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Abstract

Given an n-verlex simple polygon P, the problem of computing the shortest weakly visible
subedge of P is that of finding a shortest line segment s on the boundary of P such thal P is
weakly visible from s (if s exists). In this paper, we present new geometric observations that
are useful for solving this problem. Based on Lhese geometric observations, we obtain optimal
sequential and parallel algorithms {or solving this problem. Qur sequential algorithm runs in
O(n) time, and our parallel algorithm runs in O(log n) time using O(n/ logn) processors in the
CREW PRAM computational model. Using the previously best known sequential algorithms
to solve this problem would take O(n?) time. We also give geometric observations that lead to
extremely simple and optimal algorithms for solving, both sequentially and in parallel, the case
of this problem where the polygons are rectilinear.

*This research was pariially done when the author was with the Department of Computer Sciences, Purdue
University, Wesi Lafayeite, Indiana, and was supported in part by the Office of Naval Research under Granis N00014-
84-K-0502 and N00014-86-K-0689, the National Science Foundation under Grant DCR-8451393, and the National
Library ol Medicine under Gran{ R01-LMO05118.

AR s m ek e e e e .




1 Imntroduction

Given a set of “opaque” geomelric objects, two points p and g are said to be visible from each other
iff the interior of the line segment 7§ does not intersect any of thgse opaque objects. Visibility is one
of the most fundamental topics in computational geometry. Visibility problems find applications
in many areas, such as computer graphics, computer vision, VLSI design, and robotics. Visibil-
ity problems also appear as subproblems in other geometric problems (like finding the shortest
obstacle-avoiding paths and computing intersections between geometric figures). Numerous effi-
cient algorithms have been designed for solving various visibility problems, in both sequential and
parallel computational models.

In this paper, we consider a weak vistbility problem. Weak visibility deals with visibility problems
in which the “observers” are of the shape of line segments. An important class of weak visibility
problems studies the case where the opaque objects are the boundaries of simple polygons. For a
point pin 2 polygon P and a line segment s, p is said to be weakly visible from s iff p is visible from
some point on s (depending on p). Polygon P is said to be weakly visible from a line segment s iff
every point p € P is weakly visible from s. Many sequential algorithms [1, 2, 3, 4, 7, 8, 9, 10, 12,
13, 15, 18, 19, 20, 21, 22, 23] and parallel algorithms [5, 6, 11, 14} for solving various weak visibility
problems on simple polygons have been discovered.

We consider the problem of computing the shortest weakly visible subedge of a simple polygon
(called it the SWVS problem). That is, given an n-vertex simple polygon P, we would like to find
a line segment s on the boundary of P such that (i} P is weakly visible from s (if s exists), and (ii)
the length of s is the shortest among all such line segments on the boundary of P (it is possible
that s is a single point on the boundary of P). Intuitively, if P represents a house whose interior
is that of a simple polygon, then s is the shortest portion of any wall of P by which a guard has to
patrol back and forth in order to keep the inside of P completely under surveillance.

There is related work on the SWVS problem. Avis and Toussaint [1] considered the problem of
detecting the weak visibility of a simple polygon (that is, deciding whether a polygon P is weakly
visible from an edge € of P, and reporting all such edges e for P); they presented a sequential linear
time algorithin for the case of checking whether P is weakly visible from a specified edge e of P.
Another sequential linear time algorithm for this case was given in [10]. Sack and Suri [20] and
Shin [21] independently gave optimal linear time algorithms for solving the problem of detecting
the weak visibility of a simple polygon. Chen {5] came up with an optimal parallel a.lgorithm‘for
this problem; Chen’s algorithm runs in O{logz) time using O(n/logn) CREW PRAM processors.

Several problems on computing weakly visible line segments with respect to a simple polygon

have been studied. Ke [15] and Doh and Chwa [8] gave O(nlogn) time algorithms for computing a
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line segment in a polygon from which the polygon is weakly visible (such a segment can be in the
interior of the polygon); in particular, Ke's algorithm finds such a line segment of shortest length.
Lee and Chwa [19] designed a linear time algorithm for computing all the maximal convex chains
or all the maximal reflex chains on the beundary of a2 polygon from which the polygon is weakly
visible. Bhattacharya et al. [3] presented a linear time algorithm for computing a shortest line
segment (not in the interior of a polygon) from which the boundary of the polygon is weakly visible
(or ezlernally visible). Ching et al. [7] showed that, if a polygon is weakly visible from a specified
edge ¢, then the shortest weakly visible subedge on ¢ can be computed in linear time by using the
algorithm in [1]. The problem of computing in parallel the shortest weakly visible subedge on a
specified polygon edge was solved optimally by Chen [6], in O(logn} time using O(n/logn) CREW
PRAM processors.

