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Abstract

Given an n-verlex simple polygon P, the problem of computing the shortest weakly visible
subedge of P is that of finding a shortest line segment s on the boundary of P such that P is
weakly visible from s (if s exists). In this paper, we present new geometric observations that
are useful for solving this problem. Based on these geometric observations, we obtain optimal
sequential and parallel algorithms for solving this problem. Our sequential algorithm runs in
O(n) time, and our parallel algorithm runs in G(logn) time using O(n/ logn) processors in the
CREW PRAM computational model. Using the previously best known sequential algorithms
to solve this problem would take O(n2 ) time. We also give geometric observations that lead to
extremely simple and optimal algorithms for solving, both sequentially and in parallel, the case
of this problem where the polygons are rectilinear.

·This research was partially done when the author was with the Department of Compuler Sciences, Purdue
University, West Lafayette, Indiana, and was supported in parl by the Office of Naval Research under GraJIt.s NOOOl4
84-K-0502 and N00014-86-K.0689, the National Science Foundation under Grant DCR-8451393, and the National
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1 Introduction

Given a set of "opaque" geometric objects, two points p and q are said to be visible from each other

iff the interior of the line segment pq does not intersect any of th75e opaque objects. Visibility is one

of the most fundamental topics in computational geometry. Visibility problems find applications

in many areas, such as computer graphics, computer vision, VLSI design, and robotics. Visibil

ity problems also appear as subproblems in other geometric problems (like finding the shortest

obstacle-avoiding paths and computing intersections between geometric figures). Numerous effi

cient algorithms have been designed for solving various visibility problems, in both sequential and

parallel computational models.

In this paper, we consider a weak visibility problem. Weak visibility deals with visibility problems

in which the "observers" are of the shape of line segments. An important class of weak visibility

problems studies the case where the opaque objects are the boundaries of simple polygons. For a

point p in a polygon P and a line segment s, p is said to be weakly visible from s iff p is visible from

some point on s (depending on p). Polygon P is said to be weakly visible from a line segment s iff

every point pEP is weakly visible from s. Many sequential algorithms [1, 2, 3, 4, 7, 8, 9, 10, 12,

13,15, 18, 19, 20, 21, 22, 23] and parallel algorithms [5, 6, 11, 14] for solving various weak visibility

problems on simple polygons have been discovered.

We consider the problem of computing the shortest weakly visible subedge of a simple polygon

(called it the SWVS problem). That is, given an n-vertex simple polygon P, we would like to find

a line segment s on the boundary of P such that (i) P is weakly visible from s (if s exists), and (ii)

the length of s is the shortest among all such line segments on the boundary of P (it is possible

that s is a single point on the boundary of P). Intuitively, if P represents a house whose interior

is that of a simple polygon, then s is the shortest portion of any wall of P by which a guard has to

patrol back and forth in order to keep the inside of P completely under surveillance.

There is related work on the SWVS problem. Avis and Toussaint [l} considered the problem of

detecting the weak visibility of a simple polygon (that is, deciding whether a polygon P is weakly

visible from an edge e of P, and reporting all such edges e for P); they presented a sequential linear

time algorithm for the case of checking whether P is weakly visible from a specified edge e of P.

Another sequential linear time algorithm for tIus case was given in [10]. Sack and Suri [20] and

Shin [21] independently gave optimal linear time algorithms for solving the problem of detecting

the weak visibility of a simple polygon. Chen [5] came up with an optimal parallel algorithm for

this problem; Chen's algorithm runs in O(logn) time using O(n/ logn) CREW PRAM processors.

Several problems on computing weakly visible line segments with respect to a simple polygon

have been studied. Ke [15] and Doh and Clnva [8] gave O(nlogn) time algorithms for computing a
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line segment in a polygon from which the polygon is weakly visible (such a segment can be in the

interior of the polygon); in particular, Ke's algorithm finds such a line segment of shortest length.

Lee and Chwa [19] designed a linear time algorithm for computing all the maximal convex chains

or all the maximal reflex chains on the boundary of a polygon from which the polygon is weakly

visible. Bhattacharya et al. [3] presented a linear time algorithm for computing a shortest line

segment (not in the interior of a polygon) from which the boundary of the polygon is weakly visible

(or externally visible). Ching el al. [7] showed that, if a polygon is weakly visible from a specified

edge e, then the shortest weakly visible subedge on e can be computed in linear time by using the

algorithm in [1]. The problem of computing in parallel the shortest weakly visible subedge on a

specified polygon edge was solved optimally by Chen [6], in O(logn) time using O(nj logn) CREW

PRAM processors.

The SWVS problem, obviously, is a natural generalization of the weak visibility problem first

studied by Avis and Toussaint [1] and then by Sack and Suri [20] and Shin [21]. A straightforward

sequential solution to the SWVS problem based on these known algorithms would consist of the

following steps: (1) Compute all the edges of P from each of which P is weakly visible, by using

[20,21]. (2) For every edge so obtained, compute the shortest weakly visible subedge on that edge,

by using [1, 7J- (3) Among all the weakly visible subedges computed in step (2), find the one with

the shortest length. Such an algorithm certainly solves the SWVS problem correctly. However,

because a simple polygon can have O(n) edges from- each of which the polygon is weakly visible,

and because computing the shortest weakly visible subedge on a specified edge in general requires

O(n) time (I, 7], the above .algorithm takes O(n2 ) time.

