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Abstract: One of the challenging tasks in systems biology is to understand how molecular

networks give rise to emergent functionality and whether universal design principles apply

to molecular networks. To achieve this, the biophysical, evolutionary and physiological

constraints that act on those networks need to be identified in addition to the characterisation

of the molecular components and interactions. Then, the cellular “task” of the network—its

function—should be identified. A network contributes to organismal fitness through its

function. The premise is that the same functions are often implemented in different

organisms by the same type of network; hence, the concept of design principles. In biology,

due to the strong forces of selective pressure and natural selection, network functions can

often be understood as the outcome of fitness optimisation. The hypothesis of fitness

optimisation to understand the design of a network has proven to be a powerful strategy.

Here, we outline the use of several optimisation principles applied to biological networks,

with an emphasis on metabolic regulatory networks. We discuss the different objective

functions and constraints that are considered and the kind of understanding that they provide.

Keywords: metabolic regulatory networks; optimal regulation; systems biology; design

principles
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1. Introduction

The availability of genome-wide datasets is increasing rapidly. Surprisingly, more data does not, per

se, lead to better understanding. In other words, a mechanistic understanding of biological networks that

are used to generate these datasets is lacking behind. One reason for being so is the emergent behaviour

that arises from the interactions within these networks. Consequently, the systemic consequences of

molecular perturbations cannot be predicted, nor does it lay bare the molecular mechanisms leading

to cellular behaviour. Systems biology develops methodology to overcome these limitations and

supplements molecular cell biology. Systems biology aims to understand the (dys-) function of living

organisms by studying the dynamics of molecular networks; effectively by answering how molecular

interactions give rise to cellular behaviour [1–3].

To achieve understanding of the function of a molecular network and how this results from molecular

interactions requires the identification of the molecular make-up as an obvious first (and important) step.

This often involves whole-genome sequencing, additional biochemical knowledge (“legacy data”) and

experiments. Such approaches have led to the determination of the topology of metabolic networks for

a great number of organisms [4,5]. Yet, how those molecular networks are rewired during adaptive

responses, i.e., how they are regulated and why, is less well understood [6]. This problem is so

challenging because it requires the integration of signalling, gene, and metabolic networks. Metabolic

networks alone are already composed of thousands of interactions between enzymes and metabolites.

The activity of metabolic networks results in a complex manner from internal constraints (such as

enzyme kinetics, physico-chemical parameters, thermodynamics) and the interplay between environment

and the impact of the associated signalling and gene network. Together these networks form, what we

will call, the metabolic regulatory network (MRN, Figure 1). This complex network displays multiple

overlapping regulatory interactions and feedback regulation. The recognition of this complexity has

inspired many studies to integrate datasets from different cellular regulatory levels [7–12]. These and

other studies often address how activities or components are affected by environments. Yet, a very

different question is why this particular behaviour is there in the first place. Is it possible to understand

the design principles of MRNs? We think we can, and we think that such understanding will help in

finding the generic biological structures underlying the piles of data that are being gathered with todays

technologies.

Figuring out the design principles of a MRN compares to a reverse engineering strategy. In order

to design a certain device, an engineer needs a system specification saying what the system should

do—what its function is—and all the relevant constraints should be considered, e.g. the production costs,

life-time of the device, etc. When one studies a biological design, the reverse approach is required. The

function—arising from the “specs”—and the relevant constraints need to be identified. When a similar

function occurs across organisms or networks and when those are achieved by similar networks, a design

principle is found. In other words, a design principle can be seen as the mechanism for network functions

that have proven to be successful in evolution. Such principles likely have emerged as the outcome of

similar selective pressures. Thus, in biology, it makes sense to identify design principles as the result of

an optimisation process of (a determinant of) fitness. The outcome of an optimisation of a given fitness
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measure and/or a given set of constraints is then taken as a hypothesis that can either be falsified or

verified [13]. This process will be discussed in this review (Figure 2).

Figure 1. Overview of regulatory interactions involved in metabolic regulatory networks.

The function of metabolic networks are governed by constraints. The regulation of a

metabolic network involves a tight interplay between different cellular networks such as

signalling and gene networks and by interactions with its environment. The enzyme

capacity is the net result of the amount of enzyme expressed and its activity as dictated

by post-translational modification and allosteric regulation. Metabolite pools and fluxes are

considered as the outputs of metabolic reaction networks and can be involved in various

regulatory feedback loops to other networks within the metabolic reaction networks as

indicated by the dashed arrows.
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We thus start from the fact that adaptations are an inherent property of all living organisms, which is

to be explained by natural selection. However, that does not mean that the adaptations are always perfect,

nor that fitness is always optimal, only that fitness changes in a direction of increase. Thus, we try to

gain insight by studying specific examples of adaptation, in the light of natural selection and historical

interactions and constraints (see also [13,14] and a classical paper criticising optimisation approaches by

Gould and Lewontin [15]).