The SWVS problem, obviously, is a natural generalization of the weak visibility problem first
studied by Avis and Toussaint {1] and then by Sack and Suri [20] and Shin [21]. A straightforward
sequential solution to the SWVS problem based on these known algorithms would consist of the
following steps: (1) Compute all the edges of P from each of which P is weakly visible, by using
[20, 21]. (2) For every edge so oblained, compute the shortest weakly visible subedge on that edge,
by using [, 7). (3) Among all the weakly visible subedges computed in step {2), find the one with
the shortest length. Such an algorithm certainly solves the SWVS problem correctly. However,
because a simple polygon can have O(n) edges from each of which the polygon is weakly visible,
and because computing the shortest weakly visible subedge on a specified edge in general requires
O(=n) time {1, 7], the above algorithm takes O(n?) time.

In this paper, we present new geometric observations that are useful for solving the SWVS
problem. Based on these geometric observations, we obtain efficient sequential and parallel algo-
rithms for solving the SWVS problem. Qur sequential algorithm runs in O(n) time, and our parallel
algotithm runs in O(logn) time using O(n/logr) CREW PRAM processors. These algorithms are
obviously optimal. We also give geometric observations that lead to extremely simple and optimal
algorithms for solving, both sequentially and in parallel, the case of the SWVS problem where the
polygons are rectilinear (i.e., the edges of the polygons are either vertical or horizontal).

The parallel computational model we use is the CREW PRAM; this is the synchronous shared-
memory model where multiple processors can simultaneously read from the same memory location
but at most one processor is allowed to write to a memory location at each time unit. We also
use the EREW PRAM model, in which no simultaneous accesses to the same memory location are
allowed.

The rest of this paper consists of 5 sections. Section 2 gives some notation and preliminary

results needed in the paper. Section 3 presents the crucial geometric observations used by our algo-
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TFigure 1: The weakly visible edges of P are ey, ez, and e4.

rithms. Section 4 describes the sequential and parallel algorithms for solving the SWVS problem.
Section § gives the simple algorithms for the case of the SWVS problem on rectilinear polygons.

Section 6 concludes the paper.

2 Preliminaries

The input to the SWVS problem consists of an n-vertex simple polygon P, and the output is s,
the shortest weakly visible subedge of P (if s exists). Polygon P is specified by a sequence (v, vz,
..., 95} of its vertices, in the order in which they are visited by a counterclockwise walk along the
boundary of P, starting from vertex v;. Without loss of generality {(WLOG), we assume that no

three vertices of P are collinear.

The edge of P joining v; and viy1 is denoted by e; = 7571 (= Tig1%:), with the convention
that v,41 = v1. The boundary of P is denoted by bd(P), and the polygonal chain from »; coun-
terclockwise to v; along bd(P) is denoted by C(4,7). The size of a chain C is the number of line
segments on C, denoted by |C]|.

An edge e of P {from which P is weakly visible is called a weakly visible edge of P. We denote
the set of all the weakly visible edges of P by WVE. In Figure 1, for example, WVE = {ey, €3,
eq}. Note that, for an arbitrary simple polygon of n vertices, the set of its weakly visible edges can
be computed optimally, in O(r) time sequentially [20, 21}, and in O(logn) time using O(n/logn)
CREW PRAM processors in parallel [5]. WLOG, we assume that WVE # @ (because il WVE = §,
then P is not weakly visible from any of its edges and hence the shortest weakly visible subedge s
on bd(P) does not exist). For each edge e € WVE, we denote the shortest weakly visible subedge
of P on e by s(e).

Let WWE = {we;,we,, ..., wen}, where m = |[WVE|. Note that m can be O(a). WLOG,
~ we assume that m > c for some constant integer ¢ > 1 (c will be decided in Section 3). This is

because if m < ¢, then s is one of the m = O(1) s(e)’s, where e € WVE. The O(1) s(¢)’s can be
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computed optimally, both sequentially and in parallel, by respectively applying the algorithms in
[1, 6] to every edge e € WVE.

We label the we;’s of WVE in such a way that we; = e; and that, when walking along bd(P)
counterclockwise by starting at »;, we visit the we;’s in increasing order of their indices. In the
rest of this paper, we use the {ollowing convention for the indices of the we;’s: For every integer ¢
=1,2,..., m, wejpm = we;, and for every integer 7 = 0,1, ..., m -1, we_; = wep_;.

