
DOI: 10.1007/s00454-003-2948-z

Discrete Comput Geom 31:37–59 (2004) Discrete & Computational

Geometry
© 2003 Springer-Verlag New York Inc.

Optimally Cutting a Surface into a Disk∗

Jeff Erickson and Sariel Har-Peled

Department of Computer Scienc, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA
{jeffe,sariel}@cs.uiuc.edu
http://www.cs.uiuc.edu/˜{jeffe,sariel}

Abstract. We consider the problem of cutting a subset of the edges of a polyhedral
manifold surface, possibly with boundary, to obtain a single topological disk, minimizing
either the total number of cut edges or their total length. We show that this problem is NP-
hard in general, even for manifolds without boundary and for punctured spheres. We also
describe an algorithm with running time nO(g+k), where n is the combinatorial complexity,
g is the genus, and k is the number of boundary components of the input surface. Finally,
we describe a greedy algorithm that outputs a O(log2 g)-approximation of the minimum
cut graph in O(g2n log n) time.

1. Introduction

Several applications of three-dimensional surfaces, such as parameterization [21], [50]
and texture mapping [3], [47], require information about the underlying topological
structure in addition to the geometry. In some cases we wish to simplify the surface
topology, to facilitate algorithms that can be performed only if the surface is a topological
disk.

In the texture mapping problem, we wish to find a continuous and invertible mapping
from the texture, usually a two-dimensional rectangular image, to the surface. Unfortu-
nately, if the surface is not a topological disk, no such map exists. In such a case, the
only feasible solution is to cut the surface so that it becomes a topological disk. (Haker
et al. [28] present an algorithm for directly texture mapping models with the topology

∗ A preliminary version of this paper was presented at the 18th Annual ACM Symposium on Computational
Geometry [20]. See http://www.cs.uiuc.edu/ jeffe/pubs/schema.html for the most recent version of this paper.
Jeff Erickson was partially supported by a Sloan Fellowship, NSF CAREER Award CCR-0093348, and NSF
ITR Grant DMR-0121695. Sariel Har-Peled was partially supported by NSF CAREER Award CCR-0132901.

38 J. Erickson and S. Har-Peled

of a sphere, where the texture is also embedded on a sphere.) Of course, when cutting
the surface, one would like to find the best possible cut under various considerations.
For example, one might want to cut the surface so that the resulting surface can be tex-
ture mapped with minimum distortion [21], [25], [50]. To our knowledge, all previous
approaches for the texture-mapping problem either rely on cutting heuristics with no
quality guarantees [25], [49], [52] or require the user to cut the surface beforehand [21],
[47].

One method for reducing a manifold to a topological disk is to cut along the boundary
of a so-called canonical polygonal schema. This boundary is a set of 2g cycles, all passing
through a common base point inM, such that cutting along those cycles breaksM into
a topological disk. (We give more formal definitions in Section 2.) Lazarus et al. [40]
presented and implemented two algorithms for computing a canonical polygonal schema
of an orientable surface of complexity n and with genus g, in time O(gn), simplifying an
earlier algorithm of Vegter and Yap [60]. Since those cycles must share a common point,
it is easy to find examples where the overall size of those cycles is�(gn). Furthermore,
those cycles share several edges and are visually unsatisfying.

For most applications, however, canonical schemata are overkill. It is usually sufficient
to find an arbitrary collection of edges whose removal transforms the surface into a
topological disk. We call such a set of edges a cut graph; see Fig. 1 for an example. Cut
graphs have several advantages. First, they are compact. Trivially, any cut graph contains
at most n edges of the surface mesh, much less than any canonical schema in the worst
case, and we expect it to be even smaller in practice. Second, it is quite easy to construct
a cut graph for an arbitrary polyhedral surface in O(n) time, using a breadth-first search
of the dual graph [14], or simply taking a maximal set of edges whose complement is
connected [40]. Finally, the cut graph has an extremely simple structure: a tree with
O(g) additional edges. As such, it should be easier to manipulate algorithmically than
other representations. For example, Dey and Schipper [14] describe fast algorithms to
determine whether a curve is contractible, or two curves are homotopic, using an arbitrary
cut graph instead of a canonical schema.

In this paper we investigate the question of how find the “best” such cutting of a
surface, restricting ourselves to cuts along the edges of the given mesh. Specifically, we

cb
d

e

a

e

d

c
c d

b

a

e

a

b

ca b c

de

Fig. 1. A cut graph for a two-holed torus and its induced (non-canonical) polygonal schema.

Optimally Cutting a Surface into a Disk 39

want to find the smallest subset of edges of a polyhedral manifold surfaceM, possibly
with boundary, such that cutting along those edges transformsM into a topological disk.
We also consider the weighted version of this problem, where each edge has an arbitrary
non-negative weight and we want to minimize the total weight of the cut graph. The most
natural weight of an edge is its Euclidean length, but we could also assign weights to
take problem-specific considerations into account. For example, if we want to compute a
texture mapping for a specific viewpoint, we could make visible edges more expensive,
so that the minimum cut graph would minimize the number of visible edges used in the
cuts. Our algorithms do not require the edge weights to satisfy the triangle inequality.

We show that the minimum cut graph of any polyhedral manifoldM with genus g
and k boundary components can be computed in nO(g+k) time. This is exponential in
the worst case, since there are manifolds with both g = �(n) and k = �(n). We also
show that computing a minimum cut graph is NP-hard, even if g or k is fixed (but not
both). Finally, we present a simple and efficient greedy approximation algorithm for this
problem. Our algorithm outputs a cut graph whose weight is a factor O(log2 g) larger
than optimal, in O(g2n log n) time.1 If g = 0, the approximation factor is exactly 2. As
a tool in our approximation algorithm, we also describe efficient algorithms to compute
shortest and nearly shortest nontrivial cycles in a manifold; we believe these algorithms
are of independent interest.

2. Background

Before presenting our new results, we review several useful notions from topology
and describe related results in more detail. We refer the interested reader to [31], [46],
or [53] for further topological background and more formal definitions. For related
computational results, see the recent surveys by Dey et al. [12] and Vegter [59].

2.1. Topology

A 2-manifold with boundary is a setM such that every point x ∈ M lies in a neigh-
borhood homeomorphic to either the plane R2 or a closed halfplane. The points with
only halfplane neighborhoods constitute the boundary ofM; the boundary consists of
zero or more disjoint circles. This paper considers only compact manifolds, where every
infinite sequence of points has a convergent subsequence.

The genus of a 2-manifold M is the maximum number of disjoint non-separating
cycles γ1, γ2, . . . , γg inM; that is, γi ∩ γj = ∅ for all i and j , andM\(γ1 ∪ · · · ∪ γg)

is connected. For example, a sphere and a disk each have genus 0, a torus and a Möbius
strip each have genus 1, and a Klein bottle has genus 2.

A manifold is orientable if it has two distinct sides, and non-orientable if it has only
one side. Although many geometric applications use only orientable 2-manifolds (pri-
marily because non-orientable manifolds without boundary cannot be embedded in R3

1 To simplify notation, we define log x = max{1, �log2 x�}.

40 J. Erickson and S. Har-Peled

without self-intersections) our results apply to non-orientable manifolds as well. Every
(compact, connected) 2-manifold with boundary is characterized by its orientability, its
genus g, and the number k of boundary components [22]. For example, the disk is the
only oriented 2-manifold with genus 0 and one boundary component.

A polyhedral 2-manifold is constructed by gluing closed simple polygons edge-to-
edge into a cell complex: the intersection of any two polygons is either empty, a vertex of
both, or an edge of both. We refer to the component polygons as facets. (Since the facets
are closed, every polyhedral manifold is compact.) For any polyhedral manifoldM, the
number of vertices and facets, minus the number of edges, is the Euler characteristic χ
ofM. Euler’s formula [19] implies that χ is an invariant of the underlying manifold,
independent of any particular polyhedral representation: χ = 2−2g− k if the manifold
is orientable, and χ = 2 − g − k if the manifold is non-orientable. Euler’s formula
implies that ifM has v vertices, thenM has at most 3v − 6 + 6g edges and at most
2v − 4 + 4g − k facets, with equality for orientable manifolds where every facet and
boundary circle is a triangle. We let n ≤ 6v − 10+ 10g − k denote the total number of
facets, edges, and vertices inM.

