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Abstract— The paper examines path-dependent control of
Hybrid Electric Vehicles (HEVs). In this approach we seek
to improve HEV fuel economy by optimizing charging and
discharging of the vehicle battery depending on the forecasted
vehicle route. The route is decomposed into a series connection
of route segments with (partially) known properties. The
dynamic programming is used as a tool to quantify the benefits
offered by route information availability.

I. INTRODUCTION

To reduce fuel consumption, the control of Hybrid Electric
Vehicles (HEVs) may be tied to an expected (or to a
specified by the driver) traveling route [1], [2]. Utilizing
route information, including road characteristics and traffic
conditions, the control of the battery charging and discharg-
ing can be optimized for a specific route-to-be-traveled. The
proliferation of GPS-based navigational systems and digital
maps in the modern vehicles facilitates the application of
such path dependent control methods for HEVs. Methods to
forecast the route to be traveled have been considered in the
prior literature, see e.g., [3] and references therein.

The topic of driving condition dependent HEV control has
been actively researched in recent years, see e.g., [5], [6], [7],
[8] and references therein. Many existing approaches utilize
on-line driving pattern recognition to then set accordingly pa-
rameters in the control strategy. Other approaches [9] exploit
the capability of recurrent neural networks, after appropriate
training, to implicitly capture driving pattern information and
render control decisions as a single computational algorithm.
Dynamic optimization along an anticipated vehicle route has
been considered in [10], [4].

Our approach is based on considering the expected fuel
consumption over the route as a function of the set-points
for battery State of Charge (SoC) in each route segment,
expected properties of the route segments and expected
characteristics of vehicle speed trajectories in each route
segment. Dynamic optimization can then be applied to de-
termine the sequence of the set-points for battery SoC for
each route segment. In this paper we illustrate the use of
dynamic programming as a dynamic optimization tool, and
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we quantify the achievable fuel economy benefits that route
information availability may offer.

The paper is organized as follows. In Section II the HEV
configuration of interest and its existing vehicle control
system are briefly reviewed. In Section III, an approach
to modeling the fuel consumption during travel over the
individual route segments is discussed. Section III describes a
dynamic programming approach to the optimization of SoC
set-points for the individual route segment. The results of
the evaluation of this approach for three simulated routes
are reported in Section V Finally, concluding remarks are
made in Section VI.

II. HEV CONFIGURATION AND VEHICLE SYSTEM
CONTROL

We consider an HEV configuration shown in Fig. 1. This
vehicle is based on a power-split powertrain system, which
is similar to the one used in Ford Escape vehicle. The basic
components of the HEV are the engine, the battery, a power
split device referred to as a planetary gear set, an electric
generator, and an electric motor. The planetary gear set splits
the power produced by the engine and transfers a part of it
to drive the wheels and the rest to the generator to either
provide electric power to the motor or to recharge the battery.
The engine can provide mechanical power to the wheels
and at the same time charge the electric battery through
an electric generator, if needed. Depending on the operating
conditions, either just the engine or just the electric motor
(which consumes electric energy stored in the battery) or
both can provide traction power to the wheels to propel the
vehicle. The vehicle also incorporates a regenerative braking
capability to charge the battery during vehicle deceleration
events. Thus the battery can be recharged or discharged
by either the electric generator or electric motor or both.
Consequently, there are several degrees of freedom in this
powertrain configuration to satisfy driver requests. This flex-
ibility can be exploited to optimize fuel consumption.

A Vehicle System Controller (VSC) is used to coordinate
subsystems in the HEV. Inherent to this controller is a logical
structure to handle various operating modes and a dynamic
control strategy associated with each operating mode to
specify the vehicle requests to each subsystem. An additional
component, called transmission control module (TCM), is
used to transmit the controller’s commands to the electric
generator and the electric motor. Conceptually, the VSC takes
as inputs the environmental conditions, the driver’s requests,
and the current state of the vehicle, and provides as outputs
the commands for the components, see Fig. 2.
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Fig. 1. Power-split HEV powertrain system based on a planetary trans-
mission.

Fig. 2. Vehicle system controller.

To handle path-dependent control, the VSC can be ex-
tended with additional functionality to predict and optimize
fuel consumption. The elements of this functionality are
discussed in what follows.

III. FUEL CONSUMPTION MODELING

We consider a route linking an origin (O) to the destination
(D), which is decomposed into a series of i = 1, ...,N road
segments connected to each other. See Fig. 3.

