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Abstract

Multi-party fair exchange (MFE) and fair secure multi-party computation (fair SMPC)
are is under-studied field of research, with practical importance. In particular, we consider
MFE scenarios where at the end of the protocol, either every participant receives every
other participant’s item, or no participant receives anything. We analyze the case where
a trusted third party (TTP) is optimistically available, although we emphasize that the
trust put on the TTP is only regarding the fairness, and our protocols preserve the privacy

of the exchanged items against the TTP. In the fair SMPC case, we prove that a malicious
TTP can only harm fairness, but not security.

We construct two asymptotically optimal multi-party fair exchange protocols that re-
quire a constant number of rounds (in comparison to linear) and O(n2) messages (in
comparison to cubic), where n is the number of participating parties. In one protocol,
we enable the parties to efficiently exchange any item that can be efficiently put into a
verifiable encryption (e.g., signatures on a contract). We show how to apply this protocol
on top of any SMPC protocol to achieve fairness with very little overhead (independent
of the circuit size), especially if the SMPC protocol works with arithmetic circuits. In
our other protocol, we let the parties exchange any verifiable item, without the constraint
that it must be efficiently put into a verifiable encryption (e.g., a file cannot be efficiently
verifiably encrypted, but if its hash is known, once obtained, the file can be verified).
We achieve this via the use of electronic payments, where if an item is not obtained, the
payment of its owner will be obtained in return of the item that is sent. We then gen-
eralize our protocols to efficiently handle any exchange topology (participants exchange
items with arbitrary other participants). Our protocols guarantee fairness in its strongest
sense: even if all n−1 other participants are malicious and colluding with each other, the
fairness is still guaranteed.
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computation, electronic payments
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1 Introduction

An exchange protocol allows two or more parties to exchange items. It is fair when the
exchange guarantees that either all parties receive their desired items or none of them receives
any item. Examples of such exchanges include signing electronic contracts, certified e-mail
delivery, and fair purchase of electronic goods over the Internet. In addition, a fair exchange
protocol can be adopted by secure two-party computation protocols to achieve fairness [67,
59, 65].

Even in two-party fair exchange scenarios, having fairness completely and efficiently with-
out a trusted third party (TTP) is shown to be impossible in general [38, 77]. The main
intuition of this impossibility is that one of the parties will be sending the last message of the
protocol, regardless of how the protocol looks like, and may choose not to send that message,
potentially causing fairness problems. In an optimistic protocol, the TTP is involved in the
protocol only when a violation of fairness occurs [7, 8]. However, it is important not to give
a lot of work to the TTP, since this can cause a performance bottleneck. Furthermore, the
TTP is required only for fairness, and should not learn more about the exchange than what
is necessary to provide fairness. In particular, in our protocols, we show that the TTP does
not learn the items that are exchanged.

Fair exchange with two parties have been extensively studied and efficient solutions [8, 16,
62] have been proposed and even applied to secure two-party computation [21, 59, 65], but
there do not exist efficient and general solutions for the multi-party case. Multi-party fair
exchange (MFE) can be described based on exchange topologies (nothing to do with network
topologies) that denote the directed graph of item exchanges. For example, a ring topology
describes an MFE scenario where each party receives an item from the previous party in a
ring [13, 68, 49, 68]. A common scenario with the ring topology is that a customer wants to
buy an item offered by a provider: the provider gives the item to the customer, the customer
sends a payment authorization to her bank, the customer’s bank sends the payment to the
provider’s bank, and finally the provider’s bank credits the provider’s account. Our fairness
understanding dictates that either the whole ring completes, finishing the transaction, or no
participant receives anything.

However, ring topology cannot be directly used in scenarios like contract-signing and secure
multi-party computation (SMPC), since in such scenarios the parties want items from all other
parties. In particular, in such settings, we want that either every participant receives
every other participant’s item, or no participant receives anything. This corresponds
to the contract being signed only if everyone agrees, or the output of SMPC being revealed
only when every participant is able to receive it [60]. This is called a complete topology. We
can think of the parties as nodes in a complete graph and the edges between parties show
the exchange links (not communication links). The complete topology was researched mostly
in the contract-signing setting [44, 15, 43], with one exception [7]. Unfortunately, all these
protocols are inefficient compared to ours (see Table 2). Because of the lack of an efficient
MFE protocol that achieves the complete topology, the fairness problem in SMPC protocols
still could not be completely solved. Existing fair SMPC solutions either work with inefficient
gradual release[42], or require the use of bitcoin-like payment systems [18, 2, 58]. For the
two-party case, Gordon et al. [51] showed that essentially employing a fair exchange protocol
on top of an unfair secure computation protocol would yield a fair and secure computation
protocol. While it is possible to extend their results to the multi-party setting, we provide an
efficient concrete solution with several advantages with our MFE.
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Our Contribution: We propose two new optimistic multi-party fair exchange protocols
that efficiently guarantee fairness in any exchange topology (including complete topology).
Our protocols are constructed on top of generic cryptographic primitives and they have efficient
instantiations. The first one is called MFE, and the other one is called CMFE (for Coined-
MFE). The difference between MFE and CMFE is the fairness definition. Fairness in MFE
means that either all parties receive all their desired items (according to the topology), or
none of them receives any item at the end of the protocol. On the other hand, the fairness in
CMFE is more relaxed, in the sense that if a party sends his item but in return he does not
receive an item, he obtains monetary compensation (such relaxed fairness definitions exist in
the two-party literature [16, 66, 62]).We then show how to apply our MFE protocol on top of
any SMPC protocol to obtain a fair SMPC solution efficiently and securely, where the TTP
cannot harm security. In addition, we have the following results:

• MFE and CMFE both require only O(n2) messages and constant number of rounds
for n parties, being much more efficient than the previous works (see Table 2). These
are asymptotically optimal in a complete topology1, since each party should send his
item to all other parties, even in an unfair exchange protocol. Furthermore, none of our
protocols necessitate a broadcast.

• Our protocols optimally (still having the complexity O(n2)) guarantee fairness (against
honest parties) even when n−1 out of n parties are malicious and colluding. To be able
to prove this, we formulate MFE and CMFE as fair and secure multi-party computation
protocols. We then prove their security and fairness via ideal-real world simulation.
To the best of our knowledge, no multi-party fair exchange protocol was proven as a
secure and fair SMPC protocol with the ideal-real simulation before.

• As an additional real-world usage, we show how to adapt our MFE protocol on top of a
secure multi-party computation protocol with abort and obtain a fair SMPC protocol.
For this, we employ the methodology of Gordon et al. [51]. In addition, we prove
via simulation that even if the TTP employed in the adapted fair SMPC protocol acts
maliciously and colludes with the participants, only fairness can be violated but not
the privacy and the correctness (security) of the underlying computation.

• The TTP for fairness in MFE and CMFE is in the optimistic model [8]. The TTP has
a very low workload; verifying efficient zero-knowledge proofs and signatures, and per-
forming simple decryptions. More importantly, the TTP does not learn any exchanged
item, so the privacy against the TTP is preserved.

• We show how to employ MFE and CMFE protocols for any exchange topology, with
the performance improving as the topology gets sparser (fewer computations are done).
Moreover, unlike some earlier works [12, 49, 68], we argue that fair exchange must mean
that either the whole topology is satisfied, or no participant receives anything.

• Our protocols have easy setup phases, which are employed only once for exchanging
multiple sets of items, thus improving efficiency even further for repeated exchanges
among the same set of participants. The topology can change between repetitions,
without the need to redo the setup.

• CMFE is the first protocol that enables multiple parties to exchange verifiable items
that cannot be efficiently put in a verifiable encryption. For example, files may be

1We believe this optimality holds for every topology, but we have not proven it yet, so we do not claim
optimality for other topologies in this paper.

4



verifiable via their hashes, but still there is no efficient way of putting a large file into a
public-key verifiable encryption. Our CMFE protocol enables very efficient exchange of
any size of files, by relaxing the fairness definition and employing electronic payments.

• MFE can be constructed with a verifiable deniable public-key threshold encryption
scheme and a verifiable public-key encryption scheme. CMFE can be constructed with
the same cryptographic primitives as MFE as well as a symmetric encryption scheme
and a signature scheme. We also discuss efficient instantiations in the random oracle
model and show performance measurements.

• As an independent contribution, we define and use a verifiable deniable (k,n)-threshold
encryption scheme and show in the Appendix B that ElGamal threshold scheme leads
to an efficient instantiation.

Overview of Techniques: Our MFE protocol starts with a setup phase where the
parties jointly generate a reusable public-key for a threshold encryption. Then, they exchange
encrypted items. Until this point, parties can locally abort if anything goes wrong. Next, they
exchange decryption shares for the threshold encryption. During this phase, they need each
others’ help, and all parties must seek help from all other parties. They may also employ the
TTP’s help to resolve disputes. While an honest TTP guarantees fairness, a malicious TTP
may break fairness by selectively helping some participants.

Our fair SMPC solution essentially performs the first two steps (setup and encrypted item
exchange) within the underlying unfair SMPC protocol execution. The underlying SMPC
protocol returns encrypted items (where items correspond to the functionality outputs here)
and verification shares such that the parties can verify that the obtained decryption shares
will be valid. Then, they continue from the last phase of our MFE protocol where they fairly
exchange the decryption shares, potentially employing the TTP’s help. Since we achieve
privacy against the TTP and ensure that each party depends on each other party at every
phase of our protocols, even a malicious TTP that may collude with other parties cannot
enable the adversary to break privacy of the underlying unfair SMPC protocol. A malicious
TTP can break fairness, but not privacy and correctness. Thus, even when the TTP colludes
with some participants, our protocol provides security equivalent to the standard security with
abort, thereby not having any disadvantage.

Our CMFE protocol extends the setup phase employing an e-cash (or similar payment)
system, and employs digital signatures to link messages of the fair exchange protocol with
the monetary compensation. The public-keys of the signatures can be put into verifiable
escrows, thereby removing the need for a public-key infrastructure. If a party cheats, the
affected parties may receive help from the TTP to obtain the cheating party’s payment as
compensation. A corrupted TTP may break fairness.

In our dispute-resolution parts with the TTP, we employ timeout-based mechanisms. Since
these timeouts do not affect an honest run of the protocol, but only affect the dispute reso-
lution, the timeout values can be large (e.g., on the order of hours), removing the need for
tight synchronization of parties’ clock. Lastly, in Section 7, we provide concrete efficiency
numbers for our protocols employing efficient underlying primitives, showing the practicality
of our solutions.
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2 Related Works

Two-party Fair Exchange: Most of the previous work in the fair exchange setting was
done on the two-party case. The relevant case is the optimistic case, where a trusted third
party (TTP) exists, but the TTP is not involved if both participants are honest [8, 13, 9, 10,
74, 35, 62].

Multi-party Fair Exchange: Franklin and Tsudik [40] classified multi-party fair exchange
based on the number of items that a participant can exchange and the dispositions of the
participants. Asokan et al. [7] described an optimistic fair exchange protocol for all topologies.
Their work is the only previous multi-party fair exchange protocol that works in all topologies.
They defined a description matrix to represent the topology, and proposed a fair protocol. The
parties are restricted only to “exchangeable items”, requiring the TTP to be able to replace or
revoke the items, greatly decreasing the applicability of the protocol. In addition, the protocol
needs broadcast to send the items, rendering the protocol inefficient.

Table 1: Efficiency comparison with previous works in the ring topology. ‘All or None’ represents our
fairness definition, where either the whole topology is satisfied, or no exchange occurs, and n is the
total number of parties. TTP-party dependency exists if the TTP has to contact with a prespecified
party to resolve the fairness problem with another party. TTP privacy exists if the TTP does not
learn any information about the identity of the parties and exchanged items.

Num. Messages All or None TTP-Party Dependency TTP Privacy

Bao et al. [12]
O(n) No Yes Not Private

González-Deleito and
Markowitch [49]

O(n2) No Yes Not Private

Liu and Hu [68]
O(n) No Yes Not Private

Ours O(n2) Yes X No X Private X

Ring Topology: All existing multi-party fair exchange protocols, except Asokan et al. [7]
protocol, work in the ring topology. Bao et al. [12] proposed an optimistic multi-party fair
exchange protocol based on the ring topology. In their protocol, one of the participants is
the initiator, who starts the first and second phases of the protocol. The initiator is required
to contact the TTP to acknowledge the completion of the first phase of the protocol. Thus,
firstly, this is not a strictly optimistic protocol, secondly, there is a necessity of trusting the
initiator, and thirdly, there is a passive conspiracy problem [40], which means that a dishonest
party may conspire with an honest party without the latter’s consent.

Later, Gonzales-Deleito and Markowitch [49] solved the malicious initiator problem of Bao
et al. [12]. But, the problem in their protocol is in the recovery protocol: when one of
the participants contacts the TTP, the TTP has to contact the previous participant in the
ring. This is not preferable because it is not guaranteed that the previous participant will
be available. The protocol in [68] solves the passive conspiracy problem of Bao et al. [12],
however the problem in the recovery protocol still remains.

Markowitch and Kremer [69] proposed a non-repudiation protocol, where their fairness
definition is that whenever one of the parties sends some information to the other parties,
neither the sender nor the others can deny that they participated. However, it does not solve
the fairness problem in general.
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Table 2: Efficiency comparison with previous works in complete topology. MPCS denotes multi
party contract signing, n is the total number of parties, and t is the number of dishonest parties. A
checkmark (X) indicates the best solution in that column for easy comparison.

Solution for Topology Num.

Rounds

Num. Messages Broadcast

Garay and
MacKenzie
[44]

MPCS Complete O(n2) O(n3) Yes

Baum-Waidner
and Waidner
[15]

MPCS Complete O(tn) O(tn2) Yes

Mukhamedov
and Ryan [75]

MPCS Complete O(n) O(n3) Yes

Mauw et al.
[71]

MPCS Complete O(n) O(n2)X Yes

Asokan et al.
[7]

MFE X Any X O(1)
X

O(n3) Yes

Ours MFE X Any X O(1)
X

O(n2) X No X

In all these ring-topology fair-exchange protocols, no formal fairness proofs exist. Instead,
case-by-case analyses are done to show that fairness is satisfied.

Understanding Fairness: There is an important difference between our understanding of
fairness, and existing ring-topology solutions [12, 49, 68]. According to their definition, in the
end of the protocol, there will be no honest party such that he does not receive his desired
item from the previous party but sends his item to the next party. It means that there can
be some parties who received their desired items and some other parties who did not receive
or send anything. For instance, consider a ring topology with parties P0, P1, P2, P3 and P4,
and assume that P1 and P3 are malicious and colluding. In this case, the following scenario
can happen using the previous understanding: P0 receives an item from P4 and sends an
item to P1, and similarly P4 receives an item from P3 and sends an item to P0. However, P2

did not send or receive any item. Whereas, according to our definition, we need that either
the whole topology is satisfied (all the necessary exchanges are complete), or no
exchange takes place. We believe this is a very important distinction, and is the right way
of framing multi-party fair exchange. Otherwise, multi-party fair exchange protocols can be
achieved via multiple executions of two-party fair exchange protocols. We further observe that
this all-or-none type of fairness also requires a quadratic number of messages, at least in the
complete topology, which we achieve optimally. Table 1 summarizes comparison for the ring
topology.

Complete Topology: Since a multi-party fair exchange protocol in complete topology does
not exist, except the protocol by Asokan et al. [7], we also look at multi-party contract signing
protocols (MPCS), which can be considered as fair exchange protocols where the exchanged
items are signatures on a common message called the contract. They indeed correspond
to a complete topology. Garay and Mackenzie [43] proposed the first optimistic multi-party
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contract signing protocol that requires O(n2) rounds and O(n3) messages. Baum-Waidner and
Waidner [15] suggested a more efficient protocol, whose complexity depends on the number
of dishonest parties, and if the number of dishonest parties is n − 1 (or O(n)), its efficiency
is the same as [43]. Mukhamedov and Ryan [75] decreased the round complexity to O(n).
Lastly, Mauw et al. [71] gave the lower bound of O(n2) for the number of messages to achieve
fairness. Their protocol requires O(n2) messages, but the round complexity is not constant.
We achieve both lower bounds (O(n2) messages and constant round) for the first
time.

All these MPCS protocols are based on some multiple-level promise system, which can
be considered as a commitment of the signed contract. The promise can be converted into
the signature of the contract by the TTP. The complicated conditions for resolutions and
aborting make their fairness analysis harder. Indeed, the first optimistic MPCS protocol by
Garay and Mackenzie [44] is later found not to be fair when the number of parties is more
than five [75]. Table 2 already summarized this result. Mauw and Radomirović [70] uses
different approach for MPCS which uses skeletal graph. Even though MPCS is considered
mostly in complete topologies, Draper et al. [36] also analyze the other topologies for contract
signing and informally finds an optimal bound for every topology which is O(n2), supporting
our optimality claim.

Overall, our MFE and CMFE protocols are the first protocols that benefit from the nice
properties of a verifiable deniable threshold encryption scheme to achieve fairness. Thanks to
the verifiable deniable (n,n)-threshold encryption scheme:

• We make all parties depend on each other easily (i.e., they need decryption shares of the
other parties to obtain the exchanged items). For example, existing MPCS protocols
[15, 71, 75, 15, 44] use the multiple levels of promises technique to have this dependency,
but this decreases efficiency (number of rounds) and complicates the resolution and
aborting protocols with the TTP. Existing multi-party fair exchange protocols [12, 49, 68]
in the ring topology do not need this dependency because their understanding of fairness
is different from our fairness criteria, as discussed above.

• We achieve privacy against the TTP (i.e, the TTP only learns decryption shares). The
MPCS protocols do not have any privacy against the TTP because they are based on
the TTP simply converting a promise into a valid signature of the contract. As seen
in Table 2, none of the multi-party fair exchange protocols in the ring topology have
privacy against the TTP.

• We succeed to have fairness in flexible topologies (i.e., a party Pi sends to party Pj
only the decryption shares of encrypted items which should be obtained by the party Pj
according to the exchange topology. See Section 6).

