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Summary. We discuss the problem of selecting the points in an (2 X #) Vander-
monde matrix so as to minimize the condition number of the matrix. We give numerical
answers for 2 =# =<6 in the case of symmetric point configurations. We also consider
points on the non-negative real line, and give numerical results for » =2 and = = 3.
For general », the problem can be formulated as a nonlinear minimax problem with
nonlinear constraints or, equivalently, as a nonlinear programming problem.

1. Introduction
We define the Vandermonde matrix of order »n by

1 1 ..
X, Xy ... %,

=" S (1.1)
Ll SV

where the x, are real or complex numbers, called ‘‘points” or ““nodes”. We write
V,(x) if we wish to indicate the dependence of ¥, on x =[xy, x,, ..., %,]. Systems
of linear algebraic equations, whose coefficient matrix is a Vandermonde matrix,
or its transposed, occur frequently in numerical analysis, e.g., in polynomial
interpolation and in the approximation of linear functionals {1]j. Thus, if the
polynomial p(f; x) =3, p;x~" interpolates to function values f; at # points x;,
then the vector 7 of the coefficients p, is related to the vector ¢ of the function
values f; by

Vi) a=¢. (1.2)
A linear functional L, having moments m;, =Lz~ 1 <{ <%, in turn may be
approximated by L* through L*f=L$(f; x). Then L*f=¢7T o, where

Vi(*)e =p, (1.3)
and g is the vector of the moments m,.

In the following we are interested in the condition of such linear systems. We
shall use the condition number

condy, V, =V, o [Va™* o (1.4)

which describes the condition of (1.3) in terms of the L -norm, and the condition
of (1.2) in terms of the L,-norm. In particular, we are interested in determining
a real point configuration x which minimizes the condition number in (1.4).
Such a point configuration will be called optimal, and the corresponding Vander-
monde matrix {1.1) optimally conditioned. We first discuss this problem for sym-
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metric (with respect to the origin) point configurations, and give numerical
results for 2 <# < 6. We then consider briefly point configurations on the positive
real axis, and obtain optimal ones for # =2 and » =3.

The problem, in both cases, can be formulated either as a nonlinear minimax
problem with nonlinear constraints, or, equivalently, as a nonlinear programming
problem. The solution of these problems, beyond the values of # treated here,
almost certainly requires approximate methods. We shall not attempt to use
such methods here, but suggest that interesting test problems for constrained
optimization codes may be found below in Sections 3 and 5.

In terms of polynomial interpolation, the condition number (1.4) can be
further interpreted as follows. Writing

cond, V, = " v.h " 1“VnT "1
1Va) 880y /min 1V 6k

= 1M n )
223 S LN 9eR i 1
one finds, by virtue of (1.2), that
V. — 12 (8f; #)la / )0th
cond, %¥{wmwm it (15)

where
”
n%+%»%~+%ﬂﬂmgwm=;km
=

Thus, cond_V, is equal to the maximum magnification of relative errors, if the
relative error in the data is measured by [/[,/|/], and the relative error in the
interpolation polynomial by || (6; %) {,./|# (f; ) |-

A more common measure of condition is based on absolute errors and the
maximum norm. In fact, restricting attention (without loss of generality) to the
interval {—1, 1], one has

2 (8f; %)l
m‘%‘x —W— “’Am (1 6)

where A, = _max 271 |4(x)] is the Lebesgue constant [/;(x) arethe fundamen-
tal Lagrange interpolation polynomials corresponding to the nodes x,]. Optimal
nodes x,€[—1, 1], which minimize 4, are investigated in [3], but remain un-
known. (For related work, see also [4, 5].) What seems clear is that the optimal
condition number according to (1.6) is substantially smaller than the optimal
condition number based on {1.5). The former is known [3] to be (2/x) logn +0 (1)
as n—> oo; the latter, assuming symmetric optimal nodes, behaves more like 2%,
judging from the limited numerical results available below in Section 4.