For an edge we; = e; € WVE, we call v; (resp., vj41) the first verlez (resp., lasi vertez) of we;,
and denote it by fu(we;) (resp., {v{we;)). For two consecutive edges we; and we;yq of WVE, where
we; = ¢; and wejy; = eg, we denote by C; the chain on bd(P) from lv(we;) counterclockwise to
Sfv(weiyy) excluding lv(we;) and fv(weiy ). Note that C; = (e;41, €542, .-, €k—1) — {241, U}, and
that C; contains no edge in WVE. C; can be § for some ¢ (when {v(we;) = fv(weiy1)). Obviously,
the we;’s and C;’s together form a partition of bd(P).

A point pin the plane is represented by its z-coordinate and y-coordinate, denoted by z(p) and
y(p), respectively. For three non-collinear points p, g, and r, we say that the directed chain {rom p
to q to r makes a left (resp., right) turn iff 2(7)(y(p) - ¥(q)) + y(r)(z(a)—z(p)) + =(p)y(2)—z(q)¥(p)
> @ (resp., < 0). For a directed simple chain C = (py,pz,...,Px), k > 3, C is said to make only
lelt (resp., right) turns iff every subchain of the form (p;_1, pi, pi+1) makes a left (resp., right) turn,
1<z <k

A vertex v; is convez if the interior angle of P at v; is < 7. An edge e; is convex if both v;
and v;4, are convex. For any edge we; € WVE, if we; is convex, then for any subchain C(j,k)
of C(lv(we;), fo(we;)), the (directed) shortest path from v; to vy inside P goes through only the
vertices on C(j,%), and the shortest path makes only right turns (this fact is shown in [1, 10]).

Hence, we call such a shortest path the internal convez path between v; and v along C(j, k).

3 Useful Geometric Observations

In this section, we present useful geometric observations for solving the SWVS problem. The
observations that we give here are new. It is these geometric observations that enable us to achieve
the optimal algorithms to be given in the next section.

The idea of our algorithms is to compute the shortest weakly visible subedge s(we;) on every
edge we; € WVE. Because |WVE] can be O(n) and because computing each s(we;) in general
requires O(n) operations, the algorithms based on this idea appear to take O(n?) operations. The

following lemmas are crucial to the optimality of our algorithms.
Lemma 1 Suppose that |WVE| > 7. Then for every edge we; € WVE, the jollowing are true:

(1) The verlez fv(we;) is visible from every point on the chain along bd( P) from veriez v’ clockwise
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Figure 2: The view between fv{we;) and p cannot be blocked: Case (1).

Figure 3: The view between fv{we;) and p cannot be blocked: Case (i1).

to vertez v/, where u' = fo(we;_3) if Ci_e # @ and v = fv(we;_3) otherwise, and v/ =

Iv(weiz) if C; # 0 and v = lv(we;1;) otherwise.

(2) The vertez lv(we;) is visible from every point on the chain along bd(P) from vertez »" coun-

g

terclockwise to vertez v", where v” = lv(we;yz) if Ciy1 # 0 and v = lv(we;ys) otherwise,

and v" = fv(we;_1) if Ciy # @ and v" = fo(we;_y) otherwise.

Proof. Note that, because |WVE]| > 7, the chains defined in (1) and (2) both do not contain we;.
We only prove (1} (the proof for (2) is symmetric).
We first prove the case where C;_» and C; are both nonempty. Let p be an arbitrary point

on the chain along bd(P) from fuv(we;—3) clockwise to lv(we;;1). To prove that p is visible from

fv(we;), we need to show that the following are true: (i) The chain along bd(P) from fuv(we;)
clockwise to p does not block the view between fu(we;) and p, and (ii) the chain along bd( P) from

fv(we;) counterclockwise to p does not block the view between fv{we;) and p. |

Case (i) Let g be a point on C;_z. If the view between fv(we;} and p were blocked by the chain |

|

along bd(P) from ¢ counterclockwise to fv{we;), then fv(we;) would have not been weakly |
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Figure 4: The view between fv(we;) and lv(we;42) cannot be blocked: When C; = 0.

visible from we;_» (see Figure 2 (a)), a contradiction. If the view between fv(we;) and p
were blocked by the chain along bd(P) {from p counterclockwise to g, then p would have not

been weakly visible from we;_; (see Figure 2 (b)), again a contradiction.

Case (i1} Let ¢ be a point on C;. If the view between fuv(we;) and p were blocked by the chain
along bd(P) from fu(we;) counterclockwise to ¢, then fv{we;) would have not been weakly
visible from we;y; (see Figure 3 (a)), a contradiction. If the view between fv{we;) and p
were blocked by the chain along 4d( P) from ¢ counterclockwise to p, then p would have not

been weakly visible from we; (see Figure 3 (b)), again a contradiction.