Besides, none of the existing multi-party fair exchange protocols in any topology have any
formal fairness proof. The multi-party contract signing protocols [15, 71, 75, 15] also do not
have any formal fairness proof. Garay and Mackenzie [43] proved their MPCS protocol is
fair in the random oracle model, but it has been shown that it is not fair when the number
of parties is greater than five [75]. In a nutshell, our protocols are the first multi-party fair
exchange protocols that provide fairness in all types of topologies by protecting privacy
against the TTP and have a formal proof on the fairness property in the ideal-real simulation
paradigm.
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Fair Secure Multi-Party Computation: Secure multi-party computation had an impor-
tant position in the last decades, but its fairness property did not receive a lot of attention.
One SMPC protocol that achieves (resource) fairness is designed by Garay et al. [42]. It
uses gradual release, which is the drawback of this protocol, because each party broadcasts its
output gradually in each round. At each round the number of messages is O(n3) and there
are many rounds due to gradual release. Another approach is using bitcoin-like payment
systems to achieve fairness using a TTP in the optimistic model [18, 2, 58]. When one of
the parties does not receive the output of the computation, he receives a bitcoin instead. A
similar fairness approach was used by Lindell [66] for the two-party computation case, and
by Belenkiy et al. [16] and Küpçü and Lysyanskaya [62] for peer-to-peer systems. However,
this approach may not be appropriate for multi-party computation since we do not necessarily
know how valuable the output will be before evaluation.

Other Works in Fair MPC: Reputation-based fairness solutions by Ashorov et al.[6]talk
about fairness probabilities, rather than complete fairness. Because of the impossibility of
general complete fairness [6], relaxed versions of fairness definition such as partial fairness
[53, 54], resource fairness [42], game-theoretic techniques [5, 41], and rational fairness [55] are
considered. Gordon et al. [52, 50] showed that fairness (without TTP) can be achieved for
specific functionalities. Following that, [3, 4] succeeded to have fairness for specific function-
alities in two-party computation. General fair two-party computation protocols (with TTP
or gradual release) also exist [59, 65, 21, 79, 81, 61], but they do not have direct and efficient
generalizations for the multi-party case. Guerraoui and Wang [56] show that optimal message
complexity is O(n2) for optimistic fair computation.

3 Definitions and Preliminaries

3.1 Definitions

As we represent our protocols as SMPC protocols and provide ideal-real simulation proofs, we
first define the related ideal worlds for security and fairness.

Secure Multi-Party Computation (SMPC): A set of parties with their private inputs
wi desire to compute a functionality φ [46]. This computation is secure when the parties
do not learn anything beyond what is revealed by the output of the computation. This is
formalized by ideal-real world simulations, defined below [45].

Ideal World: The ideal-world execution consists of honest party(s) Ph, an adversary A

that corrupts the parties in set Pc, and the ideal functionality Uφs (not the TTP). The ideal
protocol is as follows:
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U
φ
s for security with abort

• Uφ
s receives inputs {wi}Pi∈Pc of corrupted parties or the message abort from A,

and inputs {wi}Pi∈Ph
of the honest party(s).

• If the inputs are invalid or A sends the message abort, then Uφ sends ⊥ to all of
the parties and halts.

• Otherwise, Uφ
s computes φ(w1, ..., wn) = (φ1(w1, ..., wn), φ2(w1, ..., wn), ...,

φn(w1, ..., wn)). Let φi = φi(w1, ..., wn) be the output of ith party. Then, Uφ
s

sends {φi}Pi∈Pc to A.

– If A sends a message continue, then Uφ
s sends each one of {φi}Pi∈Ph

to the
corresponding honest party.

– If A sends a message abort, Uφ
s sends ⊥ to the honest party(s).

The outputs of the honest parties and of the adversary in an ideal execution between the
honest party(s) and an adversary A controlling the corrupted parties where Uφs computes φ is
denoted IDEALsφ,A(aux),Pc

(w1, w2, ...wn, ℓ), where {wi}1≤i≤n are the respective private inputs
of the parties, aux is an auxiliary input of A, and ℓ is the security parameter.2

Real World: No ideal functionality Uφs exists in the real protocol π to compute the
functionality φ. A PPT adversary A controls the set Pc of corrupted parties where |Pc| ≤ n−1.
The outputs of the honest party(s) Ph and the adversary A in the real execution of the protocol
π is denoted REALsπ,A(aux),Pc

(w1, w2, ...wn, ℓ), where w1, w2, ...wn, aux, and ℓ are like above.

Optimistic Fair Secure Multi-Party Computation: The ideal world definition above
does not guarantee fairness. Multi-party computation is fair if either all of the parties learn
the output at the end of the computation, or none of them learns the output. We extend the
two-party fair and secure computation definition by Cachin and Camenisch [21] to the multi-
party case in the spirit of the standard secure computation definition. The advantage of this
definition is that it allows the trusted party to be corrupted. In Appendix A, we show that
when the TTP is honest, this definition is equivalent to a simpler and easier to understand
definition.

Ideal World: The ideal-world execution consists of honest party(s) Ph, an adversary
A that corrupts the parties in set Pc, the TTP, and the ideal functionality Uφfs. The ideal
protocol is as follows (Yi denotes the domain of φi):

U
φ

fs for security and fairness

• Uφ

fs receives inputs {wi}Pi∈Pc or the message abort from A, and {wi}Pi∈Ph
from

the honest party(s). If the inputs are invalid or A sends the message abort, then
Uφ sends ⊥ to all of the parties and halts.

• Otherwise Uφ

fs computes φ(w1, ..., wn) = (φ1(w1, ..., wn), φ2(w1, ..., wn), ...,

φn(w1, ..., wn)). Let φi = φi(w1, ..., wn) be the ith output. Then, he sends {φi}Pi∈Pc

to A and expects back a response from the TTP.

• The TTP sends {bi ∈ {Yi ∪ ⊥ ∪ continue}}Pi∈Ph
to Uφ

fs. Honest TTP always
responds as {bi = continue}Pi∈Ph

.

• For each Pi ∈ Ph, Uφ

fs does the following:

– If bi = continue, sends φi to Pi.

– Else, sends bi to Pi.

2Superscript ‘s’ in REALs and IDEALs represents that they are defined for security only, not fairness.
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Observe that an honest TTP always sends continue for each honest party, meaning that
once the adversary obtains its output, fairness is guaranteed and hence each honest party will
also obtain its output. The other options for the TTP represent the case where the TTP is
controlled by the adversary: bi = ⊥ represents the TTP not responding to an honest party
Pi, breaking fairness, and any other bi denotes that the TTP resolves with the party Pi such
that Pi learns an incorrect output.

It is worth mentioning here that while we will employ this general definition in our proofs,
for our protocol, even a malicious TTP cannot send a bi value that breaks correctness. In
our proof in Section 4.3.2 for our adapted fair SMPC with the adversarial TTP, only ⊥ or
continue messages are employed, which only affect fairness of the protocol.

The outputs of the honest parties and of the adversary in an ideal execution between the
honest party(s) and an adversary A controlling the corrupted parties (and possibly the TTP)
where Uφfs computes φ is denoted IDEALfsφ,TTP,A(aux),Pc

(w1, w2, ...wn, ℓ), where {wi}1≤i≤n are
the respective private inputs of the parties, aux is an auxiliary input of A, and ℓ is the security
parameter.3

Real World: No ideal functionality Uφfs exists in the real protocol π to compute the
functionality φ. A PPT adversary A controls the set Pc of corrupted parties where |Pc| ≤ n−1.
There is a TTP who is involved in the protocol when a dispute arises. The outputs of the
honest party(s) Ph and the adversary A in the real execution of the protocol π, possibly
employing the TTP, is denoted REALfsπ,TTP,A(aux),Pc

(w1, w2, ...wn, ℓ), where {wi}1≤i≤n, aux,
and ℓ are like above.

Adversarial Model: When there is a dispute between the parties, the TTP resolves the
conflict atomically, dealing with one party at a time until that resolution protocol is finished.
The communication channel is defined similar to previous work [11, 64, 62, 63], such that there
are loosely-synchronized clocks (e.g., we employ large timeouts on the order of potentially
hours or days since they only affect dispute resolution, not the execution of the protocol),
and while the communication channel is under adversary’s control, it is assumed that the
adversary cannot prevent the honest parties from reaching the TTP before the specified time
interval ends. Essentially, we are in a bounded-delay model where the delay the adversary
can enforce on the communication between the honest parties and the TTP is bounded by
some α, which is assumed to be less than the timeouts stated in the protocols. Note that
there is no bound on the delay on the messages between the parties; only those between a
party and the TTP has a bounded delay. Thus, message passing between parties and local
aborts can be done in an asynchronous manner, but communication with the TTP must be
done via loosely synchronized clocks with bounded adversarial delay. One may simplify this
and think of synchronous network connections everywhere for the sake of the proofs. Secure
channels are used to exchange the decryption shares and endorsement of e-coin. A secure
and server-authenticated channel is employed when contacting the TTP. The adversary may
control up to n − 1 out of n parties in the exchange, and is probabilistic polynomial time
(PPT).

Observe that we aim to provide fairness (where if all parties abort without learning any
useful information about result, it is also considered fair), not guaranteed output delivery.
Cohen and Lindell [31] show fairness with broadcast implies guaranteed output delivery. We
believe that using a broadcast channel in our solution would satisfy their requirement, but
here we focus on efficiently obtaining fairness.

3Superscript ‘fs’ in REALfs and IDEALfs represents that they are defined for fairness and security.
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Definition 1 (Secure Multi-Party Computation). Let πφ be a PPT protocol and let φ be a
PPT multi-party functionality. If for every non-uniform PPT real world adversary A attacking
π, there exists a non-uniform PPT ideal world simulator S for all w1, w2, ..., wn such that

{IDEALs
φ,S(aux),Pc

(w1, w2, ..., wn, ℓ)}
ℓ∈N

≡c {REAL
s
π,A(aux),Pc

(w1, w2, ..., wn, ℓ)}
ℓ∈N

then, we say that π computes φ securely.

Definition 2 (Fair and Secure Multi-Party Computation). Let πφ be a PPT protocol and let
φ be a PPT multi-party functionality. If for every non-uniform PPT real world adversary A
attacking π, there exists a non-uniform PPT ideal world simulator S for all w1, w2, ..., wn such
that

{IDEALfs

φ,S(aux),Pc
(w1, w2, ..., wn, ℓ)}

ℓ∈N
≡c {REAL

fs

π,TTP,A(aux),Pc
(w1, w2, ..., wn, ℓ)}

ℓ∈N

then, we say that π computes φ fairly and securely.

We employ Definition 2 when we prove security and fairness of our protocols with the TTP.
We use Definition 1 in our proofs when we show that a malicious TTP which can also collude
with the other parties can only harm fairness but cannot harm security, by considering it as
another corrupted party. Canetti [26] gives general security and fairness definition for multi-
party protocols without considering TTP. Similar definitions were employed in the two-party
case [47, 50, 59].

Optimistic Multi-Party Fair Exchange: The participants are P1, P2, ..., Pn. Each par-
ticipant Pi has some item fi to exchange, and wants to exchange his own item fi with some or
all of the other parties’ items {fj}j 6=i, , where i, j ∈ {1, ..., n}. At the end, every participant
should obtain {fi}1≤i≤n in a complete topology, or some subset of it defined by some other
exchange topology.

Multi-party fair exchange is also a multi-party computation where the functionality φ is
defined via its parts φi as below (we exemplify using a complete topology):

φi(f1, ..., fn) = (f1, f2, ..., fi−1, fi+1, ..., fn)

(The actual φi would depend on the topology. For example, for the standard ring topology,
it would be defined as φi = (fi−1 mod n). The topology information specifies this.) Therefore,
we can use Definition 2 as the security and fairness definition of a multi-party fair exchange
protocol, using the φi representing the desired topology. To the best of our knowledge, we are
the first to employ fair SMPC definition for proving fairness and security of multi-party fair
exchange protocols.

Hybrid Model: Assume that we have a protocol πψ for the functionality ψ which realizes
an ideal ψ functionality Uψ and have protocol πφ for functionality φ that is using πψ as a sub-
protocol. In the hybrid model, while proving security of πφ based on Definition 2 or Definition
1, we can use the ideal ψ functionality Uψ instead of the real protocol πψ to simplify the proof.
Basically, it is sufficient to consider the parties in πφ interact with Uψ whenever they need to
compute functionality ψ [26]. This is called as ψ−hybrid model.

3.2 Preliminaries

In this section, we give some cryptographic primitives that we use in our protocols.

Definition 3 (Shared-Key Deniable Encryption Scheme [27, 82]). It is a symmetric key en-
cryption scheme with the message space M with the following PPT algorithms:
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• SymGen(1ℓ) → K : It takes the security parameter ℓ in unary as input and outputs a
shared key K.

• SymEnc(K,m, rS , rR) → E : It takes the shared key K, a message m ∈ M and some
randomness rS from sender and rR from the receiver as input and outputs the ciphertext
E.

• SymDec(K, rS , rR, E) → m : It takes the shared key K, randomness rS , rR and a cipher-
text E as input and outputs a message m.

• SymFake(m1,m0, rS , rR, E,K) → K ′, r̃S: It takes m1,m0 ∈ M where m0 is the fake
message, randomness rS , rR, ciphertext E = SymEnc(K,m1, rS , rR) and key K as input
and outputs a key K ′ and a randomness r̃S such that SymDec(K ′, r̃S , rR, E) → m0.

Note that a regular (non-deniable) symmetric encryption scheme would have only the first
three algorithms, and without the randomness rR of the receiver.

Definition 4 (Security of Sender Deniability [83]). Sender deniability is shown via a CPA-
like game where the adversary sends two messages m0,m1 to the faking-algorithm challenger.
The challenger picks b = {0, 1} and computes E = SymEnc(K,mb, rS , rR). If b = 0, it sends
E, (K, rS). Otherwise, it sends E, (K ′, r̃S) = SymFake(m1,m0, rS , rR, E) (which generates a
key K ′ such that the decryption of E with K ′, r̃S gives m0). The adversary wins if he guesses
b correctly. If the advantage of the adversary is negligible in ℓ, then the scheme has security
of sender deniability.

A simple deniable encryption scheme is the one time pad. The faking algorithm generates
a key by computing the bitwise XOR of the message and the ciphertext. For example, a sender
encrypts a message m as e = m⊕ k with the secret key k. Then, she sends e to the receiver.
Later, if she decides that the receiver should learn the message m′ from e, then she sends
k′ = e⊕m′ to the receiver, who uses it to decrypt e and obtain m′ = e⊕ k′.

Endorsed E-cash: Endorsed e-cash [24] consists of two pieces: unendorsed coin ‘coinu’
and endorsement ‘e’. coinu cannot be used as a coin without e. In addition, no one except
the owner of coinu can construct a valid endorsement e for coinu. The endorsement can be
efficiently verifiably escrowed and can be verified to endorse the matching unendorsed coin.
Note that in our protocols, we can employ any electronic payment scheme, as long as it can be
efficiently verifiably escrowed (e.g., electronic checks [29]). For the formal security definitions,
we refer the reader to [24], since those are not necessary to understand our paper. The payment
system is used only in our CMFE protocol for fair exchange of large files in Section 5, and in
both the protocol and the security proof, honest parties’ endorsements’ are never given to any
other party.

Definition 5 ((k, n)-Threshold Encryption [84]). It consists of following PPT algorithms
assuming that the number of parties is n and the threshold is k:

• ThGen(1ℓ, k, n) → (pk, v, {xi}1≤i≤n): It takes a security parameter ℓ in unary and pa-
rameters k, n as input and outputs a public key pk, a verification key v, and a secret key
xi for each party Pi.

• ThEnc(pk,m) → E : It takes the public key pk and a message m as input and outputs
the ciphertext E.

• ThDShare(xi, pk, E) → di : It takes a private key xi, the public key pk, and a ciphertext
E as input and outputs the decryption share di.

13



• ThDSProve(xi, pk, E) → DSproofi : It takes as input a private key xi, a ciphertext E, the
public key pk, a decryption share di, and outputs a proof DSproofi that the decryption
share is valid.

• ThDSVerify(v, pk, E, di,DSproofi) → valid/invalid : It takes the verification key v, the
public key pk, a ciphertext E, and a decryption share di with its proof DSproofi as input
and outputs either valid or invalid based on the verification of the proof.

• ThDec(DS, pk, E) → m : It takes a list of decryption shares DS where |DS| ≥ k, the
public key pk, and a ciphertext E as input and outputs a plaintext m.

While Shoup and Gennaro [84] define a (k, n)-threshold encryption scheme with ThDSProve

and ThDShare combined into a single algorithm, for the sake of clarity, we separately define
them. Then we use the ideal functionality UZK-R below for the security of ThDSProve and
ThDSVerify with the following functionality.

Ideal zero-knowledge functionality: Defined below between two parties Pi as a prover
and Pj as a verifier:

U
ZK-R with a relation R

• UZK-R receives (prove, id||Pi||Pj , w, δ) from party Pi.

• If (w, δ) ∈ R, then UZK-R outputs (proof, id||Pi||Pj , δ) to Pj . Otherwise, UZK-R

outputs (disproof, id||Pi||Pj , δ) to Pj .

For the threshold encryption scheme, the prover Pi in UZK-R corresponds to the party
who wants to prove that the decryption share di is correctly constructed for the encryption E
(using ThDSProve) and the verifier Pj in UZK-R is the party who wants to verify that di is a
correct decryption share for E (using ThDSVerify).

Definition 6 (Deniable (k, n)-Threshold Encryption). It consists of all algorithms in Defi-
nition 5 and also the PPT algorithm below. Assume that we have E = ThEnc(pk,m) where
its corresponding valid decryption shares are DS = {di1 , di2 , ..., dit} where {i1, i2, ..., it} ⊆
{1, 2, ..., n} and t = |DS| < k.

