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Abstract

Decentralized partially observable Markov decision processes (Dec-POMDPs) provide a gen-

eral model for decision-making under uncertainty in decentralized settings, but are difficult to solve

optimally (NEXP-Complete). As a new way of solving these problems, we introduce the idea of

transforming a Dec-POMDP into a continuous-state deterministic MDP with a piecewise-linear and

convex value function. This approach makes use of the fact that planning can be accomplished in a

centralized offline manner, while execution can still be decentralized. This new Dec-POMDP for-

mulation, which we call an occupancy MDP, allows powerful POMDP and continuous-state MDP

methods to be used for the first time. To provide scalability, we refine this approach by combin-

ing heuristic search and compact representations that exploit the structure present in multi-agent

domains, without losing the ability to converge to an optimal solution. In particular, we introduce

a feature-based heuristic search value iteration (FB-HSVI) algorithm that relies on feature-based

compact representations, point-based updates and efficient action selection. A theoretical analysis

demonstrates that FB-HSVI terminates in finite time with an optimal solution. We include an ex-

tensive empirical analysis using well-known benchmarks, thereby demonstrating that our approach

provides significant scalability improvements compared to the state of the art.

1. Introduction

Many significant real-world problems involve decision making in sequential multiagent environ-

ments. Examples include: exploration robots that must coordinate to perform experiments on an

unknown planet (Zilberstein, Washington, Bernstein, & Mouaddib, 2002); rescue robots that, after

a disaster, must safely find victims as quickly as possible (Paquet, Chaib-draa, Dallaire, & Berg-

eron, 2010); optimized distributed congestion control in a noisy computer network (Winstein &

Balakrishnan, 2013); sensor networks where multiple sensors work jointly to perform a large-scale

sensing task under strict power constraints (Jain, Taylor, Tambe, & Yokoo, 2009); or robot logistics

problems with communication limitations and sensor uncertainty (Amato, Konidaris, Anders, Cruz,

How, & Kaelbling, 2015). All these tasks require multiple decision makers, or agents, to coordinate

their actions in order to achieve common long-term goals. Additionally, uncertainty is ubiquitous

in these domains, both in the effects of actions and in the information received by the agents.
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Markov decision processes (MDPs) address uncertainty in system dynamics, but assume cen-

tralization. Standard methods for solving MDPs, e.g., linear and dynamic programming (Bellman,

1957; Puterman, 1994) and heuristic search (Barto, Bradtke, & Singh, 1995; Hansen & Zilber-

stein, 2001), are centralized during both the planning and the execution phases. Partially observable

Markov decision processes (POMDPs) extend MDPs to situations in which there is uncertainty over

the state of the system (Kaelbling, Littman, & Cassandra, 1998; Smith & Simmons, 2006; Shani,

Pineau, & Kaplow, 2013), but similarly assume centralized planning and execution.

To use the MDP and POMDP models when multiple agents are present, a centralized coordina-

tor agent must have a global view of the underlying state (or belief state in the case of a POMDP)

of the entire system, and plan on behalf of its teammates. Every time step, this agent would trans-

mit the appropriate action that each agent must perform and then observe the resulting state (or

observations of each agent in a POMDP). These methods, collectively referred to as centralized

planning for centralized control, assume agents communicate at each step with no delay or cost,

either explicitly through messages or implicitly through observations. Unfortunately, in many prac-

tical applications, agents are not permitted to share their information with no delay or cost; rather,

each agent possesses only local, unshared observations, and acts without full knowledge of what

others observe or plan to do. These characteristics have led to the development of a rich body of

research on decentralized decision-making under uncertainty.

The decentralized partially observable Markov decision process (Dec-POMDP) is a standard

formulation for cooperative decision-making in these sequential settings without instantaneous, free

and noiseless communication (Bernstein, Givan, Immerman, & Zilberstein, 2002). Over the past

decade, there has been extensive research on solution methods for Dec-POMDPs, using methods

such as dynamic programming (Hansen, Bernstein, & Zilberstein, 2004; Boularias & Chaib-draa,

2008; Amato, Dibangoye, & Zilberstein, 2009), optimization (Aras & Dutech, 2010; Amato, Bern-

stein, & Zilberstein, 2010) and heuristic search (Szer, Charpillet, & Zilberstein, 2005; Oliehoek,

Spaan, & Vlassis, 2008; Oliehoek, Spaan, Amato, & Whiteson, 2013). These approaches directly

search for an optimal solution in the space of possible solutions (or policies) but become intractable

for larger problems. This is not unexpected given the worst-case NEXP complexity of finite-horizon

Dec-POMDPs (Bernstein et al., 2002).