The 1-skeletonM1 of a polyhedral manifoldM is the graph consisting of its vertices
and edges. We define a cut graph G of M as a subgraph of M1 such that M\G is
homeomorphic to a disk. (Cut graphs are generalizations of the cut locus of a manifold
M, which is essentially the geodesic medial axis of a single point.) The diskM\G is
known as a polygonal schema ofM. Each edge of G appears twice on the boundary of
polygonal schemaM\G, and we can obtainM by gluing together these corresponding
boundary edges. Finding a cut graph ofMwith minimum total length is clearly equivalent
to finding a polygonal schema ofM with minimum perimeter.

Any 2-manifold has a so-called canonical polygonal schema, whose combinatorial
structure depends only on the genus g, the number of boundary components k, and
whether the manifold is orientable.2 The canonical schema of an orientable manifold is
a (4g + 3k)-gon with successive edges labeled

x1, y1, x̄1, ȳ1, . . . , xg, yg, x̄g, ȳg, z1, e1, z̄1, . . . , zk, ek, z̄k;

for a non-orientable manifold, the canonical schema is a (2g+ 3k)-gon with edge labels

x1, x1, . . . , xg, xg, z1, e1, z̄1, . . . , zk, ek, z̄k .

Every pair of corresponding edges x and x̄ is oriented in opposite directions. Gluing
together corresponding pairs in the indicated directions recovers the original manifold,
with the unmatched edges ei forming the boundary circles. For a manifoldM without
boundary, a reduced polygonal schema is one where all the vertices are glued into a
single point in M; canonical schemata of manifolds without boundary are reduced.
We emphasize that the polygonal schemata constructed by our algorithms are neither
necessarily canonical nor necessarily reduced.

2 There are actually several different ways to define canonical schemata; the one described here is merely
the most common. For example, the canonical schema for an oriented surface without boundary could also be
labeled x1, x2, . . . , x2g, x̄1, x̄2, . . . , x̄2g .

Optimally Cutting a Surface into a Disk 41

2.2. Previous and Related Results

Dey and Schipper [14] describe a linear-time algorithm to construct a reduced, but
not necessarily canonical, polygonal schema for any triangulated orientable manifold
without boundary. Essentially, their algorithm constructs an arbitrary cut graph G by
depth-first search, and and then shrinks a spanning tree of G to a single point. (See also
[13].)

Vegter and Yap [60] developed an algorithm to construct a canonical schema in optimal
O(gn) time and space. Two simpler algorithms with the same running time were later
developed by Lazarus et al. [40]. The “edges” of the polygonal schemata produced
by all these algorithms are (possibly overlapping) paths in the 1-skeleton of the input
manifold. Since there are polyhedral manifolds where every canonical schema contains
�(gn) edges, these algorithms are optimal. We will modify one of the algorithms of
Lazarus et al. to construct short nontrivial cycles and cut graphs.

Very recently, Colin de Verdiére and Lazarus considered the problem of optimizing
canonical polygonal schemata [11]. Given a canonical polygonal schema for a triangu-
lated oriented manifoldM, their algorithm constructs the shortest canonical schema in
the same homotopy class. Surprisingly (in light of our Theorem 3.1) their algorithm runs
in polynomial time under some mild assumptions about the input. As a by-product, they
also obtain a polynomial-time algorithm to construct the minimum-length simple loop
homotopic to a given path.

Surface parameterization is an extremely active area of research, thanks to numerous
applications such as texture mapping, remeshing, compression, and morphing. For a
sample of recent results, see [1], [18], [21], [52], [25], [42], [43], [49], [51], [50], [63],
and references therein. In most of these works, surfaces of high genus are parameterized
by cutting them into several (possibly overlapping) patches, each homeomorphic to a
disk, each with a separate parameterization. A recent exception is the work of Gu et
al. [25], which computes an initial cut graph in O(n log n) time by running a shortest
path algorithm on the dual of the manifold mesh, starting from an arbitrary seed triangle.
Essentially the same algorithm was independently proposed by Steiner and Fischer [52].
Once a surface has been cut into a disk (or several disks), further (topologically trivial)
cuts are usually necessary to reduce distortion [25], [49], [51]. Many of these algorithms
include heuristics to minimize the lengths of the cuts in addition to the distortion of the
parameterization [25], [43], [49], but none with theoretical guarantees.

All of our algorithms are ultimately based on Dijkstra’s single-source shortest path
algorithm [15], [55]. Many previous results have used Dijkstra’s algorithm or one of its
continuous generalizations [35], [44], [58] to discover interesting topological structures
in 2-manifolds, such as cut graphs [25], [52], small handles (“topological noise”) [27],
texture atlases [43], contour trees [2], [41], and Reeb graphs [32], [52].

3. Computing Minimum Cut Graphs is NP-Hard

In this section we prove that finding a minimum cut graph of a triangulated manifold is
NP-hard. We consider two versions of the problem. In the weighted case the manifold is
assumed to be a polyhedral surface in R3 and we want to compute the cut graph whose

42 J. Erickson and S. Har-Peled

total Euclidean length is as small as possible. In the unweighted case we consider the
cut graph with the minimum number of edges; the geometry of the manifold is ignored
entirely.

Both reductions are from the rectilinear Steiner tree problem: given a set P of n points
from an m×m square grid in the plane, find the shortest connected set of horizontal and
vertical line segments that contains every point in P . This problem is NP-hard, even if
m is bounded by a polynomial in n [24]. Our reduction uses the Hanan grid of the points,
which is obtained by drawing horizontal and vertical lines through each point, clipped
to the bounding box of the points. At least one rectilinear Steiner tree of the points is a
subset of the Hanan grid [30].

We begin by considering the special case g = 0.

Theorem 3.1. Computing the length of the minimum (weighted or unweighted) cut
graph of a triangulated punctured sphere is NP-hard.

Proof. First consider the weighted case, where the weight assigned to each edge of the
manifold is its Euclidean length. Let P be a set of n points in the plane, with integer
coordinates between 1 and m. We construct, in O(n2) time, a punctured sphere as follows.
Assume that P lies on the xy-plane in R3. We modify the Hanan grid of P by replacing
each terminal with a square of width 1/2n, rotated 45◦ so that its vertices lie on the
neighboring edges. These squares will form the punctures. We then attach a basin under
each face f of the modified Hanan grid, by joining the boundary of f to a slightly scaled
copy of f on the plane z = −n2. We also attach a basin of depth n2+ 1 to the boundary
of the entire modified Hanan grid. The side facets of each basin are trapezoids. The
basins are tapered so that adjacent basins intersect only on the modified Hanan grid.
Triangulating this surface arbitrarily, we obtain a polyhedral sphereMwith n punctures
and overall complexity O(n2). See Fig. 2.

Let G∗ be a minimum weighted cut graph ofM. We easily observe that G∗ contains
only edges from the original Hanan grid and contains at least one vertex of every puncture.

(a) (b) (c)

Fig. 2. (a) A set of integer points. (b) The modified Hanan grid. (c) A cut-away view of the resulting punctured
sphere.

Optimally Cutting a Surface into a Disk 43

Thus, the edges of G∗ are in one-to-one correspondence with the edge of a rectilinear
Steiner tree of P .