• ThDeny(E,DS, I,m′, pk) → DS′ : It takes as input a ciphertext E, decryption shares
DS, an index set I such that |I| = k − |DS| and {i1, i2, ..., it} /∈ I, a fake plaintext
m′, and the public key pk. It outputs a set of fake decryption shares DS′ such that
ThDec(DS′ ∪DS, pk, E) → m′.

Remark that ThDeny only returns a set of decryption shares. Because of the security of
ThDSProve and ThDSVerify, it is not possible in a real protocol execution to provide fake
decryption shares that verify as valid. Thus, this algorithm will only be used in the simulation
for the sake of the security proof.

Definition 7 ((Labeled) Public Key Encryption). A (labeled) public key encryption scheme
with security parameter ℓ consists of the following PPT algorithms:

• PkGen(1ℓ) → (sk, pk) : It takes a security parameter ℓ in unary as input and outputs a
public key pk and a secret key sk.

• PkEnc(pk,m; lbl) → VE : It takes the public key pk, a message m ∈ M and a label lbl as
input and outputs the ciphertext VE.
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• PkDec(sk,VE) → m : It takes the secret key sk and a ciphertext VE as input and outputs
the plaintext m.

Verifiable Encryption: It is a public key encryption scheme that enables the recipient to
verify, using a public-key, that the plaintext satisfies some relation, without performing any
decryption [25, 23]. A public non-malleable label lbl can be attached to a verifiable encryption
[84].

Definition 8 (Verifiable Encryption [25, 22]). Let ψ = [R,W,∆] be a description of a binary
relation R on W ×∆ and M be a message space. A verifiable encryption scheme is a public
key encryption scheme with the following two additional potentially interactive PPT algorithms
ProveEnc run by a prover who encrypts the message and VerifyEnc run by a verifier who receives
the ciphertext.

• ProveEnc(pk, w, δ; lbl) → (VE,VEproof) : It takes as input pk, a witness w ∈ W , and a
statement δ ∈ ∆, and outputs the ciphertext VE = PkEnc(pk, w; lbl) and a proof VEproof
that (w, δ) ∈ R.

• VerifyEnc(pk, δ,VE,VEproof) → valid/invalid : It takes as input pk, δ,VE and the proof
VEproof, and outputs valid if (w, δ) ∈ R, or invalid if (w, δ) /∈ R.

We give the security of ProveEnc and VerifyEnc with the following functionality which
satisfies the security properties of these algorithms such as completeness, soundness, and zero
knowledge [22, 25].

Ideal verifiable encryption/escrow functionality: It is defined below between two par-
ties Pi as a prover and Pj as a verifier:

U
VE-R with a relation R

• UVE-R receives (VEprove, id||Pi||Pj , w, δ, pk, item, label) from party Pi.

• If (w, item, δ) /∈ R or pk is not a valid public-key for the encryption algo-
rithm Enc, then UVE-R outputs (VEdisproof, id||Pi||Pj , δ, pk, label,⊥) to the party
Pj . Otherwise, UVE-R computes the ciphertext Enc(pk, item) → E and outputs
(VEproof, id||Pi||Pj , δ, pk, label, E) to Pj .

The ideal verifiable escrow functionality UVS-R works the same as UVE-R, except that it checks
that the pk is the public-key of the TTP instead of checking whether pk is valid or not.

For our purposes, we need a verifiable deniable (n,n)-threshold encryption scheme which
satisfies Definitions 5, 6, and 8. In Appendix B, we show how to efficiently instantiate it using
the Decisional Diffie-Hellman assumption via the ElGamal [37] threshold scheme.

We discuss in Section 7 how to efficiently initialize these functionalities using previous
work as primitives, and present concrete performance numbers.

Finally, we need a signature scheme that is existentially-unforgeable under adaptive chosen
message attack.

Definition 9 (Signature Scheme [48]). A signature scheme with security parameter ℓ consists
of the following PPT algorithms:

• SgGen(1ℓ) → (s, v) : It takes a security parameter ℓ in unary as input and outputs a
public verification key v and a secret signing key s.

• SgSign(s,m) → σ : It takes the secret signing key s and a message m and outputs the
signature σ.
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• SgVerify(v,m, σ) → accept/reject : It takes the public verification key v, a message m,
and a signature σ as input and outputs accept only if the signature is valid on the given
message.

3.3 Notation

The n parties and their names in the protocol are represented by Pi, where i ∈ {1, ..., n}. Ph
denotes the set of honest parties, and the set of Pc denotes the corrupted parties controlled
by the adversary A where Pc ∪ Ph = {P1, P2, ..., Pn}.

The topology of the protocol is described as topology = {(P1, ǫ1), ..., (Pn, ǫn)} where ǫi is
a set which includes the list of items with their owners that Pi expects an item from. Each
element of ǫi is in the following form: (Pj ;Fj) where Fj is the list of items that Pi expects
from Pj (e.g. ǫi = {(Pi−1; fi−1)} for the ring topology, ǫi = {(Pj ; fj)}1≤j 6=i≤n for the complete
topology). Fj can have more items in the case that Pj has more than one item to give a party.

Euvi is used to denote a ciphertext where the plaintext is ui and the key is v. Enc(pk,m; lbl)
is used to show an encryption of a message m with a key pk where lbl is a public non-malleable
label.

VEi and VSi are used to show the verifiable encryption and verifiable escrow prepared by
Pi, respectively.

pk and pkT show the public key of a threshold-encryption scheme and the public key
of a TTP, respectively. We let dki denote a decryption share of the encryption Ei which
is generated by a party Pk (i.e., ThDShare(xk, pk, Ei) → dki ). Usually we denote simulated
values separately. For example, the encryption of a random message is shown with Ẽi and its
corresponding valid decryption shares are shown with d̃i.

The notation z denotes the number z in the Figures 1 and 2. ℓ is the security parameter.
In MFE and CMFE, we use the ideal functionalities, UZK-Rds , UVE-Ritem , UVS-Rvs-ds and

UVS-Rcoin where the relations are:

Rds = {((xi, r), (pk, di, v)|ThDShare
r(xi, pk, E) → di},

where ThDSharer runs ThDShare with random coins r, and

Rvs-ds = {(({di,DSproofi}), (pk, pkT , {Ei}, v))|∀i,ThDSVerify(v, pk, Ei, di,DSproofi) → valid}

which shows that the verifiable escrow VS is the encryption of valid decryption shares and
their proofs.

For exchanging items, we have the following relation to verify that the item is the desired
one:

Ritem = {(f, (F, c))|F (f, c) = valid}

For example, in Ritem, if f is a signature on a contract, then c contains the signature verifi-
cation key together with the contract, and F is the signature verification algorithm.

Finally, in CMFE we have

Rcoin = {(e, coinu)|e is the endorsement of unendorsed coin coinu}

which denotes that a valid e-coin payment is escrowed.
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4 Multi-Party Fair Exchange Protocol (MFE)

Our aim in MFE is to create an efficient multi-party fair exchange protocol that works in
every topology. The most difficult challenges of this type of protocols are the following:

• Even if n − 1 parties are colluding, the protocol has to guarantee fairness. Consider a
simple optimistic exchange protocol for the complete topology: each party first sends
the verifiable escrow of his/her item to the other parties. After all verifiable escrows are
received, each of them sends their (plaintext) items to each other. If one of the parties
contacts the TTP for a resolution, the TTP decrypts the verifiable escrow(s) and stores
the contacting party’s item for the other parties (in case they request it later).
Assume now that parties Pi and Pj are colluding, and Pi receives verifiable escrow of the
honest party Ph, but Pj did not send his verifiable escrow to Ph yet. Next, Pi contacts
the TTP, receives Ph’s item fh via the decryption of the verifiable escrow of Ph, and
gives his item fi to the TTP in return. At this moment, if Pi and Pj leave the protocol,
then fairness is violated because Ph never gets the item of Pj , whereas, by colluding
with Pi, Pj receives fh.
Thus, it is important not to let any party to learn any item before all the parties are
guaranteed that they will get their requested items. We used this intuition while de-
signing our protocols. Therefore, we oblige parties to depend on some input from every
party in every phase of the protocol. Hence, even if there is only one honest party, the
dishonest ones have to contact and provide their correct values to the honest party so
that they can continue with the protocol.

• It is desirable and more applicable to use a semi-trusted third party. Hence, privacy
against the TTP needs to be satisfied. In the simple protocol above, the privacy against
the TTP is violated since the TTP learns the items of the parties. This requirement
becomes even more important when one tries to employ a multi-party fair exchange
protocol on top of SMPC protocols to achieve fairness. If the extensions used to provide
fairness leak the outputs of the parties (even to the TTP), then the privacy against
the TTP is violated. As mentioned before, we only need TTP for fairness even in the
fair SMPC setting, and security and privacy are always satisfied even when the
TTP misbehaves and colludes with participants in our solution.

• The parties do not receive or send any item from/to some of the other parties in some
topologies (e.g., in the ring topology, P2 receives an item only from P1 and sends an
item to P3 only). Yet, a multi-party fair exchange protocol must ensure that either the
whole topology is satisfied 4, or no party obtains any item. Previous protocols fail in
this regard, and allow, for example P2 to receive the item of P1 as long as he sends her
item to P3, while it may be the case that P4 did not receive the item of P3 (see Section
2). The main issue here is that, if a multi-party fair exchange protocol lets the topology
to be partially satisfied, we might as well replace that protocol with multiple executions
of two-party fair exchange protocols. The main goal of MFE is to ensure that either the
whole topology is satisfied, or no exchange happens.

We succeed in overcoming the challenges above with our MFE protocol. We first describe
the protocol for the complete topology for the sake of simplicity. Then, we show how we can
use our MFE protocol for other topologies in Section 6. All zero-knowledge proof of knowledge
protocols below are executed non-interactively in the random oracle model [19, 39].

4Topology satisfied means that all parties received all the items described in the topology.
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4.1 Description of MFE

MFE consists of n parties and a trusted third party (TTP) that is involved in the protocol only
when a dispute arises between the participants related to fairness. The parties use a secure
channel in step 4 . MFE is constructed on top of a verifiable and deniable (n, n)-threshold en-
cryption scheme with (ThGen,ThDShare,ThDSProve,ThDSVerify,ThEnc,ThDec,ThDeny) and
another verifiable encryption scheme with (PkGen,PkEnc,PkDec). Both encryption schemes
have ProveEnc and VerifyEnc algorithms since they are verifiable. The TTP has the se-
cret/public key pair (skT , pkT ) generated by PkGen(1ℓ) where ℓ is the security parameter.
We assume that pkT is known by every participant.

ThGen(1ℓ, (n, n))

Pi Pj

1j

xj , pk, v

1i

xi, pk, v

2i

VEi = ThEnc(pk, fi), VEproofi for Ritem

2j

VEj = ThEnc(pk, fj), VEproofj for Ritem

3i

VSi = PkEnc(pkT , {dik,DSproofik}1≤k≤n; pk, v, t1, t2, id, τ, Pi), VSproofi for Rvs-ds

3j

VSj = PkEnc(pkT , {d
j
k
,DSproofik}1≤k≤n; pk, v, t1, t2, id, τ, Pj), VSproofj for Rvs-ds

4i

{dik,DSproofik}1≤k≤n

4j

{d
j
k
,DSproof

j
k
}1≤k≤n

repeat for mul-

tiple exchanges

Figure 1: Our MFE Protocol. Each (i, j) message pair can be performed in any order or in parallel
within a step.

Overview: The protocol has three phases. In the first phase (Setup Phase), parties
generate a public-key for the threshold encryption scheme using their private shares. This
phase needs to be done only once among the same set of participants. In the second phase
(encrypted item exchange -EIE- Phase), they send to each other the verifiable encryptions of
the items that they want to exchange. If anything goes wrong up till here, the protocol is
simply aborted. In the final phase (decryption share exchange -DSE- Phase), they exchange
the decryption shares for each item. If something goes wrong during the final phase, resolutions
with the TTP are performed. Because the proofs need to be transferred to the TTP, they need
to be instantiated as non-interactive proofs, which can be achieved efficiently in the random
oracle or common reference string model. Between the same set of participants, after one setup
phase, the other phases can be re-executed multiple times to perform multiple exchanges with
possibly varying topologies. The details are below (see also Figure 1).

Below we describe MFE based on the complete topology. Section 6 shows how MFE works
in any topology. Since our protocol is symmetric for all participants, we describe the actions
of some Pi.

Setup Phase ( 1 in Figure 1): All parties jointly run the key generation algorithm
ThGen of a threshold encryption scheme with the threshold n. At the end, each party Pi
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receives its secret share xi, the public key pk, and the verification share v of a deniable (n, n)-
threshold encryption. Appendix B discusses an instantiation based on ElGamal and how to
achieve this in a distributed manner in a single round of communication [78].

The Setup Phase is executed only once. Afterward, the same set of parties can exchange
as polynomially many items as they want without re-executing the Setup Phase.

Encrypted Item Exchange (EIE) Phase ( 2 in Figure 1): Firstly, parties agree on
two time parameters t1 and t2 where t1 > α and t2 − t1 > α (hence allowing parties to reach
the TTP even with adversarial delay; see the adversarial model in Section 3), the topology,
and the identification id of the protocol.5 Each party Pi does the following:

• Pi generates the verifiable encryption of its item fi with the public key pk by running
ProveEnc(pk, fi, ci). Then, he sends the encryption VEi = ThEnc(pk, fi) and the proof
VEproofi showing that the encrypted item is valid (fi, ci) ∈ Ritem where ci is a public
value.
Shortly, Pi proves that he encrypts the requested item (e.g., if fi is a signature on a
contract, then ci contains the signature verification key of Pi together with the contract,
and Ritem is the relation that fi is a valid signature with respect to ci). VEi does not
have any label.

• Then, Pi waits for the verifiable encryptions of the other parties. When he receives a
VEj and VEproofj from a party Pj , he verifies it with VerifyEnc(pk, cj ,VEj ,VEproofj).
If any party does not respond or responds with an invalid proof, Pi simply aborts the
protocol.

Note that without knowing n decryption shares, no party can decrypt any VEj . So, no
party learns the items. Thus, if anything goes wrong up to this point, the parties can locally
abort the protocol. After this point, they need to obtain all the decryption shares. This is
done in the following phase.

Decryption Share Exchange (DSE) Phase ( 3 and 4 in Figure 1): No party
begins this phase without completing the EIE Phase and receiving all verifiable encryptions
VEj correctly.

• Pi generates all necessary decryption shares by running the algorithm
ThDShare(xi, pk,VEj) and ThDSProve(xi, pk,VEj) for all j ∈ {1, 2, ..., n}.
Then, he obtains decryption shares {dij}1≤j≤n and their corresponding
proofs {DSproofij}1≤j≤n. After the generation of decryption shares, he runs
ProveEnc(pkT , {d

i
j ,DSproof

i
j}1≤j≤n, δ; lbl) where δ = (pk, pkT , {VEi}, v) and ob-

tains the verifiable escrow VSi = PkEnc(pkT , {d
i
j ,DSproof

i
j}; lbl) together with its proof

VSproofi. VSproofi proves that (({dij ,DSproof
i
j}), δ) ∈ Rvs-ds. At the end, Pi sends VSi

and VSproofi to the other parties.
In simple terms, the verifiable escrow VSi includes the encryption of the decryption
shares of Pi that is used to decrypt the encrypted items of all parties and their proofs.
The other parties verify it with VerifyEnc(pkT , δ,VSi,VSproofi). In addition, only the
TTP can decrypt it. The public non-malleable label lbl = {pk, v, τ, t1, t2, id, Pi}, where
τ represents the topology of the protocol along with the names of the parties and cor-
responding verification shares: τ = {topology, P1, ..., Pn}. Here, we assume that each
party knows the other parties’ names/identifiers.
Remark: The name Pi is necessary to show the VSi belongs to him. It is not beneficial

5Time parameters and topology can also be agreed in the Setup Phase if they will remain constant.
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to put a wrong name in a verifiable escrow’s label, since otherwise another party can
convince the TTP to decrypt VSi by showing Pi is dishonest. Furthermore, the party
names can be random and distinct in each exchange, as long as the parties know each
others’ names, and so it does not violate the privacy of the parties. The other labels
id, t1, t2, τ are to show the protocol parameters to the TTP. τ is necessary for TTP to
know who needs whose share. Unique (random) exchange identifier id is necessary to
prevent corrupted parties to induce TTP to decrypt VSj for an another exchange. Con-
sider that some exchange protocol ended unsuccessfully, which means nobody received
any item. The corrupted party could go to the TTP as if VSj was the verifiable escrow
of the next protocol, and have it decrypted, if we were not using exchange identifiers.
We will see in our resolution protocols that cheating in the labels do not provide any
advantage to an adversary.

• Pi waits for VSj from each Pj . If anything is wrong with some VSj (e.g., verification
fails or the label is not as expected), or Pi does not receive the verifiable escrow from at
least one participant, he executes Resolve 1 before t1. Otherwise, Pi simply continues
with the next step without waiting.

• Pi sends all decryption shares {dij}1≤j≤n and their proofs {DSproofij}1≤j≤n to the other
parties. Then, he waits for (dj1, d

j
2, ..., d

j
n) together with their proofs from each Pj . If

one of the values that he receives is not as expected (i.e., if there exists j, t such that
ThVerify(v, pk, djt ,DSproof

j
t ) → invalid) or if he does not receive them from some Pj ,

he performs Resolve 2 protocol with the TTP, before t2 and after t1. Otherwise, Pi
continues with the next step without waiting.

• After receiving all the necessary values, Pi can decrypt each VEt and get all the items
by running ThDec({djt}1≤j≤n, pk,VEt).

Resolve 1: The goal of Resolve 1 is to record the corrupted parties that did not send
their verifiable escrow in 3 . Resolve 1 needs to be done before t1. Parties do not learn
any decryption shares here. They can just complain about other parties to the TTP. The
TTP creates a fresh complaintList for the protocol with the parameters t1, t2, id, τ . The
complaintList contains the names of pairs of parties having a dispute because of missing
or wrong VS. If the complainant does not expect a file from the complainee according
to topology ∈ τ , the TTP does not add him to the complaintList. Otherwise, TTP saves
the complainant as the first part of the tuple, and the complainee as the second part of the
tuple. As a third part of the tuple, the TTP saves the names of the expected shares from the
complainee. The name of the expected share djt is sharejt . The TTP saves also complainee’s
verification share which is in τ ; in the case that the complainee contacts the TTP, he will be
able to prove that he is the complainee. See Algorithm 1.