A key assumption in many Dec-POMDP algorithms is that planning can be centralized as long

as execution remains decentralized (Hansen et al., 2004; Boularias & Chaib-draa, 2008; Amato

et al., 2009; Szer et al., 2005; Oliehoek et al., 2008, 2013). That is, these methods represent cen-

tralized planning for decentralized control — a centralized planner generates a tuple of individual

solutions, one individual solution for each agent. While the use of the Dec-POMDP model does not

require centralized planning (e.g., Velagapudi, Varakantham, Sycara, & Scerri, 2011; Wu, Zilber-

stein, & Chen, 2011; Banerjee, Lyle, Kraemer, & Yellamraju, 2012), because Dec-POMDPs are a

cooperative framework it is common to assume that centralized planning is possible. Unfortunately,

current algorithms do not take full advantage of this centralized planning assumption.

This article extends a conference paper published at IJCAI’13 (Dibangoye, Amato, Buffet, &

Charpillet, 2013), which includes the introduction of a centralized solution method that recasts a

Dec-POMDP as a continuous-state MDP with more detailed background, new theorems and proofs,

as well as more concise representations of policies and value functions. Our novel method is also

able to produce decentralized solutions, but leverages work on centralized planning methods to sig-

nificantly increase scalability. Furthermore, we show that the optimal value function of the afore-

mentioned MDP is a piecewise-linear and convex function. In this form, theory from POMDPs
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(Kaelbling et al., 1998) applies, allowing POMDP algorithms to produce optimal solutions for Dec-

POMDPs. A wide range of POMDP algorithms, which have demonstrated significant scalability

(Shani et al., 2013), can now be applied. We extend one such heuristic search algorithm (Smith &

Simmons, 2004) to the Dec-POMDP case, but because the number of states and actions in this MDP

grows exponentially with the planning horizon, scalability remains limited.

To increase scalability, we introduce a novel mechanism that refines this centralized solution

methodology and present ways to combine classical heuristic search and compact representations,

without losing the ability to converge to an optimal solution. To incorporate compact representa-

tions, we build on feature-based dynamic programming (Tsitsiklis & van Roy, 1996), which includes

feature extraction and value prediction with approximation methods. We introduce the feature-based

heuristic search value iteration (FB-HSVI) algorithm that relies on compact representations, point-

based updates and efficient action selection. A theoretical analysis demonstrates that FB-HSVI ter-

minates in finite time with an optimal solution. This combination of POMDP theory and compact

representations can greatly reduce the problem size and solution efficiency while retaining optimal

solutions for Dec-POMDPs.

Statestart State State

Observation1 Observation1 Observation1

Observation2 Observation2 Observation2

Action1 Action1

Action2 Action2

Time t t+1 t+2

ra(s)

pa(s, ṡ)

oa,z(ṡ)

oa,z(ṡ)

ra(s)

pa(s, ṡ)

oa,z(ṡ)

oa,z(ṡ)

oa,z(ṡ)

oa,z(ṡ)

Hidden

Agent 1’s World

Agent 2’s World

Figure 1: A graphical model of the two-agent Dec-POMDP model.

445



Dibangoye, Amato, Buffet & Charpillet

2. Background on Dec-POMDPs

This section introduces the basic components of decentralized partially observable Markov decision

processes (Dec-POMDPs).

2.1 Problem Definition and Notations

Consider multiple agents that are faced with the task of influencing a stochastic system as it evolves

over time (see the two agent case in Figure 1). At every time step, each agent receives a private

observation that gives (possibly) incomplete and noisy information about the current state of the

system. Since the states are not observable, an agent cannot choose its actions based on the states.

Instead, it can consider a complete history of its past actions and observations to choose an action.