An example of one such optimality hypothesis is the economy of protein expression. The typical

large number of enzymes in metabolic networks results in a significant burden on total cellular resources

[16–19]. Cellular fitness can only increase if the right enzymes are expressed at the right time. Thus,

the regulation, or the lack thereof, of metabolic networks can have large beneficial or adverse effects

on cellular fitness, as shown experimentally [18,20,21]. Alternatively, biological systems have been
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exploited to achieve other control objectives. Examples in bacteria include: optimisation of growth rate

[22–24]; optimal swimming pattern [25,26]; adequate timing of transcription of amino acid metabolic

enzymes [27]. The above examples have in common that they all use an optimality principle to

understand systems behaviour. Some approaches, both theoretical and experimental, aim to yield

fundamental insights into the design principles of MRNs. Other approaches, such as flux balance

analysis (FBA) simply assume such design principles exist and explore optimality to predict behaviour

at a genome-scale. We discuss the relative advantages and limitations of these approaches, with a focus

on the type of optimality hypothesis that is relevant (Figure 3). Finally, some open questions regarding

MRNs are provided.

Figure 2. Schematic overview of the interactions involved in the process of evolutionary

optimization of metabolic regulatory networks. Constraints limit the functionality of a

metabolic reaction network (MRN), which for a given environmental condition can be

analysed with respect to (a) certain objective function(s), giving rise to some fitness.

Depending on selective pressures (which in turn are also dependent on the environment),

natural selection acts on the fitness of a metabolic reaction network.
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2. Optimal Control of Metabolic Reaction Networks for Semi-Autonomous Modules

Biological functions can rarely be attributed to single molecules; instead it is the result of many

interacting molecules within cells. A convenient way of studying biological function is therefore by the

analysis of biological modules [28,29]. As proposed by Hartwell et al. [30] “Modules are composed

of many types of molecules. They have discrete functions that arise from interactions among their

components,. . . , but these functions cannot easily be predicted by studying the properties of the isolated

components.” Inspired by the similarities between biological modules and man-made objects, analyses

from control and information theory has been applied to biological modules, yielding insight in the

general principles that govern the function of biological systems, including MRNs [12,26,29]. One can

think of a module as a sub-network inside the cell that can carry out some task nearly irrespectively



Metabolites 2012, 2 533

of the state of the remainder of the molecular network inside the cell [31]. Examples of such systems

are stress-response systems, (e.g., the heat-shock system and osmotic shock response), iron scavenging

systems, or two-component signalling systems in bacteria. These systems function semi-autonomously

inside cells. Even though modules occur within molecular networks, not all functions derive from

them. For instance, current data does not suggest that metabolism can be perceived as a mosaic of

weakly coupled modules engaged in mass exchange: one responsible for alanine synthesis, another

for ATP generation, or for DNA synthesis. It is much more likely that metabolism operates as a unit

with strong interdependencies between subnetworks that carry out different functions. This should also

have consequences for its control and regulation by signalling and gene networks: i.e., about the design

principles of MRNs.

Figure 3. Different approaches to study metabolic regulatory networks classified according

to the level of detail. Depending on the level of detail of analysis, different objective

functions can be addressed. Pathway analysis refers to the analysis of (detailed) reactions

that might be embedded into a pathway. With this type of analysis why questions can be

addressed. Semi-autonomous modules function independently of the rest of the network,

and have a discrete function. Concepts from control and information theory have been

applied to understand how functionality emerges from the molecular components of these

modules. Genome scale models uses the information content from the entire genome to

figure out what flux distribution may lead to an optimal behaviour.
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2.1. Maintaining Biological Function in Dynamic Environments

In their natural habitat nearly all organisms encounter environmental dynamics that require adaptation

in order to improve fitness. These observations can have different interpretations with respect to the

aim and consequences of the networks involved. Here, we will argue that although adaptations are

indispensable, they are not the objective. Rather, it is maintaining biological functions (in varying

environments), which is in the end achieved through adaptations [14].
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Robustness is a fundamental property of biological systems [32–36]; it allows a biological system

to perform its functions despite external or internal perturbations. This necessitates robust systems to

behave in a flexible way upon disturbances without affecting the performance/function of the perturbed

network. All changes should compensate for reductions in function upon perturbation. In other words,

robustness is a mechanism that allows changes in the structure and components of the network, while

specific functions of the network are maintained. While robustness is a key feature of biological systems,

they should at the same time be evolvable; e.g., large changes in fitness should be possible as a result of

only a few mutations. This is an intriguing aspect of biological systems; robust to specific perturbations

while evolvability is maintained. In addition, a system which is robust to all types of perturbation is thus

likely to lead to an evolutionary conservatism that inhibits the discovery of new adaptive solutions [37].

Cells often achieve robustness through feedback circuitry or the activity of a signalling network,

which sense environmental changes and induce compensatory or adaptive responses. Many

characteristics of signalling modules have been studied by analysing their input-output relationship. A

feature displayed by several signalling modules is perfect adaptation. Arguably the best studied module

for perfect adaptation is bacterial chemotaxis in Escherichia coli. The signalling network in bacteria

responsible for chemotaxis has served as a classical example for understanding how functions at the

network level emerge from interactions between constituent molecular components. In this network,

as shown in Figure 4A, changes in attractant or repellent concentrations (purple star) are sensed by a

protein complex consisting of transmembrane receptors, adaptor protein CheW (blue), and a histidine

kinase CheA (orange). Autophosphorylation activity of CheA is inhibited by attractant binding and

enhanced by repellent binding to receptors. The phosphoryl group is transferred from CheA to the

response regulator CheY (yellow). The level of phosphorylated CheY (Y-P) influences the direction of

the flagellar motors. Adaptation is mediated by the action of two enzymes: CheR (green) and CheB