2. Condition Number of a Vandermonde Matrix
We begin with expressing the norm of a Vandermonde matrix.
Theorem 2.1. [V, ], =max{n, 27 _,|%,|""}.
Proof. Let

n

v(s) =2 |x,°, >0,
p=1
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and define v(0) —_—lilr{)l v(s) =mn,, where 7, is the number of nonvanishing nodes x,,.
§
Since ny =, and v(s) is convex on s =0, we have
Vil =max {n, pnax_ v (»}=max{n,v(n—1)},
proving Theorem 2.1.

It is clear that a permutation of the variables x,, x,, ..., x, does not affect
the value of |V, (%)|,. The same is true for |[V;* (x)], whenever ¥;' exists. We
can assume, therefore, that the variables are arranged in some fixed order. If
they are all real we shall assume them in decreasing order,

Xy > Ky > > X, (2.1)

The monic polynomial whose zeros are the nodes x,, will be denoted by 2,,
pu(x) =II (v —x,). (2.2)

We recall from [2] the following results.

Theorem 2.2. If the nodes x, tn (2.1) are located symmetrically with respect to
the origin,

5 Aoy =0, V=12, (23)
then
; [£a(0)] g
L s i=)—1, (2:4)
vvs [ 25 | T e )]

where P, (x) is the polynomial in (2.2).

We remark that (2.1) and (2.3) imply that z,>0forv=1, 2, ..., [#/2], and
x(,,+1)/2 - O if n iS Odd.

Theorem 2.3. If the nodes in (2.1) are nonnegative, i.e., x,, =0, then
V1 o= Mmax {M} , 2.
” ” " 1<y<n (1+xv)‘p”(x,)| ( 5)
wheve P, (x) 1s the polynomial in (2.2).

Theorem 2.1 can be combined with Theorems 2.2 and 2.3 to yield explicit
expressions for the condition number cond ¥, in the respective cases.

3. Optimally Conditioned Vandermonde Matrices for Real Nodes
We now wish to minimize the condition number
#, (%) =condV, (%) (3.1)

as a function of the variables x;, %,, ..., x,. If we allow complex points x, we can
always achieve x,=n by taking «x, to be the n-th roots of unity. This point
configuration, in fact, is optimal for the spectral condition number {2, Example
6.4]). The problem becomes more interesting if we restrict all nodes x, to be real.
In this case we assume, as before, that

Xy > K> > K (3.2)
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The existence of an optimal point x in the domain (3.2) is assured, since
#, (%) —> co both, as x approaches the boundaries of the domain, and as x— o on
{3.2). The latter follows from (cf. [2, Theorem 4.2])

"n(tx)212?;‘(|avnl+tlav,n—ll+ +t” 1|avll ’x ‘

t> 0 sufficiently large, where a,, are the coefficients of the »-th Lagrange poly-
nomial

o X—% - -
lr(x)=H‘ ”“”zavnx” 1+av,n—lx” 2+"'+arl'

%, — %,

pn=1
1534

In fact, , (£ x) — o0 as {— oo, since a,, cannot vanish for all ».

Theorem 3.1. Suppose the problem of minimizing x, (x) in (3.1), subject to (3.2),
has a unique solution. Then this solution is necessarily symmetric with respect to
the origin, i.c.,

X, 4%, ,=0, v=1,2,..., % (3.3)

Proof. Evidently, |V,(—%)|o =]V,(¥)]s, and also [V;1(—2)|, =V, (%) ],
(see [2, Theorem 4.2]), so that s, {— x) =#x,(x). Hence, if the point x in (3.2) is
optimal, so is

Ky ey S > — %,
The assumed uniqueness then gives immediately (3.3). This proves Theorem 3%.1.