Actions produce a common immediate reward, and the system evolves to a new state at the next

time step according to a probability distribution conditioned on actions. At the next time step,

agents face a similar problem again, but now the system may be in a different state. The goal

of agents is to choose the actions based on these local action-observation sequences which cause

the system to perform optimally with respect to a shared performance criterion (which we discuss

below). The Dec-POMDP model formalizes these interactions between agents and the system. This

paper formulates and solves this general decentralized stochastic control problem for a process that

operates for a finite planning horizon.

Definition 1. A Dec-POMDP is represented as a tuple M ≡ (I, S , A, Z, p, o, r, b0, T ), where:

• I is a finite set of agents i ∈ {1, 2, . . . , |I|};

• S is a finite set of n states;

• Ai is the finite set of agent i’s actions; A ≡ ×iA
i is the finite set of joint actions;

• Zi is the finite set of agent i’s observations; Z ≡ ×iZ
i is the finite set of joint observations;

• p = {pa | a ∈ A} denotes the transition model. pa is an n× n stochastic matrix, where pa(s, ṡ)

is the probability of transitioning to state ṡ if the agents choose joint action a in state s;

• o = {oa,z | a ∈ A, z ∈ Z} is the observation model. oa,z is an n × 1 vector1, where oa,z(ṡ) is the

probability of observing z if joint action a is performed and the resulting state is ṡ;

• r = {ra | a ∈ A} is the reward function; ra is a 1× n reward vector, where ra(s) is the bounded

reward obtained by executing joint action a in state s;

• b0 is the initial probability distribution over states; and

• T is the number of decision steps t ∈ {0, 1, . . . , T − 1} (the problem horizon).

Remark 1. We often use shorthand notation pa,z(s, ṡ)
def
= oa,z(ṡ)pa(s, ṡ), for all s, ṡ ∈ S , a ∈ A, and

z ∈ Z, combining the transition and observation models. That is, the probability of transitioning to

state ṡ after observing z if joint action a is performed and the resulting state is s.

1. The observation vector is not a stochastic vector.
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To make the representation more concrete, we discuss a very simple Dec-POMDP, namely the

multi-agent tiger problem (Nair, Tambe, Yokoo, Pynadath, & Marsella, 2003). We will revisit this

problem in later sections to clarify the ideas presented in the paper.

Example 1 (Multi-agent tiger — problem description). In the multi-agent tiger problem, two agents

stand in front of two closed doors. Behind one of the doors there is a hungry tiger, and behind the

other door there is valuable treasure. The agents do not know the position of either. By listening,

rather than simply opening one of the doors, the agents can gain information about the position

of the tiger. But listening has a cost and is not entirely accurate (i.e., it only reveals the correct

information about the location of the tiger with some probability). Moreover, agents cannot com-

municate their observations to each other. At each step, each agent can independently either listen

or open one of the doors. If one of the agents opens the door with the treasure behind it (while the

other agent listens or also opens the correct door), they both get the reward. If either agent opens

the door with the tiger, a large penalty is incurred. However, if they both open the tiger door at

the same time, they receive a smaller penalty. The agents must make decisions about listening and

opening doors based on the local observations. After a door is opened and the agents receive a

reward or penalty, the problem starts over again and the tiger is randomly repositioned.

We refer to the state of the multi-agent tiger world when the tiger is on the left as stl (tiger left)

and when it is on the right as str (tiger right). The actions for each agent are aol (open left), aor
(open right), and al (listen). There are only two possible observations for each agent (even after

opening a door): to hear the tiger on the left zhl (hear left) or to hear the tiger on the right zhr (hear

right). The reward function is defined as shown on Table 1.

actions of listens opens opens

both agents good door bad door

listens −2 +9 −101

opens good door +9 +20 −100

opens bad door −101 −100 −50

Table 1: Reward function definition for the multi-agent tiger problem

The transition and observation models can be described in detail as follows. The joint action

(al, al) does not change the state of the world. Any other joint action causes a transition to state

stl with probability 0.5 and to state str with probability 0.5 — essentially resetting the problem.

When the world is in state stl, the joint action (al, al) results in observation zhl for either agent with

probability 0.85 and observation zhr with probability 0.15; conversely for state str. No matter what

state the world is in, the other joint actions result in either observation with probability 0.5.