Fig. 3. Route segmentation. The ωi designates the fuel consumed over the
ith segment of the route.

In each route segment i, of length li, the road grade, gi,
and the vehicle speed, vi, are generally functions of distance
and time. The grade is a deterministic quantity which can be
known in advance as a function of the distance. With respect

to modeling the vehicle speed, in this paper we assume that
a nominal vehicle speed trajectory can be predicted for each
route segment, possibly dependent on the characteristics of
the segment and traffic in the segment.

Our route segmentation criteria generally relate to sub-
stantial changes in either the average road grade or average
vehicle speed. Such substantial changes in the grade may
correspond to the beginning or end of a hill. Such substantial
changes for the vehicle speed may coincide with the changes
in the road class, decelerations (accelerations) to (from) stop
signs or traffic lights, or to traffic jams.

Consequently, a constant average grade, gi, can be as-
sumed in each segment i. At the same time, a varying
nominal vehicle speed trajectory, vi(·), has to be considered
in each route segment. Such a representative vehicle speed
trajectory (a scenario) may be chosen consistently with a
finite set of statistical features (mean, variance, etc.) which
are considered to be properties of traffic in a particular route
segment or type of a driver.

The battery SoC is a key dynamic state in the system. The
value of SoC at the beginning of the ith segment is denoted
by SoCi and SoCd(i) denotes the set-point for the SoC in the
ith segment. The VSC controls the battery SoC in the ith
segment in response to the set-point, SoCd(i).

The expected fuel consumption in the ith route segment
is thus a function of gi, vi(·), li, SoCi and SoCd(i), i.e.,

ωi
(
gi,vi, li,SoCi,SoCd(i)

)
= E

{
f
(
gi,vi, li,SoCi,SoCd(i)

)}
(1)

where E denotes the expected value. The expectation is
used in (1) because the actual vehicle speed trajectory is, in
general, not deterministic and can deviate from the nominal
trajectory (e.g., due to different driver and traffic situations),
and hence the fuel consumption is a random variable.

In our work, we used PSAT (Powertrain System Analysis
Toolkit) [12] environment for the HEV simulations. This
environment implements both the HEV dynamic model of
Ford Escape HEV, and a model of the controller which tracks
set-points for battery SoC while satisfying driver requests.

The PSAT model was simulated over segments with
different length and grade parameters, with different initial
SoCs and SoC set-points and for different vehicle speed
trajectories constructed consistently with the chosen feature
values as the latter were also varied. A regression model,
with the regression terms suggested by the energy analysis
of the HEV, and a black box model based on neural network
techniques have been developed to fit the collected data set
and construct a representation for ωi in (1). An approach
where Monte Carlo simulations were employed to average
the fuel consumption over several vehicle speed trajectory
scenarios has been also implemented. These developments
related to fuel consumption modeling from simulated or
experimental vehicle data will be considered in more detail in
separate publications. The subsequent developments rely on
the assumption that a representative fuel consumption model
(1) has been developed.
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IV. PATH-DEPENDENT CONTROL

A route planner functionality is now described. This
functionality prescribes the sequence of SoC set-points,
{SoCd(i), i = 1, · · · ,N}, for the route to minimize the total
fuel consumption. The VSC controls the battery SoC in the
ith segment in response to the set-point, SoCd(i).

If we consider a given route as a series of route segments
connected to each other with nodes and linking the origin
to the destination, then the set-point for battery SoC will
be updated at every node and it remains the same as the
vehicle travels along a segment of the route. Let i be the
current node and the beginning of the ith segment of the
route, i = 1,2, ...,N +1, where i = 1 and i = N +1 represent,
respectively, the origin (O) and the destination (D) nodes.
The planner incorporates a control law which is a function of
the state vector, x(i), with two components: the segment/node
i and the state of charge SoCi at that node. The state dynamics
are

x(i+1) = F
(
x(i),SoCd(i)

)
, (2)

x(i) =
(

i
SoCi

)
,

where x(i) is the state at the current node and F a nonlinear
function, which generates a successor state from the prece-
dent state.