(brown), which adds or removes methyl groups on each receptor monomer. Feedback is provided by

CheB phosphorylation through CheA that increases CheB activity. Chemotaxis allows bacterial cells

to swim in the direction of favoured chemical attractants (such as food) or away from repellents (such

as toxic compounds) by changing the frequency of tumbling [38,39] (for reviews on chemotaxis see

[40,41] and additional references therein). Interestingly, the mechanism for chemotaxis is based on a

robustness feature called perfect adaptation (Figure 4A) [25,26,35,36]. The steady-state behaviour of the

system is independent of the concentration of the attractant or repellent, which is achieved by resetting

the output value to the pre-stimulus level. Barkai and Leibler showed, using computer simulations,

that perfect adaptation is not dependent on the fine-tuning of parameters in the network; instead, it was

shown that perfect adaptation was an intrinsic property of the connectivity of the signalling network [35].

Experimental evidence for this robustness property in chemotaxis was provided by Alon et al. [36]. In

an elegant experimental set-up these authors showed that perfect adaptation was not affected when the

levels of chemotactic proteins were changed over a wide range. This inspired other studies to apply

concepts from control and information theory resulting in the observation that an integral control system

is key for robust perfect adaptation [26,42,43]. This becomes evident when the molecular network is

represented as a block diagram (Figure 4A), with the chemoattractant as input and receptor activity

(Y-P) as output. −x represents the methylation state of the receptors. The difference between output (y1)

and a reference value (y0) represents the error. Integral control arises through the feedback loop in which
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the integrated error is fed back into the system, leading to perfect adaptation. A recent computational

search of all possible three-node networks which are able to perform perfect adaptation confirmed this

observation [44].

Perfect adaptation was also experimentally demonstrated in the regulation of osmotic shock in yeast

[45]. By means of single-cell analysis of the dynamic response of the hyper osmotic shock network, these

authors demonstrated that nuclear enrichment of a MAP kinase (Hog1) displays perfect adaptation. The

requirement of an integral feedback system to observe perfect adaptation was exploited to reveal the

importance of Hog1 kinase activity.

In contrast to perfect adaptation, another observed adaptive response is fold change detection (FCD)

[43,49,50]. In FCD the dynamics of the output is only dependent on the fold-change in the level of

the input signal, and thus not on the absolute levels of the signal. A system that displays FCD will

produce identical outputs (not only the magnitude of the response peak but also the entire profile over

time depends only on the change ratio of the stimuli) in response to, for instance, a change in input signal

from 2 to 4 compared to 10 to 20 (Figure 4B). Modules that display FCD should thus display some sort

of memory in order to compare the change in input signal to the previous state. Recently, it was shown in

a theoretical approach that FCD can be generated by a so-called incoherent feedforward loop (I1-FFL)

[49]. In a I1-FFL, an activator, X, activates a repressor Y, that in turn control target gene Z, which is also

directly activated by X. Other examples of network motifs that can display FCD are a nonlinear feedback

loop and a linear integral feedback system [51].

What are the advantages of FCD? It is postulated that having a FCD (i) ensures an adequate response

towards an activator that is known to naturally vary up to many folds and (ii) the ability to maintain

sensitive despite noise in the input signal [49] (see also section 2.2). The latter becomes clear when

considering two inputs: a low signal and a high signal. If noise is in some manner proportional

to the level of signal, a high level of noise is unavoidable for the high signal, which might cause

fundamental problems for absolute detection mechanisms. In other words, FCD allows organisms

to respond optimally to a gradient and this response is invariant of multiplying the gradient with a

constant [51].

Another characteristic of a l1-FFL motif is its ability to generate a pulse and accelerate the response.

This behaviour is the result of the two opposing inputs (X activates Z and Y; Y represses Z) that are

integrated by Z. Upon an increase in X, Z is rapidly increased, but after some time, Y builds up and

starts to decrease Z again. As a result, initially Z rises rapidly, and then its concentration drops again,

leading to pulse-like dynamics. An example of this motif can be found in the gal operon in E. coli:

external galactose is transported into the cell by a permease (GalP). Internal galactose (gal) binds to

gal isorepressor (GalS), which negatively regulates the gal operon. External glucose inhibits production

of cAMP which, when bound to protein Crp, acts as an activator of the gal operon. I1-FFL speeds

up a response (indicated by the red dots) and generates a pulse upon stimulation compared to simple

regulation (Figure 4B). The acceleration of the response, up to 3-fold compared to a simple regulation

system, arises when GalS does not completely inhibit galETK. Disruption of the l1-FFL motif, by

mutations or artificial conditions, abolished these dynamics [52].
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Figure 4. Illustration of network motifs to study molecular networks. In the left column

the molecular interactions underlying the networks are shown, the middle column shows

the network motif and corresponding characteristics are plotted in the right column. The

examples shown here, are discussed in detail in the main text. A Chemotaxis signalling

network in E. coli. (Figures adapted from [26,46]). B Catabolite repression of the gal operon

in E. coli. (Figures adapted from [31]). C Competence in Bacillus subtilllis. (Figures adapted

from [47,48]).
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2.2. Managing and Profiting from Inevitable Molecular “Noise”