This example illustrates a small Dec-POMDP. Even in this small Dec-POMDP, coordination is

difficult due to uncertainty about the location of the tiger and the actions of the other agent.

2.2 Preliminaries

Given a T -step Dec-POMDP M, we would like agents to act in such a way as to maximize some

common measure of long-term return in M. The challenge in Dec-POMDPs is that each agent’s

strategy typically must take the other agents’ strategies into account. To this end, we discuss agent
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and team decision rules and policies that allow the agents to act based on local information, while

attempting to maximize a joint objective.

2.2.1 Private Decision Rules and Policies

At every time step, each agent chooses an action to be executed based on the actions the agent has

previously executed and the observations that it has received. This is called a policy. To better

understand this concept, we introduce the notions of private histories and decision rules.

Definition 2. A step-t private history of agent i ∈ I is a length-t sequence of actions and observa-

tions, θit
def
= (ai

0
, zi

1
, . . . , zi

t−1
, ai

t−1
, zi

t), where ai
t and zi

t denote actions and observations of agent i ∈ I

at time step t ∈ {0, 1, . . . , T − 1}.

Any step-t private history θit follows the recursion θit = (θi
t−1
, ai

t−1
, zi

t) and the initial private

history θi
0

is empty. Let Θi
t be the set of all step-t private histories of agent i ∈ I, namely the step-t

private history set. A private policy specifies private decision rules an agent can use at all time steps,

one private decision rule for each time step.

Definition 3. A step-t private decision rule di
t : Θi

t 7→ Ai prescribes agent i ∈ I the private action to

be executed in each private history θit ∈ Θ
i
t at a specified time step t ∈ {0, 1, . . . , T − 1}.

We further denote Di
t to be the set of all step-t private decision rules for agent i ∈ I at time step

t ∈ {0, 1, . . . , T − 1}, namely the step-t private decision rule set of agent i ∈ I. Decision rules may

be randomized or deterministic. In Dec-POMDPs, as in MDPs, there always exists a deterministic

decision rule that is as good as any randomized decision rule (Oliehoek et al., 2008; Puterman,

1994). For this reason, we focus on deterministic (private) decision rules. Hence, private policies

provide each agent with a mapping for action selection for any possible private history.

Definition 4. A (t′ + 1)-step private policy πi
t:t+t′

def
= (di

t , . . . , d
i
t+t′

) is a sequence of private decision

rules for agent i ∈ I from time step t to time step t + t′, where t ∈ {0, 1, . . . , T − 1} and t′ ∈ N.

Example 2 (Multi-agent tiger — private decision rule and policy descriptions). Figure 2 shows a

pair of 2-step private policies π1
0:1

and π2
0:1

as trees, for agent 1 and 2, respectively.

Agent 1 Agent 2

∅

al

zhl

al

zhr

aol

∅

aol

zhl

aor

zhr

aor

◮ agent 2’s decision rule d2
0

depends only upon θ2
0
≡ ∅

◮ agent 2’s decision rule d2
1

depends only upon θ2
1

Figure 2: A pair of private policies in the form of trees and decomposed as decision rules for two

steps of the multi-agent tiger problem.
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For agent 2 for example, step-2 private policy π2
0:1

consists of two private decision rules d2
0

and

d2
1
, for time steps t = 0 and t = 1, respectively. The step-0 private decision rule d2

0
maps empty

private history θ2
0
= ∅ to private action al. In addition, the step-1 private decision rule d2

1
maps

private histories (aol, zhl) and (aol, zhr) to private action aor in both cases. It is worth noticing that

private decision rules only maintain private histories that are reachable from past actions executed

and observations received.

So far, we focused on the information each agent has at the execution phase including: private

histories, decision rules and policies. Nevertheless, the goal of Dec-POMDP planning is to find

a separable joint policy. For this reason, we will next discuss joint histories, decision rules and

policies.

