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Optimal ly  Con d i t i on e d  V a n d e r m o n d e  Matr ices*  
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Summary. We discuss the problem of selecting the points in an (n • n )Vander -  
monde matr ix  so as to minimize the condition number of the matrix.  We give numerical 
answers for 2 ~ n ~_ 6 in the case of symmetric point configurations. We also consider 
points on the non-negative real line, and give numerical results for n = 2 and n = 3. 
For general n, the problem can be formulated as a nonlinear minimax problem with 
nonlinear constraints or, equivalently, as a nonlinear programming problem. 

1. In t roduct ion 

We define the  Vandermonde  m a t r i x  of o rder  n b y  

| S - -1  s - - 1  n - - l |  
L Xx X2 . . .  X n  .-I 

where the  x~ are real  or complex numbers ,  cal led " p o i n t s "  or  " n o d e s " .  W e  wri te  
V~ (x) if we wish to  indica te  the  dependence  of V~ on x = [x 1, x 2 . . . . .  x,~]. Sys tems  
of l inear  a lgebra ic  equat ions,  whose coefficient m a t r i x  is a Vandermonde  ma t r ix ,  
or i ts  t ransposed ,  occur f requent ly  in numer ica l  analysis ,  e.g., in po lynomia l  
in te rpo la t ion  and  in the  app rox ima t ion  of l inear  funct ionals  [ t ] .  Thus,  if the  
po lynomia l  p ( / ;  x) "~" - j-1 =7. j=1 pix in te rpola tes  to  function v a l u e s / i  a t  n po in t s  x i, 
then  the vec tor  ~ of the  coefficients pj  is r e la ted  to  the  vec to r  ~ of the funct ion 
values  [i b y  

v. (x) = 4. (1.2) 
A l inear  func t iona l  L, hav ing  momen t s  m i - - L x  i-x, I <--i <--n, in tu rn  m a y  be 
a p p r o x i m a t e d  b y  L* th rough  L * / = L p  (]; x). Then L*[ =*#To, where 

v (x)q (1.3) 
a n d / z  is the  vec to r  of the  moments  m i. 

In  the  following we are  in te res ted  in the  condi t ion  of such l inear  systems.  W e  
shall  use the  condi t ion  number  

cond  = I] ]L IIY:' L, (a.4) 
which describes t he  condi t ion of (1.3) in t e rms  of t he  L~-norm,  a n d  the condi t ion  
of (t.2) in t e rms  of the  Lx-norm. In  par t icu la r ,  we are  in t e res t ed  in de te rmin ing  
a real  po in t  conf igura t ion  x which minimizes  the  condi t ion  number  in 0 .4) .  
Such a po in t  conf igura t ion  will be cal led optimal, a n d  the corresponding Vander -  
monde  m a t r i x  (t A) optimally conditioned. We first  discuss th is  p rob lem for sym-  
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metric (with respect to the origin) point configurations, and give numerical 
results for 2 --<n --< 6. We then consider briefly point configurations on the positive 
real axis, and obtain optimal ones for n ---- 2 and n ---- 3. 

The problem, in both cases, can be formulated either as a nonlinear minimax 
problem with nonlinear constraints, or, equivalently, as a nonlinear prograrnming 
problem. The solution of these problems, beyond the values of n treated here, 
almost certainly requires approximate methods. We shall not at tempt to use 
such methods here, but suggest that  interesting test problems for constrained 
optimization codes may be found below in Sections 3 and 5. 

In terms of polynomial interpolation, the condition number (t.4) can be 
further interpreted as follows. Writing 

cond  -_ II (v:)-, II ,llv: It, 
= max [[(V"r)-l~l~t-/min II(Vr)-I SUl 

'~§  II~'/'U,. / , 6 ~ -  tl 4'lh ' 
one finds, by  virtue of (1.2), that 

cond~o V. = max { liP (dl; x)I[~ / I1~1~, / (t.$) 
~/,/ l iP(l; x)ll,, I - f f ]~  J' 

where 

I1,*, + a 2 ,  + . . .  +<,. : - '  I1,, I1<,11, = Z la;I. 
i = l  

Thus, condooV, is equal to the maximum magnification of relative errors, if the 
relative error in the data is measured by  Hs/H1/H/I~, and the relative error in the 
interpolation polynomial by ]1P (8 /; x) ]lJ]l P (/; x) I~." 