Suppose that C; = §. We need to show that the chain along bd( P) from fuv({we;) counterclockwise
to {v(we,42) does not block the view between fv{we;) and [v{we;y2). If the view were blocked by the
chain along bd(P) from fv(we;) counterclockwise to fv(we;yz) excluding fv{we;r2), then fo(we;)
would have not been weakly visible from we;y5 (see Figure 4 (2)), a contradiction. If the view were
blocked by we;y; itself, then {v(we;y2) would have not been weakly visible from we; (see Figure 4
(b)), 2gain a contradiction. The proof for other points on the chain along bd(P) from fuv(we;_2)
clockwise to [y(we;y2) is similar to the proof of Cases (i) and (ii) above (with edge we;4; playing
the role of G;).

The case where C;_; = @ is also proved similarly to Cases (i) and (ii). This is because the
chain along bd( P) from lv(we;_3) counterclockwise to fv(we;—1) is nonempty, and hence it can play
the role of C;_, in the above proof. For an example of fv(we;_2) not visible from fv(we;} when

Ci-2 = 0, see Figure 5. . a

Lemma 2 Suppose that |[WVE| > 7. Then for each edge we; € WVE, we; is completely visible from
every point on the chain along bd(P) from verlez u clockwise to veriez v, where u = fuv{we;_3)
f Cima # 0 and u = fo(wei_3) otherwise, and v = lv(we;y2) if Ciz1 # 0 and v = lv(wejya)

otherwise,
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Figure 5: Nlustrating the situation where fv(we;_2) is not visible from fv{we;).

Figure 6: Illustrating the proof of Lemma 2.

Proof. Let C!, be the chain along bd(P) from u clockwise to v. Because |WVE| > 7, Ci, does
not contain we;. By Lemma 1, every point p on Ci, is visible from both endpoints fuv(we;) and
{v(we;)} of we;. Hence it is easy to see that p is visible from every point on we; (see Figure 6). O

For every we; € WVE, let Ci, denote the chain along bd( P) from vertex z clockwise to vertex
v as defined in Lemma 2. The computational consequence of Lemma 2 is that, when computing
s(we;) on every edge we; ¢ WVE, we can simply ignore the effect of all the points on C},. This
is because, by Lemma 2, edge we; is completely visible from every point on C:,_. The points in P
that we need to consider when computing s(we;), therefore, are all on the following two disjoint

subchains of bd(P):
{(a) The chain from « counterclockwise to fv{we;), denoted by LC;, and
(b) the chain from v clockwise to lv(we;)}, denoted by RC;.

In summary, for every we; € WVE, the computation of s{we;) is based only on chains LC; and

RC;.
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Figure 7: Iilustrating the proof of Lemma 3.

Note that chain LC; contains at most two nonempty chains C;, where j € {{—1,7—2,i— 3}, and
that RC; contains at most two nonempty chains Cy, where k € {7,714+ 1,14+ 2}. We only discuss the
computation of s{we;) with respect to the points on RC; (the computation of s(we;) with respect
to LC; is similar).

WLOG, we assume for the rest of this section that |WVE| > 7. Note that, based on the lemmas
in this section, the integer parameter ¢ of our algorithms (¢ was introduced in Section 2) is chosen
to be 7.

The next lemma greatly reduces our effort in computing s(we;} with respect to the points on

chain RC;: It enables us to “localize” the computation to RC;.

Lemma 3 For every point p on RC; and every point q on we;, the chain along bd{(P) from p

counterclockwise fo ¢ does not block the view between p and q.

Proof. Suppose that the chain Cpy along bd(P)} from p counterclockwise to g did block the view
between p and g. Let JCP(C}q) be the internal convex path between p and g that passes only the
vertices of Cpy, and let pg’ be the line segment on ICP(C,,) that is adjacent to p (see Figure 7).
Since |[WVE| > 7, there must be at least one edge we; € WVE such that (1) we; is not adjacent to
q', and (2) we; is either on the subchain of C, from p counterclockwise to ¢’ or on the subchain
of Cyy from ¢' counterclockwise to g. If we; is on the subchain of Cp, from p counterclockwise to
¢', then ¢ would have not been weakly visible from we;, a contradiction. If we; is on the subchain
of Cpy from ¢’ counterclockwise to g, then p would have not been weakly visible from we;, again a
contradiction. a
By Lemma 3, for every point p on RC; and every point ¢ on we;, the view between p and g can
be blocked only by the chain along bd(P) from ¢ counterclockwise to p. _
We now consider the computation of s(we;) with respect to the points on RC;. We further
_ partition RC; into two subchains: (a) The chain from the endpoint v of RC; (as defined in Lemma
2) clockwise to lv(we;y1) excluding {v(wei41), denoted by RCY, and (b) the chain from [v(we;y1)

clockwise to lv(we;), denoted by RC!. The following lemmas are useful in computing s(we;).
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Figure 8: Hlustrating Lemma 5 (with we; = we;y1).