2.2.2 Separable Joint Decision Rules and Policies

In this section, we extend private information available to a given agent, e.g., private histories,

decision rules and policies, to joint information that consists of a collection of private data. Let

joint histories θt, separable joint decision rules dt and separable joint policies πt:t′ be |I|-tuples

of private histories (θ1t , θ
2
t , . . . , θ

|I|
t ), decision rules (d1

t , d
2
t , . . . , d

|I|
t ) and policies (π1

t:t′ , π
2
t:t′ , . . . , π

|I|
t:t′

),

respectively for all time steps t ∈ {0, 1, . . . , T − 1} and t′ ∈ N. Note that each of these concepts

is separable in the sense that it is expressed as |I|-tuple using only private information, one private

concept for each agent.

Example 3 (Multi-agent tiger — separable joint decision rule and joint policy descriptions). Figure

3 depicts a 2-step separable joint policy π0:1 ≡ (π1
0:1
, π2

0:1
) as a tuple of private policies, one for each

agent i ∈ {1, 2}. If we group together private decision rules of agents at a given time step, then we

have a separable joint decision rule. For example, at the initial time step t = 0, the tuple of private

decision rules d0 ≡ (d1
0
, d2

0
) is a separable joint decision rule. In addition, separable joint decision

rule d0 prescribes to agents 1 and 2 actions al and aol, respectively.

Agent 1 Agent 2

∅

al

zhl

al

zhr

aol

∅

aol

zhl

aor

zhr

aor

◮ separable joint decision rule d0 ≡ (d1
0
, d2

0
) depends on θ0 ≡ (θ1

0
, θ2

0
)

◮ separable joint decision rule d1 ≡ (d1
1
, d2

1
) depends on θ1 ≡ (θ1

1
, θ2

1
)

Figure 3: A 2-step separable joint policy for the multi-agent tiger problem.

2.3 Acting Optimally

In this section, we discuss the criterion used throughout the paper to compute an optimal separable

joint policy starting at the initial belief-state. Before proceeding any further, we first cast Dec-

POMDPs into an MDP, namely the information-state MDP.
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2.3.1 Information-state Markov Decision Processes

As mentioned above, a common assumption in solving Dec-POMDPs is that planning takes place in

a centralized (offline) manner even though agents execute actions in a decentralized fashion (online).

In such a planning paradigm, a centralized algorithm maintains, at each step, the total available

information about the process to be controlled. This centralized algorithm essentially performs a

policy search in the space of separable joint policies. Thus, the separable joint decision rule choices

are based only on the exhaustive information available to the centralized algorithm or on statistics

derived from that information. This is illustrated in the influence diagram in Figure 4, where the

separable joint decision rule at time step t depends only on previous separable joint decision rules

and initial belief state, not on hidden states. The statistics summarizing the exhaustive information

available to the centralized algorithm are called information states (Hauskrecht, 2000). As defined

below, complete information states represent a trivial case, i.e., the exhaustive data.

ι0start ιt ιt+1

d0 dt dt+1

r0 rt rt+1

Figure 4: Influence diagram for an information-state MDP. Information states (ιt and ιt+1) are repre-

sented by cycles. Joint-decision-rule choices (dt and dt+1) are represented by rectangles,

and depend only on the current information state, not on the underlying hidden states. Di-

amonds represent expected immediate rewards r0, . . . , rt and rt+1. Dashed lines represent

indirect influence over time.

Definition 5. In Dec-POMDPs, a step-t complete information state ιCt
def
= (b0, π0:t−1) is a length-t

sequence of separable joint decision rules starting with the initial belief state b0, for all time steps

t ∈ {0, 1, . . . , T − 1}. It satisfies the recursion: ιC
0
= (b0), and ιC

t+1
= (ιCt , dt).

Example 4 (Multi-agent tiger — complete information state description). Figure 5 depicts a step-2

complete information state as a sequence of separable joint decision rules ι2 ≡ (b0, d0, d1) starting

at initial belief state b0. Alternatively, the complete information state consists of a separable joint

policy represented as a separable joint policy tree together with the initial distribution b0. It is

worth noting that, in a complete information state, each private history of each agent occurs in more

than one joint history. It is this interdependence between joint histories that makes Dec-POMDPs

significantly different from centralized problems (e.g., MDPs and POMDPs) since policies must

remain decentralized. This interdependence also explains why joint histories, which are sufficient

for optimally planning in MDPs and POMDPs, are no longer sufficient for optimally planning in

Dec-POMDPs. Instead, we rely on complete information states.
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b0

∅∅

al, aol

zhl, zhl

al, aor

zhr, zhr

aol, aor

zhr, zhl

aol, aor

zhl, zhr

al, aor

◮ separable joint decision rule d0

◮ separable joint decision rule d1

Figure 5: A step-2 complete information state ιC
2
≡ (b0, d0, d1) for the multi-agent tiger problem.

