield better performance. The
estimator needs an efference copy of recent motor commands in order to compensate for
sensory delays. Note that the estimator and controller are in a loop; thus they can continue to
generate time-varying commands even if sensory feedback becomes unavailable. Noise is
typically modeled as a property of the sensorimotor periphery, although a significant portion
of it may originate in the nervous system.
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Fig 2. Minimal intervention principle
Illustration of the simplest redundant task, adapted from30. x1,x2 are two uncoupled state
variables, each driven by a corresponding control signal u1,u2 in the presence of control-
dependent noise. The task is to maintain x1 + x2 = target and use small controls. The optimal
u1 and u2 are equal – to a function that depends on the task-relevant feature x1 + x2 but not on
the individual values of x1 and x2. Thus u1 and u2 form a motor synergy. Arrows show that the
optimal controls push the state vector orthogonally to the redundant direction (along which
x1 + x2 is constant). This direction is then an uncontrolled manifold. The black ellipse is the
distribution of final states, obtained by sampling the initial state from a circular Gaussian, and
applying the optimal control law for one step. The gray circle is the distribution under a different
control law, that tries to maintain x1 = x2 = target/2 by pushing the state towards the center of
the plot. Such a control law can reduce variance in the redundant direction as compared to the
optimal control law, but only at the expense of increased variance in the task relevant direction,
as well as increased control signals (not shown). See30 for technical details.
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Fig 3. Application of optimal feedback control to a redundant stochastic system
(a) The plant is composed of 3 point masses (X,Y,Z) and 5 actuated visco-elastic links, moving
up and down in the presence of gravity30. The task requires point mass X (i.e. the “end-
effector”) to pass through specified targets at specified points in time. The state vector includes
the lengths and velocities of links 1–3, the activation states of all actuators (modeled as low-
pass filters), and the constant 1 (needed for technical reasons). The optimal feedback controller
in this case is a 5x12 time-varying matrix. To understand how this matrix transforms estimated
states into control signals, it was averaged over time and represented as a linear neural network
(using Singular Value Decomposition). (b) Weight matrices in the neural network (color
denotes sign, area denotes absolute value, ‘x’ denotes zero weight). The rows of WS correspond
to the task-relevant features being extracted; WF are feedback gains; the columns of WM are
motor synergies. The bottom feature (with much bigger gain) extracts something closely related
to end-effector position, by summing the lengths of links 1–3. The structure of the motor
synergies reflects the symmetries of plant: links 3 and 5 (which act on the end-effector) are
treated as a unit; links 1 and 4 (which transmit to the ground the forces generated by 3 and 5)
are treated as another unit; link 2 is not actuated at all. (c) Trajectories of the point masses from
5 simulation runs. The trajectories of the end-effector are overall more repeatable than the other
two point masses; also, the end-effector trajectories themselves show less variability when
passing trough the targets – as observed in via-point tasks30. These are both examples of
variability structure arising from the minimal intervention principle. Note that the distance
between the two intermediate point masses Y and Z is kept constant on average; this is an
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interesting emergent property due to the structure of the optimal motor synergies (which in
turn reflect the structure of the plant).
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Box 1. Properties of the optimal cost-to-go function
Consider the task (a) of making a pendulum swing up as quickly as possible. The pendulum
is driven by a torque motor with limited output, and has to overcome gravity. Since this is a
second-order system, the state vector includes the pendulum angle and angular velocity. The
cost function penalizes the vertical distance away from the upright position (b) as well as the
squared torque output. If we attempt to minimize this cost greedily, by always pushing up, the
pendulum will never rise above some intermediate position where gravity balances the maximal
torque the motor can generate. The only way to overcome gravity is to swing in one direction,
and then accelerate in the opposite direction. This is similar to hitting and throwing tasks, where
we have to move our arm back before accelerating it forward. The important point here is that
the cost function itself does not directly suggest such a strategy. Indeed, the relationship
between costs and optimal controls is rather subtle, and is mediated by another function: the
optimal cost-to-go. For each state, this function tell us how much cost we will accumulate from
now until the end of the movement, assuming we choose controls optimally. The optimal cost-
to-go obeys a self-consistency condition known as Bellman’s optimality principle: the optimal
cost-to-go at each state (c) is found by considering every possible control at that state, adding
the control cost to the optimal cost-to-go for the resulting next state, and taking the minimum
of these sums. The latter minimization also yields the optimal control; in (d) the color
corresponds to the optimal torque as a function of the pendulum state (black: max negative;
white: max positive). Plot (c) shows two optimal trajectories starting at different states. One
uses the strategy of swinging back and then forward; the other goes straight to the goal because
the initial velocity is sufficient to overcome gravity.
Note that both trajectories in (c) are moving roughly downhill along the optimal cost-to-go
surface (i.e. from light to dark). This is because, for a large class of problems, the vector of
optimal control signals can be computed by taking the negative gradient of the optimal cost-
to-go function, and multiplying it by a matrix that reflects plant dynamics and energy
costs30,92. This gradient, known in control theory is the costate vector, is a vector with the
same dimensionality as the state; it tells us how to change the state so as to increase the cost-
to-go most rapidly. Now imagine that the costate vector is encoded by some population of
neurons – which would not be surprising given its fundamental role in the computation of
optimal controls. Since optimal controls are obtained from the costate via simple matrix
multiplication, the activities of these neurons can directly drive muscle activation. This is
reminiscent of a model120 of direct cortical control of muscle activation, and suggests that the
costate vector is something that might be encoded in the output of primary motor cortex. What
does the costate look like? As explained above, it is related to how the state varies under the
action of the optimal controller; so if the state includes position and velocity, the costate might
resemble a mix of velocity and acceleration. But this relationship is loose; the only general
way to find the true costate is to solve the optimal control problem.

Todorov Page 19

Nat Neurosci. Author manuscript; available in PMC 2006 July 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