A more common measure of condition is based on absolute errors and the 
maximum norm. In fact, restricting attention (without loss of generality) to the 
interval [ - - t ,  1 ], one has 

lip (d/; x)ti~ max =A. ,  (1.6) 
~t II,~lll<~ 

where A n = max ~.,~1 I li (x) l is the Lebesgue constant [l i(x) are the fundamen- 

tal Lagrange interpolation polynomials corresponding to the nodes x,,]. Optimal 
nodes x,E[--t, t] ,  which minimize An, are investigated in [3], but remain un- 
known. (For related work, see also [4, 5].) What seems clear is that  the optimal 
condition number according to 0.6) is substantially smaller than the optimal 
condition number based on (1.5). The former is known [3] to be (2/7r logn + 0  (1) 
as n -+  oo; the latter, assuming symmetric optimal nodes, behaves more like 2", 
judging from the limited numerical results available below in Section 4. 

2. Condition Number of a Vandermonde Matrix 

We begin with expressing the norm of a Vandermonde matrix. 

n n--1 Theorem 2.1. [IV~llo~ --max{n, Y,.=11x, l ) 

Proo/. Let 
n 

v(s)-- Xlx,,I s, s > o ,  
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and define v (0) = l i m  v (s) = n 0, where n o is the number  of nonvanishing nodes x.. 
s$0 

Since n o < n, and v (s) is convex on s > O, we have 

HV.{]oo = m a x { n ,  m a x  v(v)} = m a x { n ,  v ( n - - l ) } ,  
O ~ v ~ n - - I  

proving Theorem 2.t.  

I t  is clear t ha t  a pe rmuta t ion  of the variables xx, x2 . . . . .  x~ does not  affect 
the value of Ilv. (x)L. The same is t rue  for tiV, -1 (x)~o0 whenever  V, - i  exists. We 
can assume, therefore,  t h a t  the variables  are a r ranged in some fixed order. I f  
they  are all real we shall assume them in decreasing order, 

x l >  x 2 > " -  > x n. (2.1) 

The monic polynomial  whose zeros are the nodes x,, will be denoted  by  p,,  

-D p,,(x) --  (x - -x , ) .  (2.2) 

We recall f rom [2] the following results. 

Theorem 2.2. / ]  the nodes x, in (2.t) are located symmetrically with respect to 
the origin, 

x~ + xn+x_, = 0 ,  ~ = t , 2  . . . . .  n, (2.3) 
then 

lIV. -1 l]oo = mi"x~+21 ] [ t ]P-(i) I l + x , '  ~,' rx ~ 
1<,~_ t + x~ Irn~ "' 

where p,  (x) is the polynomial in (2.2). 

, = v ,  (2.4) 

We remark  t ha t  (2.1) and (2.3) imply  tha t  x , > 0  for v =  t,  2 . . . . .  In/2], and 
xr = 0 if n is odd. 

Theorem 2.3. Jr/the nodes in (2.1) are nonnegative, i.e., x ,  >= O, then 

[[ Vjllio~= m a x  { [ P ~ ( - O I  } (2.5) 
1.<,.~,, ( ,  +*DIP~,(*,)I  ' 

where p ,  (x) is the polynomial in (2.2). 

Theorem 2.t can be combined with Theorems 2.2 and  2.3 to yield explicit 
expressions for the condition number  condooV, in the respective cases. 