The molecules that make up biological networks are continuously synthesised and degraded, where

the latter process results from intrinsic degradation and/or via dilution due to cell growth. Synthesis and

degradation rates should be balanced to maintain a molecular species at a constant level over time. Due

to the inevitable asynchrony in the individual synthesis and degradation events, fluctuations in molecule

numbers are such that transient deviations from the steady state level occur. Those fluctuations occur
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in single cells and remain invisible when populations of cells are studied. When single cells were

studied it became clear that molecular species, which occur in small numbers, such as transcription

factors, can display large fluctuations—“noise”; the coefficient of variation (defined as the ratio of the

standard deviation to the mean) ranges in 25%–40%. Even though such fluctuations are transient, they

do cause alterations in network function because they induce variable protein expression levels. In

this manner, fluctuations in molecular species can lead to phenotypic differences between genetically

identical cells living in a homogeneous environment [53,54]. In depth discussions can be found in

reviews about experimental approaches to noise in gene expression [55,56] or about the mechanisms

generating population-level variability [57–59]. Here, we will focus on how cells cope with molecular

noise, as sometimes they aim to minimise it, while in other cases they profit from it. Each of

these cases requires particular network topological features and resulting dynamic behaviours. A few

design principles have been discovered that indicate quite universal strategies for how cells cope and

exploit noise.

In many cases, molecular regulatory networks are inevitably distorted by noise—although it remains

to be shown how much of a reduction in fitness it actually causes. One situation where noise can cause

a reduction in cellular performance is when it occurs in signalling networks. Such systems respond

to environmental changes and show changes in their output, e.g., a transcription factor, upon a change

in external signal level. But, if the components of the signalling network spontaneously fluctuate in

their level and their activation state, these systems can show changes in their output even at a constant

signal level: this is when they make an error. This effectively reduces the capacity of cells to distinguish

alternative environmental states. The number of distinguishable states can be related to the characteristic

size of the change in the output level due to changes in the signal level divided by the size of the output

change induced by spontaneous fluctuations at a fixed signal level. This measure thus compares the level

of desired signal to the level of background noise and is called the signal-to-noise ratio; a central concept

in information theory [60]. Recently, Cheong et al. [61] determined the number of environmental states

that can be distinguished by the NFκB signalling network in mammalian states and found a surprisingly

low number of only two states. Estimates by Tkacik and Bialek [60] show similar numbers for other

systems, indicating that signalling networks are severely reduced in function by noise and that cells

function despite this low performance.

Cells can also profit from noise, particularly when they are confronted with unpredictable

environments where sudden stress or food shortages can occur. One well-studied example is

the sporulation and competence response of Bacillus subtilis upon sudden stress conditions [47].

Competence is a physiological state, distinct from sporulation and vegetative growth, that enables

cells to bind and internalize transforming DNA. Based on single cell measurements, cells have either

a single (low or high) unimodal or bimodal distribution of some indicator for competence (distributions

shown as an example only, Figure 4C). Regulation of the activity of ComK, a transcription factor in the

competence network, is controlled through proteolytic degradation, quorum sensing and transcriptional

control. ComK binds to its own promoter and is required for its own expression. The competence

regulatory network therefore contains a positive feedback loop. Due to the positive feedback loop ComK

proteins (red circles) auto-stimulates itself (green arrow) after passing a threshold (green line) leading

to competence. When the ComK concentration does not cross the threshold ComK levels remain low
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and cells stay in a non-competent state as indicated on the left side. Since the start, duration, and size

of the stress is unclear and causes cell death, cells should prepare themselves and make sure that some

of them survive—they all have the same DNA so altruistic behaviour can actually occur. In growing

populations, a certain fraction of cells expresses the key regulator of competence ComK at high levels

and acquire competence for DNA uptake while the majority of cells remain in the low ComK expression

state. In this manner, a fraction of the population is prepared for the stress while others continue to

produce offspring as long as the conditions allow for this and in this process make some more dormant

cells. The exact probability for a cell to become dormant or proliferative is not fixed and is actually under

cellular control. Whether a given cell becomes proliferative or dormant is a stochastic event achieved

by molecular noise. This does not only occur in B. subtilis but also in other cells. The design principle

here is that a bistable network is used that can switch between states due to spontaneous fluctuations

in the levels of its molecular components (e.g., ComK expression level, Figure 4C), i.e., stochastic

phenotype switching.

3. Global Pathway Analysis

3.1. Optimal Gene Expression in Un-branched Metabolic Pathways

The group of Heinrich pioneered the application of optimality principles to biological systems

[62]. They studied the control structure of metabolic systems at states of optimal activity [63,64], the

optimal timing of metabolic gene expression [65], optimal gene expression patterns were found under

the assumption that expression patterns serve as regulators of cell functions [66], and tested whether

metabolic network design and stoichiometry could be the outcome of an evolutionary optimisation

process [65,67]. The optimal timing has been illustrated experimentally, whilst the other theories have

inspired new ways of thinking about biological systems but await experimental proof—provided such

experiments indeed can be done.