Algorithm 1 Resolve 1

1: Pi sends pk, v, t1, t2, id, τ, Pj to the TTP where Pj is
the party that did not send his proper VSj to Pi. The
TTP does the following:

2: if currenttime > t1 or (Pj ; .) /∈ topology[Pi] = ǫi or

then

3: send msg “Abort Resolve 1”
4: else

5: complaintList = GetComplaintList(pk, v, t1, t2,
id, τ)

6: if complaintList == NULL then

7: complaintList = EmptyList(pk, v, t1, t2, id, τ)
// initialize empty list

8: solvedList = EmptyList(pk, v, t1, t2, id, τ) //
will be used in Resolve 2

9: end if

10: complaintList.add(Pi, Pj , {share
j
t}(Pt;.)∈ǫi

)
11: send msg “Come after t1 for Resolve 2”
12: end if
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Remark that cheating on one of the labels t1, t2, id, τ causes to have a completely different
complaintList which has no relation with a complaintList which are created by the correct
labels given by an honest party. Therefore, it is not helpful for a malicious party who wants
an honest party’s item.

Resolve 2: It is the resolution protocol where the parties contact the TTP to ask him to
decrypt verifiable escrows and the TTP solves the complaint problems recorded in Resolve 1.
The TTP does not decrypt any verifiable escrow until the complaintList is empty.

The party Pi, who comes for Resolve 2 between t1 and t2, gives all verifiable escrows
that he has already received from the other parties and his own verifiable escrow to the TTP.
The TTP uses these verifiable escrows to save the decryption shares and their proofs inside
them to solve the complaints in the complaintList according to the topology, and populate
solvedList. If the complaintList is not empty in the end, Pi comes after t2 for Resolve 3.
Otherwise, Pi can perform Resolve 3 and get all the decryption shares together with their
proofs that he requests immediately. Hence, in our model, the latest time an honest party
would have Resolve 3 performed is t2 + α (including adversarial delay).

Algorithm 2 Resolve 2

1: Pi gives V, which is the set of verifiable escrows that
Pi has. Pi also provides the protocol information
(pk, v, t1, t2, id, τ). The TTP does the following:

2: if t1 < currenttime < t2 then

3: complaintList = GetComplaintList(pk, v, id, t1,
t2, τ)

4: for all VSj in V do

5: if (∗, Pj ,
∗ ) ∈ complaintList AND

VerifyEnc(pkT , δ,VSj ,VSproofj)→ valid then

6: shares = PkDec(skT ,VSj)
= {dtj ,DSprooftj}1≤t≤n

7: Pj .solvedList.Append(shares)
8: for all (Pt, Pj ,

∗ ) ∈ complaintList do

9: lt =complaintList.GetShare(Pt, Pj) // it

returns {sharej
k
}(Pk;.)∈ǫi

10: if lt ⊆ GetShareNames(shares) then

11: complaintList.Remove(Pt, Pj ,
∗) //

solve complaints according to the
topology

12: end if

13: end for

14: end if

15: end for

16: end if

17: if complaintList is empty then

18: send msg “Perform Resolve 3”
19: else

20: send msg “Come after t2 for Resolve 3”
21: end if

Resolve 3: If the complaintList still has parties, even after t2, then the TTP answers each
resolving party saying that the protocol is aborted, which means nobody is able to learn any
item. If the complaintList is empty, then the TTP decrypts any verifiable escrow that is given
to him. Besides, if the complainants in the solvedList come, he gives the stored decryption
shares and proofs. See Algorithm 3. When a party Pi receives the decryption shares and their
proofs from the TTP, he verifies the proofs via ThDSVerify(v, pk, V Ej , d

j
i ,DSproof

j
i ) for each

received 1 ≤ j 6= i ≤ n and outputs ⊥ if any verification fails.6

Remark that the TTP does not give any decryption shares until he is sure that some
parties received their expected VS in step 3 and the rest of the parties’ expected decryption
shares are in solvedList.

4.2 Fairness Proof of MFE

6This is only necessary against a potentially malicious TTP and used to ensure that the corrupted TTP
cannot affect correctness when used over secure multi-party computation.
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Algorithm 3 Resolve 3

1: Pi gives C, which is the set of parties that did not per-

form step 3 or 4 with Pi, and V, which is the set
of verifiable escrows that belongs to parties in C who

performed step 3 properly. Pi also provides the pro-
tocol information (pk, v, d, t1, t2, τ). The TTP does
the following:

2: complaintList = GetComplaintList(pk, v, t1, t2, id, τ)

3: if complaintList is empty then

4: for all Pj in C do

5: if VSj ∈ V and has correct label then

6: send PkDec(skT ,VSj)
7: else

8: send solvedList.GetShares(Pj)
9: end if

10: end for

11: else if currenttime > t2 then

12: send msg “Protocol is aborted”
13: else

14: send msg “Try after t2”
15: end if

Theorem 1. The MFE protocol in the complete topology is fair in
UVE-Ritem , UVS-Rvs-ds , and UZK-Rds hybrid models according to Definition 2,
assuming that the verifiable deniable (n,n)-threshold encryption scheme with
(ThGen,ThDShare,ThDSProve,ThDSVerify,ThEnc,ThDec,ThDeny) is IND-CPA secure
and the verifiable encryption scheme with (PkGen,PkEnc,PkDec) is IND-CCA secure.

Proof. We prove the fairness in the UVE-Ritem , UVS-Rvs-ds , and UZK-Rds hybrid model. Assume
that the set of parties corrupted by an adversary A is Pc and the set of uncorrupted (honest)
parties is Ph and P = Ph∪Pc with Ph∩Pc = ∅. The simulator S simulates the honest parties
in Ph in the real world, and the corrupted parties in Pc in the ideal world. S also simulates
the TTP in the real world if any resolution protocol occurs, since TTP is an honest party.
First, S generates (skT , pkT ) as TTP does and publishes pkT .

We first show the simulation, and then prove it is indistinguishable from the adversary’s
view. S does the following:

Setup Phase: S behaves as ThGen and generates all secret keys, the public key pk, and
the verification key v. S distributes each secret key xj to each corrupted party Pj together
with pk, v.

EIE Phase: S simulates UVE-Ritem as below:

• S picks random items {f̃i}Pi∈Ph
for the corresponding honest parties since S

does not know the actual items {fi}Pi∈Ph
at this point. Then, S sends

(VEproof, id||Pi||Pj , ci, pk, ∅, ṼEi) on behalf of each Pi ∈ Ph to each corrupted party
Pj where ṼEi = ThEnc(pk, f̃i).

• S behaves as UVE-Ritem when it receives a message (VEprove, id||Pj ||Pi, fj , cj , pk, ∅,VEj)
from a corrupted party Pj . It learns each item fj whenever it receives a VEprove message
from a corrupted party Pj . S does not continue on behalf of any Pi ∈ Ph to the next
step if some of the corrupted parties does not provide valid inputs to UVE-Ritem and
sends abort message to U . S outputs ⊥ on behalf of real honest parties and whatever
A outputs on behalf of ideal corrupted parties and stops.
If S continues to the next step, it means that it learned all items of corrupted parties.

DSE Phase: S simulates UVS-Rvs-ds . It encrypts and sends random ciphertexts to the
corrupted parties on behalf of honest parties. Whenever a corrupted party contacts with S,
it behaves as UVS-Rvs-ds and learns their decryption shares.

At this point, one of the following situations must have happened for each party Pi ∈ Ph
that S simulates:
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(1) All corrupted parties have already submitted correct verifiable escrows to at least one
honest party Pi before t1.

(2) Some of the corrupted parties did not send any message to S or sent incorrect decryption
shares or sent invalid labels.

We explain how the simulation works in these two cases:
Case (1) means it is guaranteed that the real honest party Pi would obtain her desired

items via step 4 of MFE or resolutions. As long as at least one honest party Pi is in case
(1), we do not consider the case (2) for the other honest parties because normally in MFE,
Pi would perform Resolve 2 and give all necessary decryption shares for these parties. At the
end, they would learn their items.

Therefore, S sends {fj}Pj∈Pc to U and also sends {bi = continue}Pi∈Ph
as TTP, even if

only one honest party is in case (1). As a response, U sends {fi}Pi∈Ph
to S. At this point,

S should send his decryption shares to the corrupted parties in the real world. However, S
had sent the encryption of random items {f̃i}Pi∈Ph

in the EIE phase. So, it cannot send
the correct decryption shares of random ciphertexts {ṼEj}j∈Ph

. Instead, for each ṼEj where
Pj ∈ Pc, S runs ThDeny algorithm to obtain decryption shares that make decryption of
ṼEj be fj . Assume that the correct decryption shares of a random ciphertext ṼEj is {d̃ij =

ThDShare(xi, pk, ṼEj)}Pj∈P and the index set of honest parties is I such that for all i ∈ I,
Pi ∈ I.

For all ṼEj where Pj ∈ Ph, S obtains fake decryption shares {dij}Pi∈Ph
by running

ThDeny(ṼEj , {d̃
t
j}Pt∈Pc , I, fi, pk) and uses {dij}i∈Ph

when simulating the step 4 for each en-
cryption ṼEj . For the encryptions of corrupted parties {VEj}j∈Pc , it again uses ThDeny. For
each encryption VEj where Pj ∈ Pc (the encryptions generated by the corrupted parties), S
runs ThDeny(VEj , {d

i
j}Pi∈Pc , I, fj , pk) and obtains valid decryption shares {dij}i∈Ph

for VEj .
Remark that S has already learned the items of the corrupted parties {fj}Pj∈Pc and the de-
cryption shares of corrupted parties {dij}Pi∈Pc generated for the encryptions {VEj}j∈Pc of the
corrupted parties.

S acts as UZK-Rds and sends (proof, id||Pi||Pj , (pk, ṼEi, {d
i
t}Pt∈P , v)) to each corrupted

party Pj on behalf of each honest party Pi as a proof. S waits for the decryption shares from
the corrupted parties. If all of them send their valid decryption shares, then the simulation
ends by S outputting received items on behalf of real honest parties and whatever A outputs
on behalf of ideal corrupted parties.

If some parties did not send their decryption shares to S before t2, S simulates Resolve
2 with itself as the TTP as in the real protocol, and clears the complaintList (even if some
corrupted parties also performed Resolve 1 before t1) because it has all the correct verifiable
escrows of the corrupted parties.

Case (2) requires S to behave as the TTP and add the corrupted parties who did not
send their verifiable escrows to the complaintList, because in reality the honest party(s)
would have complained about them before t1 in Resolve 1. In addition, if a corrupted party
performs Resolve 1, S behaves like the TTP and adds complainant and his complainee to the
complaintList.

Moreover, S does not send any of Pi’s decryption shares to others, as in the real protocol.
If some of the corrupted parties come for Resolve 2, S behaves exactly as the TTP and clears
the parties from the complaintList according to the given verifiable escrows. Each time it
clears the complaintList, it learns the decryption shares of the complainee. It can perform
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Resolve 2 by using all decryption shares sent by the corrupted parties itself and clear the parts
in complaintList where it has Pi’s name as complainee. In the end, if the complaintList is
empty, it means that S learned all the decryption shares of the corrupted parties. If so, it
sends {fj}Pj∈Pc as ideal adversary and also {bi = continue}Pi∈Ph

as TTP to U . Then, U
sends {fi}Pi∈Ph

to S. S calculates the decryption shares as described in case (1). In this case,
S outputs the received items on behalf of real honest parties.

If complaintList is not empty at time t2, S sends message abort to U and will return an
abort message to all Resolve 3 attempts. S outputs ⊥ on behalf of real honest parties.

In all cases, S simulates the resolutions by replacing the lines between 5-7 in Resolve 2
and 5-6 in Resolve 3 (they correspond where normally TTP needs to decrypt VS) as follows:

Resolve 2:
if (∗, (Pj , hj),

∗ ) ∈ complaintList∧ VerifyEnc(pkT , δ,VSj ,VSproofj)→ valid

if Pj ∈ Ph
shares = {djt}Pt∈P || (proof, id||Pj ||Pi, (pk, ṼSj , {d

j
t}Pt∈P , v))

else:
shares = PkDec(skT ,VSj)

Pj .solvedList.Append(shares)
Resolve 3:

if VSj ∈ V and has correct label
if Pj ∈ Ph

send shares = {djt}Pt∈P || (proof, id||Pj ||Pi, (pk, ṼSj , {d
j
t}Pt∈P , v))

else:
send PkDec(skT ,VSj)

Remark that this change is necessary for resolutions because A received {ṼSi}Pi∈Ph
which

do not include the real decryption shares. Therefore, if S decrypted them, A would have
received random decryption shares and could distinguish the simulator.

Finally, the simulator outputs whatever the adversary A outputs on behalf of ideal cor-
rupted parties. This finishes our description of the simulator. We now show the simulator’s
actions remain indistinguishable from the adversary’s view.

Claim 1. The view of adversary A in his interaction with the simulator S is indistinguishable
from the view in his interaction with real honest parties and the TTP.

We prove this claim via a sequence of hybrid games. The initial game corresponds to the
real protocol, whereas the final game corresponds to the simulator S described above. In each
game, we change one (or more) step of MFE with the steps which are different in the simulation
above. We start our first game with the items of honest parties as in MFE. Through these, in
the last two games, we are able to simulate MFE only using random encryptions and random
decryption shares The last game corresponds to the simulator above, without knowing the
actual items of the honest parties. The details of the games with their reductions are below:

Game 1 : The adversary A who corrupts the parties in Pc in MFE wants to break the fairness.
We honestly simulate the honest parties Ph and TTP as in MFE in the hybrid models
UVE-Ritem , UVS-Rvs-ds , and UZK-Rds .
In this game, we use the items of parties as inputs of our simulation. Our simulation is
identical to MFE.

Game 2 It is the same game as the previous game except that we simulate UVE-Ritem , UVS-Rvs-ds ,
and UZK-Rds such that they always output (VEproof, id||Pi||., ., pk, ∅,VEi),
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(VSproof, id||Pi||., ., pkT , ∅,VSi), (proof, id||Pi||., .), respectively, for each honest
party Pi. Because of the correctness of these functionalities, the game is identical to
the previous one.

Game 3 : It is the same as the previous game except that we simulate the TTP where it needs
to decrypt VS of honest parties; instead of decrypting, the simulator just returns the
(already known) decryption shares of the honest parties, as below:
Resolve 2:

if (∗, (Pj , hj),
∗ ) ∈ complaintList∧ VerifyEnc(pkT , δ,VSj ,VSproofj)→ valid

if Pj ∈ Ph
shares = {dji}1≤i≤n || (proof, id||Pj ||Pi, (pk, ṼSj , {d

j
t}Pt∈P , v))

else:
shares = PkDec(sk,VSj)

Pj .solvedList.Append(shares)
Resolve 3:

if VSj ∈ V and has correct label
if Pj ∈ Ph

send {dji}1≤i≤n || (proof, id||Pj ||Pi, (pk, ṼSj , {d
j
t}Pt∈P , v))

else:
send PkDec(sk,VSj)

Remark that at this point, {dji}’s are correct, since we did not start putting fake de-
cryption shares yet. Because of the correctness of the verifiable encryption scheme, this
game is indistinguishable from the previous game.

Game 4 : It is the same as the previous game except that the honest provers send encryption
of random decryption shares in step 3 . Intuitively, they are indistinguishable by the
IND-CCA security of the verifiable escrow. The reduction from Game 3 to Game 4 is
the following:
We define hybrid game H3,i where first i parties behave as in Game 3 and the rest of
the simulated parties behaves as in Game 4. Again, for the sake of clarity of the hybrid
argument, assume without loss of generality that Ph = {Pi}1≤i≤m. H3,0 is equivalent
to Game 4 and H3,m is equivalent to Game 3. We use the hybrid argument to show
the indistinguishability of H3,0 and H3,m. If the adversary manages to distinguish H3,0

and H3,m with non-negligible advantage, it must distinguish H3,i and H3,i+1 for some
i. If so, we can construct an adversary B which breaks the IND-CCA security of the
verifiable escrow scheme, as follows:
The IND-CCA challenger sends public-key pk, and B publishes it as the public-key of
the TTP. Then B guesses i randomly in range [0,m− 1], and does the following:

• For each party Pj ∈ {P1, ..., Pi}, she encrypts {djt ,DSproof
j
t}1≤t≤n for VSj .

• For each party Pj ∈ {Pi+2, ..., Pm}, she encrypts {rt}1≤t≤n for some random rt
from the same distribution of decryption shares and proofs for VSj .

As the challenge query, B sends m0 = {di+1
t ,DSproofi+1

t }1≤t≤n and sets m1 randomly
and obtains back VSi+1. It then continues interacting with the adversary as prescribed.
Remember that at this point, all proofs regarding these verifiable escrows are simulated.
Observe that if m0 is encrypted by the IND-CCA challenger, then this corresponds to
hybrid H3,i+1, and if m1 is encrypted, then this is hybrid H3,i.
If corrupted parties do not send the decryption shares in step 4 , then B calls decryption
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oracle to decrypt the corresponding encryption in VS values to learn the missing decryp-
tion shares and continues simulation. Note that we do not need to query the decryption
oracle for VSi+1 during resolutions, since we changed the simulation of Resolve 2 and
Resolve 3 since Game 3.
If the guess of i was correct and the adversary distinguishes between Game 3 and Game 4
with adv(ℓ) advantage, then B can guess whether m0 or m1 was encrypted with the same
advantage. The guess of i is correct with at least 1/m probability, and hence the IND-
CCA security of the verifiable escrow is broken with at least adv(ℓ)/m advantage. Since
adv(ℓ)/m must be negligible if we use a secure verifiable escrow scheme, adv(ℓ) must be
negligible as well, meaning that this behavior of our simulator remains indistinguishable
to the adversary.