In this paper, we present new geometric observations that are useful for solving the SWVS

problem. Based on these geometric observations, we obtain efficient sequential and parallel algo

rithms for solving the SWVS problem. Our sequential algorithm runs in O(n) time, and our parallel

algorithm runs in O(logn) time using O(njIogn) CREW PRAM processors. These algorithms are

obviously optimal. We also give geometric observations that lead to extremely simple and optimal

algorithms for solving, both sequentially and in parallel, the case of the SWVS problem where the

polygons are rectilinear (i.e., the edges of the polygons are either vertical or horizontal).

The parallel computational model we use is the CREW PRAM; this is the synchronous shared

memory model where multiple processors can simultaneously read from the same memory location

but at most one processor is allowed to write to a memory location at each time unit. We also

use the EREW PRAM model, in which no simultaneous accesses to the same memory location are

allowed.

The rest of this paper consists of 5 sections. Section 2 gives some notation and preliminary

results needed in the paper. Section 3 presents the crucial geometric observations used by our algo-
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Figure 1: The weakly visible edges of Pare et, e2, and c.".

rithms. Section 4 describes the sequential and parallel algorithms for solving the SWVS problem.

Section 5 gives the simple algorithms for the case of the SWVS problem on rectilinear polygons.

Section 6 concludes the paper.

2 Preliminaries

The input to the SWVS problem consists of an n·vertex simple polygon P, and the output is s,

the shortest weakly visible subedge of P (if s exists). Polygon P is specified by a sequence (VI, V2,

... , vn) of its vertices, in the order in which they are visited by a counterclockwise walk along the

boundary of P, starting from vertex Vt. Without 1055 of generality (WLOG), we assume that no

three verti ces of P are collinear.

The edge of P joining Vi and Vj+1 is denoted by ej = V;Vi+1 (= v;+1 v;), with the convention

that v n+1 = 'VI. The boundary of P is denoted by bd(P), and the polygonal chain from V; coun

terclockwise to Vj along bd(P) is denoted by C(i,j). The size of a chain C is the number of line

segments on C, denoted by ICI.
An edge e of P from which P is weakly visible is called a weakly visible edge of P. We denote

the set of all the weakly visible edges of P by VWE. In Figure 1, for example, WVE = {ell C2,

e4}' Note that, for an arbitrary simple polygon of n vertices, the set of its weakly visible edges can

be computed optimally, in O(n) time sequentially [20, 21J, and in O(logn) time using O(njIogn)

CREW PRAM processors in parallel [5]. WLOG, we assume that VWE # 0 (because if WVE = 0,
then P is not weakly visible from any of its edges and hence the shortest weakly visible subedge s

on bd(P) does not exist). For each edge e E WVE, we denote the shortest weakly visible subedge

of P on e by 8(e).

Let WVE = {wellWe2, ... , wem}, where m = IWVEj. Note that m can be O(n). WLOG,

we assume that m > c for some constant integer c ~ 1 (c will be decided in Section 3). This is

because if m ~ c, then s is one of the m = 0(1) s(e),s, where e E WVE. The 0(1) s(e),s can be
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computed optimally, both sequentially and in parallel, by respectively applying the algorithms in

[1,6] to every edge e E WVE.

We label the wei's of WVE in such a way that weI = el and that, when walking along bd(P)

counterclockwise by starting at Vll we visit the wei'S in increasing order of their indices. In the

rest of this paper, we use the following convention for the indices of the wei'S: For every integer i

= 1,2, ... , m, wei+m = wei, and for every integer j = 0, 1, ... , m - 1, we_j = wem_j.

For an edge wei = ei E WVE, we call Vj (resp., Vj+!) the first vertex (resp., last vertex) of wei,

and denote it by fv(wej) (resp., IV(wei)). For two consecutive edges wei and wei+! ofWVE, where

wei = ej and wei+! = Ck, we denote by C; the chain on bd(P) from lv(we;) counterclockwise to

fv( wCi+d excluding lv(wei) and f v(we;+d. Note that Ci = (Cj+l, ej+2, ... , ek-d - {Vi+! , Vk}, and

that Ci contains no edge in WVE. Ci can be 0 for some i (when IV(wei) = fv(wci+1))' Obviously,

the wCj's and Ci'S together form a partition of bd(P).

A point P in the plane is represented by its x-coordinate and y-coordinate, denoted by x(p) and

yep), respectively. For three non-collinear points p, q, and T, we say that the directed chain from p

to q to , makes a left (mp., ,;ght) tum iff xC, )(y(p) -y(q)) + y(,)( x(q)-x(p)) + x(p)y(q)-x(q)y(p)

> 0 (resp., < 0). For a directed simple chain C = (PI,P2, ... ,Pk), k ~ 3, C is said to make only

left (resp., right) turns iff every subchain of the form (Pi-1, Pi, Pi+l) makes a left (resp., right) turn,

1 < i < k.

A vertex Vi is convex if the interior angle of P at Vi is < 1T. An edge Ci is convex if both Vi

and Vi+1 are convex. For any edge wei E WVE, if wei is convex, then for any subchain C(j, k)

of C(lv(wed,lv(wei)), the (directed) shortest path from Vj to Vk inside P goes through only the

vertices on C(j,k), and the shortest path makes only right turns (this fact is shown in [1, 10]).

Hence, we call such a shortest path the internal convex path between Vj and Vk along C(j,k).