3. Optimally Conditioned Vandermonde Matrices for Real Nodes 

We now wish to minimize the condition number  

n~(x) = condooV~ (x) (3.t) 

as a function of the  var iables  xp x z . . . . .  x,. I f  we allow complex points  x, we can 
always achieve ~, = n  b y  tak ing  x, to be the n- th  roots  of uni ty .  This point  
configuration,  in fact ,  is op t imal  for  the spectral  condition n u m b e r  [2, Example  
6.4]. The  problem becomes more interest ing if we restr ict  all nodes x, to be real. 
In  this case we assume, as before, t ha t  

Xl ) X2 ) ' ' "  ) Xtt" (3"2) 

1" 
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The  existence of an optimal  point  x in the domain (3.2) is assured, since 
z,(x)--~ ~o both,  as x approaches the boundaries of the domain, and as x -+  ~o on 
(3.2). The la t ter  follows from (cf. [2, Theorem 4.2]) 

n 

, , .(t~)-- max (la.,l + t l a . . - , I  + " "  +t"- l la. , I )  X I~.1 ~-1, 
l < ~ < : n  ' ,u=l 

t > 0 sufficiently large, where a,~ are the coefficients of the v-th Lagrange poly- 
nomial  

/,(X) --'-- _=a,  nx,* 1 +  , X n - z + . . .  +a,1" 
p = l  SL 

In fact, u.(tx)---~ oo as t-+ ~o, since a~ cannot vanish for all v. 

Theorem 3.1. Suppose the problem o /min imiz ing  ~n (x) in (3.1), subiect to (3.2), 
has a unique solution. Then this solution is necessarily symmetric with respect to 
the origin, i.e., 

x, + x ~ + l _ ,  = 0 ,  v = t ,  2 . . . . .  n. (3.3) 

Proo/. Evident ly ,  ]IV,(-- x)Iloo = }IV, (x)IIo0, and also [IV.- ~ (--  x)11oo = ][V~ -1 (x)Itoo 
(see [2, Theorem 4.2]), so tha t  n~(--x)  = u , ( x ) .  Hence, if the point x in (3.2) is 
optimal,  so is 

- - x , >  - - x , _ l > . . .  > - - x  v 

The  assumed uniqueness then  gives immediate ly  (3.3). This proves Theorem 3A. 

Although it  is not  known whether  or not  the opt imal  point  configuration on 
the  real line is unique, Theorem 3.t suggests tha t  we constrain the variables to 
be symmetric .  This then leaves us with [n/2] independent  variables, 

x 1 > x2 > . . -  > x[.  m > 0, (3.4) 

which we collect in the vector  x = [x 1, x z . . . . .  x[,12]]. The assumed symmet ry  has 
the fur ther  advantage  tha t  an explicit  formula for ~, (x) is available. Theorems 2.t 
and 2.2 in fact  give 

;~.(x)=max{2,],,(x)}. max t,,,~(x), (3.5' 

where 
[./9.] 

/ ,  ( x ) =  ~ x;  -1, 
/ ~ = 1  

/A ,I,t~ 

l,,,,(x) - t + ,~ .  (.-1)j~H t + ~ 
$r p=l 

{ -  '~ t )  

p=l x 

(3.6) 

I*~ -  41 ' ,, = 1, 2 , . . . ,  n/2 (n even), (3.7) 

, , , ~ = ~ , 2 ,  ( n - t ) / 2  (nodd) ,  

(3.8) 

(n odd). 
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I f  n = 2 or  n ----- 3, the empty  products  in (3.7), (3.8) are to be understood as having 
the value t. 

Theorem 3.2. I / n  >= 3 and the nodes x v satis]y (3.4), then/,,1 (x) < / , , , ( x ) .  