The objective of minimizing the total fuel consumption
along the route can be formulated as follows:

min
SoCd(·)

J =
N

∑
i=1

ωi (3)

subject to SoCmin ≤ SoCi+1 ≤ SoCmax,

and SoCN+1 = SoCD,

where J is the objective function of our optimization prob-
lem, SoCd(i) (i ∈ {1,2,3, ...,N}) are the manipulated vari-
ables, and SoCmin,SoCmax are, respectively, the minimum and
maximum limits on SoC. Note that J is a stage-additive cost
function and that the stage cost reflects the expected fuel
consumption in each segment i. The constraint SoCN+1 =
SoCD is an optional constraint to match SoC to the desired
value at the end of the route; the choice SoCD = SoCO ensures
that the charge is sustained over the traveled route.

In segmenting the route we tend to use segments that
are sufficiently long so that feasible SoCd(i) can be tracked
within the segment, i.e., SoCi+1 = SoCd(i). In such a case,
the dynamics of (4) are simple and the problem complexity
is relegated to the fuel consumption model (1). Further, if
the fuel consumption can be approximated by a quadratic
function of SoCi and SoCd(i), the optimization problem (3)
reduces to a quadratic programming problem which can
be solved using standard quadratic programming solvers.
More general situations can be handled with the dynamic
programming as discussed below.

The dynamic programming (DP) translates the property of
any final part of an optimal trajectory to be optimal with

respect to its initial state into a computational procedure
in which the cost-to-go function, J∗(x), can be recursively
computed and satisfies the following relationships:

J∗(x) = min
SoCd
{J∗

(
F(x,SoCd)

)
+ω(x,SoCd)}, (4)

J∗(x f ) = 0, (5)

where SoCd = SoCd(x) is the decision variable and, with
slight abuse of notations, ω(x,SoCd) denotes the expected
fuel consumption for the state x and the battery SoC set-
point, SoCd . At every segment i, the optimal cost J∗(x) is
computed by minimizing over all the sums of the optimal
cost-to-go function J∗

(
F(x,SoCd)

)
at segment i+1 plus the

cost to move from segment i to segment i + 1, for all the
possible decisions SoCd that can be taken at segment i. Note
that the final state in (5) is denoted by x f = x(N +1).

Fig. 4. SoC quantization.

Since the model (4) is low dimensional, the effort to
numerically compute the DP solution is containable. In
the implementation of these computations, the values of
SoC and SoCd were quantized so that SoCi,SoCd(i) ∈
{SoC1,SoC2, ...,SoCn} with SoC1 ≤ SoC2 ≤ ...≤ SoCn. Then
every node i may be associated with all possible quantization
values, as shown in Fig. 4. As a consequence, the number
of all possible values, that the expected fuel consumption
for each segment may assume, is equal to the amount
of all possible combinations of (SoCi, SoCd(i)), with SoCi
and SoCd(i) quantized. The number of all these possible
combinations is n2 and thus the expected fuel consumption
can take n2 different values {ω1

i ,ω2
i , ...,ωn2

i }, for a given
route segment.

V. RESULTS

To quantify the potential benefits of the route-dependent
control, we consider several case studies. In these case
studies, the grade and the vehicle speed trajectory in each
segment were assumed to be known. The expected fuel
consumption was, therefore, a deterministic quantity, and no
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TABLE I
FUEL CONSUMPTION FOR A ZERO-GRADE ROUTE.

FUEL SAVINGS Total fuel consumption SoCd sequence
13.5% (kg) (%)

No SoC control 0.37 50-50-50-50-50-50-50-50

DP SoC control 0.32 50-52-50-48-46-46-44-50

averaging with respect to random realizations of the vehicle
speed trajectory was employed.

A. Route With Zero Grade

Our first route is shown in Fig. 5, where O the origin
and D is the destination. The route was decomposed into
N = 7 segments. Length and grade information for each road
segment and the vehicle speed trajectory in each segment
were assumed to be available and known in advance.

Fig. 5. Example route - Zero grade.

For the route in Fig. 5, the grade was assumed to be zero
and the SoC of the vehicle at the origin is SoCO = 50%.
To sustain the charge in the battery, the desired SoC at the
destination node is equal to SoCD = 50%. The values of
SoCmin and SoCmax were set to 40% and 60%, respectively.

Table I compares the fuel consumption with SoCd(i)%
prescribed by the DP policy, which we refer to as “DP SoC
Control” case, and the fuel consumption when SoCd(i) =
50% in each segment, which we refer to as “No SoC control”
case. In the former case, the fuel consumption (0.32kg) is
about 13.5% lower than in the latter case (0.37kg). This
represents a significant improvement.