3 Useful Geometric Observations

In this section, we present useful geometric observations for solving the SWVS problem. The

observations that we give here are new. It is these geometric observations that enable us to achieve

the optimal algorithms to be given in the next section.

The idea of our algorithms is to compute the shortest weakly visible subedge s(wej) on every

edge wei E WVE. Because IWVEI can be D(n) and because computing each S(wei) in general

requires D(n) operations, the algorithms based on this idea appear to take D(n2) operations. The

following lemmas are crucial to the optimality of our algorithms.

Lemma 1 Suppose that IWVEI ~ 7. Then for every edge wej E WVE, the following are true:

(1) The vertex fv(wei) is visible from every point on the chain along bd(P) from vertexu' clockwise

5



Figure 2: The view between fV(wei) and p cannot be blocked: Case (i).

Figure 3: The view between fv(wej) and p cannot be blocked: Case (ii).

to vertex v', where u' = fV(wei_2) if Gi_2 i 0 and u' = fV(wei_3) otherwise, and v'

lv(wei+l) if Gj i 0 and v' = lv(weiH) otherwise.

(2) The lJertex lv(wei) is visible from every point on the chain along bd(P) from vertex u" coun

terclockwise to vertex v", where u" = Iv(wei+2) ilGi+! i 0 and u" = lV(wei+3) otherwiseJ

and v" = fV(wei_t} ifG;_l i 0 and VII = fV(wei_2) otherwise.

Proof. Note that, because jltWEI ;:: 7, the chains defined in (1) and (2) both do not contain wei.

We only prove (1) (the prooffor (2) is symmetric).

We first prove the case where Cj_2 and Cj are both nonempty. Let p be an arbitrary point

on the chain along bd(P) from fV(wei_2) clockwise to lv(wei+t}. To prove that p is visible from

fv(wed, we need to show that the following are true: (i) The chain along bd(P) from fv(wej)

clockwise to p does not block the view between fv(wej) and p, and (ii) the chain along bd(P) from

fv(wed counterclockwise to p does not block the view between fv(wej) and p.

Case (i) Let q be a point on Ci_2. If the view between fv(wej) and p were blocked by the chain

along bd(P) from q counterclockwise to fv(wej), then fv(wej) would have not been weakly
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Figure 4: The view between fv(we;) and Iv(wei+2) cannot be blocked: When Ci. = 0.

visible from WCi_2 (see Figure 2 (a)), a contradiction. If the view between fV(wei) and p

were blocked by the chain along bd(P) from p counterclockwise to q, then p would have not

been weakly visible from wei_l (see Figure 2 (b)), again a contradiction.

Case (ii) Let q be a point on Ci- If the view between fV(wei) and p were blocked by the chain

along bd(P) from fv(we;) counterclockwise to q, then fv(we;) would have not been weakly

visible from WCi+! (see Figure 3 (a)), a contradiction. If the view between fV(wei) and p

were blocked by the chain along bd(P) from q counterclockwise to p, then p would have not

been weakly visible from wei (see Figure 3 (b)), again a contradiction.

Suppose that Cj = 0. We need to show that the chain alongbd(P) from fV(wei) counterclockwise

to lv( wei+2) does not block the view between fv( wei) and lv(WCi+2)' If the view were blocked by the

chain along bd(P) from fv(wcj) counterclockwise to fV(WCj+2) excluding fV(wei+2)' then fV(wei)

would have not been weakly visible from wei+2 (see Figure 4 (a)), a contradiction. If the view were

blocked by wei+2 itself, thenlv(wei+2) would have not been weakly visible from wei (see Figure 4

(b», again a contradiction. The proof for other points on the chain along bd(P) from fv(wei_2)

clockwise to lv(weiH) is similar to the proof of Cases (i) and (ii) above (with edge wei+! playing

the role of C,.).

The case where Ci _ 2 = 0 is also proved similarly to Cases (i) and (ii). This is because the

chain along bd(P) from Iv(wei_3) counterclockwise to fv(wei_d is nonempty, and hence it can play

the role of C,._2 in the above proof. For an example of fV(wei_2) not visible from fv(we;) when

Ci_2 = 0, see Figure 5. 0

Lemma 2 Suppose that IWVEI ~ 7. Then for each edge wei E WVE, wei is completely visible from

every point on the chain along bd(P) from vertex u clockwise to verlex v, where u = fV(wei_2)

if Ci_2 '# 0 and u = fV(wei_3) otherwise, and v = Iv(wei+2) if Ci+l # 0 and v = Iv(wei+3)

othcrwise.

7
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Figure 5: illustrating the situation where fV(wei_2) is not visible from fv(wej).

Figure 6: illustrating the proof of Lemma 2.

Proof. Let e~1< be the chaln along bd(P) from u clockwise to v. Because IWVEI ~ 7, e~1< does

not contain wei. Dy Lemma 1, every point p on C~I< is visible from both endpoints fV(wei) and

lv(wej) of wei. Hence it is easy to see that p is visible from every point on wei (see Figure 6). 0

For every wei E WVE, let C~I< denote the chain along bd(P) from vertex u clockwise to vertex

v as defined in Lemma 2. The computational consequence of Lemma 2 is that, when computing

s(wCj) on every edge wei E WVE, we can simply ignore the effect of all the points on C~u. This

is because, by Lemma 2, edge wei is completely visible from every point on e~u. The points in P

that we need to consider when computing S(wei), therefore, are all on the following two disjoint

subchains of bd(P):

(a) The chain from u counterclockwise to fV(wei), denoted by LCi, and

(b) the chain from v clockwise to lV(wei), denoted by RCi.