Proo/. If  n is even, n >= 4, we obtain from (3-7), 

I 
f,,, t 1 + X$ - -  ,X~ 

1"'~ 1 + I 1 +x~' ~,=3F/- ..-::i--~r < l . x ~ _ . . , , ,  
X2 

If  n is odd, n = 5, then from (3.8) we get 

_I",~ = ~ , + x, ] , + x~ [ ' "~ - '~ '  'x,--xi~' 
[ x,o +.,)/.,,,,,(1 +x,,) j  ,,=~ x, , - . . ,  t,,,2 2 . . . .  .z- - ~  . . . . . . . . . . . .  2- ~J_ < 1 ,  

since the function (1 +x)/(x2(!  +x~) )  is decreasing on (0, oo). The case n =  3 
can be verified directly. This proves Theorem 3.2. 

The inequalities (3.4) define a cone in p,E-/*] which we denote by  c~[,/21. 

Theorem 3.3. I/aE~,C,q~ ] is a minimum point o / ~ ,  i.e., 

z~(a) =<~,,(x), all xE~[n/2]. (3.9) 
then 

1.(~) = " 2" (3.to) 

Proo[. Assume first n even. By  (3.7) we have for any  real t, 

1 

I H ~  t ~ + ~  
l . , , ( ta )  (3.11) 

' H ' 1,, ( t , , ) 1 .  (t,,) = tn (,,)(t + ,,. ) , , . .  (3.1z) 

Now suppose / ,  ( a ) <  n/2. Then for t+ > t sufficiently close to l,  we have 
/~(ta) <n/2,  t <=t<t+, and so 

n a x  x,(ta) = ~lm_./2/ . . , ( ta).  "1 <--t<t+. 

From (3 A 1) we see, however,  tha t  each 1.,. (ta) decreases as t increases from 1 to t+. 
Therefore, ~. (a) cannot  be minimal. Suppose, on the other  hand, t h a t / .  (a) > n/2. 
Then 

x~(ta) =[.(ta) max / . .( ta),  t_<t<=l,  
l ~ n [ 2  ' 

for t_ sufficiently close to I. Eq. (3.t2) now shows tha t  ~&(ta) decreases as _t 
decreases from 1 to  t_, again contradict ing minimal i ty  of x~ (a). Consequently,  
/, (a) = n/2, as asserted'. 

For  n odd, the proof is analogous. 
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As a consequence of Theorems 3.2 and 3-3, the opt imal  point  configuration 
a E~[n/2], n >-- 3, can be found b y  solving the constra ined min imax  problem:  

fminimize m a x  f~ ,(x) 
n + l  ' 

/ subject  to (3.13) 

Given a solution a E~[,,/2] of (3.t 3), the min imum condition n u m b e r  of ~ is 

= - - -  m a x  ], ,(a). (3.14) 
(X~n) ~ 2 2<:~ <: [ n_~+21 ] ' 

Problem (3A3) can be wri t ten  equivalent ly  in the form of a nonlinear pro- 
g ramming  problem, viz., 

minimize u 

subject  to 

' n . , ( x ) - < u ,  v : 2 , 3  . . . . .  / -n-~ !- / 
- - - ' ( 3 . ~  5)  n 

In(x)-  2 

I"] x , - - x , _ ~ < O ,  v = 2 ,  3 . . . . .  2 , 

--X[nl~] < O. 

To an opt imal  point  x*,  u*  of (3.15) corresponds a solution x* of (3.t3), u* being 
the m i n i m u m  value of the m a x i m u m  in (3A3), and vice versa. 

In  the next  section we solve (3A3) directly for 2--<n--<6. 

4. Optimal Symmetric  Point Configurations for 2 _< n _< 6 

The  case n = 2  can be handled direct ly b y  (3-5), which gives 

=m x § 

The m i n i m u m  of us (xl) is clearly assumed at  x 1 ---- ! ,  g iving the op t imal  configura- 
t ion 

x 1 = - -  x 2 = I ,  (~)opt = 2. (4.1) 

P rob lem (3.13) in the case n = 3  has the t r ivial  solution 

x 1 = - -  x ~ : V ~ :  t.2247448714, 

x2 = o, (4.2) 

(gS)opt : 5" 

If  n-----4, the prob lem becomes 

minimize t + ~  x ~ _ z  I ,  

[ x ~ >  x ~ > O ,  x ~ + x ~ = 2 .  
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Th i s  can  be  r e d u c e d  to  an  u n c o n s t r a i n e d  o n e - d i m e n s i o n a l  m i n i m i z a t i o n  p r o b l e m  
v i z . ,  

( ' ) ' §  8 
m i n i m i z e  t + x~ (2~ ~ x ~ l  ~--  x~ '  0 < x 2 < 1. 