In the aforementioned experimental study, Zaslaver et al. measured the promoter activity of

amino-acid biosynthetic genes in E. coli over time, using GFP and Lux libraries [27]. Inspired by

earlier work from Heinrich [65], these authors used a mathematical analysis to unravel the underlying

objective of the observed timing of gene expression (a.k.a. just-in-time transcription). Based on their

analysis, it was concluded that just-in-time transcription is beneficial when selective pressures act on

rapidly reaching a new steady state with minimal enzyme production costs [27].

3.2. Playing the Optimality Game

Optimisation of organismal fitness is not always as straightforward as discussed so far. This has to

do with the fact that optimal biological traits or designs should also be evolutionary stable. Excretion of

extracellular proteins is such an intriguing trait. Let us take the excretion of extracellular protease by the

lactic acid bacterium, Lactococcus lactis, as an example. This protease is involved in the degradation

of milk proteins to form free utilisable peptides, as is needed to support growth, in conditions where

they are not (or not enough) supplied directly into the medium. One might predict that, under such
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conditions, the trait of excreting the protease will be selected for; after all, excretion of the protease

lead to more free peptides that are needed for cellular growth. However, since the proteases are excreted

extracellularly, the peptides produced do not merely benefit the cell secreting the protease, but in part also

diffuse away from it, becoming accessible to neighbouring cells. Imagine the scenario where one cell

does not excrete the protease. This “cheater” cell does not have the burden of production and excretion,

but is still able to take up free peptides. On the long term, this cheater can thus, on average, generate

more offspring leading to an increase in the protease-negative trait. Ultimately, the trait can completely

disappear in a population, as was shown experimentally [68]. Similar results were obtained in yeast that

excretes invertase extracellularly. The invertase is involved in the breakdown of sucrose into glucose and

fructose. The latter two are able to diffuse away from the cells that excreted the invertase, and therefore

accessible to other cells [69]. These two examples are a very counterintuitive outcome of the effect of

selection on the physiology of a species, even under constant conditions. A detailed theoretical analysis

of this cooperative and cheating behaviour was reviewed recently [70]. In conclusion, when fitness of a

phenotype is dependent on its frequency relative to other phenotypes in a given population, game theory

approaches are useful tools because they take evolutionary stability of traits into account.

3.3. Growth Rate Optimisation Shapes Growth Strategies

Cellular behaviour is governed by interacting networks. How is it possible to explain a global cellular

property, such as the growth rate, if one studies only a sub-part of the network? This question inspired

Molenaar et al. to propose a self-replicating model of a cell that is composed of a minimal set of required

modules, such as a module for the ribosomes, metabolic pathways, substrate transporters and lipid

biosynthesis [71]. The essence of this self-replicating model is: for a given environment, total cellular

resources are optimally allocated by the ribosomes (including allocation to synthesis of new ribosomes),

such that the growth rate is maximised. Using this approach, it was shown how the experimentally

frequently observed shift between metabolically or energy efficient and inefficient metabolism can

be explained as the result of optimising the cellular economy for growth rate. Other optimisation

approaches, including FBA (see section 4.1) and game theory (see section 3.2), have failed to explain

such shifts in metabolic strategies because they will always select one of the strategies irrespective of the

external substrate level.

3.4. Optimal Protein Expression Levels Maximise Growth Rate

Experiments in which enzyme levels were titrated using inducible promoters provide indirect but

compelling evidence that microorganisms optimally tune enzyme levels [72–74]. Interestingly, these

experiments showed that the growth rate of E. coli is maximal at the wild type level of ATPase expression,

indicating that in E. coli—for the enzymes considered—protein levels are fine-tuned to result in the

highest growth rate. Similar results have been described for glycolytic enzymes in L. lactis [75,76] as

well as the activity of the las operon [77]. In addition, laboratory evolutionary experiments [78], by

means of serial propagation [79], also confirmed that protein expression levels optimise cellular fitness.

However, the resources a microorganism has at its disposal are limited. This implies that expressing

and maintaining enzymes is costly. Indeed, it has been observed that expressing unneeded proteins
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has a negative effect on the growth rate [17–19]. Depending on the environmental conditions, protein

expression can also be beneficial. Therefore, in order to optimise fitness, a precise balance between these

two processes is required.

Above examples show that mutations affecting the amount of protein expressed are an adaptive

mechanism to deal with changing environments and thus a target for selective pressure to act on.

However, these observations do not provide an explanation in terms of the underlying design principle.

This was provided by Dekel and Alon, who proposed a quantitative model in terms of the underlying

costs and benefit of protein expression [20]. Using the lac operon in E. coli, these authors were

able to experimentally measure the cost and benefit of protein expression of β-galactosidase (LacZ),

which hydrolyses lactose into glucose. While increasing the expression level of this enzyme will

increase the cost, the benefit of its activity will increase with increasing lactose concentrations. Cost

and benefit were measured by the effect of different protein expression levels on the growth rate at

different lactose concentrations. The optimal expression level—that is, where the difference between

benefit and cost is maximal—was measured for different lactose concentrations. Interestingly, a serial

propagation evolution experiment, at different lactose concentrations, revealed that cells adapt their

protein expression level to the predicted optimal level (within a few hundred generations) [20]. This

indicates that, under the right environmental conditions, the selection pressure on a single protein can be

very strong.