Although it is not known whether or not the optimal point configuration on
the real line is unique, Theorem 3.1 suggests that we constrain the variables to
be symmetric. This then leaves us with [#/2] independent variables,

x1>x2>"'>x["/2]>0, (3'4)

which we collect in the vector x =[xy, %, ..., %{,2;]. The assumed symmetry has
the further advantage that an explicit formula for x, (x) is available. Theorems 2.1
and 2.2 in fact give

#, (%) = max{z,f (x)}- max (%), (3.5)
SIS
where
[n/2]
=24 (3.6)
p=1
1 n/ 1+ 2
fn,» (%) =(1 +Ax—')111 —I;?:%T’ v=1,2,...,n/2 (neven), (3.7)
e
14 A (n—1)/2 1+ 2
foo(2) = x:” 1I lxﬁ—z‘,",l , v=1,2,..., (n—1)/2 (nodd),
i (3.8)

(n—1)/2

I, a2 (%) =2 H (1+ ) (n odd).
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If n =2 or n =3, the empty products in (3.7), (3.8) are to be understood as having
the value 1.
Theorem 3.2. If n =3 and the nodes x, satisfy (3.4), then f, ; (%) < f, o(%).

Proof. If » is even, n =4, we obtain from (3.7),

1
14 -
fn 1 xl 1+x’ i x:—x; 1
- <
fu,2 1_}_717 EEY a3 ¥t —xy

If » is odd, # =5, then from (3.8) we get

l,’h} :{ 1 +x, 1 +x }(n—l)lz_ﬂ_x: 1
fu,2 xl“ +xf) ”s 1 +x, ’

2% —at
since the function (1 + x)/(#2(1 +4?)) is decreasing on (0, ). The case n =3
can be verified directly. This proves Theorem 3.2.

u=3

The inequalities (3.4) define a cone in R which we denote by ;.

Theorem 3.3. If ac€ () 7s a minimum point of x,, i.e.,

¥, (a) é)‘n (x)r all xe?(ﬂﬂ]r (3 ‘9)
then
@) =". (3.10)
Proof. Assume first # even. By (3.7) we have for any real ¢,
1 a2
fottay=(14 ) 1T 2 (3.41)
",y \ tu,, prpto ‘az al" ’ ¢

1 1+8a}
)ttt =fu@e+ o) IT 3.12)

Ry | py ’av p!

Now suppose f,(a) <#n/2. Then for ¢, >1 sufficiently close to 1, we have
f.(ta) <nf2, 1 <t<t,, and so

%, (ta) = folta), 1=t<d,.

2 ISvSn/2

From (3.11) we see, however, that each f, , (ta) decreases as ¢ increases from 1 to ¢,
Therefore, , (a) cannot be minimal. Suppose on the other hand, that f, (a) > n/2.
Then

%, (ta) =1, (ta) max f, (ta), t.<t=1,

for ¢_ sufficiently close to 1. Eq. (3.12) now shows that x,(fa) decreases as ¢
decreases from 1 to i-, again contradicting minimality of ,(a). Consequently,
f.(a) =n[2, as asserted.

For » 0dd, the proof is analogous.
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As a consequence of Theorems 3.2 and 3.3, the optimal point configuration
a €€, # =3, can be found by solving the constrained minimax problem:

minimize max f,, (x)
2§v§[—”—;—1—]

subject to (3.13)
x€€mpp (%)= %

Given a solution a €€/,; of (3.13), the minimum condition number of ¥ is

(tadopt = - TﬁWMM% (3.14)

Problem (3.13) can be written equivalently in the form of a nonlinear pro-
gramming problem, viz.,

minimize u
subject to

foZn, v=23,..,| "5 (3.15)
foiz) =%

xX,—%,,<0, v=273,..., [;],
_x["/2]<0.

To an optimal point x*, #* of (3.15) corresponds a solution x* of (3.13), «* being
the minimum value of the maximum in (3.13), and vice versa.

In the next section we solve (3.13) directly for 2 <xn <6.