- -  21 - -  2 

S e t t i n g  the  d e r i v a t i v e  equa l  to  zero,  a n d  a p p l y i n g  the  m e t h o d  of b i sec t ion ,  we f ind  

x 1 = - -  x ,  = t . 2 2 2 8 9 9 2 7 4 4 ,  

x 2 = - - x 3 =  0.5552395908, (4.3) 

(~4)opt = I 1.7755336773. 

In  t he  case  n = 5, P r o b l e m  (3.t3) becomes  

m i n i m i z e  m a x  {]s, ~, /5, s} 

xl > x~ > o, x~ + d = { .  

W e  t a k e  x 2 as i n d e p e n d e n t  v a r i a b l e  a n d  express  x x in t e r m s  of i t  as x I = ( { - -  x~ )  1'4, 

0 < x 2  < (~)1/4. T h e n  the  p r o b l e m  a g a i n  b ec o me s  a o n e - d i m e n s i o n a l  m i n i m a x  
p r o b l e m .  N o t e  f r o m  (3.8) t h a t  b o t h  /5,z a n d / s , s  b e c o m e  in f in i t e  as  x2~O , and ,  
m o r e o v e r ,  ]5, 3 "~ 2]5,2- F o r  sma l l  x2, t h e r e f o r e , / 5 , s  > ]5,2. As  x 2 ~ (5]4) 1/4, we h a v e  
x 1 - - x 2 - ~ O  a n d  ]5,2 aga in  becomes  inf in i te .  The  o t h e r  func t ion ,  /5,a, however ,  is 
m o n o t o n i c a J l y  dec reas ing ,  s ince  

dl~., 4 (x~+ ~ ~ - x ~ ) < o  dx~ -- x~.~ x2 -- xl 

b y  v i r t u e  of x 1 > x v I t  fol lows t h a t  t he  m i n i m u m  of m a x  {/s,z,/s,a} occurs  a t  t he  
l a rges t  x2 for  which  ]5, ~ = ]5, s. W e  a re  led, the re fo re ,  to  so lv ing  the  t r a n s c e n d e n t a l  
e q u a t i o n  

~(1 + x ~ ) - 2 ( ~ - ~ ) 0  + x ~ ) = 0 ,  0 < x ~ <  (1) ~ ,  

where  x 1 = ( { - - x ~ )  1/4. Th is  can  be  done  n u m e r i c a l l y ,  the  r e su l t  be ing  

x x = - -  x 5 = t . 200 t030479 ,  

x 2 = - -  x 4 = 0.8077421768, 
(4.4) 

X s = O ,  

(U5)opt : 21.4560069858. 

F ina l l y ,  if n : 6, we m u s t  solve  

m i n i m i z e  m a x  {],,2, f6,3} 

x ~ > x 2 > x ~ > 0 ,  x~ + x~ + x~ = 3. 

T a k i n g  x 2, x 8 as i n d e p e n d e n t  va r i ab le s ,  we cons ide r  ]s,z a n d  ]6,s to  be  func t ions  
of x2, x 3. T h e i r  m a x i m u m  is to  be  m i n i m i z e d  on the  open  d o m a i n  

9:  2x~ + x g < 3 ,  x~> x3>0.  