For the unweighted case we modify the original m × m integer grid instead of the
Hanan grid. To create a punctured sphere, we replace each terminal point with a small
diamond as above. We then fill in each modified grid cell with a triangulation, chosen
so that the shortest path between any two points on the boundary of any cell stays on the
boundary of that cell; this requires a constant number of triangles per cell. The resulting
manifoldM′ has complexity O(m2). By induction, the shortest path between any two
points on the modified grid lies entirely on the grid. Thus, any minimal unweighted cut
graph ofM′ contains only edges from the modified grid. It follows that if the minimum
unweighted cut graph ofM′ has r edges, the length of any rectilinear Steiner tree of P
is exactly r .

We can easily generalize the previous proof to manifolds with higher genus, with or
without boundary, oriented or not, by attaching small triangulated tori or cross-caps to
any subset of punctures.

Theorem 3.2. Computing the length of the minimum (weighted or unweighted) cut
graph of a triangulated manifold with boundary is NP-hard, even if the genus or the
number of boundary components (but not both) is fixed.

4. Computing Minimum Cut Graphs Anyway

We now describe an algorithm to compute the minimum cut graph of a polyhedral
manifold in nO(g+k) time. For manifolds with constant Euler characteristic, our algorithm
runs in polynomial time.

Our algorithm is based on the following characterization of the minimum cut graph
as the union of shortest paths. A branch point of a cut graph is any vertex with degree
greater than 2. A simple path in a cut graph from one branch point or boundary point to
another, with no branch points in its interior, is called a cut path.

Our minimum cut graph algorithm exploits Lemma 4.1 by composing potential min-
imum cut graphs out of O(g + k) shortest paths. Unfortunately, a single pair of nodes
inM could be joined by 2�(n) shortest paths, in 2�(g+k) different isotopy classes, in the
worst case. To avoid this combinatorial explosion, we can add a random infinitesimal
weight ε · w(e) to each edge e. The Isolation Lemma of Mulmuley et al. [45] implies
that if the weights w(e) are chosen independently and uniformly from the integer set
{1, 2, . . . , n2}, all shortest paths are unique with probability at least 1−1/n; see also [10]
and [37].3 In the remainder of the paper, we assume that shortest paths in the 1-skeleton
of any polyhedral manifold are unique.

3 Alternately, if we choose w(e) uniformly from the real interval [0, 1], shortest paths are unique with
probability 1. This may sound unreasonable, but recall that no polynomial-time algorithm is known to compare
sums of square roots of integers in any model of computation that does not include square root as a primitive
operation [8]. Thus, to compute Euclidean shortest paths in a geometric graph with integer vertex coordinates,
we must either assume exact real arithmetic or (grudgingly) accept some approximation error [23].

44 J. Erickson and S. Har-Peled

Lemma 4.1. LetM be a polyhedral 2-manifold, possibly with boundary, and let G∗ be
a minimum cut graph ofM. Any cut path in G∗ can be decomposed into two equal-length
shortest paths inM1 whose common endpoint may lie in the middle of an edge.

Proof. Let G be an arbitrary cut graph ofM, and consider a cut path between two (not
necessarily distinct) branch points a and c of G. Let b be the midpoint of this path, and
let α and β denote the subpaths from b to a and from b to c, respectively. Note that b
may lie in the interior of an edge ofM1. Finally, suppose α is not the shortest path from
b to a inM1. To prove the lemma, it suffices to show that G is not the shortest cut graph
ofM.

Let α′ be the true shortest path from b to a. Clearly, α′ is not contained in G. Walking
along α′ from b to a, let s be the first vertex whose following edge is not in G, and let t
be the first vertex in G whose preceding edge is not in G. (Note that s and t may be
joined by a single edge inM\G.) Finally, let σ ′ ⊂ α′ be the true shortest path from s
to t . Equivalently, σ ′ is the first maximal subpath of α′ whose interior lies inM\G. See
Fig. 3.

The subpath σ ′ cutsM\G into two smaller disks. We claim that some subpath σ of
either α or β appears on the boundary of both disks and is longer than σ ′. Our claim
implies that cutting M\G along σ ′ and regluing the pieces along σ gives us a new
polygonal schema with smaller perimeter, and thus a new cut graph shorter than G. See
Fig. 3 for an example.

We prove our claim by exhaustive case analysis. First consider the case where the
manifoldM is orientable. We can subdivide the entire boundary of the diskM\G into

a
b

c
s t

c

b

a

a

a

b

c

s

s

tt

α

α

α
b

a

a

b

s

t

ss

tc

a

t

σ’

α’

σ

Fig. 3. If the dashed path α′ from a to b is shorter than the bold path α from a to b, then the cut graph can
be shortened by cutting along σ ′ and regluing along σ .

Optimally Cutting a Surface into a Disk 45

c

b

a

a

b

c

s

s t

t

α β

α β

γδ

c

b

a

a

b

c

s

s

t

α β

α β

γδ

c

b

a

a

b

c

s

s

t

t

α β

α β

γδ

c

b

a

a

b

c

s

s
t

t

α β

α β

γδ

c

b

a

a

b

c

s

s

t

α β

α β

γδ

c

b

a

a

b

c

s

s

t

t

α β

α β

γδ

(a) (b) (c)

(d) (e) (f)

Fig. 4. Six cases for the proof of Lemma 4.1 for orientable manifolds; all other cases are reflections of these.
The dashed path is σ ′. In each case some subpath σ of α or β appears on the boundary of both subdisks.

six paths labeled consecutively α, β, γ, β̄, ᾱ, δ. Here, ᾱ and β̄ are the corresponding
copies of α and β in the polygonal schema. Because M is orientable, α and ᾱ have
opposite orientations, as do β and β̄. Either or both of γ and δ could be empty. See the
lower left part of Fig. 3. The subpath σ ′ can enter the interior of the diskM\G from
four of these six paths (α, β, ᾱ, and β̄) and leave the interior of the disk through any of
the six paths.

Suppose σ ′ enters the interior ofM\G from α; the other three cases are symmetric.
Figure 4 shows the six essentially different ways for σ ′ to leave the interior ofM\G. In
each case we easily verify that after cutting along σ ′, some subpath σ of either α or β is
on the boundary of both disks. Let · denote path concatenation, and let α[x, y] denote
the subpath of path α from point x to point y.

(a) If σ ′ leaves through ᾱ, we can take σ = α[s, t]. Since σ and σ ′ have the same
endpoints and σ ′ is a shortest path, σ ′ must be shorter than σ .

(b) If σ ′ leaves through δ, we can take σ = α[s, a]. Since |α[b, s] · σ ′| < |α|, we
have |σ ′| < |α[s, a]| = |σ |.

(c) If σ ′ leaves through α, we can take σ = α[s, t]. We argue that |σ ′| < |σ | as in
case (a).

(d) If σ ′ leaves through β̄, we can take σ = β[b, t]. In this case ρ = α[b, s] · σ ′ is
the shortest path from b to t , which implies that |σ ′| ≤ |ρ| < |β[b, t]| = |σ |.

(e) If σ ′ leaves through γ , we can take σ = β. Clearly, |σ ′| < |α| = |β| = |σ |.
(f) Finally, if σ ′ leaves through β, we can take σ = β[b, t]. We argue that |σ ′| < |σ |

as in case (d).

46 J. Erickson and S. Har-Peled

c

b

a

a

b

c

s

st

t

α β

αβ

γδ

c

b

a

a

b

c

s

s

t

α β

αβ

γδ

c

b

a

a

b

c

s

s

t

t

α β

αβ

γδ

c

b

a

a

b

c

s

s
t

t

α β

αβ

γδ

c

b

a

a

b

c

s

s

t

α β

αβ

γδ

c

b

a

a

b

c

s

s

t

t

α β

αβ

γδ

Fig. 5. Six additional cases for the proof of Lemma 4.1 for non-orientable manifolds; all other cases are
reflections or rotations of these. In each case some subpath of α or β appears on the boundary of both subdisks.