4. Optimal Symmetric Point Configurations for 2<n < 6
The case n =2 can be handled directly by (3.5), which gives

#y(%,) =max (1, ;) '(1 + T:{)’ 2y > 0.

The minimum of x, (x;) is clearly assumed at x; =1, giving the optimal configura-
tion
H=—2=1, (%g)opt=2. (4.1)
Problem (3.13) in the case # =73 has the trivial solution

%= — xy=|/} = 1.2247448714,
X9 =0, (4.2)
(#3)opt = 5-
If n=4, the problem becomes

2

. 1\ 1+4
minimize (1+Z) p -—x};,
17 “2

2> %,>0, 34 ad=2
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This can be reduced to an unconstrained one-dimensional minimization problem
viz.,

- 1) 1+ 2=
numrmze<1+ xz) (2—x§)217-x§’ 0 << x, <.

Setting the derivative equal to zero, and applying the method of bisection, we find
Xy = —x,= 1.2228092744,
Xy = —2x3= 0.5552395908, (4.3)
(24)opt =11.7755336773.
In the case n =35, Problem (3.13) becomes
minimize max {f; 4, f5 s}
H>%,>0, xi+xi=35.
We take x, as independent variable and express x, in terms of it as x, = (§— x3)/4,
0< x,<(3)V%. Then the problem again becomes a one-dimensional minimax
problem. Note from (3.8) that both f; , and f; 5 become infinite as x,{0, and,
moreover, f; g~ 2fg . For small x,, therefore, f5 3> f5 5. As x4 (5/4)"%, we have

%, —%,—>0 and f; , again becomes infinite. The other function, f; 5, however, is
monotonically decreasing, since

dfs,a 4 4
Tr, = A e ta—a—x3) <0
) i

by virtue of x;>> x,. It follows that the minimum of max {f5,, f; 3} occurs at the
largest x, for which f; , =f; ;. We are led, therefore, to solving the transcendental
equation

B+ xy) =20 2D (1 +a) =0, 0<x< (B

where ¥, =(§ — x3)V4. This can be done numerically, the result being

X = —2%s= 1.2001030479,

Xg= —x, = 0.8077421768,

%q =0,

(2¢5)opt = 21.4560069858.
Finally, if # =6, we must solve
minimize max {fg o, fo,3}
<(xl> > 23>0, 23 +ad+a3=3.
Taking x,, x5 as independent variables, we consider fg, and fz 5 to be functions
of x,, 3. Their maximum is to be minimized on the open domain
D: 255 +x5<3, x> x3>0.

Since one or both of the functions fg 5, f 3 become infinite on the boundary of 2,
the optimal point is interior to 2. We claim that f¢ , ={¢ 5 at the minimum point
x =a€P. Indeed, if we had fg > f¢ 3 at ¥ =a, the same inequality would hold in
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some neighborhood % (a) of a, giving

max{fe s fs3} =fo2 for xe¥(a).

Therefore, x=a being optimal, both partial derivatives of f;, would have to
vanish at ¥ =a. A short calculation, however, shows that

ofe2 — 2(1 +~;:) (1 + 2}

s = T TR A ) (1 () >0
s 1141 — %)% (% — %

Thus, fg ; cannot be larger than f , at ¥ =a4. Similarly one invalidates the ine-
quality fg ; <fe,3 at x =a, since

2fes 21+ AL

e = AT A {x4(1 + 23 (43 — 22 — B 2, (1 4+ 23 (22 — 2D} <0.
X3 1 xl——x, x!_.xa

Consequently, fz s =14 3 at ¥ =a, and our problem becomes
minimize fg ,(%)
subjéct to
fo,2(%) =fe,5(%),
fo(2) =3,
%> %y > %3 > 0.
The first equation in the constraints is quadratic in x;, hence can readily be

solved for x,. The problem, more explicitly, then becomes

0+ 0+

(1 = %) (%3 — 7))

minimize (1 -+ ! )
X3
subject to

x§(1 +‘$;)(1 +x§)——x§(1 + ;:;) (1 +,x:) !