Since  one or  b o t h  of t he  func t ions  ]6,2,/e,s b e c o m e  in f in i t e  on the  b o u n d a r y  of ~ ,  
t h e  o p t i m a l  p o i n t  is  i n t e r i o r  t o  ~ .  W e  c l a im  t h a t / e ,  z = ]6, s a t  the  m i n i m u m  p o i n t  
x = a ~ .  I n d e e d ,  if  we h a d  ]e, ~ > ]e,3 a t  x ---- a, t h e  s ame  i n e q u a l i t y  w o u l d  h o l d  in  
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some neighborhood q/(a) of a, giving 

max{]~,,, ]s,3} -----]e,2 for xEall(a). 

Therefore,  x = a  being opt imal ,  both  par t ia l  der ivat ives  of ]6,~ would have  to 
vanish  a t  x = a. A short  calculation, however,  shows tha t  

m 

Ox s X~ 1 s t I t "* s (x ,  - x , )  (x~ - x , )  

Thus,  In, 2 cannot  be larger t han  ]e, 3 a t  x = a. Similarly one invalidates the  ine- 
qual i ty  Is, 2 < ]n.a a t  x = a, since 

0/... 2(t +-.'~) (1 +-i) (xl0 + 4 ) ( ~ - ~ ) - x ~ x ~ ( l  +~)(x~-x~)~<o. 
# 

- -  t I t  t 1 2  ox ,  ~ (xl -- x,) (x ,  - x3) 

Consequently, /8 ,  ~ = / e ,  s a t  x ---= a, and our  problem becomes 

minimize/6 ,  ~ ( x) 

subject  to  

I~..(x) =/~.~(x) .  

t~(x) = 3. 

x l > . x s >  xs>O.  

The first equat ion in the constra ints  is quadra t ic  in x t, hence can readily be 
solved for x v The  problem, more  explicitly, then  becomes 

minimize ( t  + ' )  ( '  + x , ) ( ,  +x , )  
- •:) (x ,  - *8) 

subject  to 

(, + ),, + (, + + }'. 

x ~ +  ~ x2 + x8 = 3,  

x x >  x z >  Xn>O. 

Basically, this  is again a one-dimensional  minimizat ion  problem, if we take  
xa as independent  variable.  T o  const ruct  an admissible se t  of nodes xl, x~, x s, we 
pick x 3 with 0 < xs < ], then  t r y  to  f ind x~ > x ,  by  solving the t ranscendenta l  
equat ion 

r (x,, xs) = x~ + x~ + x~ - -  3 = 0, (4.6) 

where x x is the square  root expression given in (4.5). Hav ing  de te rmined  x,, we 
obta in  x a f rom its explicit formula,  which clearly implies t h a t  x a > x 2. Each  
evaluat ion of the  object ive funct ion in (45) (considered a funct ion of x3) thus 
requires the solution of a t ranscendenta l  equat ion.  

If  x 8 is selected too large, Eq. (4.6) m a y  fail to have  a solution x,  > x~. To  
examine this point  in more detail ,  we first wri te  the equat ion for x~ in the al ter-  
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na t ive  form 

x~ = ( ~  + ~) x' + *~(~3 + ~) x: + (*3 + ~) (x~ + ~) x~ + ~(x3 + ~) (~,* + ~)~, +*~* (~,* + ~) 
(x3 + 1) x** + x3(x3 + t) x2 + x~ + t 

(which, inc identa l ly ,  is the  prefer red  form for computa t ion . )  A s t ra igh t fo rward  
calcula t ion then  shows t h a t  x~ is increas ing as a funct ion of x 2 for any  f ixed x3 > 0. 
Consequently,  the  funct ion ~ (x2, x3) in (4.6) is increasing unbounded ly  in x~, for 
x 3 fixed, and  therefore  vanishes a t  a unique x 2 > x 3 if and  only  if ~ (x 3, x3) < 0. 
One computes  