If M is non-orientable, the path αβ could appear either with the same orientation
or with opposite orientations on the boundary of the disk M\G. If the orientations
are opposite, the previous case analysis applies immediately. Otherwise, the boundary
can be subdivided into six paths labeled consecutively α, β, γ, α, β, δ. Without loss of
generality, σ ′ enters the interior of M\G from α and leaves through any of these six
paths. The six cases are illustrated in Fig. 5. Again, we easily verify that in each case,
some subpath σ of either α or β is on the boundary of both disks. We omit further
details.

For any cut graph G of a manifold M, we define the corresponding reduced cut
graph Ĝ as follows. First we remove any topologically trivial cuts; that is, we repeatedly
remove any edge with a vertex of degree 1 that is not on the boundary ofM. We then
augment the cut graph by adding all the boundary edges ofM. Finally, we contract each
maximal path through degree-2 vertices into a single edge. The resulting reduced cut
graph Ĝ is 2-edge connected, and each of its vertices has degree at least 3. Every vertex
of Ĝ is either a branch point or a boundary point of G, and every edge of Ĝ corresponds
to either a cut path or a boundary path in G. However, in general, not all branch points
and cut paths in G are represented in Ĝ.

Lemma 4.2. LetM be a polyhedral 2-manifold with genus g and k boundary com-
ponents. Any reduced cut graph Ĝ of M is connected, has between max{1, k} and
4g + 2k − 2 vertices, and has between g + max{0, 2k − 1} and 6g + 3k − 3
edges.

Optimally Cutting a Surface into a Disk 47

Proof. Let G ′ be the cut graph corresponding to Ĝ, after all the trivial cuts have been
removed. The boundary of the polygonal schemaM\G ′ can be partitioned into cut paths
and boundary paths, each corresponding to an edge in Ĝ. Thus, Ĝ is connected.

Let v and e denote the number of vertices and edges in Ĝ, respectively. If any vertex
in Ĝ has degree d ≥ 4, we can replace it with d−2 trivalent vertices and d−3 new edges
of length zero. Thus, in the worst case, every vertex in Ĝ has degree exactly 3, which
implies that 3v = 2e. Since Ĝ is embedded inM with a single face, Euler’s formula
implies that v−e+1 = χ = 2−2g−k ifM is orientable, and v−e+1 = χ = 2−g−k
ifM is non-orientable. It follows that v ≤ 4g+2k−2 and e ≤ 6g+3k−3, as claimed.

On the other hand, Ĝ has at least one vertex on each boundary component of M,
and at least one vertex even if M has no boundary, so v ≥ max{1, k}. Thus, Euler’s
formula implies that 2− 2g − k = v − e + 1 ≥ max{1, k} − e + 1 ifM is orientable,
or equivalently, e ≥ 2g + max{0, 2k − 1}. Similarly, if M is non-orientable, Euler’s
formula implies that e ≥ g +max{0, 2k − 1}.

We are now finally ready to describe our minimum cut graph algorithm.

Theorem 4.3. The minimum cut graph of a polyhedral 2-manifold M with genus g
and k boundary components can be computed in time nO(g+k).

Proof. We begin by computing the shortest path between every pair of vertices inM
in O(n2 log n) time by running Dijkstra’s single-source shortest path algorithm for each
vertex [15], [34], breaking ties using random infinitesimal weights as described above.
Once these shortest paths and midpoints (i.e., a midpoint is the point on the edge where
the wavefront collides from both sides) have been computed, our algorithm enumerates
by brute force every possible cut graph that satisfies Lemmas 4.1 and 4.2, and returns
the smallest such graph.

Each cut graph is specified by a set V of up to 4g+2k−2 vertices ofM, a set E of up
to 6g+3k−3 edges ofM, a trivalent multigraph Ĝ with vertices V , and an assignment of
edges in E to edges in Ĝ. E is the subset of edges of the manifold that contain midpoints
of cut paths in the cut graph; each edge (v,w) of Ĝ is assigned a unique edge e ∈ E to
define the corresponding cut path inM. This cut path is the concatenation of the shortest
path from v to e, e itself, and the shortest path from e to w. If the midpoint of this cut
path is not in the interior of e, we declare the cut path invalid, since it violates Lemma
4.1. (Because shortest paths between vertices are unique, the midpoint of any cut path
in the minimal cut graph must lie in the interior of an edge.) If all the cut paths are valid,
we then check that every pair of cut paths is disjoint, except possibly at their endpoints,
and that removing all the cut paths fromM leaves a topological disk.

Our brute-force algorithm considers O(n4g+2k−2)different vertex sets V , O(n6g+3k−2)

different edge sets E , at most

(
(4g + 2k − 2)2

6g + 3k − 2

)
< (4g + 2k − 2)2(6g+3k−2) < (6n)2(6g+3k−2) = nO(g+k)

different graphs Ĝ for each vertex set, and at most (6g+ 3k − 2)! different assignments
of edges in each graph Ĝ to edges in each edge set E . Thus, nO(g+k) potential cut graphs

48 J. Erickson and S. Har-Peled

are considered altogether. The validity of each potential cut graph can be checked in
O(n) time.

5. Finding Short Nontrivial Cycles

As a step toward efficiently computing approximate minimum cut graphs, we develop
algorithms to compute shortest and nearly shortest nontrivial cycles in arbitrary 2-
manifolds, possibly with boundary. Although our most efficient approximation algorithm
for cut graphs requires only approximate shortest nontrivial cycles on manifolds without
boundary, we believe these algorithms are of independent interest.

We distinguish between two type of nontrivial simple cycles. A simple cycle γ inM
is non-separating ifM\γ has only one connected component. A simple cycle γ inM
is essential if it is not contractible to a point or a single boundary cycle of M. Every
non-separating cycle is essential, but the converse is not true. Formally, non-separating
cycles are homologically nontrivial, and essential cycles are homotopically nontrivial.
See Fig. 6.

As can be seen immediately from Fig. 6, it is not possible to determine whether a
cycle is non-separating, essential, or trivial by examining only a local neighborhood.
Dey and Schipper [14] describe an algorithm to determine whether an arbitrary circuit
is contractible in O(n) time; their algorithm begins by computing an arbitrary cut graph
of the manifold. Fortunately, as we shall see shortly, we can simplify their algorithm
considerably when the given cycle is simple.

5.1. Shortest Cycles

We begin by describing how to find the shortest nontrivial cycle through a given vertex.
Our algorithm uses a combination of Dijkstra’s single-source shortest path algorithm [15]
and a modification of the canonical polygonal schema algorithm of Lazarus et al. [40].
Our algorithm is similar to the approach taken by Guskov and Wood [27] to find and re-
move small handles from geometric models reconstructed from noisy data; see also [62].

The algorithm of Lazarus et al. builds a connected subset S of a triangulated manifold
without boundary, starting with a single triangle and adding new triangles on the boundary

Fig. 6. From left to right: non-separating, essential but separating, and trivial cycles on a 2-manifold.

Optimally Cutting a Surface into a Disk 49

of S one at a time. If a new triangle intersects the boundary of S in more than one
component, the algorithm checks which of the following three cases holds: (1) M\S
is connected; (2) neither component ofM\S is a disk; or (3) one component ofM\S
is a disk. In the final case the algorithm adds the disk component to S and continues
searching the other component of M\S. If we run this algorithm until either case (1)
or case (2) holds, the total running time is O(n). See [40] for further details. Similar
approaches have been used for mesh compression by Gumhold and Straßer [26], Taubin
and Rossignac [56], [48], Isenburg and Snoeyink [33], and others.

First we describe a straightforward generalization of the algorithm used by Lazarus
et al. to determine the structure ofM\S.

Lemma 5.1. Let M be a connected polyhedral 2-manifold M whose genus g and
number of boundary components k are known. Any simple cycle γ inM1 can be classified
as non-separating, essential but separating, or trivial in O(m) time, where m is the
complexity of the smaller component ofM\γ . In particular, if γ is non-separating, the
running time is O(n).

Proof. We perform two simultaneous depth-first searches, starting from either side
of any vertex of γ . If either search meets a vertex already visited by the other, γ is a
non-separating cycle. The running time in this case is trivially O(n).