Game 5 : It is the same as the previous game except that we simulate the honest provers by
encrypting random items in step 2 and using decryption shares outputted by ThDeny

algorithm. More specifically, each honest prover Pi encrypts a random item f̃i and
sends the encryption ṼEi = ThEnc(pk, f̃i) to all other parties. Normally, the valid
decryption shares of the honest parties and the corrupted parties for ṼEi are {d̃ji =
ThDShare(xj , pk, ṼEi)}Pj∈P . Instead of the valid ones, at step 4 , each honest party Pj
uses fake decryption shares as a decryption shares of {ṼEi}Pi∈Ph

. The fake decryption
shares {dji}Pj∈Ph

for each ṼEi are the output of ThDeny(ṼEi, {d̃
j
i}Pj∈Pc , I, fi, pk). Intu-

itively, Game 4 and Game 5 are indistinguishable because of the IND-CPA security of
the deniable threshold encryption scheme. The reduction is as follows:
We define hybrid game H4,i where first i honest parties behave as in Game 4 and the
rest of the simulated parties behave as in Game 5. For the sake of clarity of the hybrid
argument, assume without loss of generality that Ph = {Pi}1≤i≤m. H4,0 is equivalent to
Game 5 and H4,m is equivalent to Game 4. We use the hybrid argument to show the
indistinguishability of H4,0 and H4,m. Against the adversary, B plays the honest parties
{Pi}1≤i≤m. Against the IND-CPA challenger, B plays the honest parties {Pi}m+1≤i≤n.
If the adversary manages to distinguish H4,0 and H4,m with non-negligible advantage,
it must distinguish H4,i and H4,i+1 for some i. If so, we can construct an adversary B
which breaks the IND-CPA security of the threshold encryption scheme, as follows:
B picks i randomly in range [1,m]. Then, B obtains the secret keys {xm+1, xm+2, ..., xn},
the public key pk, and the verification key v from the IND-CPA challenger. As the
challenge query, B sends the actual item fi+1 and a random item f̃i+1 and receives
VE∗i+1, which either encryption of fi+1 or f̃i+1.
Then, B simulates each party Pj ∈ {P1, ..., Pi} as encrypting the correct item fj , each
party Pj ∈ {Pi+2, Pi+3, ..., Pm} as encrypting a random item f̃j , and Pi+1 using VE∗i+1 as
the item encryption of Pi+1. During the simulation of UVS-Rvs-ds , it learns the decryption
shares of the corrupted parties from the adversary.
B does not know the secret keys x1, x2, ..., xm but it can generate the decryption shares
of the honest parties as follows:

• For the decryption shares for the encrypted items of the corrupted parties and
decryption shares of the encrypted items of {Pj}1≤j≤i:

{dtj}Pt∈Ph
= ThDeny(VEj , {d

t
j}Pt∈Pc , I, fj , pk)

• For the decryption shares of the encrypted items of {Pj}i+2≤j≤m:

{dtj}Pt∈Ph
= ThDeny(ṼEj , {d̃

t
j}Pt∈Pc , I, fj , pk)
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• For the decryption shares of the challenge ciphertext VE∗i+1 of Pi+1:

{dti+1}Pt∈Ph
= ThDeny(VE∗i+1, {d

t
i+1}Pt∈Pc , I, fi+1, pk)

It simulates the proofs of all decryption shares via UZK-Rds .
Observe that if VE∗i+1 is not the encryption of fi+1 then B simulates H4,i+1. Otherwise,
it simulates H4,i. Therefore, if the guess of i was correct and the adversary distinguishes
between Game 5 and Game 4 with adv(ℓ) advantage, then B can guess whether the
actual item fi+1 or a random item was encrypted with the same advantage. The guess
of i is correct with at least 1/m probability, and hence the IND-CPA security of the
threshold encryption scheme is broken with at least adv(ℓ)/m advantage. Since adv(ℓ)/m
must be negligible if we use a secure verifiable deniable threshold encryption scheme,
adv(ℓ) must be negligible as well, meaning that this behavior of our simulator remains
indistinguishable to the adversary.
Claim 2. The distributions of the outputs of honest and corrupted players in ideal and
real worlds are indistinguishable:

{IDEALfs

φ,S(aux),Pc
(f1, f2, ..., fn, ℓ)}

ℓ∈N
≡c {REALfs

π,TTP,A(aux),Pc
(f1, f2, ..., fn, ℓ)}

ℓ∈N

Proof. We showed in Claim 1 that the simulator’s actions, on behalf of the honest parties
in the real world, are indistinguishable from the MFE protocol. We also need to show
the joint output of honest and corrupted parties are indistinguishable in the real and
ideal worlds.
S sends the message {fi}Pi∈Ph

as ideal adversary and {bi = continue}Pi∈Ph
as TTP

to U whenever it is guaranteed that the honest participants would obtain their desired
items. At these cases, the honest parties output all the items {fj}Pj∈P in the ideal
world. Similarly, at these cases, the simulated honest parties also obtain {fj}Pj∈P in
the real world as discussed during the simulation.
S sends abort message to U after the end of the EIE phase when complaintList is not
empty at time t2. After the end of the EIE phase, if S sends abort message, it means
that the adversary in the real world has only encryptions of random items, which are
independent from the real items. Hence, the adversary in the real world does not output
the items just as the adversary in the ideal world. Indeed, S outputs in the ideal world
on behalf of corrupted parties whatever A outputs in the real world; hence adversarial
parties’ outputs in both worlds will always be indistinguishable. Since the protocol is
aborted, both ideal and real (simulated) honest parties output ⊥.

At the end of the simulation, the outputs of the parties in the ideal world are identically
distributed to the outputs of the parties in the real protocol. This completes the proof of
Theorem 1.

Security of multiple exchanges with single Setup: Once the setup is performed, all the
remaining actions of our simulator can be repeated for each set of item exchanges. Observe that
the simulator never uses the secret keys in the simulation, which means that the interaction
with the adversary cannot leak any useful information about the secret keys. Therefore, we
can simulate multiple exchanges with a single setup phase.
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4.3 Fair Secure Multi-Party Computation

In this section, we show how to adapt the MFE protocol to any secure multi-party computation
(SMPC) protocol that computes general functionalities [17, 46, 32, 14, 85], to achieve fairness.
Gordon et al. [51] show that given a fair secret-sharing reconstruction functionality that
outputs the secret fairly to all parties given non-malleable shares of the parties, one can
construct a fair and secure two-party computation protocol for any functionality. The idea
is to employ a secure computation protocol that outputs encrypted outputs of the desired
functionality together with the shares of the key used in the encryption. Then, the parties
construct the key using the fair reconstruction functionality. We follow the same methodology
in the multi-party case, where we employ the DSE phase of our MFE protocol to efficiently
initialize this fair reconstruction functionality in the real world.

Assume n participants want to compute a function φ(w1, ..., wn) =
(φ1(w1, ..., wn), ..., φn(w1, ..., wn)), where wi is the input and φi = φi(w1, ..., wn) is the
output of the party Pi. The protocol πφ that allows parties to compute φ securely and fairly
is described below. πφ is a composition of the Setup and DSE phases of MFE and an SMPC
protocol which eliminates the need for the EIE phase of MFE. Therefore, as in MFE, we have
a TTP which has the secret/public key pair (skT , pkT ) generated by PkGen(1ℓ) and every
party knows pkT .

• Each party Pi runs the Setup phase of MFE and obtains xi, pk, v for the deniable (n,n)-
threshold encryption scheme.

• All parties run an SMPC protocol πψ where the functionality ψ =
(ψ1(w1, w2, ..., wn), ψ2(w1, w2, ..., wn), ..., ψn(w1, w2, ..., wn)) and ψi(w1, w2, ..., wn) =
ThEnc(pk, φi) is the output of Pi. This corresponds to a functionality encrypting the
outputs of the original function φ using the public key pk, which covers the EIE phase
of the MFE.
It is expected that everyone learns the output of ψ before a fair exchange occurs. If some
party did not receive ψ at the end of the SMPC protocol, then they do not proceed with
the fair exchange, and hence no party will be able to decrypt and learn their output.

• If everyone received their output from πψ, then they execute the DSE Phase of MFE.
Differently from the DSE phase of MFE in the complete topology, each party Pi generates
n−1 different verifiable escrows to send to each other party. For each party Pj , Pi sends
the verifiable escrow VSj of only the decryption share dij and its proof DSproofij . Then,
he sends only dij and DSproofij (see Figure 8). The reason for this is that Pj needs to
decrypt only ψj to learn φj .

In the end of the exchange, each party can decrypt only their own output because they do
not give away their own output’s decryption share (dii) to anyone else. Indeed, if a symmetric
functionality is desired for the underlying SMPC protocol πψ, ψ(z1, z2, ..., zn) may be com-
puted symmetrically (the difference is that all output ciphertexts are given to all parties), and
since Pi does not give the decryption share of φi to anyone else, each party will still only be
able to decrypt their own output. Therefore, a symmetric functionality SMPC protocol may
be employed to compute an asymmetric functionality fairly and securely using our solution.
Note also that we view πψ as black box.

Our overhead over just securely computing φ is minimal. Even though the input and
output sizes are extended additionally by O(n) values for n parties and the functionality is ex-
tended to perform encryptions, these are independent of the circuit size needed for the original
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computation, and can be computed efficiently especially if πψ works over arithmetic circuits
(e.g., [14, 85]) when used with the ElGamal-based instantiation of the deniable threshold
encryption scheme in Appendix B.

We proceed by proving first that our protocol is a fair and secure protocol for computing
φ by employing a TTP to similarly prove the security with a corrupted TTP. Then, we prove
(again via ideal-real simulation) that our protocol remains secure (though becomes unfair)
even when the TTP acts maliciously and colludes with the malicious participants. Therefore,
we argue that by employing our extensions on top of any SMPC protocol, we efficiently
gain fairness and lose nothing about security.

4.3.1 Proof of Fairness and Security

Theorem 2. πφ is fair and secure in UZK-Rds , UVS-Rvs-ds , and Uψs hybrid models accord-
ing to Definition 2, assuming that the verifiable deniable (n,n)-threshold encryption scheme
with (ThGen,ThDShare,ThDSProve,ThDSVerify,ThEnc,ThDec,ThDeny) is IND-CPA secure
and the verifiable encryption scheme with (PkGen,PkEnc,PkDec) is IND-CCA secure.

In our proof, we use Uψs to denote the ideal party in Definition 1 for the functionality ψ
and Uφfs to denote the ideal party in Definition 2 for the functionality φ. We do our proof in

the UZK-Rds , UVS-Rvs-ds , and Uψs hybrid model.

Proof. We use the same notations for the corrupted parties Pc by A and the honest parties
Ph and P = Pc ∪ Ph as in the proof of Theorem 1. The simulator S simulates the honest
parties and the TTP in the real world, and the corrupted parties in the ideal world. S does
the following:

• S behaves as ThGen and gives the secret shares {xi}Pi∈Pc along with pk and v. Then,
S simulates Uψs and waits for the message of the corrupted parties. If S receives the
message abort or invalid inputs then S aborts the protocol in the real world and sends
the message abort to Uφfs in the ideal world. If S receives valid inputs {wi}Pi∈Pc , it
encrypts random messages with pk and obtains random encryptions {ψ̃i}i∈Pc . Then, it
gives {ψ̃i}i∈Ph

to the corrupted parties. At this point, during the simulation of Uψs , if S
receives the message abort from A in the real world, it aborts the protocol and sends
the message abort to Uφfs in the ideal world. If S receives the message continue it
continues as below.

• The rest of the simulation is the same as the simulation of the DSE phase of MFE by
replacing VEi/ṼEj with ψi/ψ̃j , U with Uφfs, where the output of Uφfs for each party is φi.

When S contacts Uφfs to give the inputs of the corrupted parties, she gives {wi}Pi∈Pc .

Claim 3. The view of adversary A in his interaction with the simulator S is indistinguishable
from the view in his interaction with real honest parties.

The proof of Claim 3 is very similar to that of Claim 1. Remark that the only difference
of the simulation of SMPC from the simulation of MFE is between the Setup and the DSE
phase. Here, S behaves as Uψs and provides encryptions of random outputs. This is the same
as encrypting random items in MFE. So, the games in Claim 1 directly apply here, with the
mentioned notation changes.
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At the end of the simulation, the outputs of the parties in the ideal world are identically
distributed to the outputs of the parties in the real protocol. The output indistinguishability
can be shown just as in Claim 2. This completes the proof of Theorem 2.

4.3.2 Proof of Security Against Malicious TTP

In our fair SMPC solution, the privacy against the TTP is preserved. We formally prove
this by providing a simulator for the case where the TTP is adversarial. Hence, this shows
that even when the TTP is malicious and colluding, he can break fairness, but not privacy or
correctness.

Theorem 3. πφ is secure in UZK-Rds , UVS-Rvs-ds , and Uψs hybrid models according to Defi-
nition 2 when the TTP is adversarial, assuming that the verifiable deniable (n,n)-threshold
encryption scheme with (ThGen,ThDShare,ThDSProve,ThDSVerify,ThEnc,ThDec,ThDeny) is
IND-CPA secure and the verifiable encryption scheme with (PkGen,PkEnc,PkDec) is IND-
CCA secure.

Proof. The simulation is same as the proof of Theorem 2 until the simulation of the DSE
phase. Before beginning this phase, S sends {wi}Pi∈Pc to Uφs . Here, S does not wait for being
sure that honest parties will receive their outputs in the ideal world because we have the
assumption that TTP is not honest meaning that fairness is not necessarily possible. Then, it
receives {φi}Pi∈Pc from Uφs . At this point, Uφs does not send the outputs of honest parties in
the ideal world because it is waiting for the message of the TTP in the ideal world. The DSE
phase simulation is the same as the DSE phase of MFE except that S does not simulate the
resolve protocols.

Instead, remember that the TTP is now under adversarial control. Thus, in the real world,
the TTP actions are controlled by the adversary, and the simulator must simulate the TTP’s
actions in the ideal world. Thus, S continues simulating honest party behavior for resolution
protocols with the TTP, as directed by the protocol description. For each honest party Pt,
there are three options:

• The malicious TTP indeed resolves with Pt correctly and hence the honest party Pt
obtains its correct output. Similarly, it could be that Pt obtained its correct output
during the protocol via interaction with the adversary. In these cases, S sends bt =
continue to Uφfs and outputs the correct output of Pt in the real world.

• Until time t2 + α (the latest time an honest resolution with an honest TTP would
succeed) there is no response from the TTP. Then, S sends bt = ⊥ to Uφfs and outputs
⊥ on behalf of Pt in the real world.

• The malicious TTP resolves with Pt incorrectly, trying to affect correctness. S can
detect this, since when given any decryption share dji of Pj for the encryption ψi and
its proof DSproofji by the TTP, S runs ThDSVerify(v, pk, ψi, d

j
i ,DSproof

j
i ). If any such

ThDSVerify outputs invalid, then S sends bt = ⊥ to Uφfs and outputs ⊥ on behalf of Pt
in the real world.

Note that honest parties cannot receive incorrect outputs from the TTP in the ideal and
real worlds, since the output of the real TTP is verifiable with the ThDSVerify algorithm.
Therefore, each honest party either receives its correct output or no output. This means, even
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when the TTP is malicious and colludes with the adversarial participants, it can selectively
break fairness, but cannot harm privacy or correctness.

Finally, on behalf of the malicious parties in the ideal world, S outputs whatever the
adversary in the real world outputs.

Similar simulator and output indistinguishability claims apply here. Indeed, S does not
do anything as interesting as before in this proof. Therefore, we do not repeat another lengthy
indistinguishability claim here.

At the end of the simulation, the outputs of the parties in the ideal world are identically
distributed to the outputs of the parties in the real protocol. This completes the proof of
Theorem 3.

5 Coin-based Multi-Party Fair Exchange Protocol (CMFE)

MFE protocol (Section 4) is efficient if and only if the item that is exchanged can be efficiently
verifiably encrypted. This can be very practical, for example, in contract signing scenarios,
where a signature in the encryption can be verified easily with the corresponding verifica-
tion key [8]. But, in scenarios where verifiable encryption of the items cannot be performed
efficiently (e.g., file exchanges), we cannot efficiently use our MFE protocol (neither can the
previous MFE protocols). Therefore, to achieve fairness efficiently, we consider a different fair-
ness definition (coin based fairness) for the exchange of these types of items. In this definition,
if a party receives a wrong item, then (s)he can get the coin of the party who provided the
wrong item. Note that, some existing two-party protocols (e.g., [16, 62, 66]) also apply this
type of fairness definitions. They consider scenarios such as peer-to-peer file sharing where
the hash of the file to be exchanged is known beforehand (e.g., via a trusted Tracker [30]).

Coin based fairness: The functionality φ in the coin based definition is as follows:

φ(z1, z2, ..., zn) = (φ1(z1, z2, ..., zn), φ2(z1, z2, ..., zn), ..., φn(z1, z2, ..., zn))

where zi = (coini, fi) and φi = {ρ1, ..., ρi−1, ρi+1, ..., ρn} (for complete topology). Each ρj is
defined as:

ρj = fj , if H(fj) = Hfjcoinj , otherwise.

Here, coinj is the electronic payment [28, 29]) and fj is the item of Pj . Hfj is the publicly
known hash value of the item fj , where H is a hash function. In BitTorrent [30], Hfj is already
obtained in the torrent file before the exchange begins; hence is known by every participant.
Note that, the general condition for ρj values is that the actual item will be obtained as
long as it is the agreed-upon item (e.g., hashes may be used for verifying files, a public-key
infrastructure may be used for verifying signatures, see [62] for details), and the payment will
be obtained otherwise. This condition applies to each ρj independently. Thus, it is possible
that some item fj is obtained from Pj , while some payment coini is obtained from Pi. It is
even possible in cases that Pi obtains fj from Pj and Pk obtains coinj from Pj .