In summary, for every wei E loWE, the computation of S(wei) is based only on chains Lei and

RCi·
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Figure 7: illustrating the proof of Lemma 3.

Note that chain Lei contains at most two nonempty chains Ci, where j E {i-I, i - 2, i- 3}, and

that Rei contains at most two nonempty chains Ck, where k E {i, i +1, i +2}. We only d1scuss the

computation of sewed with respect to the points on RCi (the computation of s(wej) with respect

to Lei is similar).

WLOG, we assume for the rest of this section that IWVEI 2: 7. Note that, based on the lemmas

in this section, the integer parameter c of our algorithms (c was introduced in Section 2) is chosen

to be 7.

The next lemma greatly reduces our effort in computing s(wed with respect to the points on

chain RCi: It enables us to "localize" the computation to Rei.

Lemma 3 For every point p on RCi and every point q on wei, the chain along bd(P) from p

counterclockwise to q does not block the view between p and q.

Proof. Suppose that the chain Cpq along bd(P) from p counterclockwise to q did block the view

between p and q. Let ICP(Cpq ) be the internal convex path between p and q that passes only the

vertices of Cpq , and let pq' be the line segment on ICP(Cpq ) that is adjacent to p (see Figure 7).

Since Il'WEI ~ 7, there must be at least one edge wei E WVE such that (1) wei is not adjacent to

q', and (2) wei is either on the subchain of Cpq from p counterclockwise to ql or on the subchain

of Cpq from ql counterclockwise to q. If wei is on the subchain of Cpq from p counterclockwise to

q', then q would have not been weakly visible from wei, a contradiction. If wei is on the subchain

of Cpq from q' counterclockwise to q, then p would have not been weakly visible from wei, again a

c,

contradiction. o

By Lemma 3, for every point p on RCi and every point q on wei, the view between p and q can

be blocked only by the chain along bd(P) from q counterclockwise to p.

We now consider the computation of S(wei) with respect to the points on RCi . We further

partition RCi into two subchains: (a) The chain from the endpoint v of RCi (as defined in Lemma

2) clockwise to IV(wei+l) excluding IV(wei+1), denoted by RCr, and (b) the chain from lv(wei+l)

clockwise to lv(wed, denoted by RC!. The following lemmas are useful jn computing s(wed.

9



Figure 8: lllustrating Lemma 5 (with wej = wei+t).

Lemma 4 For every point p on Rei, i] ]v(we,.) is not visible ]7'Om P, then lv(wei) must be visible

from p.

Proof. By Lemma 3, the view between p and ]v(wc;) cannot be blocked by the chain along bd(P)

from p counterclockwise to ]v(we;). So if fv(wei) is not visible from p, the view must be blocked

by the chain C I along bd(P) from p clockwise to fv(wed. But if the view between p and lv(we;)

were also blocked by C I
, then p would have not been weakly visible from wei, a contradiction. 0

Corollary 1 For every point p on RCi, if Iv(wej) is nol visible from p, then fv(we;) is visible

from p.

Proof. An immediate consequence of Lemma 4. o

Corollary 2 Let p be a point on Re!. If p is nol visible from lv(wed, then the subchain of Ref

from p clockwise to lv( wei) defines a point p' on we; such that the segment lv(wei)p' is the maximal

segment on wei that is not visible from p.

Proof. An immediate consequence of Lemma 3 and Corollary 1. o

Lemma 5 Let p be a point on RCi, and let wej be the edge ofWVE such that wej does not contain

p and that wej is the first edge encountered among the edges of WVE when walking along Re[ from

p clockwise to Iv(wei+t). Then if p is not visible from lv( wei), then a vertex of wej must define a

point pi on we,. such that the segment lv( wei)pl is the maximal segment on wei that is not visible

from p (see Figure 8).

Proof. Let p' be the point on wei such that segment lv( we;)p' is the maximal segment on wei that

is not visible from p. Note that pi can be Iv (we;) because lV(wei) is not visible from p. By Lemma

3, the view between p and every point q on lv( wei)pl can be blocked only by the chain along RC;

from p clockwise to q. If p' were defined by a point on the chain along Rei from p clockwise to

10
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lv(wej) excluding lv(wej), then P would have not been weakly visible from wej, a contradiction. If

P' were defined by a point on the chain along Rei from fv(wej) clockwise to p' excluding fv(wej),

then lV(WCi) would have not been weakly visible from we}> again a contradiction. Hence only the

vertices of wej can define P' on wei for p. o

Note that in Corollary 2 and Lemma 5, point p E RCi is visible from every point on the segment

fv(wedP' c wei (this follows from Corollary 1). For every point p on RC[, by Lemma 5, point p'

on wei can be easily computed. For every point p on RCf, by Corollary 2, point P' on wei can be

found out if the line segment that is on the internal convex path from lv( we;) to p along Rcf and

that is adjacent to p is known.

We define a total order on the points of wei, as follows: For every two points q' and q" on wei,

if :::; q" iff segment fv(wedq' is contained by segment fV(wei)q". Let edge wei correspond to the

interval [jv(we;),lv(wed]. For every vertex Vk of RCi, let [lpklTPk] be the interval on wei such

that segment lpkrpk is the maximal segment on we; that is visible from Vk. We denote [lPk, rpk] by

h- Note that it is possible that lpk = rpk. For example, if the only point on wei from which Vk is

visible is lv(wei), then h = [lv(wei), lv(wei)]_ The intervals Ik have the following property:

Lemma 6 For evcry pair of consecutive vertices Vk and Vk+I of RC;, h n h+I f 0.