Conversely, if one search halts without meeting the other, γ is a separating cycle. Let C
be the smaller component ofM\γ . To determine whether γ is essential, we compute the
Euler characteristic and the number of boundary components of C , which we denote by
χ(C) and k(C), respectively. (This can be done on the fly during the depth-first search
phase.) Let χ denote the Euler characteristic ofM. The cycle γ is contractible if and
only if one of the following conditions holds; otherwise, γ is essential:

• C is a disk or, equivalently, χ(C) = 1.
• C is an annulus or, equivalently, χ(C) = 0 and k(C) = 2.
• M\C is a disk or, equivalently, χ(C) = χ − 1. The equivalence follows from the

inclusion–exclusion formula χ(A ∪ B) = χ(A)+ χ(B)− χ(A ∩ B).
• M\C is an annulus or, equivalently, χ(C) = χ(M) and k(C) = k(M).

Let m denote the number of features in C . The depth-first search of C examines edges
of γ that lie on the boundary of C , but not technically part of C itself. We easily observe
that C has at most 3m boundary edges. Thus, if γ is a separating cycle, the total running
time of our algorithm is O(m).

Note that we can simplify this algorithm slightly if the manifold has no boundary,
since in that case neither component ofM\γ is an annulus. We use this simplification
in our approximate cut graph algorithm.

Lemma 5.2. Let u be a vertex of a polyhedral 2-manifoldM, possibly with boundary.
The shortest essential cycle in M1 that contains u can be computed in O(n log n)
time.

50 J. Erickson and S. Har-Peled

Proof. We find the shortest essential cycle through u by simulating a circular wave
expanding from u. Whenever the wave touches itself, either we have the shortest essential
cycle through u, or one component of the wave bounds a disk inM and we can continue
expanding the other component.

We modify the algorithm of Lazarus et al. [40] as follows. First, S is no longer a set
of triangles but a more general connected subset of vertices, edges, and facets of M.
Initially, S contains only the source vertex u. Second, we use Dijkstra’s algorithm to
determine the order for edges to be added. We add a facet to S only when all its vertices
have been added to S, either directly or as part of another facet. We run the algorithm
from Lemma 5.1 whenever the topology of S changes, that is, when we add a new edge
vw with both endpoints on the boundary of S. IfM\S is disconnected, we continue only
if one component ofM\S is a disk or an annulus, as can be checked using Lemma 5.1.
In that case we add the disk or annulus component ofM\S to S, discard the vertices
of that component from the Dijkstra priority queue, and continue searching in the other
component. IfM\S is connected, or if neither component is a disk or an annulus, we
have found the shortest essential cycle through u, consisting of the shortest path from u
to v, the edge vw, and the shortest path from w to u.

Dijkstra’s algorithm requires O(n log n) time. Each time we find a trivial cycle, we
spend O(m) time and discard a disk with complexity at least m. Thus, the total time
spent performing cycle classification and maintaining the wavefront set S is O(n). Thus,
the total running time of our algorithm is O(n log n).

Running this algorithm once for every vertex ofM immediately gives us the shortest
essential cycle.

Corollary 5.3. LetM be a polyhedral 2-manifold, possibly with boundary. The short-
est essential cycle inM1 can be computed in O(n2 log n) time.

A simple modification of our algorithm allows us to find shortest non-separating
cycles in the same asymptotic time.

Lemma 5.4. Let u be a vertex of a polyhedral 2-manifoldM, possibly with boundary.
The shortest non-separating cycle inM1 that contains u can be computed in O(n log n)
time.

Proof. The only change from the previous algorithm is that if we discover an essential
separating cycle, we continue recursively in both components of M\S. The cost of
Dijkstra’s algorithm is still O(n log n), but now we must spend extra time in the cycle-
classification algorithm of Lemma 5.1. As before, the total time spent finding trivial
cycles is O(n), since we can charge the search time to the discarded components.

Let T (n, g)denote the total time spent finding separating essential cycles in a manifold
of complexity n, excluding features that have already been added to S, and genus g. This
function satisfies the recurrence

T (n, g) ≤ T (m, h)+ T (n − m, g − h)+ O(m),

Optimally Cutting a Surface into a Disk 51

where m ≤ n/2 is the complexity of the smaller component ofM\S and h is its genus.
The base case of the recurrence is T (n, 1) = 0, since every essential cycle on a genus-1
surface is non-separating.

Similar recurrences appear in the analysis of output-sensitive planar convex hull
algorithms [6], [9], [36], [61], suggesting that the solution to our recurrence is T (n, g) =
O(n log g). Indeed, we can prove this by induction as follows. Suppose

T (n, g) ≤ T (m, h)+ T (n − m, g − h)+ cm

for some constant c. We claim that T (n, g) ≤ cn lg g. The inductive hypothesis implies
that

T (n, g) ≤ cm lg h + c(n − m) lg(g − h)+ cm

≤ max
1≤h≤g−1

(cm lg h + c(n − m) lg(g − h))+ cm.

A simple application of derivatives implies that the right-hand side of this inequality is
maximized when h = mg/n. Thus,

T (n, g) ≤ cm lg
mg

n
+ c(n − m) lg

(n − m)g

n
+ cm

= cn lg g + cm lg m + c(n − m) lg(n − m)− cn lg n + cm.

Since m ≤ n/2 and n − m ≤ n, we can simplify this inequality to

T (n, g) ≤ cn ln g + cm lg
n

2
+ c(n − m) lg n − cn lg n + cm = cn lg g,

completing the proof.
Thus, the total time spent in the cycle-classification phase of our algorithm is

O(n log g). Since g ≤ n, this is dominated by the cost of maintaining the Dijkstra
priority queue.

Corollary 5.5. LetM be a polyhedral 2-manifold, possibly with boundary. The short-
est non-separating cycle inM1 can be computed in O(n2 log n) time.

5.2. Nearly Shortest Cycles

As we will argue in the next section, computing short nontrivial cycles is the bottleneck
in our approximate cut graph algorithm. Fortunately, exact minimum cycles are not
necessary for our results. We can speed up our cut graph algorithm, without significantly
increasing the approximation factor, by searching for a nontrivial cycle at most twice
as long as the shortest. Our approximation algorithm assumes that the manifoldM has
no boundary; fortunately, as we shall see in the next section, this is sufficient for our
purposes.

Our approximation algorithm works as follows. First, we compute a set of shortest
paths (in fact, a cut graph) that intersects every non-separating cycle in the manifoldM.
Then we contract each shortest path π in this set to a point and find the shortest nontrivial
cycle through that point, as described by Lemmas 5.2 and 5.4.

52 J. Erickson and S. Har-Peled

Lemma 5.6. Let π be a shortest path between two vertices in a polyhedral 2-manifold
M, and let γ ∗ be the shortest essential (resp. non-separating) cycle inM1 that intersects
π . In O(n log n) time, one can compute an essential (resp. non-separating) cycle γ in
M such that |γ | ≤ 2|γ ∗|.

Proof. LetM′ be the manifold obtained by contracting the shortest path π to a single
vertex v. Because π has no cycles,M′ has the same topological type asM. Let γ ′ be the
shortest essential (resp. non-separating) cycle inM′ that passes through v. Clearly, |γ ′| ≤
|γ ∗|. We can compute this cycle in O(n log n) time by Lemma 5.2 (resp. Lemma 5.4).

We construct a cycle γ inM by concatenating two paths α and β, where α contains
the edges of γ ′ and β is the subpath of π between the endpoints of α. The sequence
of edge contractions that transforms M to M′ also transforms γ ′ to γ . Hence, γ ′

is an essential cycle of M. Because β is a subpath of a shortest path, β is actually
the shortest path between the endpoints of α, so |β| ≤ |α| = |γ ′|. It follows that
|γ | = |α| + |β| ≤ 2|γ ′| ≤ 2|γ ∗|.