Xy =—

(1 +-},;) (4 =1+ Dt , (4.5)

2 af =3,
x> %y > X > 0.

Basically, this is again a one-dimensional minimization problem, if we take

%, as independent variable. To construct an admissible set of nodes x;, ,, %5, we

pick x; with 0 < 23 <C1, then try to find x,> x, by solving the transcendental
equation

¢ (%2, %5) =27 + x5+ 25 —3 =0, (4.6)

where x; is the square root expression given in (4.5). Having determined x,, we
obtain x; from its explicit formula, which clearly implies that x, > x,. Each
evaluation of the objective function in (4.5) (considered a function of x3) thus
requires the solution of a transcendental equation.

If x4 is selected too large, Eq. (4.6) may fail to have a solution x3> x;. To
examine this point in more detail, we first write the equation for 4% in the alter-
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native form

(50 + 1) A+ 25 (5 +1) B+ (2 1) (B +1) B 2055+ 1) (3 + )5 + 2B (5 +1)
(73 +1) 23 + 2, (% +1) %o + 25 41

(which, incidentally, is the preferred form for computation.) A straightforward
calculation then shows that 2 is increasing as a function of x, for any fixed x, > 0.
Consequently, the function ¢ (x,, x4) in (4.6) is increasing unboundedly in x,, for
x4 fixed, and therefore vanishes at a unique x,> x, if and only if ¢ (x;, x,) <O.
One computes

2=

N s fArt 5 +2x 4318
¢(x,ﬂ-—x5{‘*5;s;3;f+{W“}‘+2x5~3,
which on (0, o) increases monotonically from —3 to c. Therefore, ¢ (x, x) has
a unique positive zero x=§, which can be computed to be &=0.7537718186
(to 10 decimals), and the equation (4.6) has a unique solution x,> &, if and only
if x3<<&. A binary search procedure to locate the minimum of the objective
function on 0 < xy<<§, combined with the method of bisection for solving the
transcendental equation (4.6), now yields the following optimal point configura-
tion:

%= —%g = 1.1601101028,

X, = —xg= 0.9771502216,

Xg=—2x, = 0.3788765912,

(%6)opt = 51.3302762899.

In Table 4.1 below we compare the optimal condition number with the
condition number for equidistant points x, =1 —2(» —1)/(» —1) and Chebyshev
points x, = cos ((2v —1) z/2n).

Table 4.1. The condition number conde V,, (#) for various point configurations »

n Equidistant Chebyshev Optimal points
pointson [—1,1]  points on (—1, 1)

2 2.00 2.41 2.00

3 6.00 7.00 5.00

4 18.00 18.94 11.78

5 50.00 41.00 21.46

6 159.375 112.82 51.33

5. Optimally Conditioned Vandermonde Matrices for Nonnegative nodes

In the case of nonnegative nodes,
Ay Ky >0 > %, 20, (5.1)
the condition number (3.1) of V,, by Theorems 2.1 and 2.3, can be expressed as

%, (%) =max{n, g,(x)} - max g, (), (5-2)

1SrSn
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where
d 1
g (%)= 2 27,
pu=1
g,,’ ” 1+x vy=1,2,..., %
p=1 !x
pwky

(53)

(5.4)

In much the same way as in Section 3 (in fact, somewhat simpler), one proves the

following two theorems.

Theorem 5.1. If n =2 and the nodes x, satisfy (5.1) then g, ,(x) <g, (%)

Theorem 5.2, If a is a minimum point of x, then
gn(a) =n.

In addition, we can show the following.

Theorem 5.3. If a=[a,, 4, ..., a,] is a minimum point of x, then a, =0.