Proof. There are three cases. If Ik+l is equal to [IV(wei),lv(wei)], then h is also equal to

(lv(we,.),lv(wei)], by Lemma 3 (otherwise, Vk would have not been weakly visible from we,.). IT h

is equal to [lv(we;),lv(wei)] but h+l is not, then h+l must be equal to [jv(wed,lv(wei)] (this

also follows from Lemma 3). If both hand h+l are not equal to [lv(wei), lv(we,.)], then they must

both contain lv(wei). 0

From the intervals h of the vertices Vk on RCi, we define a set of intervals on wei, called the

characteristic intervals, as follows: For every edge ej on Re;, let

and call Clj the characteristic interval of ej' The next lemma illustrates the relation between

s(wej) and the characteristic intervals for the edges of RCi.

Lemma 7 The shortest weakly visible subedge s(we;} on wei must contain at least one point on

interval elj, for every edge ej on RCi .

Proof. This follows from the fact that edge ej is completely visible from every point on interval

elj (see Figure 9). 0

The next section gives the sequential and parallel algorithms for computing the shortest weakly

visible subedge s of P.

11
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Figure 9: Edge ej is completely visible from every point on Clj.

4 Algorithms for the SWVS Problem

We are now ready to present the algorithms for computing the shortest weakly visible subedge

s of P. The correctness of these algorithms is based on the observations made in Section 3.

Conceptually, these algorithms are quite simple.

We need some simple notation (we only give that with respect to the chain RCi). If vertex

lv(wed is nonconvex, then let ri be the ray originating from fv(wc;) and passing lv(we;), and let

ri first hit bd(P) - wej at point hi. Denote the chain along bd(P) from lv(we;) counterclockwise

to hi by BPj (called the right pocket of we;). The following properties of BPi are easily seen to be

true:

• The chain RPi - {lv(wej), hi) can intersect at most two edges of WVE (Le., wei+l and we;+2),

and if this is the case, then G; = 0.

• Point hi is contained in chain Rei, and hi is the first point on RPi that intersects the ray Tj,

where ri is viewed as a half-line (otherwise, some point on RP; would have not been weakly

visible from wei).

• The only point on wei from which every point on BPi - {lv(wej),hi) is visible is lv(we;).

For every vertex Vk of RGi - lv(wed, let JCPf be the internal convex path connecting lV(wei)

and Vk, and let Wk be the line segment on JePf such that Wk is adjacent to Vk. Let rf be the ray

originating from Vk and containing Wk. Note that rf must intersect wei. Let the intersection point

of rf and wei be ipf.

The general procedure for solving the SWVS problem is as follows.

Algorithm SWVS.

Input. A simple polygon P of n vertices.

12



Output. The shortest weakly visible subedge s of P.

(1) Compute WVE for P. If IWVEI < 7, then compute sewed on every edge wei E WVE, find s

from these S(W€i)'S, and stop.

(2) For every wei E WVE, perform the following computation on chain RCi:

(2.1) Vertex lv(wej) is convex. For every vertex Vk on RCf, compute the segment Wk on

JCPf (by Corollary 2) and the intersection point ipf between rf and wei; let interval h

he [Jv(wed,ipf]. For every vertex Vk on RCi, compute ipf by Lemma 5, and let h be

[fv(wei),ip1J·

(2.2) Vertex IV(WCi) is nonconvex. For every vertex Vk on BPj - lv(wej), let interval h be

[lv(we,-),lv(wei)]. For every vertex Vk on RC! - BP; (resp., RCi - BP;), compute h

as in Step (2.1), by using Corollary 2 (resp., Lemma 5).

(2.3) Compute the characteristic interval CJj for every edge Cj on RCi. Let the set of

characteristic intervals so obtained be If.

(3) For every wei E WVE, perform computation similar to Step (2) on chain LCi. Let the set of

characteristic intervals so obtained be IiL.

(4) For every we; E WVE, compute sewed as follows: Let

and

If ai ::::; {h, then let s(wej) be any point on interval [aj, j3;J; otherwise, let s(wei) = [,8i, ail·

(5) Let s = s(wej), where

1.(wei)1 = nlin{ls(weiJII wei E WVEJ.

Lemma 8 Algorithm SWVS can be implemented in D(n) time sequentially, and in D(logn)

time using D(n/logn) CREW PRAM processors in parallel.

Proof. The sequential implementation of Algorithm SWVS is as follows. Step (1) is performed

by first using [20, 21] and then using [1, 7]' in D(n) time. Steps (2) and (3) are implemented by

using [1, 7]. That these steps take D(n) time follows from the fact that each chain Cj involves in

the computation for at most six edges wei E WVE. Steps (4) and (5) can be easily implemented

in D(n) time. Therefore, the overall time complexity is D(n).
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The parallel implementation does the following. Step (1) is done by first using [5] and then using

[6], in O(logn) time using O(n/logn) CREW PRAM processors. Steps (2) and (3) are performed

by using [5] and parallel prefix [16, 17]. Steps (4) and (5) are easily handled by using parallel prefix

[16, 17]. Therefore, the parallel algorithm runs in O(logn) Hme using O(n/logn) CREW PRAM

processors. 0

5 The Rectilinear Case

In this section, we study the special case of the SWVS problem where the polygons are rectilinear

(i.e., each edge of the polygons is either vertical or horizontal). We present very simple and optimal

solutions to solve this case, both sequentially and in parallel. As for the general SWVS problem,

we also gi ve interesting geometric observations for solving the rectilinear case. These geometric

observations enable us to design extremely simple algorithms for this case. The parallel model we

use in this section is the EREW PRAM.