Additionally, Eames and Kortemme recently presented an approach to perturb the production,

function and folding efficiency in redesigned E. coli strains, and showed that the lac permease (LacY)

activity is a major physiological source of expression costs in the lac operon [21]. The cost scales linearly

with LacY activity (and not with LacZ) and outweighs cost-effects of protein production and misfolding

in the lac operon. In light of the regulatory network of the operon, these results signify mechanisms that

minimise the physiological costs of LacY activity, such as the direct inactivation of LacY function in the

presence of glucose and other carbon sources, known as inducer exclusion.

The concept of a cost-benefit optimisation has also been applied to explain gene regulation functions

(the relation between input signals and the gene expression levels) of the lac operon [80]. Starting with

a measured gene regulation function, and assuming that this function has evolved to optimally suit the

natural environment of E. coli, the authors were able to explain the shape of the gene regulation function

in terms of underlying regulatory mechanisms. For example, the steep shape of the regulation function

at intermediate lactose levels is suggested to optimally minimise the effects of noise in an environment

with a bimodal distribution of lactose concentrations.

The definitions for cost and benefit as initially coined by Dekel and Alon [20] were explicitly given

in terms of the lac operon kinetics for E. coli. In order to make such an analysis applicable to metabolic

pathways, we recently presented generalised definitions for cost and benefit (Berkhout et al., submitted).

We propose quantitative and intuitive concepts for cost and benefit of enzymes in a metabolic pathway,

and calculate these from kinetic and biochemical data, under the assumption that fitness increases with

pathway flux. To test our predictions, a laboratory evolution experiment with Saccharomyces cerevisiae,

propagated on galactose, under growth rate selection, was performed. Interestingly, the experimental

data agree with the model predictions by showing that a high increase of growth rate is attained by

increasing phosphoglucomutase levels, as observed previously as well [81,82]. The above examples
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show that a cost-benefit analysis can shed light on biological principles such as protein expression and

gene regulation and provide a framework that carries strong predictive power.

3.5. Feasibility Analysis

The regulation of metabolic networks is the net result of the interplay between modulation of enzyme

levels [83] (sometimes called hierarchical regulation [7,84]), and metabolic regulation, e.g., via allosteric

interactions. Quantitative analyses that relate changes in metabolic fluxes to changes in transcript or

protein levels have revealed a remarkable lack of understanding of the regulation of metabolic networks.

Combining the why and how questions might be a step towards obtaining a better understanding of the

regulation of MRNs. Recently we have proposed such a method: feasibility analysis [85].

Feasibility analysis starts with a kinetic model of metabolism, of which the parameters are sampled

to create solution spaces (which are bounded by constraints) and a (sub-) set of these samples is selected

according to an objective function or multiple objective functions. Thus, feasibility analysis allows for (a

visual) discrimination between different modes of metabolic regulation, and evaluates conditions where

multiple objective functions have to be traded-off by cells. Using experimental data from long-term

carbon limited chemostat cultivation of yeast cells [86], with feasibility analysis, we were able to

understand the observed adaptations. We concluded that yeast cells, after long term adaptation, employ

a mixed strategy between (at least) two opposing strategies: decreasing enzymes expression levels as a

way to decrease enzyme overcapacity and investing in expression levels involved in taking up the limiting

growth substrate. This trade-off renders the cells specialised in a low-carbon flux state to compete for

the available glucose and get rid of the enzyme overcapacity.

Based on 13C-flux experiments in different bacteria, it was recently shown that metabolism indeed

operates close to the optimal surface defined by multiple objective functions: maximum ATP yield,

maximum biomass yield and minimal sum of absolute fluxes [87]. Using flux data from evolved E. coli

on alternating carbon sources, it was proposed that the location in the flux state space (the feasible space

constrained by the three objective functions) can be understood from an underlying trade-off between

(near-) optimality under a given condition and minimal adjustment to alternative conditions.

An advantage of feasibility analysis is that the analysis is based on a kinetic model, therefore a more

extensive set of objective functions can be implemented. An example is the objective functions that

involve dynamics, which cannot be studied within FBA. Simultaneously, it limits feasibility analysis, due

to the number of kinetic models available. Although a kinetic model of the entire metabolic network of

an organism will be extremely useful to characterise fully the mechanics of each enzymatic reaction, and

to combine such knowledge to ultimately predict system-behaviour, we are far from that. Besides some

first attempts towards this goal [88,89], the number of complete kinetics models is sparse. Furthermore,

kinetic enzyme assays are often done under in vitro conditions which do not always resemble in vivo

environments [90–92]. For a depository of available and curated models of biological systems the reader

is referred to online databases such as JWS [93] and Biomodels [94]. Note that the former also allows

for the user to run these models online.
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4. Genome Scale Models

The arrival of whole-genome sequencing techniques has provided a comprehensive description of

the genetic content (the “parts-list”) that makes up an organism. The reconstruction of all (metabolic)

reactions within an organism requires the identification of all enzymes encoded by the genome and the

chemical transitions that they participate in. A complete description of the entire genome was long

thought to be the requirement to understand biological function (and ultimately to cure diseases). It

turned out, however, that due to elaborate regulatory networks these promises could only be partially

achieved. Nevertheless, these studies have facilitated the acceleration of the development of other

experimental techniques (for instance ChIP- and RNAseq) as well as the development of an active field

of research that develops genome-scale in silico models. These models are used to explore all flux

distributions within the network which results in optimisation of an objective function.