Lemma 4 For every poinl p on RC;, if fv(we;) is not visible from p, then lv{we;) must be visible

from p.

Proof. By Lemma 3, the view belween p and fv(we;) cannot be blocked by the chain along bd( P)
from p counterclockwise to fv(we;}. So if fv(we;) is not visible from p, the view must be blocked
by the chain C’ along bd(P) from p clockwise to fv{we;}. But if the view between p and {v(we;)

were also blocked by €7, then p would have not been weakly visible from we;, a contradiction. O

Corollary 1 For cvery point p on RC;, if lv(we;) is nol visible from p, then fv(we;) is visible
from p.

Proof. An immediate consequence of Lemma 4. 0

Corollary 2 Let p be a point on RC!. If p is nol visible from lv(we;), then the subchain of RC!
Jrom p clockwise to [v(we;) defines a point p’ on we; such that the segment lv(we;)p' is the mazimal

segment on we; thal is not visible from p.
Proof. Ar immediate consequence of Lemma 3 and Corollary 1. a

Lemma $ Let p be a point on RCY, and let we; be the edge of WVE such that we; does not contain
p and that we; is the first edge encountered among the edges of WVE when walking along RCT from
p clockwise to lv(we;iy1). Then if p is not visible from lv(we;), then a verfez of we; must define a
point p' on we; such that the scgment W is the mazimal segment on we; that is not visible

from p (see Figure 8).

Proof. Let p’ be the point on we; such that segment Jv{we;)p’ is the maximal segment on we; that
is not visible from p. Note that p’ can be lv(we;) because {v(we;) is not visible from p. By Lemma
3, the view between p and every point g on W can be blocked only by the chain along RC;
from p clockwise to ¢. If p’ were defined by a point on the chain along RC; from p clockwise to
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Iv(we;} excluding lv(we;), then p would have not been weakly visible from we;, a contradiction. If
p’ were defined by a point on the chain along RC; from fv(we;) clockwise to p’ excluding fu(we;),
then lv(we;} would have not been weakly visible {rom we;, again a contradiction. Hence only the
vertices of we; can define p’ on we; for p. : m]

Note that in Corollary 2 and Lemma 5, point p € RC; is visible from every point on the segment
fo(we;)p’ C we; (this follows from Corollary 1). For every point p on RC!, by Lemma 5, point p’
on we; can be easily computed. For every point p on RC}, by Corollary 2, point p’ on we; can be
found out if the line segment that is on the internal convex path from /v(we;) to p along RC! and
that is adjacent to p is known.

We define a total order on the points of we;, as follows: For every two points ¢’ and " on we;,
g < g¢" iff scgment fo{we;)q’ is contained by segment fo{we;)q". Let edge we; correspond to the
interval [fv(we;),lv(we;)]. For every vertex w; of RC;, let [Ipy, rpi] be the interval on we; such
that segment Ipgrpy is the maximal segment on we; that is visible from v,. We denote [Ips, Tpi] by
I.. Note that it is possible that {py = rp. For example, if the only point on we; from which vy, is

visible is lv(we;), then I} = [lv(we;), [v(we;)]- The intervals I; have the following property:
Lemma 6 For every pair of consecutive vertices vy and viqq of RC;, I N Iy # 0.

Proof. There are three cases. If Ixy; is equal to [lv{we;),lv(we;)], then I is also equal to
[{v{we;), lv(we;)], by Lemma 3 (otherwise, vy would have not been weakly visible from we;). I I
is equal to [lv{we;), lv(we;)] but Iy is not, then Ixy; must be equal to [fo(we;), lv(we;)] (this
also follows from Lemma 3). If both I and Iy, are not equal to [Iv(we;), {v(we;)], then they must
both contain fv(we;). a

From the intervals I of the vertices vy on RC;, we define a set of intervals on we;, called the

characleristic intervals, as follows: For every edge e; on RC;, let
Cl; = I N Lin,

and call CI; the characteristic interval of e;. The next lemma illustrates the relation between

s(we;) and the characteristic intervals for the edges of RC;.

Lemma 7 The shorlest weakly visible subedge s{we;) on we; must contain al least one point on

interval C1;, for every edge e; on RC;.

Proof. This follows from the fact that edge e; is completely visible from every point on interval
CI; (see Figure 9). 0o
The next section gives the sequential and parallel algorithms for computing the shortest weakly

visible subedge s of P.

11
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Figure 9: Edge ¢; is complelely visible from every point on C1I;.

4 Algorithms for the SWVS Problem

We are now ready to present the algorithms for compuling the shortest weakly visible subedge
s of P. The correctness of these algorithms is based on the observations made in Section 3.
Conceptually, these algorithms are quite simple.