This lemma suggests a natural algorithm for finding a short nontrivial cycle: compute
a set of shortest paths that intersect every essential cycle (and thus every non-separating
cycle), and then run the algorithm from Lemma 5.6 for each path in this set.

Lemma 5.7. LetM be a polyhedral 2-manifold without boundary. In O(n log n) time,
one can compute a set � of O(g) shortest paths onM1 such that every non-separating
cycle (and thus every essential cycle) inM1 intersects at least one path in �.

Proof. We compute a cut graph G as follows. First we compute a shortest-path tree
T from an arbitrary initial vertex v using Dijkstra’s algorithm. We then compute an
arbitrary spanning tree T ∗ of the dual of M\T , that is, the graph whose vertices are
facets ofM and whose edges join pairs of facets that share a common edge not in T .
Analysis similar to Lemma 4.2 implies that there are O(g) edges that do not appear in
T and whose dual edges do not appear in T ∗. Call this set of unclaimed edges E . Let�
be the set of O(g) shortest paths from v to the endpoints of E ; these paths are all in T .
Finally, let G = � ∪ E .

We easily observe thatM\G is a topological disk, so G is a cut graph. It follows that
every non-separating cycle inM1 intersects G. Since every vertex of G is also a vertex
of some path in�, every non-separating cycle inM1 intersects at least one path in�.

Notice that this algorithm does not work ifM has a boundary, since the dual graph
ofM\T could be disconnected.

Corollary 5.8. LetM be a polyhedral 2-manifold with genus g and no boundary, and
let γ ∗ be its shortest essential (resp. non-separating) cycle. In O(gn log n) time, one can
compute an essential (resp. non-separating) cycle γ inM1 such that |γ | ≤ 2|γ ∗|.

Proof. We construct a set�of O(g) shortest paths, at least one of which is guaranteed to
intersect γ ∗, as described in the previous lemma. Then for each path π ∈ �, we contract

Optimally Cutting a Surface into a Disk 53

π to a point and find the shortest nontrivial cycle through that point in O(n log n) time,
as described by Lemma 5.6.

6. Approximate Minimum Cut Graphs

We now describe a simple polynomial-time greedy algorithm to construct an approximate
minimum cut graph for any polyhedral manifoldM.

To handle manifolds with boundary, it will be convenient to consider the following
simplified form. Given a manifold M with genus g and k boundary components, the
corresponding punctured manifold (M, P) consists of a manifold M with the same
genus asM but without boundary, and a set P of k points inM, called punctures. To
construct M, we contract every boundary component of M to a single point, which
becomes one of the punctures in P . (We could simulate this contraction by artificially
assigning every boundary edge ofM a weight of zero, although this would require a few
simple changes in our algorithms.) If any vertex ofM has multiple edges to the same
boundary component, M contains only the edge with smallest weight, breaking ties
using the Isolation Lemma as above. IfM has no boundary, thenM =M and P = ∅.

Our goal now is to compute the minimum cut graph ofM that touches every puncture
in P; henceforth, we call this simply the minimum cut graph of (M, P). This reduction
is motivated by the following trivial observation.

Lemma 6.1. The minimum cut graph of any polyhedral 2-manifoldM has the same
length as the minimum cut graph of (M, P).

Our approximation algorithm works as follows. We repeatedly cut along short non-
trivial cycles until our surface becomes a collection of punctured spheres, connect the
punctures on each component by cutting along a minimum spanning tree, and finally (if
necessary) reglue some previously cut edges to obtain a single disk. The resulting cut
graph is composed of a subset of the edges of the short nontrivial cycles and all the edges
of the minimum spanning forest.

6.1. Using Short Nontrivial Cycles

The first component of our algorithm is a subroutine to compute approximately shortest
nontrivial cycles, described by Corollary 5.8. As required by that algorithm, the input
manifoldM has no boundary; the punctures are completely ignored.

The following argument relates the length of the shortest nontrivial cycles to the
length of the minimum cut graph.

Lemma 6.2. Let G be any cut graph of a polyhedral 2-manifoldM with genus g and
no boundary. The shortest cycle in G contains O((log g)/g) of the total length of G.

Proof. First consider the reduced cut graph Ĝ, constructed by repeatedly contracting
any edge with a vertex of degree less than 3, as in Section 4. Every vertex in Ĝ has degree

54 J. Erickson and S. Har-Peled

at least 3. Without loss of generality, assume that every vertex in Ĝ has degree exactly
3, splitting each high-degree vertex into a tree of degree-3 vertices if necessary, as in
the proof of Lemma 4.2. A straightforward counting argument implies that any trivalent
graph whose girth (minimum cycle length) is c must have at least 3

√
2 · 2c/2− 2 vertices

if c is odd, and at least 2 · 2c/2− 2 vertices if c is even [7]. By Lemma 4.2, Ĝ has at most
4g − 2 vertices, so Ĝ must have a cycle γ̂ with most 2(lg g + 1) = O(log g) edges.

Starting with Ĝ0 = Ĝ, we inductively define a sequence of reduced graphs Ĝ1, Ĝ2, . . .

as follows. For each i > 0, let γ̂i denote the shortest cycle in Ĝi−1. We obtain Ĝi

by reducing the graph Ĝi−1\γ̂i , or, equivalently, removing the vertices of γ̂i and all
their edges, and then contracting |γ̂i | nearby length-2 paths to single edges. Our earlier
argument implies that each cycle γ̂i has at most 2(lg g + 1) edges. Thus, for each i , we
have |E(Ĝi)| = |E(Ĝi−1)| − 6(lg g + 1). Lemma 4.2 implies that the original reduced
cut graph Ĝ has at least g edges, so we can repeat this process at least g/6(lg g + 1)
times.

Let γi denote the cycle in the original cut graph G corresponding to Ĝi . By our
construction, γi and γj are disjoint for all i �= j , so we have a set of at least g/6(lg g+1)
disjoint cycles in G. At least one of these cycles has length at most 6(lg g + 1)/g =
O((log g)/g) times the total length of G.

Since every cycle in the minimum cut graph is non-separating, and therefore essential,
we immediately have the following corollary.

Corollary 6.3. For any polyhedral 2-manifoldM with genus g and no boundary, both
the length of the shortest non-separating cycle and the length of the shortest essential
cycle are at most O((log g)/g) times the length of the minimum cut graph ofM.

6.2. Puncture-Spanning Trees

The second component of our cut graph algorithm is a subroutine to compute the minimum
puncture-spanning tree of a punctured manifold (M, P), that is, the minimum spanning
tree of the punctures P in the shortest-path metric ofM1.

Lemma 6.4. The minimum puncture-spanning tree of any punctured polyhedral 2-
manifold (M, P) can be computed in O(n log n) time.

Proof. We simulate Kruskal’s minimum spanning tree algorithm [39], [55] by adding
shortest puncture-to-puncture paths one at a time, in increasing order of length. To
compute the shortest paths, we simultaneously propagate wavefronts from all k punctures
using Dijkstra’s algorithm. Whenever two wavefronts (i.e., two growing shortest-path
trees) collide, we add a new edge to the evolving minimum spanning tree and merge those
two wavefronts. To implement this algorithm efficiently, we maintain the wavefronts in
a union-find data structure. The resulting running time is O(n log n).

Optimally Cutting a Surface into a Disk 55

This is essentially the algorithm proposed by Takahashi and Matsuyama [54] to
compute approximate Steiner trees in arbitrary graphs. The same algorithm was also
recently used by Sheffer [49] and by Lévy et al. [43] to compute cut graphs, where
surface features with high discrete curvature play the role of punctures.

Lemma 6.5. The length of the minimum puncture-spanning tree of any punctured poly-
hedral 2-manifold (M, P) is at most twice the length of any cut graph of (M, P).

Proof. The minimum Steiner tree of P is the subgraph ofM1 of minimum total weight
that includes every point in P . Since any cut graph of (M, P) must touch every punc-
ture, no cut graph is shorter than this minimum Steiner tree. On the other hand, the
minimum spanning tree of P has at most twice the length of the minimum Steiner tree
[38], [54].