In the rest of this section, we let P be a rectilinear simple polygon of n vertices. For a subchain

C( i, i + 3) = (Ci, Ci+l' ei+2) of bd(P), we call C( i, i + 3) a concave chain of P iff edge Ci+I is

nonconvex (i.e., the interior angles of Pat Vi+I and Vi+2 are both greater than 11"), and call edge

ei+I the center cdge of C(i,i + 3). Let the line containing an edge ej be l(cj). We say that a

concave chain C(i, i +3) is upward (resp., downward, leftward, rightward) if ei+I is horizontal (resp.,

horizontal, vertical, vertical) and ifno point on CU, i +3) is strictly above (resp., below, to the left

of, to the right of) line l(ei+d.

For every vertex Vi of P, if Vi+l (resp., vi-d is nonconvex, then let r; (resp., rn be the ray

starting at Vi and containing ei (resp., ei_l). If ray r; (resp., rn is associated with Vi, then let

h(rt) (resp., h(ri)) be the point on bd(P) - ei (resp., bd(P) - ei-d that is first hit by r; (resp.,

(riJ)·

A suhchain C of bd(P) is said to be x-monotone (resp., y-monotone) iff the intersection between

C and every vertical (resp., horizontal) line is a single connected component. A subchain C' of

bd(P) is said to be a staircase iff C' is both x-monotone and y-monotone. Polygon P is said

to be x-monotone (resp., y-monotone) iff bd(P) can be partitioned into two x-monotone (resp.,

y-monotone) chains.

Let C(i,i+ 3) be an upward concave chain (the other cases are similar). Then the following

properties of C(i, i +3) can be easily seen to hold (see Figure 10).

• The only possible weakly visible edge of P on C(i, i +3) is the center edge ei+l of C( i, i + 3) .

• If ei+l E WVE, then the following are true:

1. The suhchain of bd(P) from h(rH-3) counterclockwise to h(r;) is x-monotone.

14



Figure 10; Illustrating some properties of C(i, i + 3).

2. Both Vi and Vi+3 are convex.

3. The subchain of bd(P) from Vi (resp., Vi+3) clockwise (resp., counterclockwise) to h(rH-2)

(resp., h(rt-I)) is a staircase, and the subchain of bd(P) from h(rH-2) (resp., h(rt-l))

clockwise (resp., counterclockwise) to h(rt) (resp., h(rH-3)) is a staircase, as shown in

Figure 10.

4. s(ei+l) = ei+I'

The following lemmas are useful for our algorithms.

Lemma 9 If polygon P has two concave chains C(i, i +3) and C(j,j +3), where C(i, i + 3) is

either upward or downward and C(j,j + 3) is either leftward or rightward, then P is not weakly

visible from any of its edges.

Proof. For any vertical edge e' of P, there must be some points on either ej or eiH (both are

vertical) that are not weakly visible from e/. For any horizontal edge e" of P, there must be some

points on either ej or ej+2 (both are horizontal) that are not weakly visible from e". Hence the

lemma follows. 0

Corollary 3 If polygon P is neither x-monotone nor y-monotone, then P is not weakly visible

from any of its edges.

Proof. If P is not x·monotone, then it must have a leftward or rightward concave chain. If P is

not y-monotone, then it must have an upward or downward concave chain. That P is not weakly

visible follows immediately from Lemma 9. 0

Lemma 10 Suppose that polygon P has only upward and downward (resp., leftward and rightward)

concave chains. Let C(i, i +3) be such a concave chain. Then}wE consists of at most two edges

of P: (i) the center edge ei+l of C(i, i +3), and (ii) the edge ej such that ej contains both the

points h(rt) and h(ri+3) (if such an edge ej exists).

15
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Proof. Observe that the segments vi+th(rt) and vi+'~h(ri+3) together partition P into three

subpolygolls. Because of edges ei and ei+2, only those edges of P that intersect all these three

subpolygons can possibly be weakly visible edges of P. The only edges of P that intersect the three

subpolygons are ei+I and ej (if such an ej exists). 0

Lemma 11 Suppose that polygon P is x-monotone and has two distinct upward (resp., downward)

concave chains C( i, i + 3) and CU, j + 3). Then P can possibly be weakly visible from at most one

edge ek, such that ek contains all the points h(rt), h(rI+J )' h(rt), and h(rJ+3)' if such an edge ek

exists.

Proof. The segments Vi+Ih(rt), viH h(r i+3), vj+Ih(rt), and vj+2h(rj+3) together partition Pinto

five subpolygolls. Any weakly visible edge of P must intersect all these five subpolygons, and edge

ek js the only such candidate (if it exists). 0

Lemma 12 Let C be a staircase chain on bd(P). Then if C has more than four edges, then no

edge on C can be in ltWE.