We need some simple notation (we only give that with respect to the chain RC;). If veriex
fv(we;) is nonconvex, then let »; be the ray originating from fuv{we;) and passing {v(we;), and let
r; first hit bd(P) — we; at point h;. Denote the chain along bd(P) from {v(we;) counterclockwise
to h; by RP; (called the right pocket of we;). The following properties of RP; are easily seen to be

true:

o The chain RP; — {lv(we;), h;i} can intersect at most two edges of WVE (i.e., we; and wejza),

and if this is the case, then C; = §.

¢ Point k; is contained in chain R}, and k; is the first point on RP; that intersects the ray ry,
where 7; is viewed as a half-line (otherwise, some point on RP; would have not been weakly

visible from we;).
¢ The only point on we; from which every point on RP; — {lv(we;), h;} is visible is {v(we;).

For every vertex v. of RC; — lv(we;), let JCPF be the internal convex path connecting {o(we;)
and vg, and let w; be the line segment on ICPf such that wy is adjacent to v;. Let 'rf be the ray
originating from v and containing wy. Note that »¥ must intersect we;. Let the intersection point
of ¥ and we; be ip¥. .

The general procedure for solving the SWVS problem is as follows.
~ Algorithm SWVS.

Input. A simple polygon P of n vertices.

12
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Output. The shortest weakly visible subedge s of P.

(1) Compute WVE for P. If |WVE| < 7, then compute s(we;) on every edge we; € WVE, find s

from these s(we;)’s, and stop.
(2) For every we; € WVE, perform the {ollowing computation on chain RC;:

(2.1) Vertex [v(we;) is convex. For every vertex v; on RC!, compute the segment wy on
ICPE‘ (by Corollary 2) and the intersection point z'pf‘ hetween 'r:-[: and we;; let interval I
be [fv(we;), ipf]. For every vertex v; on RC, compute ipf by Lemma 5, and let J; be
[fo(we:), ipf).

(2.2) Vertex {v{we;) is nonconvex. For every vertex vy on RP; — lv{we;), let interval I be
[{v(we;), {v(we;)]. For every vertex vy on RC! — RP; (resp., RCT — RF;), compute I
as in Step (2.1), by using Corollary 2 (resp., Lemma 5).

(2.3} Compute the characteristic interval CI; for every edge ¢; on RC;. Let the set of

characteristic intervals so obtained be 2.

(3) For every we; € WVE, perform compulation similar to Step (2) on chain LC;. Let the set of

characteristic intervals so obtained be IF.
(4) For every we; € WVE, compute s{we;) as follows: Let
— R L
o = II'lFlX{pr I [fpk,'a“pk] € I:' U Is‘ },

and

B; = min{rpy | [Ips,7pe] € I,-R U I‘L}

I o; < B;, then let s{we;) be any poini on interval [a;, Ai]; otherwise, let s(we;) = [f;, ai].
(5) Let s = s(we;), where
|s{(we;)| = min{fs(we;)| | we; € WVE}.

Lemma 8 Algorithm SWYVS can be implemented in O(n) lime sequentially, and in O(logn)
time using O(n/logn) CREW PRAM processors in parallel.

Proof. The sequential implementation of Algorithm SWVS is as follows. Step (1) is performed
by first using [20, 21] and then using (1, 7], in O(n} time. Steps (2) and (3) are implemented by
using [1, 7]. That these steps take O(n) time follows from the fact that each chain C; involves in
the computation for at most six edges we; € WVE. Steps (4) and (5} can be easily implemented

in O(n) time. Therefore, the overall time complexity is O(n).
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The parallel implementation does the following. Step (1) is done by first using [5] and then using
[6], in O(log ) time using O(n/logn) CREW PRAM processors. Steps (2} and (3) are performed
by using [5] and parallel prefix [16, 17]. Steps (4) and (5) are easily handled by using parallel prefix
[16, 17]. Therefore, the parallel algorithm runs in G(logn) time using O(n/logn) CREW PRAM

processors. O

5 The Rectilinear Case

In this section, we study the special case of the SWVS probiem where the polygons are rectilinear
(i.e., each edge of the polygons is either vertical or horizontal). We present very simple and optimal
solutions to solve this case, both sequentially and in parallel. As for the general SWVS problem,
we also give interesting geometric observations for solving the rectilinear case. These geometric
observations enable us to design extremely simple algorithms for this case. The parallel model we
use in this section is the EREW PRAM.