5 f 4xa--[-5xS-t-2x + 3 ~ _ 
~(x ,  x) = x  ~-  - 2 ~ s u  3-;2- + 1 ....... ; + 2 x ~ - - 3 ,  

which on (0, oo) increases monoton ica l ly  from - - 3  to  oo. Therefore,  ~ (x, x) has 
a unique posi t ive  zero x = ~ ,  which can be compu ted  to  be ~ = 0 . 7 5 3 7 7 1 8 1 8 6  
(to 10 decimals),  and  the equat ion  (4.6) has  a unique solut ion x~ > x a if and  on ly  
if x a < ~ .  A b ina ry  search procedure  to  locate the  m i n i m u m  of the  objec t ive  
funct ion on 0 < x 3 < ~, combined  wi th  the  me thod  of bisect ion for solving the  
t r anscenden ta l  equat ion  (4.6), now yields the  following op t ima l  po in t  configura-  
t ion :  

x l = - - x e - =  t . t601t01028,  

x~ = - -  x~ = 0.977t 502216, 

x 3 = - -  x,  = 0.3 788765912, 

(~r = 51.3302762899. 

In  Table  4.1 below we compare  the  op t ima l  condi t ion  n u m b e r  wi th  the  
condi t ion number  for equ id i s t an t  poin ts  x, = 1 - -  2 (v - -  t ) / ( n  - -  t )  and  Chebyshev 
poin ts  x, = cos ((2v - -  t) zr/2n) .  

Table 4.t. The condition number condoo V, (x) for various point configurations x 

Equidistant Chebyshev Optimal points 
points on [-- 1, t ] points on (-- 4, t) 

2 2.00 2.4t 2.00 
3 6.00 7.00 5.00 
4 18.oo 18.94 11.78 
5 50.00 4t .00 2t .46 
6 159.375 1t2.82 5t.33 

5. Optimally Conditioned Vandermonde Matrices for Nonnegative nodes 

In  the  case of nonnega t ive  nodes,  

x , >  x ~ >  . . .  > xn ->_0, (5.t) 

the  condi t ion  n u m b e r  '(3.1) of V,, b y  Theorems 2.t and  2.3, can be expressed  as 

n, (x) = m a x  {n, g~ (x)}.  m a x  g , ,  (x), (5.2) 
1_~,;~ ' 
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where 

g,,(x) = x, , (5.3) 
t * = t  

g.,.(x) = H  i +xt~ v = t  2 . . . . .  n. 
. = 1  I ~ . - ~ 1  ' 

(5.4) 

In  much the same way as in Section 3 (in fact, somewhat  simpler), one proves the 
following two theorems. 

Theorem 5.1. I] n >= 2 and the nodes x, satis]y (5.t) then g,,x (x) <g,, 2 (x). 

Theorem 5.2. I] a is a minimum point o] ~t~ then 

g.(a) =n.  (5.5) 

In  addit ion,  we can show the following. 

Theorem 5.3. I / a  = [al, a~ . . . . .  a,] is a minimum point o/~,  then a,, = 0 .  

Proo]. Assume first n ~ 3- Suppose t ha t  a, > 0. By (5.5), we have 

. - - 1  - -  n - - 1  a t - l -a  2 + . - .  + a ~  - 1  = n .  (5.6) 

We now let x t and  x. vary  in such a way that  

n - - 1  

x ) - I  + n-x . - a  (5.7) X n ~ n - -  Z atJ 
it=2 

and  

xt > a= > ... > a._~ > x . > 0 .  (5.8) 

Tak ing  x. as the independent  variable, we then have 

dx~ (x.].-2 
d T+ ,- = -  ~-~1 " 

We examine the behavior  of each g~,,, 2 ~v<=n. If v<=n--t ,  not ing  tha t  

we obtafin 

dg,,, = 
d x ~  

(i + xl)(i +x.) 
g"'~ = ( x ~ - V ( , / , ~ -  ,~.) = ' '  

n - - 1  r l  t + a u  
~,, = I l a T ~ - - a J  ' 

wr'(w,--a.>'(a.--'.)' {(x,--a.)(a.--x.)t(t + x,) x : - '  - -  (l + 

. - - 2  + ( I  + x l )  0 + x,) [ ( a . -  x,) x ,  + ( x t - a . ) x ~ - ~ } > o .  