Proof. Assume first » =3. Suppose that a,> 0. By (5.5), we have
ay t bay T Al =

We now let x, and x, vary in such a way that

n—l+xn l_n_zan—-l
pn=2
and

X >aAy> >4, 4> X, >0,

Taking x, as the independent variable, we then have

—~2
dx, X, )”

dx, %

We examine the behavior of each Bup 2E VSN If <% —1, noting that

_ (+m)(1t,) Tt
gn,v (x o v)(a _x) nm nn ;‘l..]g lav__a;"!
BEy
we obtain
d " -
;)%:L: x;’"(xl—:,)”(u,,—x”)” {(xl—av) (a, —x,) [(1 + %) o7 2 — (1 +x,)x

+ (1 +%) (1 +5,) (@, —x,) 87" +(n—a) 517} >0.

Similarly, for » =n», we have

o= — I [T(1+a,),
(2’1"' n)”&(ap—xn) n=2

nz]
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from which we get

d ny 1N ”l _ i -
gﬂ"'ﬂﬂ ) o {[(1 +2) 37+ (1 +x,) 3] ] (@, — )
" PR () — x”)ﬂl‘g2 (a, — z,)? 11
n—1n-—1
+ 0 +x) (1 — %) 477 Zz 1—12 (@, — x,.)} > 0.
T
In particular,
gy, o _,
Wﬁn=a”> ’ V= ,3,...,11,,

It follows that each g, ,(a) decreases as a, is decreased and simultaneously a,
increased (in such a way that (5.6) remains valid). Consequently, in view of
Theorems 5.1 and 5.2, %,(@) cannot be minimal, making the assumption 4,>0
untenable. This proves the theorem for » =3. If » =2, the theorem can be proved
directly.
As a result of Theorem 5.3 it suffices to consider » —1 variables, x,, %,, ...,
x,_y, With
XKy > > %, > %, =0. (5.9
We denote the cone in R”, defined by (5.9), by €2. Our minimization problem

then becomes
minimize max x
Mmax g, (%)

subject to (5.10)
x€€Y, g, (x) =mn.

Ifa=/a,, a,, ..., a,_,, 0]€E) is a solution of (5.10) then
(%n)opt =n {2?’5)(” gn,v (a) (51 1)

As before, in section 3, we can give (5.10) an equivalent formulation as a non-
linear programming problem,

minimize 7

subject to

(X)) =u, v=2,3,...,%,
&4 (%) =mn,

Xy, — %,4 <0, v=2,%,...,n—A1,

(5.12)

— %,y <O.
It is possible to solve (5.10) directly for » =2 and » =3. In the first case, the
solution is trivially
% =2, X3 =0, (xz)optZS- (513)
In the second case we have to solve
minimize max{gy o, £3 3}
subject to
x> %> %3=0, x3+23=3,
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where

t+x 14 2) 1+ 2
&s, 2(%) = % (xl‘——ljr;" &, 3{%) = ( —*x%%;‘*z)* .

We take x, as independent variable, in terms of which x =}3 — 12, 0 <x,<}3.
As x,]0, both g, , and g, 5 become infinite, the latter being larger for small x,
since %, > 1. As x,1)$, we have %, —x,—>0 and &£s,2 again becomes infinite. The
other function, g, 5, decreases monotonically, since

Y ((ERA P RIERR

Consequently, max{g; , &3 3} is minimized at the largest x, for which g3 , =g3 5.
This equation amounts to

1 .
X — % %

]

and has the unique positive root x, = (/5 —1)/2. Our optimal solution, therefore,
is given by

=1 16180339887,

xy ==L —0.6180330887, (5-14)

X3=0,
(%3)opt =3 (1 -+ %l) (1 + ;}2) =12.7082039325.

Interestingly enough, «x, coincides with the ratio of the ‘“golden section”.

Acknowledgement. The author is grateful to the referees for pointing out Eq. (1.5),
and for providing the short proof of Theorem 2.1.
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