In the rest of this section, we let P be a rectilinear simple polygon of = vertices. For a subchain
C{i, i+ 8) = (ei, iy, €igz) of bd(P), we call C(i,1 + 3) a concave chain of P iff edge e;4; is
nonconvex (i.e., the interior angles of P at »;1, and vy are both greater than r}, and call edge
eit1 the center edge of C(i,7 + 3). Let the line containing an edge e; be {(e;}. We say that a
concave chain C(Z, 1+ 3} is upward (resp., downward, leftward, rightward) if e;y1 is horizontal (resp.,
horizontal, vertical, vertical} and if no point on C(,7 + 3) is strictly above (resp., below, to the left
of, to the right of} line I(e;41).

For every vertex v; of P, if vz (resp., v;—) is nonconvex, then let 7§ (resp., 77') be the ray
starting at v; and containing e; (resp., e;_1). If ray r¥ (resp., 7{") is associated with v;, then let
h(r}) (resp., A(r7 )} be the point on bd{P) — e; (resp., bd(P) — e;_1) that is first hit by 7 (resp., !
(7).

A subchain € of bd(P) is said to be z-monolone (resp., y-monotone) iff the intersection between :
C and every vertical (resp., horizontal} line is a single connected component. A subchain €’ of
bd(P) is said to be a staircase iff C” is both z-monotone and y-monotone. Polygen P is said
to be z-monotone (resp., y-monotone) iff bd(P) can be partitioned into two z-monotone (resp.,
y-monotone) chains.

Let C(Z,7+ 3) be an upward concave chain (the other cases are similar). Then the following

properties of C(4,7+ 3) can be easily seen to hold (see Figure 10). ' :
¢ The only possible weakly visible edge of P on C(Z,1-3) is the center edge e;41 of C(i,7+ 3).
o If ¢;11 € WVE, then the following are true:

1. The subchain of bd(P) from h(r;, 5) counterclockwise to h(r{} is z-monotone.

14 .
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Figure 10: Illustrating some properties of C(Z,% + 3).

2. Both v; and v;;3 are convex. '
3. The subchain of 4d(P) from v; (resp., v;+a} clockwise (resp., counterclockwise) to h(r;},)
(resp., ;‘a(r;‘:'_l)) is a staircase, and the subchain of bd(P) from A(r7,) (resp., A(r{))
clockwise (resp., counterclockwise) to h(r}) (resp., h(r;,3)) is a staircase, as shown in :
TFigure 10. |
4. s(ej31) = €iy1-

The following lemmas are useful for our algorithms.

Lemma 9 If polygon P has two concave chains C(¢,1+ 3} and C(4,j + 3), where C(i,i + 3} is
cither upward or downward and C(j,j + 3) is either lefiward or rightward, then P is nol weakly

visible from any of its edges.

Proof. For any vertical edge ¢’ of P, there must be some points on either e; or e;1, {(both are

vertical) that are not weakly visible from e’. For any horizontal edge e” of P, there must be some

R

points on either e; or e;45 (both are horizontal) that are not weakly visible from e”. Hence the

lemma follows. a

Corollary 3 If polygon P is neither z-monolone nor y-monotone, then P is nol weakly visible

from any of ils edges.

Proof. If P is not z-monoctone, then it must have a leftward or rightward concave chain. If P is

e — -

not y-monotone, then it must have an upward or downward concave chain. That P is not weakly

visible follows immediately from Lemma 9. - a

Lemma 10 Suppose that polygon P has only upward and downward (resp., lefiward and righiward)

concave chains. Let C(i,7+ 3) be such a concave chain. Then WVE consists of at most two edges

of P: (i) the center edge eiyy of C(i,i+ 3), and (ii} the edge e; such thal e; contains both the

points h(r}) and h(rj,3) (if such an edge e; exists). !

15
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Proof. Observe that the segments vy, h{r}) and vip2h(ri,3) together partition P into three
subpolygons. Because of edges e; and e;y2, only those edges of P that intersect all these three
subpolygons can possibly be weakly visible edges of P. The only edges of P that intersect the three

subpolygons are ¢;;; and e; (if such an e; exists). ' Wi

Lemma 11 Suppose that polygon P is z-monolone and has two distinct upward (resp., downward)
concave chains C(i,i+3) and C(§,j + 3). Then P can possibly be weakly visible from at most one
edge ey, such that ey conlains all the points h(r}), h(ri}3), h(r;"), and h(r7,3), if such an edge e,

exisis.

Proof. The segments v;41~(rT), Vigoh(ri13)s Vig1 h(r}l'), and v;42h(r;, 5) together partition P into
five subpolygons. Any weakly visible edge of P must intersect all these five subpolygons, and edge

ey, is the only such candidate (if it exists). a

Lemma 12 Let C be a staircase chain on bd(P). Then if C has more than four edges, then no

edge on C can be in WVE.