Similarly, for v = n ,  we have 

n - - 1  
( 1  + xx) ~ , 

g . , .  = . - 1  , ~ -  = H (1 + ~ . ) ,  
(xl - x . ) / - / ( %  - x. )  .== 



Optimally Conditioned Vandermonde Matrices 11 

from which we get 

. . . .  - {[(1 + x,) x?-' +(1 + x.) 
*I'-'  (* ,  - * . ) ' n ( a .  - * . ) '  �9 "=* 

/ z ~ 2  

n--I ~--I } 
+(i +x~)(x,-~.)~-~ H('*,,-x.) >o. 

/J#=v 
In  particular, 

dg,, , ,  x,,= > 0 ,  v = 2 ,  3 . . . . .  n .  
d x n an 

I t  follows tha t  each g., .(a) decreases as a.  is decreased and simultaneously a 1 
increased (in such a way  tha t  (5.6) remains valid). Consequently, in view of 
Theorems 5.t and 5.2, n.(a) cannot  be minimal, making the assumption a . > O  
untenable. This proves the theorem for n ~ 3. If  n = 2, the theorem can be proved 
directly. 

As a result of Theorem 5.3 it suffices to  consider n -  t variables, xl, x, . . . . .  
x. i, with 

X l >  x , >  .. .  > X~_l> x,, =O.  (5.9) 

We denote the cone in ~,", defined by (5.9), by  ~o. Our minimization problem 
then becomes 

minimize max  g~, (x) 
2 < v < t *  ' 

subject to (5.tO) 

xE~e~ g~(x) = ~ .  

If  a----[a 1, a2 . . . . .  a~_ D OLEO# ~ is a solution of (5.t0) then 

(X,)opt = n max  g , ,  (a). (5. t 1) 
2 < ~ < n  ' 

As before, in section 3, we can give (5.10) an equivalent formulation as a non- 
linear programming problem, 

minimize u 

subject to 

g . , v (x )  <--<u, v = 2 ,  3 . . . . .  n ,  
(5.12) 

g, (x) = n, 

x , - - x , _ l < O ,  v = 2 ,  3 . . . .  , n - - I ,  

--x~_l <O.  

I t  is possible to solve (5.10) directly for n = 2  and  n = 3 .  In  the first case, the 
solution is trivially 

x~=2, x~=0, (~)op,=3- (5.13) 
In  the second case we have to solve 

minimize m a x  {g3,~, g3,3} 
subject to 
x~ > x~ > x3  = 0,  x~ + x~ = 3,  
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where 
I + x l  (t + xl) (l  + x~) 

g3, 2(x) - -  . , ( x ~  - x , ) '  g3, 3(x) = "1"~ 

We take xz as independent  variable, in terms of which x x =V3 - x ~ ,  0 < x~ < V { .  
As x2~o, bo th  g3,z and  g3,a become infinite, the lat ter  being larger for small x~ 

since x x >  t. As x2 tV~,  we have x 1 - x 2 - + 0  and  ga, e again becomes infinite. The 
other  function, ga,3, decreases monotonically,  since 

dg a , 1 

d x 2 X 1 X Z 

Consequently,  max{gs, ~, g3,3} is minimized at the largest x 2 for which gs, 2 : g 3 ,  8. 
This equation amounts  to 

X I - -  X 2 X 1 

and  has the unique positive root  x 2 = (Vs--1)/2.  Our  opt imal  solution, therefore, 
is given by  

F5 + t _-- 1.6180339887, Xl--  2 

V5 -- ~ =0.6180339887, (5A4) X2 2 

X 8 = O, 

Interest ingly enough, x~ coincides with the ratio of the "golden  sect ion".  

Acknowledgement. The author is grateful to the referees for pointing out Eq. (! .5), 
and for providing the short proof of Theorem 2.t. 
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