4.1. Flux Balance Analysis

Flux balance analysis (FBA), inspired by the premise that during evolution natural selection prompts

biological systems towards optimality, assumes that cells perform optimally with respect to a given

objective function. The optimisation of such an objective function is used to find a (sub-) set of optimal

states from the large solution space that is defined by the constraints. The optimisation of the production

of biomass or ATP are examples of commonly used objective functions.

Does the optimality assumption within FBA help in understanding biological systems? Yes and no.

Let us take the optimisation of specific growth rate (that is equivalent to maximisation of the rate of

production of biomass per unit biomass [95]) as an example. There is considerable evidence that,

especially under laboratory evolution experiments, the growth rate is representative of cellular fitness.

So, how does FBA optimise the growth rate? FBA relates (measured) input and output rates via the

equation:

µ = Y substrate
biomass · Vsubstrate (1)

where µ is the specific growth rate (unit h−1), Y substrate
biomass is the biomass yield with respect to the

substrate (unit gram dry weight per mmol substrate, gDW mmol−1) and Vsubstrate is the specific

uptake rate of the growth substrate (unit mmol h−1 gDW−1). With the uptake rate fixed as an

environment-dependent capacity constraint, in order to find the highest µ, FBA just finds the flux

distribution with the highest yield. Thus, it should be realised that the maximisation of growth rate

is essentially done by finding a flux distribution that maximises Y substrate
biomass (see also [96]). Hence, FBA

can rather accurately predict flux distributions for cases where high-yield strategies are favourable [97];

however predictions using FBA fail when organisms display strategies whereby substrate is “wasted”

into byproducts, thereby lowering the biomass yield (high rate strategies). Indeed, E. coli [23] as well as

the lactic acid bacterium Lactobacillus plantarum [96] achieve optimal in silico predicted growth when

adapted on the poor substrate glycerol by serial dilution. However, on glucose, FBA predicted for L.

plantarum, biomass yields, which were too high and incompatible with the observed lactate production

[98]; similar discrepancies between model and experiment were observed for E. coli on glucose [23].
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Due to the still growing number of genome-scale models across all kingdoms, FBA is a powerful tool

to explore systemic properties of genome-scale metabolic networks for applications in biotechnology

and medicine [5,99]. Nevertheless, caution should be taken with (i) the selection of objective function

and (ii) non-uniqueness of the flux distributions that lead to optimisation of the objective function (i.e., a

whole solution space of flux distributions that is consistent with the prediction of the objective function).

In addition, point (ii) can be addressed by, for instance, flux variability analysis (FVA) [100]. FVA is

used to find the minimum and maximum flux values for the reactions in the network while maintaining

some state of the network (e.g., supporting 90% of the objective function).

4.2. Optimising the Predictive Power of FBA

The above examples point to an important aspect that obviously applies not only to FBA alone but

also to all analyses that assume some kind of optimality criteria: the predictive power critically depends

on the correspondence between the chosen objective function with the real biological objective. Indeed,

it was shown for E. coli that, within the FBA formalism, different objective functions were needed to

predict optimal flux states for different conditions [101]. The remaining part of this section will be

used to discuss different extensions and constraints of FBA that are proposed to unravel the principles

underlying the MRN.

The surmise that protein expression and maintenance is a costly process has also penetrated the field

of FBA. One way of implementing this is the minimisation of overall fluxes as the objective function.

The rationale for this approach is the assumption that the magnitude of fluxes is related to the amount

of protein required as catalyst of that flux. When applied to metabolic schemes of erythrocytes and

Methylobacterium extorquens the fluxes predicted by the method were in good agreement with those

calculated on the basis of a kinetic model [102,103]. Unfortunately, this objective too cannot explain why

microorganisms switch between metabolic strategies due to the fact that the flux-minimisation algorithm

will force some of the fluxes to zero if alternative “cheaper” reactions or pathways exist in the network.

The optimality assumption underlying FBA may be valid for wild type organisms that have been

evolved over many thousands of generations. It is less likely that this will also hold for engineered or

mutant-strains. To overcome this, extensions of FBA that use different objective functions are proposed,

such as ROOM [104] and MoMa [105]. Regulatory On/Off Minimisation (ROOM) aims to minimise the

number of significant flux changes with respect to the wild type. This method is based on the assumption

that upon a gene-knockout, the cost associated with adapting is minimised. In this manner, ROOM can be

used to predict the metabolic state of an organism after a gene-knockout. Another variant of FBA called

MoMA, which refers to the Minimisation of Metabolic Adjustment, seeks an approximate solution for

a sub-optimal growth flux state, which is nearest in flux distribution to the unperturbed wild type. Both

approaches have been shown to outperform FBA for certain specific examples [104,105]. Note, however,

that both methods require a reference flux distribution from the wild type to predict fluxes in the mutant.

In order to further improve the predictive power of FBA, there are options that do not act on the

objective function, but on the constraints that limit the ways in which the objective can be reached. An

example of an additional constraint is a molecular-crowding constraint. The rationale for this constraint

comes from the limited amount of space inside cells available for metabolic enzymes [106]. As argued
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in Section 3.3, FBA fails to predict a metabolic switch (changing from high-yield to low-yield metabolic

pathways with increasing substrate concentration). Recently, FBA extended with a molecular crowding

constraint was used in a comparative study between three organisms (E. coli, S. cerevisiae and L. lactis)

which differ in their metabolic strategies. With this extension, FBA was able to predict experimental

findings and it was reported that different metabolic strategies could be attributed to the design principle

of maintaining a redox balance within these organisms [107].