Proof. Such a staircase C must have at least two llOTICOnVex vertices u and v. Let e be an arbitrary

edge of C. then e can be adjacent to at most one of u and v (say, v). For e, there must be some

point p on the edges of P adjacent to u such that p is not weakly visible from e. Hence e ¢ J.WE.

D

Let ej be an edge in J.WE such that ej is on a staircase of bd(P) and that ej is not the center

edge of any concave chain of P. There are two possible cases for ej: Either both vertices of ej are

convex or exactly one vertex of ej is convex. We consider first the case where exactly one vertex

of ej is convex. WLOG, let Vj be convex and Vj+I be nonconvex (the case where Vj is noneonvex

and Vj+! is convex is symmetric). It is easy to see that the following properties of ej hold:

• Vertices Vj_l and Vj+2 are both be convex. Therefore, ej must be adjacent to an ending edge

of a maximal staircase of bd(P).

• Suppose that line I(ej) is horizontal (the other case is similar). Then the subchain of bd(P)

from h(rjH) counterclockwise to Vj_t is x-monotone.

• The subchain of bd(P) from vi+2 counterclockwise to h(rt) is a staircase, and the subchain

of bd(P) from h(r;) counterclockwise to h(rj+2) js a staircase.

• Let Hi = {her;) I Vk is on the subchain of bd(P) from h(r.H-2) counterclockwise to Vi-l and

Vk-l is nonconvex}. If Hj = 0, then s(ej) = Vj+l. Otherwise, let Qj be the point in Hj that

is closest to Vj among all the points in Hj; then s(ej) = QjVjH.
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The case where both vertices of ej E 'WVE are convex has the following properties:

• Vertices Vj_l and Vj+2 are both convex. Hence ej is an ending edge of a maximal staircase

on bd(P).

• The subchain of bd(P) from Vj+2 counterclockwise to Vj_l (i.e., C(j +2,j -1)) is monotone

with respect to line l(ej).

• Let RIlj = {h(rk") I Vk is on C(j +2, j - 1) and Vk-l is nonconvex}, and LHj = {h(rt) I 'lIk

is on C(j + 2,j - 1) and 'lIk+l is nonconvex}. Let Qj (resp., {lj) be the point in RHj (resp.,

LHj) that is closest to Vj (resp., 'lIjH) among all the points in RHj (resp., LHj ). If both

Cl:j and {lj do not exist, then s(ej) can be any point on ej' If exactly {lj (resp., OJ) does not

exist, then s(ej) can be any point on the segment QjVj (resp., {ljvi+d. If both OJ and {lj

exist, then s(ej) ::: OJ{lj.

Lemma 13 If WVE of 0, then IWVE! = 0(1).

Proof. There are two cases. If P is x-monotone or y-monotone but not both, then by Lemmas 10

and 11, IvVVEI can be at most 2. If P is both x-monotone and y-monotone, then bd(P) has at most

four maximal subchains such that each subchain is a staircase. There are totally 4 ending edges on

these four maximal staircases and there are at most 8 edges that are adjacent to the ending edges

of these four staircases. Hence jn tills case, the lemma follows from the properties of the edges in

WVE that are on a staircase of bd(P). 0

Our results on solving the rectilinear case of the SWVS problem are summarized in the following

lemma.

Lemma 14 Given a rectilinear polygon P, there are extremely simple and optimal algorithms for

computing, both sequentially and in parallel, (i) YVVE, and (ii) the shortest weakly visible subedge

s of P. The sequential algorithm runs in O(n) time, and the parallel algorithm runs in O(logn)

time using O(nJ log n) EREW PRAM processors.

Proof. The sequential algorithm easily follows from the above observations. It only needs to do

the following: (1) Check the monotonicity of P with respect to the x and y axes, (2) identify the

0(1) edges of VWE, and (3) find s(e) on each edge e E WVE. The parallel algorithm is also very

straightforward and makes use of only simple EREW PRAM operations such as parallel prefix

[16, 17]. The details of these algorithms are left to the reader as an exercise. 0

6 Conclusion

We continue the study of the weak visibility problems on simple polygons that were first considered

by Avis and Toussaint [1] and then by many others [5, 6, 7, 10, 20, 21]. We present new geometric

17

t



observations on the weak visibility of simple polygons. We show that, by using these geometric

observations and the previously known algorithms in [1, 5, 6, 7, 20, 21], the problem of computing

the shortest weakly visible subedge of a simple polygon can be solved optimally, both sequentially

and in parallel. Our sequential algorithm for this problem runs in O(n) time, and our parallel

algorithm runs in O(logn) time using O(nj log n) CREW PRAM processors. We also give geometric

observations that lead to extremely simple and optimal solutions to the case of this problem where

the polygons are rectilinear. We expect the observations that we present to be useful in solving

other visibility problems.

References
[1] D. Ayis and G. T. Toussaint. "An optimal algorithm for determining the visibility polygon from an

edge," IEEE Trans. Compui., C-30 (12) (1981), pp. 910-914.

[2] B. K. Bhattacharya, D. G. Kirkpatrick, and G. T. Toussaint. "Determining sector visibility of a poly
gon," Proc. 5-th Annual ACM Symp. Computational Geometry, 1989, pp. 247-254.

[3] B. K. Bhallacharya, A. Mukhopadhyay, and G. 1'. TOllssaint. "A linear time algorithm for computing the
shortest line segment from which a polygon is weakly externally visible," Proc. Workshop on Algorithms
and Data Structures (WADS'91), 1991, Ottawa, Canada, pp. 412--424.