6.3. Analysis

We now have all the components of our greedy cut graph algorithm. At any stage of the
algorithm, we have a punctured manifold (M, P). Our algorithm repeatedly cuts along
a short non-separating cycle ofM, using Corollary 5.8. This cut creates one or two new
boundary circles, which we collapse to new punctures. When the manifold is reduced to
a collection of punctured spheres, we cut along the minimum puncture-spanning tree of
each component using the algorithm in Lemma 6.4.

Each non-separating cycle cut reduces the genus ofM by 1. This immediately implies
that our algorithm performs exactly g cycle cuts, so the overall running time is

g · O(gn log n)+ O(n log n) = O(g2n log n).

For any graph X , let |X | denote its total length. Let G∗ denote the minimum cut
graph of (M, P). Let (Mi , Pi) denote the punctured manifold after g − i cycle cuts
have been performed, soMi has genus i , and let G∗i denote the minimum cut graph of
Mi , ignoring the punctures Pi . Since collapsing edges cannot increase the minimum cut
graph length, we have |G∗i | ≤ |G∗g| ≤ |G∗| for all i .

Let γi denote the short non-separating cycle ofMi found by Corollary 5.8. (We easily
observe that any cut graph ofMi must intersect this cycle.) Lemma 6.2 and Corollary 5.8
imply that |γi | ≤ O((log i)/ i)·|G∗i | for all i and j . Summing over all g cuts, we conclude
that the total length of all cycle cuts is at most

g∑
i=1

O((log i)/ i) · |G∗i | = O(log2 g) · |G∗|.

Similarly, Lemma 6.5 implies that the minimum puncture-spanning forest has length
at most 2|G∗|. Thus, the final cut graph computed by our algorithm has length at most
O(log2 g) · |G∗|.

56 J. Erickson and S. Har-Peled

Theorem 6.6. Given a polyhedral 2-manifoldM with genus g and k boundary com-
ponents, an O(log2 g)-approximation of its minimum cut graph can be constructed in
O(g2n log n) time.

Cutting along short essential cycles instead of short non-separating cycles leads to
exactly the same asymptotic running time and approximation bounds, although the al-
gorithm and its analysis are slightly more complicated. For purposes of analysis, we can
divide the algorithm into phases, where in the i th phase, we cut along a short essential
cycle of every component of the manifold that has genus i . Essential cycle cuts can
separate the manifold into multiple components, but since each component must have
nontrivial topology, the algorithm performs at most g − 1 separating cuts. At the end of
the algorithm, if necessary, we reglue along some previously cut edges to obtain a single
topological disk. We refer to the earlier version of this paper for further details [20].

7. Open Problems

We have developed new algorithms to compute exact and approximate minimal cut
graphs for manifold surfaces with arbitrary genus and arbitrary boundary complexity.
Our approximation algorithm is particularly simple.

Our results suggest several open problems, the most obvious of which is to improve
the running times and approximation factors of our algorithms. Is the minimum cut graph
problem fixed-parameter tractable [16]? That is, can we compute exact minimum cut
graphs in time f (g, k) ·nO(1) for some function f ? The similarity to the Steiner problem
offers some hope here, since the minimum Steiner tree of k nodes in an n-node graph
can be computed in O(3kn + 2kn2 + n3) time [17], [29]. See also [4] for related results
on computing Steiner trees of graphs embedded in surfaces of small genus.

The approximation algorithm of Theorem 6.6 is somewhat indirect. It computes a
short cut graph by repeatedly computing a “reasonable” cut graph and then extracting a
short nontrivial cycle that interacts with this cut graph. It is natural to conjecture that one
can compute such a short cut graph directly, resulting in a faster algorithm. In particular,
we conjecture that an approximately minimum cut graph can be computed in O(gn log n)
time.

How well can we approximate the minimum cut graph in nearly-linear time? There
are several simple heuristics to compute “good” cut graphs in O(n log n) time, such as
the dual shortest-path algorithm used by Gu et al. [25] and by Steiner and Fischer [52],
and the algorithm described in the proof of Lemma 5.7. How well do these algorithms
approximate the minimum cut graph?

More generally, is there a simple, practical, O(1)-approximation algorithm, like the
minimum spanning tree approximation of Steiner trees? In fact, it might be that our algo-
rithm provides such an approximation, as our current analysis seems to be far from tight.
Unfortunately, the general Steiner tree problem is MAXSNP-hard [5], so an efficient
(1+ ε)-approximation algorithm for arbitrary ε > 0 seems unlikely.

Several authors have pointed out apparent tradeoffs between the quality of parame-
terizations and the length of the required cut graph; see, for example, Sorkine et al. [51].
How hard is it to compute the (approximately) shortest cut graph required for a param-

Optimally Cutting a Surface into a Disk 57

eterization whose distortion is less than some given limit? Conversely, how hard is it
to (approximately) minimize the distortion of a parameterization, given an upper bound
on the permitted length of the surface cuts? The complexity of these problems clearly
depends on which distortion measure is used, but we expect almost any variant of this
problem to be NP-hard.

Finally, can our ideas be applied to other useful families of curves on manifolds,
such as homology generators (families of 2g cycles that intersect in g pairs) and pants
decompositions (maximal sets of pairwise disjoint essential cycles [57])?

Acknowledgments

We thank Herbert Edelsbrunner for an enlightening initial conversation. We are also
grateful to Noga Alon, Steven Gortler, John Hart, Benjamin Sudakov, Kim Whittle-
sey, and Zoë Wood for helpful discussions, and to the anonymous referees for their
suggestions.

References

1. P. Alliez, M. Meyer, and M. Desbrun. Interactive geometry remeshing. Proc. SIGGRAPH ’02,
pp. 347–354, 2002.

2. U. Axen and H. Edelsbrunner. Auditory Morse analysis of triangulated manifolds. Mathematical Visual-
ization, pp. 223–236. Springer-Verlag, New York, 1998.

3. C. Bennis, J.-M. Vézien, G. Iglésias, and A. Gagalowicz. Piecewise surface flattening for non-distorted
texture mapping. Computer Graphics (SIGGRAPH ’91 Proceedings), pp. 237–246, 1991.

4. M. Bern. Faster exact algorithms for Steiner trees in planar networks. Networks 20(1):109–120, 1990.
5. M. Bern and P. Plassman. The Steiner problem with edge lengths 1 and 2. Inform. Process Lett. 32(4):171–

176, 1989.
6. B. K. Bhattacharya and S. Sen. On a simple, practical, optimal, output-sensitive randomized planar convex

hull algorithm. J. Algorithms 25:177–193, 1997.
7. N. Biggs. Constructions for cubic graphs with large girth. Elec. J. Combin. 5:A1, 1998.
8. J. Blömer. Computing sums of radicals in polynomial time. Proc. 32nd Annu. IEEE Sympos. Found.

Comput. Sci., pp. 670–677, 1991.
9. T. M. Chan, J. Snoeyink, and C. K. Yap. Primal dividing and dual pruning: output-sensitive construction

of 4-d polytopes and 3-d Voronoi diagrams. Discrete Comput. Geom. 18:433–454, 1997.
10. S. Chari, P. Rohatgi, and A. Srinivasan. Randomness-optimal unique element isolation with applications

to perfect matching and related problems. SIAM J. Comput. 24(5):1036–1050, 1995.
11. È. Colin de Verdiére and F. Lazarus. Optimal systems of loops on an orientable surface. Proc. 43rd Annu.

IEEE Sympos. Found. Comput. Sci., pp. 627–636, 2002.
12. T. Dey, H. Edelsbrunner, and S. Guha. Computational topology. Advances in Discrete and Computational

Geometry, pp. 109–143. Contemporary Mathematics 223. American Mathematical Society, Providence,
RI, 1999.