We note that our route segmentation in Fig. 5 is not based
on using segments of equal length or equal travel duration,
but rather on the available vehicle speed information. Specif-
ically, the nodes when one segment ends and another begins
(and where SoC control points are located) correspond to
the initiation of a significant change in average vehicle speed.
The nominal vehicle speed trajectory was constructed so that

TABLE II
FUEL CONSUMPTION OVER A NON-ZERO GRADE ROUTE.

SUPPLEMENTARY Total fuel consumption SoCd sequence
FUEL SAVINGS (kg) (%)

2.7%

No SoC control 0.4 50-50-50-50-50-50-50-50

DP SoC control 0.37 50-52-50-48-46-46-44-50
grade ignored

DP SoC control 0.36 50-48-48-48-46-46-44-50
grade included

in each segment, a constant rate acceleration or deceleration
to the new vehicle speed value is assumed, followed by
steady cruise at that speed.

B. Route with Non-Zero Grade

A grade of 5% was inserted at segment 2 of the route
in Fig. 5, while the rest of the route characteristics remain
unchanged. See Figure 6.

Fig. 6. Example route - Non-zero grade.

Table II compares the fuel consumption in “No SoC
control” case with fuel consumption in “DP SoC control
with grade ignored” case and “DP SoC control with grade
included” case. The second case employs the same SoC set-
points, SoCd(i), as in Table I, i.e., it is the case in which only
vehicle speed information and no road grade information has
been taken into account in the optimization.

Compared with the previous case study, the total fuel
consumption in the case of “No SoC control” has increased
from 0.37kg to 0.4kg. This increase may be explained by
the presence of a large uphill grade on segment 2. The fuel
consumption in “DP SoC control with grade ignored” case
is 7.5% less. By including the grade information into the
DP optimization, a further decrease in fuel consumption, by
additional 2.7%, is effected.

Similarly to the case of speed information, grade informa-
tion should also constitute a route segmentation criterion. In
particular, a significant change in the average grade of the
route may prescribe the beginning of a new segment and an
additional SoC control point.

C. Route With Larger Number of Segments

An urban route from Boston, MA, shown in Fig. 7, has
been selected as another case study. The urban environment
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of the chosen route includes roads of different speed classes,
several traffic lights and stop signs, which all result in
frequent and significant speed changes. At the same time, this
is a relatively flat route, in the sense that the road grade varies
within a relatively small range, [−1.5%,1%]. The route was
segmented into 34 segments to reflect significant changes in
the vehicle speed (including decelerations to stop signs/traffic
lights, and accelerations from stop/traffic lights) and changes
in the road grade.

Fig. 7. Real route, Boston, MA

A nominal vehicle speed trajectory was constructed as
follows. From each stop, the vehicle accelerates to a steady
maximum speed at a constant acceleration rate. The vehicle
decelerates to zero at a constant deceleration rate. The steady
travel speeds and acceleration and deceleration rates were
matched to observed values along the route in light traffic
conditions. The vehicle was assumed to stop at all stop signs
and traffic lights, consistently with observations of an actual
vehicle driving this route.

The fuel consumption in the “DP SoC Control with grade
include” case is approximately 4.8% less over this route than
in the “No SoC control” case. Larger benefits are anticipated
if this route had larger grades.

VI. CONCLUSIONS

In this paper, we described an approach to controlling
Hybrid Electric Vehicles so that to reduce their fuel con-
sumption along a known or predicted path. The approach
aims to incorporate information about traveled route and
traffic, which may be readily available to future vehicles.
Specifically, an algorithm based on Dynamic Programming,
for SoC set-point optimization along the route was proposed.
Its application demonstrated a potential for fuel economy
improvements, with the level of benefits dependent on a
specific route being traveled.

Certain approaches for segmenting a route have been
discussed. They generally relate to significant changes in
average vehicle speed or road grade and to the presence of
stop signs/traffic lights. With this segmentation approach, the
resulting segments do not necessarily have the same length
or travel time. Research is presently on-going to understand

the effects of granularity/accuracy of the information regard-
ing the route segment properties on the fuel consumption
reduction benefits.

Several extensions of the problem formulation, which may
be treated similarly, include advising the driver on the vehicle
speed to maintain along a known/predicted route. Advising
the driver on the route to take to reduce fuel consumption
with acceptable degradation of travel time may also be
considered.
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