Proof. Such a staircase C must have at least two nonconvex vertices z and v. Let e be an arbitrary
edge of C. then e can be adjacent to al most one of % and v (say, v). For ¢, there must be some
point p on the edges of P adjacent to u such that p is not weakly visible from e. Hence e € WVE.
a

Let €; be an edge in WVE such that e; is on a staircase of bd( P} and that e; is not the center
edge of any concave chain of P. There are two possible cases for e;: Either both vertices of e; are
convex or exactly one vertex of e; is convex. We consider first the case where exactly one vertex
of e; 1s convex. WLOG, let v; be convex and v;4; be nonconvex (the case where v; is nonconvex

and v;4; is convex is symmetric). It is easy to see that the following properties of e; hold:

o Verlices v;_1 and vjy, are both be convex. Therefore, e; must be adjacent to an ending edge

of a maximal staircase of &d( P).

e Suppose that Iine {{e;) is horizontal (the other case is similar). Then the subchain of bd(P)

from h(r;,,) counterclockwise to v;_; is z-monotone.

o The subchain of bd(P) from v;;2 counterclockwise to h(r;-") is a staircase, and the subchain

of bd(P) from h(r}) counterclockwise to A(r,,) is a staircase.

o Let H; = {h(r;) | vg is on the subchain of bd(P) from h(r},) counterclockwise to v;-1 and
vx—1 is nonconvex}. i H; = @, then s(e;) = v;41. Otherwise, let o; be the point in H; that

is closest to v; among all the points in H;; then s(e;) = a;0;71-
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The case where both vertices of ¢; € WVE are convex has the following properties:

¢ Vertices v;_1 and ;4 are both convex. Hence e; is an ending edge of a maximal staircase

on bd( P).

¢ The subchain of bd(P) from v;4, counterclockwise to v;_y (i.e., C(j + 2,7 — 1)) is monotone

with respect to line I{e;).

e Let RH; = {h(ry) | v is on C(j +2,7— 1) and vz_; is nonconvex}, and LH; = {h(r}) | v«
ison C(5 + 2,7 — 1) and w4 is nonconvex}. Let a; (resp., §;) be the point in RH; (resp.,
LH;) that is closest to v; (resp., »;31) among all the points in RH; (resp., LH;). If both
a; and 3; do not exist, then s(e;) can be any point on e;. If exactly 8; (resp., @;) does not
exist, then s(e;) can be any point on the segment &;; (resp., B;v;j41)- If both @; and 5;

exist, then s(e;) = «;8;. ',
Lemma 13 If WVE # 0, then |WVE| = 0(1).

Proof. There are two cases. If P is z-monotone or y-monotone but not both, then by Lemmas 10
and 11, |IWVE| can be at most 2. If P is both z-monotone and y-monotone, then bd(P) has at most
four maximal subchains such that each subchain is a staircase. There are totally 4 ending edges on
these four maximal staircases and there are at most 8 edges that are adjacent to the ending edges
of these four staircases. Hence in this case, the lemma follows from the properties of the edges in
WVE that are on a staircase of bd(P). a

Our results on solving the rectilinear case of the SWVS problem are summarized in the following

lemma.

Lemma 14 Given a rectilinear polygon P, there are extremely simple and optimal algorithms for :

compuling, both sequentially and in parallel, (i) WVE, and (ii) the shortest weakly visible subedge

g oo

s of P. The sequential algorithm runs in O(n) time, and the parallel algorithm runs in O(logn)

time using O(n/logn) EREW PRAM processors.

Proof. The sequential algorithm easily follows from the above observations. It only needs to do
the following: (1) Check the monotonicity of P with respect to the = and y axes, (2) identify the
O(1) edges of WVE, and (3) find s(e) on each edge e € WVE. The parallel algorithm is also very r
straightforward and makes use of only simple EREW PRAM operations such as parallel prefix

[16, 17]). The details of these algorithms are left to the reader as an exercise. .0

6 Conclusion

We continue the study of the weak visibility problems on simple polygons that were first considered

by Avis and Toussaint [1] and then by many others [5, 6, 7, 10, 20, 21]. We present new geometric
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observations on the weak visibility of simple polygons. We show that, by using these geometric
observalions and the previously known algorithms in [1, 5, 6, 7, 20, 21], the problem of computing
the shortest weakly visible subedge of a simple polygon can be solved optimally, both sequentially
and in parallel. Our sequential algorithm for this problem runs in O(r) time, and our parallel
algorithm runs in O(logn) time using O(n/logn) CREW PRAM processors. We also give geometric
observations that lead to extremely simple and optimal solutions to the case of this problem where
the polygons are rectilinear. We expect the observations that we present to be useful in solving

other visibility problems.
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