While relaxing our fairness definition this way to allow exchange of files and other general
items, we want to minimize our changes to the MFE protocol so that we can keep enjoying its
efficiency and privacy benefits. One problem occurs due to the public-key threshold encryption
scheme we employed. Since it can encrypt only the elements in a certain set (e.g., elements in
Zp where p is a prime), we cannot use it to efficiently encrypt any general item (e.g., a large
file). Therefore, we solve this problem by performing a symmetric key encryption of the file,
and encrypting this key with a public-key threshold encryption.
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But, this does not directly solve all the problems. Remember that our item (e.g., file) is
still not verifiably encrypted. Assume we now want to verifiably encrypt the symmetric key
that encrypts our file. What does it mean to have a correct key? What should the receiving
party verify? This is where the electronic payments come into the picture. We can verifiably
encrypt the payment, but not the file (or its key) efficiently. Thus, we also add a new resolution
procedure that provides the party’s payment in case the file is not obtained correctly. Full
details of CMFE follow.

5.1 Description of CMFE

ThGen(1ℓ, (n, n))

Pi Pj

1j

xj , pk, v

1i

xi, pk, v
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DSE
j
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{d
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t ,DSproof
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repeat for mul-

tiple exchange

Figure 2: Our CMFE Protocol. Each (i, j) message pair can be performed in any order or in parallel
within a step.

We assume that {Hfi}1≤i≤n are publicly known. For the sake of simplicity of presen-
tation, the underlying electronic payment scheme is the Endorsed E-cash [24] scheme, as
explained in the preliminaries. CMFE protocol also works in every exchange topology as
explained in Section 6, but we explain CMFE in the complete topology for the sake of simplic-
ity. As in MFE, CMFE is constructed on top of a verifiable and deniable (n,n)-threshold en-
cryption scheme with (ThGen,ThDShare,ThDSProve,ThDSVerify,ThEnc,ThDec,ThDeny) and
another verifiable encryption scheme with (PkGen,PkEnc,PkDec). In addition, CMFE em-
ploys a signature scheme (SgGen, SgSign, SgVerify) and a symmetric key encryption scheme
(SymGen, SymEnc, SymDec). The TTP has the secret/public key pair (skT , pkT ) generated by
PkGen(1ℓ). Our CMFE protocol has the following phases:

Setup Phase ( 1 and 2 in Figure 2): The parties obtain their secret shares xi,
the public key pk, and the verification key v for ThGen(1ℓ, (n, n)) as in the Setup Phase
of MFE. Additionally, each Pi generates a signature signing-verification key-pair (si, vi) by
running SgGen(1ℓ). Then, each party Pi generates a verifiable escrow of the endorsement
ei of an unendorsed coin coinui with the TTP’s public-key pkT , and sends the encryption
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VSci = PkEnc(pkT , ei; vi) proving that the payment is valid ((ei, ei, coinui ) ∈ Rcoin) where coinui
is sent in clear. The signature verification key vi is the label of VSci . This label is necessary
to link a later escrow (explained below) with this one, so that the TTP can understand that
both were sent by the same party. As usual, upon receipt, each party verifies the values.
This ensures that the coin will be valid once endorsed with the endorsement in the verifiable
escrow.7

The parties execute the Setup Phase only once, as in MFE. They can continue exchanging
multiple sets of items with the same set of parties by repeating only the following phases. If
a party Pi receives the coin of a party Pj during a dispute, to continue with the next item
exchange, Pj needs to send a new VScj to only Pi, without the need to repeat the Setup Phase
completely (note that electronic payment schemes have methods to either prevent or penalize
double spenders, and hence we do not need to worry about some coin being used multiple
times in our protocol). In some sense, think of every participant putting down some money;
if theirs is spent, they need to renew it to continue.

Encrypted Item Exchange (EIE) Phase ( 3 in Figure 2): The EIE phase is different
from MFE in that there is no verifiable encryption. Since it is hard to encrypt a large item
with public key threshold encryption schemes, each party Pi first encrypts their item fi (e.g., a
file) using a symmetric encryption scheme (e.g., AES) with a key Ki generated by SymGen(1ℓ)

and obtains EfKi = SymEnc(Ki, fi). Then, Pi encrypts Ki with the threshold encryption
public-key pk : EKpk

i = ThEnc(pk,Ki). In addition, he encrypts Ki with the TTP’s public-key

pkT and obtains E
KpkT

i = PkEnc(pkT ,Ki). This extra encryption is needed during the resolu-

tions. He also signs with his signing key si the ciphertext E
KpkT

i : SEIEi = SgSign(si, E
KpkT

i ).

SEIEi helps the TTP to understand that VSci and E
KpkT

i are encrypted by the same party
(remember, VSci contains the signature verification key in its public non-malleable label). Pi
sends EfKi , E

Kpk

i , E
KpkT

i , SEIEi to all parties.
No party continues to the next phase without completing this phase and receiving all

messages and verifying signatures. If anything goes wrong, parties can locally abort.
Decryption Share Exchange (DSE) Phase ( 4 and 5 in Figure 2): This is almost

the same as the MFE protocol, except Pi additionally puts H(fi) and H(EfKi ) into the label of
VSi, and also creates and sends the signature SDSEi of VSi (again tying VSi to VSci ). Since Hfi

is public, the other parties can check it against H(fi). Since they received EfKi in the previous
phase, they can also verify the correctness of H(EfKi ) in the label. If no problem occurs while
checking the correctness of the label or verifying the verifiable escrow or the signature, they
continue with the next step. Otherwise, they do Resolve 1.

In the next step, Pi sends the decryption shares {dit}1≤t≤n with their proofs
{DSproofit}1≤t≤n as in MFE. If Pi does not receive valid decryption shares, Resolve 2 is
executed. After obtaining the decryption shares either at the end of the protocol, or after
Resolve 3, Pi gets the key Kj from E

Kpk

j and then decrypts EfKj to obtain some f ′j . It is
possible, since the item was not verifiably encrypted, that Kj is wrong and the decrypted file
f ′j has a different hash (i.e. H(f ′j) 6= Hfj ). In that case Pi runs Resolve 4 (below) with the
TTP.

Remark that Resolve 1-2-3 are the same and can be executed after the same phases as in
MFE.

7For efficiency, the verifiable escrow used here can be Camenisch-Shoup verifiable escrow [25], which can
be efficiently used to verifiably encrypt Endorsed E-cash coins [24].
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Resolve 4: Note that if the parties reach this point, all complaints were already resolved
in the Resolve 1-2-3. First, Pi requests the key in E

KpkT

j from the TTP. The TTP decrypts

E
KpkT

j and sends the resulting Kj to Pi, if the complaintList is empty. If the Kj is a wrong

key, meaning that it decrypts EfKj to some f ′j with H(f ′j) 6= Hfj , then Pi proves that Kj is
not correct using the Belenkiy et al. subprotocol [16] below, and obtains the endorsement
ej in VScj from the TTP, thereby obtaining the payment of Pj . See Algorithm 4. An honest
party would have performed Resolve 4 the latest at time t2 +2α (one delay for Resolve 3 and
another delay for Resolve 4).

Algorithm 4 Resolve 4

1: Pi sends v, pk, t1, t2, id, τ, Pj and E
KpkT
j ,VScj , S

EIE
j ,

VSj , S
DSE
j to the TTP where Pj is the party whose

item with hash Hfj could not be obtained. The TTP
does the following:

2: if currenttime < t2 or (SEIE
j or SDSE

j is not valid
when verified with the signature verification key in the
label of VScj) then

3: send msg “Abort Resolve 4”
4: end if

5: complaintList= GetComplaintList (pk, v, id, t1, t2, τ)

6: if complaintList is empty then

7: topology = GetTopology(τ)
8: if Pj ∈ topology[Pi] then

9: Kj = PkDec(skT , E
KpkT
j )

10: send Kj

11: // Run sub-protocol only if requested by Pi

output ← execute sub-protocol “Prove Key is
not Correct” with Pi

12: if output is true then

13: send PkDec(skT ,VS
c
j) // Pi obtains coin of

Pj instead of fj
14: else

15: send msg “Abort Resolve 4”
16: end if

17: else

18: send msg “Abort Resolve 4”
19: end if

20: else

21: send msg “Abort Resolve 4”
22: end if

Prove Key is not Correct by Belenkiy et al. [16]: Belenkiy et al. showed a
communication-efficient and partially-privacy-preserving way of proving that the decryption
of EfKj with the key Kj does not result in an fj with hash Hfj . It is equivalent to showing
that the key does not decrypt properly. Observe that this can be done by simply sending a
ciphertext that matches H(EfKj ) in the label of the verifiable escrow VSj . Then, the TTP
can decrypt this with Kj and check if the hash of the plaintext equals Hfj . However, this
resolution is very inefficient since the TTP needs to obtain the whole (potentially large) file.
Thus, Belenkiy et al. solution improves resolution efficiency here.

The TTP knows H(EfKj ) and H(fj) from the label of the verifiable escrow VSj given by Pi
(remember that the label is non-malleable). He also knows Kj as he decrypted and obtained

from E
KpkT

j . He further verified both signatures SEIEj , SDSEj against the same verification key
in the label of VScj , and hence he is sure that all these belong to the same participant.

Note that for this subprotocol to work efficiently, the hashes need to be Merkle hashes
[73], and the file needs to be encrypted block-by-block with the same key. Hence, H(EfKj )
and Hfj values are the root hashes of the corresponding Merkle trees.

The TTP challenges some random blocks of the file. Pi sends the corresponding path
proofs of Merkle hash trees of fj and EfKj , as well as the associated blocks of fj and EfKj .

The TTP verifies the Merkle hash tree paths against the hash tree roots H(fj) and H(EfKj )
that he knows. Then, the TTP decrypts the given blocks of the ciphertext with the key Kj ,
and checks if they do not match the file blocks (so the key is indeed wrong). See [16, 62] for
the details and security analysis.
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Note that throughout the protocol, the TTP only learns some random blocks of the file,
and some hash values in the Merkle tree. Thus, even though it is not fully privacy preserving,
the protocol does not reveal the whole item either. This protocol was designed for efficiently
verifying even large items without the need to transfer them to the TTP, but this partial
privacy comes as a side benefit. Since we directly employ MFE in our fair SMPC solution,
this does not affect the privacy there.

5.2 Fairness proof of CMFE

Below, we discuss security of two versions of our CMFE protocol. In the first version, for the
item encryption EfKi we employ an efficient symmetric key encryption scheme such as AES.
In the second version, the item is encrypted using a sender deniable encryption scheme.

For the first version, we note that none of the previous work in the multi-party fair exchange
scenario employed such simulation proofs; they only analyze fairness case-by-case. Thus, we
also provide a fairness analysis below and argue that our protocol will achieve fairness.

For the second version, we achieve a much stronger level of security: We provide a full
simulation proof for the security and fairness of CMFE according to Definition 2. This version
is less efficient using current schemes [27, 82].8

5.2.1 Fairness Analysis for Version 1

Note, first of all, that fair here refers to the world where either each party received every other
party’s item, or no party received any item, where each item refers to either the file or the
coin of a party.

Correctness: If all parties are honest and no problem occurs in the network, each party
will have other parties’ items because of the correctness of the threshold encryption scheme,
the correctness of the signature scheme, and the correctness of the symmetric encryption
scheme.

Correctness of the Resolve Protocols: We first show that the resolve protocols protect
fairness in the case that all parties act honestly in Resolve 1-2-3-4. (Note that resolutions may
still be necessary due to network issues.) Remember that an honest party Ph would do Resolve
1 after the step 4 and Resolve 2 after the step 5 .

For the simplicity of the analysis, assume complete topology for now. We define three
sets Y,Z,W as follows: Y includes the parties that did not receive VS from at least one
participant, even though they sent their own VS to the other parties in 4 . Thus, they did
not execute 5 . Z includes the parties that did not receive others’ decryption shares, even
though they sent their own decryption shares in 5 . It means that the parties in Z received
VS’s from all parties in 4 . W includes the parties that did not send their verifiable escrow
to at least one party in Y.

The parties in Y contact the TTP for Resolve 1, and complain about the parties in W . If
the parties in W contact the TTP in Resolve 2, they can provide their decryption shares to
the TTP. So, they are removed from complaintList. The other way to clear complaintList is
that some parties in Z contact the TTP and give all the verifiable escrows that they received,

8We can employ a symmetric-key deniable encryption scheme with a short key (unlike one time pad), or an
efficient public-key sender-deniable encryption, if developed in the future. One may also consider employing
non-committing encryption schemes [57, 76], but our simulator employs shared-key deniable encryption as we
defined in the preliminaries.
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including the parties in W . Since all parties act honestly, the complaintList will be empty at
time t2.

When complaintList is empty by t2, it means that the TTP saved all the decryption shares
needed by the parties in Y. Thus, they can obtain those in Resolve 3. The parties in W and
Z also obtain the necessary decryption shares in Resolve 3, if needed. After this point, every
party can learn the symmetric keys and then decrypt the ciphertexts EfK and learn the files.
If some files are not the correct ones, then they perform Resolve 4.

Thanks to the security of the Belenkiy et al. subprotocol, Resolve 4 protocol guarantees
that the requesting party can receive the endorsement of the coin if he does not receive the
correct item. Note that, the correct item means that an item described in the verifiable escrow
VSj (e.g., the file with hash Hfj ).

Fairness: We now consider the actions of the malicious (and colluding) parties.
To decrypt EfK , the parties need to know the corresponding key K because of the security

of the symmetric encryption scheme. To learn K, they need to learn all decryption shares so
that they can decrypt EKh , or get help from the TTP in Resolve 4 (discussed later). There
are two options to obtain the shares:

1. All the malicious parties sent their verifiable escrows to the honest parties in step 4 ,
and thus the honest parties will send their decryption shares in step 5 .

2. Some malicious parties did not send their verifiable escrows to some honest parties in step
4 . In this case, the only way to obtain the decryption shares would be via resolution
with the TTP, since those honest parties would not proceed to step 5 .

Note that before step 4 , no party has useful information about the decryption shares. We
consider the two cases above in detail:

Case 1: In this case, the honest party (or parties) all have received all the correct verifiable
escrows. Therefore, they will learn all the decryption shares from the TTP in Resolve 3 in
the worst case, as follows: The honest parties (who correspond to set Z above) can have all
the verifiable escrows decrypted during the resolutions when complaintList is empty. But,
malicious parties may perform unnecessary Resolve 1 operations with the TTP to populate the
complaintList. Yet, remember that the honest parties already have all the verifiable escrows.
Thus, in Resolve 2, they will give all the verifiable escrows to the TTP, and the TTP will save
the decryption shares in solvedList, removing everyone from the complaintList. Then, when
the honest parties perform Resolve 3, the complaintList is guaranteed to be empty, and they
can obtain the decryption shares for all the items. Moreover, if malicious parties put wrong
keys (or files), after Resolve 4 as discussed above, all honest parties would receive the coins
of the corresponding malicious party. Therefore, fairness is guaranteed, at the worst case,
immediately after t2 (indeed, t2 + 2α).

Case 2: In this case, the malicious parties need the TTP’s help to be able to obtain the
decryption shares of the honest parties. Note that, since some malicious party Pm did not
send its verifiable escrow to some honest party Ph, Ph will complain about Pm in Resolve
1. Therefore, the TTP’s complaintList will not be empty. But, to be able to obtain the
decryption of the verifiable escrow of Ph, Pm needs to clear complaintList, by giving away his
correct shares, since Ph would not reply back with his decryption share without the verifiable
escrow of Pm. Note that, if there are multiple concerned honest parties, all will complain
about Pm (and all other malicious parties who did not send their verifiable escrows).

Similarly, if some malicious party performs Resolve 3, complaintList must be empty for
him to obtain the decryption of some verifiable escrow, which means all the malicious parties
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must have already given their correct decryption shares in Resolve 2. Thus, the honest parties
may also perform Resolve 3 and obtain the decryption shares of the malicious parties, ensuring
fairness. If the complaintList is not empty by time t2, then no party can obtain all the
decryption shares, and hence no party can obtain any item. Pm cannot obtain the key or coin
of Ph in Resolve 4 as well, since complaintList is not empty.

Additionally, malicious parties may want to do two things by Resolve 4:
1. Try to put both the wrong file and an invalid coin, thus not giving away anything to the

honest party, from whom she received the correct file.
2. Try to obtain both the correct file and valid coin of an honest party.
The first case is not possible, since the coin endorsement is verifiably escrowed (thus, is

correct), and the Belenkiy et al. subprotocol is secure. Remember that if the adversary
manages to obtain the correct file of the honest party, by the fairness discussion above, the
honest party would also receive the adversary’s file (correct or wrong), at the latest in Resolve
3. Thus, if the adversary sent a wrong file, the honest party can prove this via Belenkiy et
al. subprotocol, and obtain the verified endorsement from the TTP, thereby obtaining the
adversary’s valid coin in exchange.

As for the second case, due to the security of the Belenkiy et al. subprotocol, if the key
is correct, the adversary would not be able to prove that it is wrong key to the TTP. Thus,
the TTP would never decrypt the verifiably escrowed endorsement of an honest party (except
with negligible probability). At a high level, such an adversary can be used to break the e-cash
protocol or the collision resistance of the hash function (see a similar reduction in [62]).

5.2.2 Simulation Proof for Version 2

Theorem 4. The CMFE protocol in the complete topology is fair in
UVS-Rcoin , UVS-Rvs-ds , and UZK-Rds hybrid models according to Definition 2,
assuming that the verifiable deniable (n,n)-threshold encryption scheme with
(ThGen,ThDShare,ThDSProve,ThDSVerify,ThEnc,ThDec,ThDeny) is IND-CPA secure
and the verifiable and non-verifiable escrow schemes with (PkGen,PkEnc,PkDec) are
IND-CCA secure, the payment (e-cash) scheme is unforgeable, the signature scheme
(SgGen, SgSign, SgVerify) is existentially-unforgeable under chosen-message attack, the hash
function is chosen from a (target) collision resistant family (required for Belenkiy et al.
subprotocol), and the symmetric encryption scheme (SymGen, SymEnc, SymEnc, SymFake)
used for the item encryption is secure sender deniable with the faking algorithm SymFake.