[4] B. Chazelle and L. J. Guibas. "Visibility and intersection problems in plane geometry," Discrete and
Computational Geometry, 4. (1989), pp. 551-581.

[5] D. Z. Chen. "An optimal parallel algorithm for detecting weak visibility of a simple polygon," Proc. of
the Eighth Annual ACM Symp. on Computational Geometry, 1992, pp. 63-72.

[6] D. Z. Chen. "Parallel techniques for paths, visibility, and related problems," Ph.D. thesis, Technical
Report No. 92-051, Dept. of Computer Sciences, Purdue University, July 1992.

[7] Y. T. Ching, M. T. Ko, and H. Y. Tn. "On the cruising guard problems," Technical Report, 1989,
Institute of Information Science, Academia Sinica, Taipei, Taiwan.

[8] J. I. Doh and K. Y. Chwa. "An algorithm for determining visibility of a simple polygon from an internal
line segment," Journal of Algorithms, 14 (1993), pp. 139-168.

[9] H. ElGindy. "Hierarchical decomposition of polygon with applications," Ph.D. thesis, McGill University,
1985.

[10] S. K. Ghosh, A. Maheshwari, S. P. Pal, S. Saluja, and C. E. V. Madhavan. "Characterizing weak
visibility polygons and related problems," Technical Report No. IISc-CSA-90-1, 1990, Dept. Computer
Science and Automation, Indian Institute of Science.

[11] M. T. Goodrich, S. B. Shauck, and S. Guha. "Parallel methods for visibility and shortest path problems
in simple polygons (Preliminary version)," Proc. 6-th Annual ACM Symp. Computational Geometry,
1990, pp. 73-82.

[12] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. "Linear time algorithms for
visibility and shortest paths problems inside triangulated simple polygons," Algorithmica, 2 (1987), pp.
209-233.

[13] P. J. Heffernan and J. S. B. Mitchell. "Structured visibility profiles with applications to problems in
simple polygons," Proc. 6·th Annual ACM Symp. Computational Geometry, 1990, pp. 53-62.

[14] J. Hershberger. "Optimal parallel algorithms for triangulated simple polygons," PTOC. 8-th Annual ACM
Symp. Computational Geometry, 1992, pp. 33-42.

[15] Y. Ke. "Detecting the weak visibility of a simple polygon and related problems," manuscript, Dept. of
Computer Science, The Johns Hopkins University, 1988.

[16] C. P. Kruskal, L. Rudolph, and M. Snir. "The power of parallel prefix," IEEE Trans. Comput., C-34
(1985), pp. 965-968.

18



[17J

[18J

(19J

[20J

[21J

[22J

[23J

R. E. Ladner and M. J. Fischer. "Parallel prefix computation," Journal of the ACM, 27 (4) (1980), pp.
831-838.
D. T. Lee and A. K. Lin. "Computing the visibility polygon from an edge," Computer Vision, Graphics,
and Image Processing, 34 (1986), pp. 1-19.

S. II. Lee and K. Y. Chwa. "Some chain visibility problems in a simple polygon," Algorithmica, 5 (1990),
pp. 485-507.

J ..R. Sack and S. Suri. "An optimal algorithm for deteding weak visibility of a polygon," IEEE Trans.
C,mput., C-39 (10) (1990), pp. 1213-1219.

S. Y. Shin. "Visibility in the plane and its related problems," Ph.D. thesis, University of Michigan,
1986.

G. T. Toussaint. "A linear-time algorithm for solving the strong hidden-line problem in a simple poly
gOIl," Pattern Recognition letters, 4 (1986), pp. 449-451.

G. T. Toussaint and D. Avis. "On a convex hull algorithm for polygons and its applications to triangu
lation problems," Pattern Recognition, 15 (1) (1982), pp. 23-29.

19



p

fig. 1



___W_C~i~-2,-.". ... - - ..

erg p" '\
\ . ,
W~ •. /·· ?:'+l
C '.. \

i-II ...-
i/ ' C.
'.>-""7.-C=--~' I 1we i ........

<aJ

fig.2

Ptf' - ...
I ...· ......

, W_e~i~-2'__7F ... "

::\ ... ~i::
I. '

Ci_1' ........-,=__ \C·
• " I 1we i ......

(b)



WCi+2
.... e_ C- I

I P "',1+

':0-.......... ~e
-l-I~ •• (W'HI

I ". q

I ~.C-Ci_l,Wej I---
<a)

fig.3

WCi+2 P
, ~

\ I

, ... "Ci+lwe\ .../~+1
I:" q.' C,

C- l' ---::::;:-__
l' ...

wei

(b)



,.. ... WCi+2
- I .>;;----=.~~

I - P

(a)

fig.4

(b)

,
f

r,



wei_2

we i-I

,
C·,' ..::....._-=~__ IC.

1- ...." " '" I
wei

fig.S



fig.6



---/w;y, :
J \ \ _

\ \ ,.-
':eij', .

p

'-
q we·,

fig.7



C Ii-I ,

/
/

/

.' wei+[

.'
wej p'

fig.8



,,,----

..
." ."...

..

..
..

..

..../

, -
..

.....'.......?,-

L
:,



h(ri'J

v.,

fig. 10


	Optimally Computing the Shortest Weakly Visible Subedge for a Simple Polygon
	Report Number:
	

	tmp.1307986960.pdf.pYaEK