In the FBA formalism, constraints always act on the potential fluxes through reactions. First, one

tries to include additional data that can be used to constrain the fluxes, particularly for cases where

regulatory effects have a dominant influence on the behaviour of the organism’s metabolic fluxes.

Covert et al. proposed an extension to FBA using regulatory information (regulatory FBA, rFBA)

[108]. This was incorporated by means of a Boolean formalism, in which the state of a gene was

represented as either transcribed or not transcribed in response to regulatory signals. Based on whether

or not a gene was transcribed, the reactions catalysed by the corresponding enzymes were included or

removed from the stoichiometric model. Although a good start to include regulatory interactions, the

regulatory network was incomplete and imprecise. A better prediction can therefore be made when gene

expression data is used to infer regulatory networks [109]. This approach was also successful to indicate

knowledge gaps and identify previously unknown components and interactions in the regulatory and

metabolic networks [110].

There have been a number of other approaches to augment regular FBA with regulatory constraints.

Shlomi et al. [111] proposed steady-state regulatory FBA (SR-FBA). In addition to metabolic

constraints, in SR-FBA there are four additional constraints defining the type of regulation. The

combined functional state of the entire system in a given constant environment, referred to as

metabolic-regulatory steady state (MRS), is described by a pair of consistent metabolic and regulatory

steady states, which satisfy both the metabolic and regulatory constraints. Using the SR-FBA method,

the authors were able to show that a considerable number of 36 genes are redundantly expressed, that is,

they are expressed even though the fluxes of their associated reactions are zero. These 36 non-optimal

fluxes could not have been identified with a classical FBA approach and reveals that cells maintain

some sort of metabolic variability (or anticipatory behaviour) within a given growth medium. In another

approach, Van Berlo et al. suggested applying changes in gene expression as soft constraints on changes

in fluxes, i.e., it is to be expected that if the expression of a gene is increased, its corresponding flux

will also increase [112]. In their approach, flux distributions are sought that minimise the number

of violations to this rule and it was shown that changes in gene expression are predictive for changes

in fluxes.

Other examples, originating from biophysical limitations, that are used as additional constraints are

competition for membrane space [113] and grouping constraints based on genome context [114]. In the

first study it is hypothesised that the outcome of a competition for membrane space between glucose

transporters and respiratory chain proteins influences the ratio of respiration and fermentation. By

incorporating a sole constraint based on this concept in the genome-scale metabolic model of E. coli, they

were able to simulate respiro-fermentation [113]. The second study used three types of genomic context

(conserved genomic neighbourhood, gene fusion events, and co-occurrence) to estimate the likelihood
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of an entire group of fluxes to be on or off. Predictions of a genome scale model were in good agreement

with experimental data from E. coli [114].

FBA would greatly benefit from kinetic information of metabolic reactions. For some subnetworks,

such as glycolysis, these kinetic models are available, and they have been integrated with FBA (iFBA)

[115]. Focusing on the diauxic shift in E. coli the authors found a significant improvement over the

individual rFBA and kinetic model. Such approaches have the potential to combine the best of two

worlds: generating simulations which are more globally accurate and informative than the kinetic-based

model, and more accurate in their details than the rFBA model alone.

All approaches mentioned above, although coherent, still require further validation by datasets of

steady-state flux distributions and microarray data, and so at this stage it is difficult to assess which of

these methods is to be preferred. Finally, we would like to stress that predictions, true or false, are useful

either way because these predictions are testable and therefore able to confirm or rule out hypotheses.

5. Conclusion and Outlook

The overwhelming speed at which experimental data is currently generated has led to the recognition

that the complexity of the underlying networks is enormous. In order to make sense of this data, systems

biology is a scientific tool that can help in extracting design principles from it. In this review we have

presented experimental and theoretical examples of this extraction procedure based on the premise that

evolution has moulded biological networks to perform optimally. This assumption immediately raises

the question: “optimised for what?”. This is an intriguing and difficult question to answer. Optimisation

of an objective function is strongly related to cellular fitness (i.e., the ability to generate offspring),

but generally the link between fitness and molecular network properties is rather vague or indirect.

However, for several networks, especially under the standard laboratory conditions, we have quite a

good understanding of which underlying principles and mechanisms are responsible for optimising

fitness; many examples have been discussed in this review. For other networks it remains to be shown

whether the lack of understanding is due to (i) an incomplete topology of the network (e.g., missing

regulatory interactions), (ii) a lack in experimental data, or (iii) finding the right objective functions

and constraints. As argued throughout, we believe that focusing on points (i) and (iii) will shed most

light on understanding biological behaviour. Furthermore, care should be taken that biological networks

cannot be optimal at multiple objective functions at the same time. Multiple objectives have then to be

traded-off, which can be studied by means of a Pareto front [87]. In our opinion, a better understanding

of biological systems relies mainly on the identification and integration of objective functions and

constraints that have shaped current biological networks.
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