Proof. We do our proof in the UZK-Rdl , UVS-Rcoin , UVS-Rvs-ds , and UZK-Rds hybrid model. As
in the previous proofs, assume that an adversary A corrupts the parties in the set Pc and that
the set of uncorrupted (honest) parties is Ph. The simulator S simulates the honest parties
in the real world, and the corrupted parties in the ideal world. S also acts as the TTP in the
protocol if any resolution protocol occurs, since TTP is honest. So, S generates secret/public
key-pair (sk, pk) and publishes pk as the TTP. S does the following:

Setup Phase: S behaves almost the same as the simulator of MFE proto-
col in the Setup Phase of CMFE. Differently, S behaves as UVS-Rcoin . It sends
(VSproof, id||Pi||Pj , coin

u
i,j , pk, label, ṼS

c
i,j) on behalf of each Pi ∈ Ph where ṼS

c
i,j includes fake

endorsements. Then, it waits for (VSprove, id||Pi||Pj , ei,j , coin
u
i,j , pk, vi) from the corrupted

parties (Pi ∈ Pc) obtaining valid endorsed coins coini of the corrupted parties.
S does not proceed the next phase until it receives all necessary values properly.
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EIE Phase: S behaves exactly as in the protocol description, except that it encrypts
random items {f̃i}Pi∈Ph

inside {E f̃Ki }Pi∈Ph
. Then, it waits for the corresponding values from

the corrupted parties, and it does not execute the next step before successfully completing
this one.

DSE Phase: S does the same computations as in the step 4 on behalf of honest parties.
It also saves the signatures that it sends as (i, SEIEi , SDSEi ) to the list SignList. Then, S
as UVS-Rvs-ds waits for the values in the step 4 from the corrupted parties. The same cases
(Case (1) and Case (2)) as in the simulation of MFE can occur for each Pj ∈ Ph:

Case (1): By time t1, if S received all {dij}Pi∈Pc for all j, it means that all parties may
obtain the required items because S in the real world is now able to learn all decryption shares
(or coins) from the corrupted parties via Resolve 1, 2, 3, 4. S decrypts {E

KpkT

j }Pj∈Pc (since it
obtained all decryption shares behaving as UVS-Rvs-ds) and learns the keys {Kj}Pj∈Pc . Then,
it decrypts {EfKj }Pj∈Pc . It sends all {fj}Pj∈Pc to U together with all {coinj}Pj∈Pc (that it
obtained during the Setup Phase) as ideal adversary and {bi = continue}Pi∈Ph

as TTP to
U . Afterward, U checks the correctness of each item fi using their public hash values. If some
of them is not the correct item, U sends corresponding coins to the parties in the ideal world
instead of the file. Besides, U sends {fi}Pi∈Ph

to S. It is sure that U outputs {fi}Pi∈Ph
to S

because those come from the honest parties in the ideal world; so none can be a coin.
S uses the deniable encryption scheme’s faking algorithm SymFake(f̃i, fi, rS , rR, E,Ki),

where rS and rR are the randomness used in E f̃Ki , to calculate the keys {K ′i}Pi∈Ph

9. For each

Pi ∈ Ph, it finds a key K ′i such that when a party decrypts E f̃Ki , it obtains the correct item
fi.

Remark: This process prevents us from using efficient encryption schemes such as AES
because in this case S cannot find such keys {K ′i}Pi∈Ph

after encrypting random items initially,
without actually breaking the scheme. Thus, we need a sender deniable encryption scheme
(Definition 4) for the simulation to proceed.

Let us assume that the decryption shares of EKpk

i are D̃S = {d̃ji}Pj∈P for all Pi ∈ Ph. For

each Pi ∈ Ph, S computes {dji}Pj∈Ph
by using ThDeny(E

Kpk

i , {
˜
dji}Pj∈Pj

, I,K ′i, pk) such that

the other parties can get the key K ′i from ThDec({d̃ji}Pj∈Pc ∪ {dji}Pj∈Ph
, pk, E

Kpk

i ) where I is
the index set of honest parties.

S acts as UZK-Rds and sends as DSproofi (proof, id||Pi||Pj , (pk, ṼEi, {d
i
t}Pt∈P , v)) to each

corrupted party Pj ∈ Pc on behalf of each honest party Pi ∈ Ph. If all of the corrupted parties
send their valid decryption shares, then the simulation ends by the simulator outputting the
items (if correct item is obtained in the real protocol) or coins of malicious parties (if item is
incorrect, then S uses coins obtained during setup) on behalf of the real honest parties and
whatever the adversary outputs on behalf of the ideal corrupted parties.

If some of the parties send wrong decryption shares or do not send any decryption shares,
S simulates the resolutions as in the real protocol (also acting as the TTP) and clears the
all complaintList if necessary because it has all corrupted parties’ verifiable escrows. The
simulation ends after all resolutions successfully complete by the simulator outputting the
items (if correct item is obtained in the real protocol) or coins of malicious parties (if item is
incorrect, then S uses coins obtained during setup) on behalf of the real honest parties and

9If an asymmetric key deniable encryption scheme is employed, the faking algorithm generates the fake
secret key, which is sent so that the obtainer can decrypt to the desired item.
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whatever the adversary outputs on behalf of the ideal corrupted parties.
Case (2): If some of the corrupted parties do not send a verifying message to UVS-Rvs-ds

before t1, S adds these parties to the complaintList (simulating honest parties performing
Resolve 1 with the TTP) and continues as the simulator of MFE in the proof of Theorem 1,
potentially performing other resolutions. Essentially, if complaintList becomes empty, then
the simulator sends {bi = continue}Pi∈Ph

as TTP to U . In this case, the simulator outputs
the items (if correct item is obtained in the real protocol) or coins of malicious parties (if item
is incorrect, then S uses coins obtained during setup) on behalf of the real honest parties and
whatever the adversary outputs on behalf of the ideal corrupted parties. If the complaintList
is not empty at time t2, then the simulator sends {bi = ⊥}Pi∈Ph

as TTP to U . In this case, the
simulator outputs ⊥ on behalf of the real honest parties and whatever the adversary outputs
on behalf of the ideal corrupted parties.

In all cases, S simulates Resolve 2 and Resolve 3 as described in the proof of Theorem 1.
Besides, it simulates Resolve 4 by only modifying the lines 2-4, 8-9 and 11-13 of Resolve 4 as
follows:

Resolve 4:
We replace lines 2-4 of Algorithm 4 with the ones below instead of actually verifying the

signatures using SgV erify. So, the signatures of the honest parties that are not generated by
the simulator are never accepted.

if Pj ∈ Ph
if currenttime < t2 or (j, SEIEj , SDSEj ) /∈ SignList

send msg “Abort Resolve 4”
else: as in 2-4 in Algorithm 4
We also replace lines 8-9 of Algorithm 4 with the ones below in order to give the correct

key Kj that makes SymDec(Kj , E
fK
j ) output the valid item fj .

if Pj ∈ topology[Pi]
if Pj ∈ Ph

Kj = K ′j
else:

Kj = PkDec(E
KpkT

j , skT )
We replace lines 11-13 of Algorithm 4 with the ones below so that the honest parties’ fake

endorsements are never exposed.
if Pj ∈ Ph

send msg “Abort Resolve 4”
else: as in 11-13 in Algorithm 4
This finishes our simulator.

Claim 4. The view of adversary A in his interaction with the simulator S is indistinguishable
from the view in his interaction with real honest parties and the TTP.

As usual, we prove this claim via a sequence of hybrid games. The initial game corresponds
to the real protocol, whereas the final game corresponds to the simulator described above.
Since there are similarities to the proof of Claim 1, we do not repeat such details.

Game 1 : The adversary A who corrupts the parties in Pc in CMFE wants to break the fairness.
We simulate the honest parties Ph and TTP in the real protocol.

Game 2 It is the same game as the previous game except that we simulate UVE-Ritem , UVS-Rvs-ds ,
and UZK-Rds such that they always output (VEproof, id||Pi||., ., pk, ∅,VEi),
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(VSproof, id||Pi||., ., pkT , ∅,VSi), (proof, id||Pi||., .), respectively, for each honest
party Pi. Because of the correctness of these functionalities, the game is identical to
the previous one.

Game 3 : It is the same as the previous game except that we simulate Resolve 2 and 3 as in
Game 3 of the proof of Claim 1 and lines 8-9 of Resolve 4 as described in the simulation
above where K ′j = Kj . Because of the correctness of the verifiable and not verifiable
encryption scheme, this game is indistinguishable from the previous game.

Game 4 : It is the same as the previous game except that we simulate lines 2-4 of Resolve 4
as described in the simulation. The only difference between Game 3 and Game 4 is
in the case that the TTP receives a valid signature that is not generated by an honest
party. One can easily prove that this case happens with negligible probability due to
the unforgeability of the signature scheme.

Game 5 : It is the same as the previous game except that we simulate lines 11-13 of Resolve
4 as described in the simulation. The only difference between Game 5 and Game 4 is
in the case that the TTP outputs true by running the sub protocol “Prove Key is not
Correct” even though the key is correct. We can easily prove that this case happens
with negligible probability via the security of this sub protocol. Therefore, this game is
indistinguishable from the previous game.
Note that this reduction shows that a malicious party cannot get both the file and coin
of an honest party at the same time.

Game 6 : It is the same as the previous game except that for all encryptions with pk, we encrypt
random keys K̃, random decryption shares, and fake endorsements with pkT to obtain
EK̃pkT , ṼS, and ṼS

c
. They are indistinguishable because of the IND-CCA-security of

their encryption scheme (a very similar reduction as in Game 4 of the proof of Claim 1
can be employed here) and ṼS

c
, ṼS, EK̃pkT of honest parties are never decrypted in the

resolution protocols as defined in Game 5 (meaning that in the IND-CCA reductions,
the challenge ciphertext never needs to be decrypted, just as in Game 4 of the proof of
Claim 1).

Game 7 : It is the same as the previous game except that we use the same random keys {K̃i}Pi∈Ph

for the encryption with pk and send fake decryption shares using ThDeny as described
in the simulation. The reduction can be shown as in Game 5 in the proof of Claim 1.

Game 8 : It is the same as the previous game except we encrypt random items {f̃j}Pi∈Ph
instead

of {fj}Pi∈Ph
with keys {Kj}Pi∈Ph

and use {K ′j}Pi∈Ph
as Kj such that the decryption of

{E f̃Kj }Pi∈Ph
gives {fj}Pi∈Ph

. Intuitively, this game is indistinguishable because of the
secure sender deniable encryption. The reduction from Game 7 to Game 8 is as follows:
We define hybrid game H7,i where first i parties behave as in Game 7 and the rest
of the simulated parties behave as in Game 8. For the sake of clarity of the hybrid
argument, assume without loss of generality that Ph = {Pi}1≤i≤m. H7,0 is equivalent to
Game 8 and H7,m is equivalent to Game 7. We use the hybrid argument to show the
indistinguishability of H7,0 and H7,m. If the adversary manages to distinguish H7,0 and
H7,m with non-negligible advantage, it must distinguish H7,i and H7,i+1 for some i. If
so, we can construct an adversary B which breaks the sender deniability of the deniable
encryption scheme.
First, B guesses i randomly in range [0,m − 1], and encrypts items {fj}1≤j≤i and
random items {f̃j}i+2≤j≤m. Then, B sends fi+1 and a random item f̃i+1 to the
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faking algorithm challenger. The challenger picks b ∈ {0, 1}. If b = 0, it gener-
ates c = EfK = SymEnc(K, fi+1, rS , rR) and sends EfK ,K. Otherwise, it generates
c = E f̃K = SymEnc(K, f̃i+1) and sends EfK ,K = SymFake(fi+1, f̃i+1, rS , rR, E

f̃K ,K).
B uses c as the encryption of fi+1 and K as Ki+1. Then, it continues as in Game 7 for all
parties. Observe that if the challenger picks b = 0, B sends the real item encryption of
Pi+1 corresponding to H7,i+1. Otherwise, it sends a random encryption corresponding to
H7,i. In any case, B uses given key K to generate ThDeny(E

Kpk

i+1 , {d̃
j
i+1}Pj∈Pc , I,K, pk).

In the end, if the guess of i was correct and the adversary distinguishes between Game
7 and Game 8 with adv(ℓ) advantage, then B can guess b with the same advantage. The
guess of i is correct with at least 1/m probability, and hence the sender deniability of the
deniable encryption scheme is broken with at least adv(ℓ)/m advantage. Since adv(ℓ)/m
must be negligible if we use a secure sender deniable encryption scheme, adv(ℓ) must be
negligible as well, meaning that this behavior of our simulator remains indistinguishable
to the adversary.

Game 8 is the same as our simulation of CMFE. Since Game 8 and Game 1 are indistinguish-
able, our simulation is indistinguishable as well. The output indistinguishability can be shown
as in Claim 2. At the end of the simulation, the outputs of the parties in the ideal world are
identically distributed to the outputs of the parties in the real protocol. This completes the
proof of Theorem 4.

Privacy against the TTP: Similar to MFE, the privacy against the TTP is preserved if
no Resolve 4 is executed. Without any Resolve 4, the TTP just learns some decryption shares
which are not related to the exchanged items. If Resolve 4 is executed, then the TTP learns
some parts of the file but not whole file (due to the Belenkiy et al. subprotocol). Then, the
privacy is potentially preserved partially (depends on the nature of the items).

Multiple exchanges with single Setup: Similar to MFE, as long as the coins are not
used, multiple sets of items can be exchanged with a single setup. Even when coins are used,
it is indeed enough for those parties to renew their coins rather than executing a full setup.
Thus, step 1 need not be renewed but step 2 may need to be (selectively) renewed.

Malicious TTP: A malicious TTP may obviously break fairness. In this context, this
means that the TTP can provide both the item and the coin of an honest party to a corrupted
party.

6 All Topologies for MFE and CMFE

In this section, we adapt our MFE and CMFE protocols to any topology. Our fairness defini-
tion remains the same: either the whole topology is satisfied, or no party learns any
item. As an example, consider the ring topology in Figure 3. Parties want an item from only
the previous party. For example, P2 only wants P1’s item f1. However, P2 should contact all
other parties because of our all-or-none fairness condition. He needs to receive d11, d

3
1.d

4
1 from

P1, P3, P4, respectively (see Figure 4), to be able to decrypt VE1 = ThEnc(pk, f1). Besides,
we are not limited with a topology that follows a specific pattern such as the number of par-
ties and items being necessarily equal. For example, it is possible to provide fairness in the
topology in Figure 5 even though P2, P3, and P4 do not exchange any item with each other
and P1 wants two items (f4, f5) from P4 in return for f1.
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Figure 3: Graph representation of the ring topol-
ogy.
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Figure 4: Decryption shares in ring topology.
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Figure 5: Graph
representation of a
random topology.
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Figure 6: Decryption shares in random topology on the left.

In Figure 4 and 6, we show the decryption shares used in step 3 and step 4 in MFE
(step 4 and 5 in CMFE) by the sender to send them to the corresponding receiver. They
clearly show that all parties communicate with each other independently from the topology
as a result of all-or-none fairness requirement. The only change based on the topology is the
number of decryption shares that a party receives. This number is equal to the number of
items that a party expects from the others. For instance, P1 in Figure 5 wants four items in
total from other parties, so it expects four decryption shares from each of them. Thus, the
decryption shares are independent of who sends the item, but depends only on who needs to
receive that item. Therefore, the edges in the graph topology represent sending the encrypted
items only.

Generic Protocol: The generic algorithm for a sender party Pi to decide which
decryption shares are necessary for the receiver party Pj given topology is as follows:

FindDS(topology)
for all Pj = {P1, ..., Pi−1, Pi+1, ..., Pn}

retrieve (Pj , ǫj) ∈ topology

create DSj = ∅ // the list of decryption shares that Pj expects from Pi
for all (Pk;Fk) ∈ ǫj

for all ft ∈ Fk
add dit to DSj

Each party computes FindDS in step 3 of MFE (step 4 of CMFE) to compute the
decryption share(s) that they are supposed to encrypt. In step 4 of MFE (step 5 of CMFE),
they send these decryption shares. The TTP is also aware of the topology in the resolutions
and knows who needs which decryption shares from whom.

We remind that we described MFE and CMFE using Figures 1 and 2 in complete topology.
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The encryptions VSi,VEi for MFE and CMFE, and EKh

i , E
Kpk

i , EfKi for CMFE computed by
Pi are all the same for all parties. However, in other topologies they would be all different for
different parties because each party may want different items.

Fair SMPC: Finally, we show the fair SMPC topology in Figure 7 (and the related
decryption share table in Figure 8). At first, it looks like a strange topology since each party
wants his own item. But remember that the encrypted items have already been delivered
by the underlying SMPC protocol, and hence they each want the decryption shares related
to their encrypted item only. Each item fi here is indeed φi, which is the output of the
functionality φ.

P1

P4 P2

P3

f1

f2

f3

f4

Figure 7: Graph representation of fair SMPC
topology.
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P4 d14 d24 d34

Figure 8: Decryption shares in fair SMPC
topology.

Security: The security proof for any topology can be done very similar to the proofs of
Theorem 1 and 4. Below, we highlight the parts that need to depend on the topology in the
simulator (assuming the messages sent as in the real protocol already depend on the topology,
based on the FindDS algorithm).

In the MFE simulator, the Setup and EIE phases remain the same. In the DSE phase,
case (1) would mean that the simulator received VS values required by all honest parties
(consider VS values together containing a union of decryption shares expected by the honest
parties for them to be able to decrypt all their expected items). If so, again the simulator can
perform Resolve 2 and ensure all parties would learn their items. Therefore, output delivery is
guaranteed, and hence the simulator can contact U . The simulated decryption shares would
then depend on the topology, and the corresponding shares in the topology matrix (e.g.,
Figure 4 and 6) would be simulated. Case (2) is similar, where the simulator acts as the TTP
based on the topology, and depending on the adversary behavior, the resolutions may succeed
and the simulation would then proceed to the fake decryption share generation as above, or
the resolutions may be unresolved, and hence the simulator sends abort to U . The same
reasoning also applies to the CMFE simulator.