13. T. K. Dey and S. Guha. Transforming curves on surfaces. J. Comput. System Sci. 58:297–325, 1999.
14. T. K. Dey and H. Schipper. A new technique to compute polygonal schema for 2-manifolds with application

to null-homotopy detection. Discrete Comput. Geom. 14:93–110, 1995.
15. E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math. 1:269–271, 1959.
16. R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer Science.

Springer-Verlag, New York, 1999.
17. S. Dreyfus and R. Wagner. The Steiner problem in graphs. Networks 1:195–207, 1971.

58 J. Erickson and S. Har-Peled

18. M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle. Multiresolution analysis of
arbitrary meshes. Proc. SIGGRAPH ’95, pp. 173–182, 1995.

19. D. Eppstein. Seventeen proofs of Euler’s formula: V − E + F = 2. The Geometry Junkyard, May 2001.
〈http://www.ics.uci.edu/ eppstein/junkyard/euler/〉.

20. J. Erickson and S. Har-Peled. Optimally cutting a surface into a disk. Proc. 18th Annu. ACM Sympos.
Comput. Geom., pp. 244–253, 2002.

21. M. S. Floater. Parameterization and smooth approximation of surface triangulations. Comput. Aided
Geom. Design 14(4):231–250, 1997.

22. G. K. Francis and J. R. Weeks. Conway’s ZIP proof. Amer. Math. Monthly 106:393–399, 1999. 〈http://
new.math.uiuc.edu/zipproof/〉.

23. M. R. Garey, R. L. Graham, and D. S. Johnson. The complexity of computing Steiner minimal trees.
SIAM J. Appl. Math. 32:835–859, 1977.

24. M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math.
32:826–834, 1977.

25. X. Gu, S. J. Gortler, and H. Hoppe. Geometry images. Proc. SIGGRAPH ’02, pp. 355–361, 2002.
26. S. Gumhold and W. Straßer. Real time compression of triangle mesh connectivity. Proc. SIGGRAPH ’98,

pp. 133–140, 1998.
27. I. Guskov and Z. Wood. Topological noise removal. Proc. Graphics Interface, pp. 19–26, 2001.
28. S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, and M. Halle. Conformal surface parame-

terization for texture mapping. IEEE Trans. Visual. Comput. Graph. 6(2):181–187, 2000.
29. M. Hallett and T. Wareham. A compendium of parameterized complexity results. SIGACT News

25(3):122–123, 1994. 〈http://web.cs.mun.ca/ harold/W hier/compendium.html〉.
30. M. Hanan. On Steiner’s problem with rectilinear distance. SIAM J. Appl. Math. 14:255–265, 1966.
31. A. Hatcher. Algebraic Topology. Cambridge University Press, Cambridge, 2001. 〈http://www.math.

cornell.edu/ ∼hatcher/〉.
32. M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii. Topology matching for fully automatic similarity

estimation of 3d shapes. Proc. SIGGRAPH ’01, pp. 203–212, 2001.
33. M. Isenburg and J. Snoeyink. Face Fixer: compressing polygon meshes with properties. Proc. SIGGRAPH

2000, pp. 263–270, 2000.
34. D. B. Johnson. Efficient algorithms for shortest paths in sparse networks. J. Assoc. Comput. Mach.

24(1):1–13, 1977.
35. R. Kimmel, A. Amir, and A. M. Bruckstein. Finding shortest paths on surfaces using level sets propogation.

IEEE Trans. Pattern Anal. Mach. Intell. 17:635–640, 1995.
36. D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM J. Comput. 15:287–299,

1986.
37. A. Klivans and D. A. Spielman. Randomness efficient identity testing of multivariate polynomials. Proc.

33rd Annu. ACM Sympos. Theory Comput., pp. 216–223, 2001.
38. L. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner trees. Acta Inform. 15:141–145,

1981.
39. J. B. Kruskal, Jr. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc.

Amer. Math. Soc. 7:48–50, 1956.
40. F. Lazarus, M. Pocchiola, G. Vegter, and A. Verroust. Computing a canonical polygonal schema of an

orientable triangulated surface. Proc. 17th Annu. ACM Sympos. Comput. Geom., pp. 80–89, 2001.
41. F. Lazarus and A. Verroust. Level set diagrams of polyhedral objects. Proc. 5th ACM Sympos. Solid

Modeling Appl., pp. 130–140, 1999.
42. A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin. MAPS: multiresolution adaptive

parameterization of surfaces. Proc. SIGGRAPH ’98, pp. 95–104, 1998.
43. B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal maps for automatic texture atlas

generation. Proc. SIGGRAPH ’02, pp. 362–371, 2002.
44. J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou. The discrete geodesic problem. SIAM J. Comput.

16:647–668, 1987.
45. K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy as matrix inversion. Combinatorica

7:105–113, 1987.
46. J. R. Munkres. Topology, 2nd edition. Prentice-Hall, Englewood Cliffs, NJ, 2000.

Optimally Cutting a Surface into a Disk 59

47. D. Piponi and G. Borshukov. Seamless texture mapping of subdivision surfaces by model pelting and
texture blending. Proc. SIGGRAPH ’00, pp. 471–478, 2000.

48. J. Rossignac. Edgebreaker: connectivity compression for triangle meshes. IEEE Trans. Visual. Comput.
Graph. 5:47–61, 1999.

49. A. Sheffer. Spanning tree seams for reducing parameterization distortion of triangulated surfaces. Proc.
Shape Modeling Internat., 2002.

50. A. Sheffer and E. de Sturler. Surface parameterization for meshing by triangulation flattening. Proc.
9th Internat. Meshing Roundtable, pp. 161–172, 2000. 〈http://www.andrew.cmu.edu/user/sowen/
abstracts/Sh742.html〉.

51. O. Sorkine, D. Cohen-Or, R. Goldenthal, and D. Lischinski. Bounded-distortion piecewise mesh param-
eterization. Proc. 12th IEEE Visual. Conf., pp. 355–362, 2002.

52. D. Steiner and A. Fischer. Cutting 3D freeform objects with genus-n into single boundary surfaces using
topological graphs. Proc. 7th ACM Sympos. Solid Modeling Appl., pp. 336–343, 2002.

53. J. Stillwell. Classical Topology and Combinatorial Group Theory, 2nd edition. Graduate Texts in Math-
ematics 72. Springer-Verlag, New York, 1993.

54. H. Takahashi and A. Matsuyama. An approximate solution for the network Steiner tree problem. Math.
Japon. 24:573–577, 1980.

55. R. E. Tarjan. Data Structures and Network Algorithms. CBMS-NSF Regional Conference Series in
Applied Mathematics 44. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1983.

56. G. Taubin and J. Rossignac. Geometric compression through topological surgery. ACM Trans. Graph.
17(2):84–115, 1998.

57. W. Thurston. Three-Dimensional Geometry and Topology, Volume 1. Princeton University Press, Prince-
ton, NJ, 1997.

58. J. N. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE Trans. Automat. Control
40:1528–1538, 1995.

59. G. Vegter. Computational topology. Handbook of Discrete and Computational Geometry, chapter 28,
pp. 517–536. CRC Press LLC, Boca Raton, FL, 1997.

60. G. Vegter and C. K. Yap. Computational complexity of combinatorial surfaces. Proc. 6th Annu. ACM
Sympos. Comput. Geom., pp. 102–111, 1990.

61. R. Wenger. Randomized quickhull. Algorithmica 17:322–329, 1997.
62. Z. Wood, H. Hoppe, M. Desbrun, and P. Schröder. Isosurface topology simplification. Tech. Rep. MSR-

TR-2002-28, Microsoft Research, 2002. 〈http://www.multires.caltech.edu/pubs/〉.
63. G. Zigelman, R. Kimmel, and N. Kiryati. Texture mapping using surface flattening via multi-dimensional

scaling. IEEE Trans. Visual. Comput. Graph. 8:198–207, 2001.

Received July 2, 2002, and in revised form June 3, 2003. Online publication November 14, 2003.