7 Performance Analysis

While we did not implement the full protocol, we provide performance numbers based on the
performance of the underlying primitives taken from Cashlib [20] and Charm [1] libraries. The
yardstick of the values in Table 3 were obtained from a DELL Latitude E7240 laptop with a
2.10GHz i7 processor and 8GB of RAM running Ubuntu 16.04 LTS. The security parameter
for the public-key operations is 1024 bits. KB represents kilobytes, MB is megabytes, and ms
is milliseconds.
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Table 3: Required time for the primitive computations and the message sizes from Cashlib [20] and
Charm [1] libraries. Verifiable encryption includes the normal encryption and the associated proof.

Computation Time Size

El Gamal [for item encryption with h]
(Enc/Dec)

2 ms/ 1 ms 0.25 KB

Cramer-Shoup [for escrows] (Enc/Dec) 4 ms/ 3 ms 0.44 KB
RSA [for signatures in CMFE]
(Sign/Verify)

0.147 ms/0.009 ms 0.13 KB

VE(1 item) with El Gamal (Prove
/Verify)

2.24 ms/ 0.38 ms 1.06 KB

VS(t items) with Cramer-Shoup
(Prove /Verify)

4.13t− 3.85 ms/ 0.18t+ 0.02 ms 0.8t− 0.03 KB

VSc with Camenisch-Shoup (Prove
/Verify)

198.4/60.5 ms 24.40 KB

Endorsed E-cash [for coin in CMFE]
(Generate/Verify)

65.80/50.10 ms 22 KB

For the underlying primitives, we employ El Gamal [37] based verifiable encryptions,
Cramer-Shoup [33] based verifiable escrows, and Camenish-Shoup [25] based verifiable en-
dorsement escrows, Endorsed E-cash [24] for coins, and RSA [80] signatures. Zero knowledge
proofs of knowledge are taken from Cashlib [20] ZKPDL [72] implementation of efficient Sigma
proofs [34] in the random oracle model.

7.1 MFE Analysis

Communication Overhead: Table 4 shows that the total bit overhead of MFE per partic-
ipant is just around 111 KB in the complete topology and 102 KB in the ring topology with
10 participants. Thus, the overhead is slightly higher in the complete topology, as expected.

Computation Overhead: We analyze time complexity of MFE in Table 5. The total
computation per party is just around 88 ms in the complete topology and 60 ms in the ring
topology for 10 parties.

Table 4: The size of messages in MFE for
each participant. # is the number of parties.

# Complete Topology
(KB)

Ring Topology
(KB)

2 3.48 3.48

4 17.24 15.07

6 39.80 35.47

8 71.11 64.62

10 111.16 102.51

Table 5: Required time for each party for
the computations in MFE. # is the number of
parties.

# Complete Topol-
ogy (ms)

Ring Topol-
ogy (ms)

2 9.00 9.00

4 23.73 21.97

6 41.75 34.90

8 63.76 47.84

10 88.70 60.77
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7.1.1 Fair SMPC Analysis

The overhead of our fairness solution on top of an existing unfair SMPC protocol is increased
input/output size, and additional computation of encryptions and verification shares. If an
arithmetic circuit is used in the underlying SMPC protocol [14, 85, 32], then there are only
O(n) additional exponentiations required for n parties, which does not extend circuit size a lot,
since it is independent of the actual computation circuit. If boolean circuits are used, the size
of the circuit increases more than an arithmetic circuit would have, but it is still tolerable and
independent of the computation circuit, especially considering in comparison to the related
work: While gradual release based solutions [42] require many rounds of exchanges, and bitcoin
based approaches [18, 2] require broadcast in the bitcoin network and use a payment-based
fairness mechanism, our only overhead is (asymptotically optimally) a constant number of
rounds, and O(n2) messages, while providing maximal fairness (even against n− 1 malicious
and colluding parties). Also remember that even when the TTP becomes malicious, only
fairness is lost, and security and privacy still holds

7.2 CMFE Analysis

Optimizations: Observe that, a party’s coin is decrypted by the TTP only if during Resolve
4, some other party manages to prove that this party sent a wrong key/file. Therefore, if
a party is honest, her coin will never be obtained by another party (via the security of the
Belenkiy et al. [16] subprotocol). This means that an honest party needs to prepare only one
coin and VSc only, and can send the same coin to all other parties.10

Moreover, if participants may want to change the topology during CMFE repetitions after
a single setup, then they need to initially perform a complete topology type of one time setup
where every pair of parties exchange unendorsed coins and verifiably encrypted endorsements.
But, on the other hand, if a topology will be fixed for all the subsequent exchanges, the setup
can be more efficient. Consider the ring topology: Since the only other party who can obtain
a party’s coin in Resolve 4 is the succeeding party in the ring, it is enough that each party
sends her unendorsed coin and verifiably encrypted endorsement only to the succeeding party
in the ring. This makes the per-participant cost of the Setup Phase for the ring topology
independent of the number of participants.

Below, we provide performance numbers with these optimizations.
Communication Overhead: Table 6 shows that the total bit overhead of CMFE is about

527 KB in the complete topology and 70 KB in the ring topology for 10 participants. Since
the Setup Phase of CMFE is executed once among the same set of participants, if we do not
consider this phase (for repeated exchanges), the bit complexity for 10 parties is around 105
KB for the complete topology and 20 KB for the ring topology. Remark that, the bit overhead
of CMFE without Setup Phase is less than the bit overhead of MFE, providing advantage after
multiple repetitions.

Computation Overhead: We analyze the time complexity of CMFE in Table 7. The
total computation is around 1.3 seconds in the complete topology and 0.4 seconds in the ring
topology for 10 participants. The setup is costly due to the electronic coin requirement (and
hence would be much faster with non-anonymous electronic checks). If we do not consider the
Setup Phase, then the computation time decreases to 87 ms in the complete topology and 59

10Of course, a malicious party can also do so, but remember that offline ecash schemes have penalties for
double spenders, which is outside our scope.
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ms in the ring topology.
Of course, the main benefit of CMFE comes from not only repeated exchanges, but also

the fact that CMFE is the first multi-party fair exchange protocol that enables efficient fair
exchange of items that cannot be efficiently verifiably encrypted.

Table 6: The size of messages in CMFE for
each participant. The values in parenthesis
show the size of the messages in CMFE with-
out the Setup Phase. The unit of values is
KB. # is the number of parties.

# Complete Topology
(KB)

Ring Topology
(KB)

2 49.8 (2.94) 49.8 (2.94)

4 155.9 (15.38) 54.87 (7.20)

6 270.9 (36.62) 59.93 (11.46)

8 394.6 (66.61) 64.98 (15.72)

10 527.1 (105.34) 70.04 (19.98)

Table 7: Required time for each party for the
computations in CMFE. The values in paren-
thesis show the time of computation in CMFE
without the Setup Phase. The unit of the val-
ues is millisecond. # is the number of parties.

# Complete Topology
(ms)

Ring Topology
(ms)

2 387.5 (12.08) 387.5 (12.08)

4 623.1 (25.70) 400.1 (23.95)

6 861.8 (42.63) 412.4 (35.82)

8 1104.6 (63.52) 424.9 (47.68)

10 1350.3 (87.34) 437.3 (59.55)

Relative Overhead: We analyzed the overhead percentage of CMFE compared to the
simplest unfair exchange (just sending files to other parties) for the complete topology in Table
8. For slow connections (1Mbps), our overhead is always small, and is less than 0.2% for files
larger than 10 MB, for any number of participants. Indeed, as the number of participants
increase, our relative overhead decreases, since file transfer takes the bulk of the process. For
fast connections (10Mbps), our overhead is around 1.8% for 10 MB files, but becomes less
than 0.2% for files larger than 100 MB. In peer-to-peer settings where movie files or linux
distros of sizes in gigabytes are exchanged, our overhead becomes neglectable, for any number
of parties.

Table 8: The overhead percentage of CMFE in terms of time: CMFE computations + network time
spent for transferring CMFE extra messages versus the time to upload files unfairly using a 1 Mbps /
10 Mbps network between each pair. # is the number of participants. MB is the file size in megabytes.
Topology is complete.

# Size 1 MB 10 MB 100 MB 1000 MB
2 5.07% /

32.86%
0.531% /
4.666%

0.0534% /
0.487%

0.0053% /
0.0489%

4 3.02% /
20.93%

0.310% /
2.579%

0.0311% /
0.264%

0.0031% /
0.0264%

6 2.62% /
18.09%

0.268% /
2.161%

0.0269% /
0.220%

0.0026% /
0.0220%

8 2.47% /
16.86%

0.252% /
1.988%

0.0253% /
0.202%

0.0025% /
0.0202%

10 2.40% /
16.20%

0.245% /
1.897%

0.0246% /
0.193%

0.0024% /
0.0193%
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8 Conclusion

In this paper, we defined three protocols MFE and CMFE, and fair SMPC. The first two
are used as multi-party fair exchange protocols.MFE is useful for the exchanges of items that
can be efficiently verifiably encrypted, such as signatures and group elements. For the items
that are not efficiently verifiably encryptable (movies, images, other files, etc.), CMFE is the
solution for multi-party fair exchange. Indeed, CMFE is the first multi-party fair exchange
protocol that enables efficient fair exchange of general files. Our fair SMPC solution is useful
for secure multi-party computations which need fairness as well as security.

In all our protocols, we achieve fairness employing an optimistic TTP. We pay attention
to use the TTP efficiently and satisfy privacy against the TTP. In particular, we proved,
via ideal-real simulation, that even a malicious TTP under adversarial control cannot break
security of the SMPC solution, even when colluding with malicious participants, but can only
break fairness. Thus, even when the TTP misbehaves, our fair SMPC security reverts back
to security with abort. To the best of our knowledge, our solution is the first such fair SMPC
protocol.

For all our protocols, we proved their fairness and security by showing ideal-real world
indistinguishability. As far as we know, this is the first time that this proof technique is used
for multi-party fair exchange protocols. Our proofs show that either all participants receive
their desired items, or no participant receives any useful information about any item. We also
argued that this should be the fairness definition for multi-party exchanges.

Moreover, our exchange protocols are flexible since they can be used for any exchange
topology. Our fair exchange protocols have setup phases, and once done, the participants may
repeat the remaining steps for further item exchanges, even under differing topologies.

Future Work: For the complete topology, we match the known trivial lower bound in [71],
achieving asymptotic optimality. For other topologies, there are more efficient protocols, but
they do not satisfy the all-or-none type of fairness. We conjecture that the lower bound of
O(n2) messages and O(1) rounds apply to every topology, when all-or-none fairness is required.
Proving this formally is left as future work.
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A Equivalence Among Fair and Secure Definitions

In Section 3, we extended the fair and secure computation definition by Cachin and Camenisch
[21] to the multi-party case in the spirit of the standard two-party computation definition.
When the TTP is honest, we prove that this definition is equivalent to an intuitive and simpler
fair and secure computation definition whose ideal world is given below:

Ideal World: The ideal-world execution consists of honest party(s) Ph, an adversary A

that corrupts the parties in set Pc, and the ideal functionality Uφalt (not the TTP). The ideal
protocol is as follows:

U
φ

alt for alternative security and fairness

• Uφ

alt receives inputs {wi}Pi∈Pc or the message abort from A, and {wi}Pi∈Ph
from

the honest party(s). If the inputs are invalid or A sends the message abort, then
Uφ sends ⊥ to all of the parties and halts.

• Otherwise Uφ

alt computes φ(w1, ..., wn) = (φ1(w1, ..., wn), φ2(w1, ..., wn), ...,
φn(w1, ..., wn)). Let φi = φi(w1, ..., wn) be the ith output. Then, he sends {φi}Pi∈Pc

to A and each one of {φi}Pi∈Ph
to the corresponding honest party.

Realize that in the alternative definition for security and fairness, Uφalt does not wait for
any adversarial input; instead, it sends the outputs to both adversarial and honest players
simultaneously. Intuitively, this does not require any explanation as to why it achieves security
and fairness together. Since the TTP is assumed to be honest, this definition does not allow
any TTP input, and does not even represent the TTP in the ideal world. Nevertheless, below,
we prove that the Uφfs definition in Section 3 is equivalent to the Uφalt definition here, when
the TTP is honest.

U
φ
alt

implies U
φ
fs

(for honest TTP): The adversary controls Pi ∈ Pc in the real world.
If π is secure and fair according to Uφalt, then there exists a simulator Salt which simulates
Pi ∈ Pc in the ideal world defined via Uφalt, and simulates the honest parties Pi ∈ Ph in the
execution of π in the real world. We want to show that a simulator Sfs exists according to Uφfs
in Section 3. Sfs runs Salt as a subroutine and acts as Uφalt for Salt. Thus, Sfs receives inputs
{wi}Pi∈Pc of the corrupted parties or the message abort from Salt. Sfs then forwards this
to Uφfs. At this point, unless malformed inputs or abort was sent, Uφfs sends back outputs
{φi}Pi∈Pc of the corrupted parties, and also asks the honest TTP in the ideal world, who
simply returns {bi = continue}Pi∈Ph

, enabling honest parties to receive their outputs in the
ideal world. Sfs simply forwards {φi}Pi∈Pc received from Uφfs to Salt, perfectly simulating

Uφalt. At the end, because Salt exists, the ideal and real distributions will be indistinguishable.

U
φ
fs

implies U
φ
alt

(for honest TTP): The adversary controls Pi ∈ Pc in the real world. If
π is secure according to Uφfs, then there exists a simulator Sfs which simulates Pi ∈ Pc in the

ideal world defined via Uφfs, and simulates the honest parties Pi ∈ Ph in the execution of π

in the real world. We want to show that a simulator Salt exists according to Uφalt above. Salt
runs Sfs as a subroutine and acts as Uφfs for Sfs. Thus, Salt receives inputs {wi}Pi∈Pc of the

corrupted parties or the message abort from Sfs. Salt then forwards this to Uφalt, obtaining
back outputs {φi}Pi∈Pc of the corrupted parties, unless malformed inputs or abort was sent.
Then, Salt internally simulates the honest TTP by setting {bi = continue}Pi∈Ph

. Salt also
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simply forwards {φi}Pi∈Pc received from Uφalt to Sfs. Thus, Salt perfectly simulates Uφfs for
Sfs. At the end, because Sfs exists, the ideal and real distributions will be indistinguishable.

B Sender Deniable (n, n)- Threshold El-Gamal Encryption

In this section, we use a group G with a generator g of a prime order p with respect to a security
parameter ℓ. All operations are group operations. We use multiplicative group notation.

Deniable (n, n)- threshold El-Gamal encryption consists of the probabilistic polyno-
mial time (PPT) protocols below:

• ThGen(ℓ, n, n): It is an interactive protocol. Each party Pi picks xi ∈ Zp as a secret
share. Then, he sends hi = gxi as a verification key by proving the relation Rdl =
{(xi, (G, p, g))|hi = gxi} denoting knowledge of the discrete logarithm. At the end, all
parties agree on the public key h =

∏
gxi and the verification key v = {gx1 , gx2 , ..., gxn}.

• ThEnc(h,m) → (a, b) where (a, b) = (gr,mhr) for random r ∈ Zp.

• ThDShare(xi, h, E) → di where di = axi and a is the first part of E.

• ThDSProve(xi, E, h, di) → pi where pi = (c,D) such that c = H(W1,W2), W1 = gr,
W2 = ar and D = r − xic mod p. Remark that pi is the proof of the relation Rdleq =
{(xi, (G, p, g, hi, a, di|xi = logg hi = loga di}.

• ThDSVerify(v, h,E, di, pi) outputs valid if c = H(gDhci , a
Ddci ). Otherwise it outputs

invalid.

• ThDec({di}1≤i≤n, E) → m where

m =
b

∏
di

=
mhr

gr
∑
xi

=
mhr

hr

• ThDeny(E,DS′, I,m1, h) → DS′′. Assume that DS′ ⊂ DS where DS is the decryption
shares of E = ThEnc(h,m0) with |DS′| < n and I is the index set of missing decryption
shares. ThDeny first picks randomly an index i ∈ I and then randomly picks dj for all
j ∈ I \ i. Then, finds a decryption share di as follows:

di =
b

m1
∏
j∈I\i dj

and then outputs DS′′ = {dt}t∈I .

We can efficiently [23, 21, 78] construct a verifiable encryption for ElGamal threshold
encryption scheme for a relation Ritem. Below, we use the descriptive notation for the verifiable
encryption as V(E, pk; l){(w, δ) ∈ R}. It denotes the verifiable encryption for the ciphertext
E whereby w –whose relation R with the public value δ can be verified– is encrypted under
the public-key pk, and labeled by l. In particular, ProveEnc and VerifyEnc can be realized via
ElGamal as follows:

Pi sends a verifiable encryption of his item fi as

VEi = V((gri , fih
ri), h; ∅){(fi, ri), (ci, ai, bi, h, g)) ∈ Ritem}

where ri is randomly selected from Zp. For the notation simplicity, we denote (ai, bi) =
(gri , fih

ri). (ai, bi) is the ElGamal encryption of the item fi with the public key h using
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randomness ri. It can be verified that the encrypted item fi and the public value ci has the
relation Ritem.

It has an efficient realization using Sigma proofs [34] where they are converted to non-
interactive zero-knowledge proofs of knowledge [19] using the Fiat-Shamir technique [39] in
the random oracle model. Therefore, under the Decisional Diffie-Hellman assumption (and the
discrete logarithm assumption for the proofs) we have that ElGamal is a verifiable deniable
(n,n)-threshold encryption scheme. It is IND-CPA secure against any PPT adversary who
controls less than threshold-many participants (i.e., the adversary knows the public key and
less than threshold-many, up to n-1 in our case, secret keys).
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