Separable joint decision rules are groups of private decision rules depicted in Figure 3.

There is no need to retain the complete information states; instead, one can rely on more com-

pact information states. Recall that information states are quantities summarizing the complete

information states. The collection of random variables {ιt : t ∈ {0, 1, . . . , T }} taking values in the

information state space S defines an information-state Markov decision process (ι-MDP). In such

an MDP, “states” are information states and “actions” are separable joint decision rules as illustrated

in the influence diagram in Figure 4. Our ι-MDP is deterministic since the next-step information

state ιt+1 is a deterministic function of the previous information state ιt and the joint-decision-rule

choice dt — i.e., ιt+1 = P(ιt, dt). Furthermore, after taking a separable joint decision rule dt at an

information state ιt, the expected reward is R(ιt, dt).

Definition 6. A ι-MDP M̂ ≡ (S, A, P, R, ι0, T ) w.r.t. Dec-POMDP M is given by:

• S is the information-state set, which defines the set of all information states ιt, at every time

step t ∈ {0, 1, . . . , T − 1};

• A is the set of separable joint decision rules, which defines the set of all separable joint

decision rules dt, at every time step t ∈ {0, 1, . . . , T − 1};

• P specifies the next-step information state ιt+1 = P(ιt, dt) after taking separable joint decision

rule dt at information state ιt, at every time step t ∈ {0, 1, . . . , T − 1};

• R specifies the immediate expected reward R(ιt, dt) =
∑

s,θ Pr(s, θ|ιt) · r
dt(θ)(s) to be gained

by executing a separable joint decision rule dt at information state ιt, at every time step

t ∈ {0, 1, . . . , T − 1};

• ι0 is the initial information state; and T is the problem’s temporal horizon.
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The information-state MDP M̂ differs from the original Dec-POMDP M because the “state

space” is implicit. That is, the information-state space S is much too large to be generated and

stored in memory. Instead, information states are generated as they are explored during the state

space search, and typically discarded thereafter. Generating the separable joint decision rules and

their corresponding expected rewards are also sources of the complexity for current methods as dis-

cussed later. All these methods build upon the assumption that one can always convert the original

Dec-POMDP into an information-state MDP by using complete information states without losing

optimality (Szer et al., 2005; Oliehoek et al., 2008, 2013). Below, we provide a formal proof of this

property for the sake of completeness.

Lemma 1. Any optimal separable joint policy π∗
M̂

for complete-information-state MDP M̂ is an

optimal separable joint policy π∗
M

for the original Dec-POMDP M.

Proof. In demonstrating the proof, we need to show that optimal joint policies π∗
M̂

and π∗
M

are

separable joint policies with the same expected value. Throughout the proof, we will use notations

AT to denote T -steps separable joint policies and Pb0,π(·) to denote a joint probability distribution

with parameter b0 and π. The proof starts with the definition of an optimal separable joint policy for

information-state MDP M̂:

π∗
M̂

def
= arg maxπ∈AT

T−1
∑

t=0

R(ιCt , dt).

Next, we replace R(ιCt , dt) by the immediate expectation of rewards received after taking joint (sep-

arable) decision rule dt at complete information state ιCt :

π∗
M̂
= arg maxπ∈AT

T−1
∑

t=0

E(st ,θt)∼Pb0,π0:t (·)

{

rdt(θt)(st)
}

, (Def. of R(ιCt , dt)).

The following holds because the sum of expectations is equal to expectation of sums:

π∗
M̂
= arg maxπ∈AT E(s0,a0,...,sT−1,aT−1)∼Pb0 ,π(·)















T−1
∑

t=0

rat (st)















def
= π∗M.

Hence, it is sufficient to search for an optimal separable joint policy using M̂ to find an optimal

separable joint policy for M (and vice versa). �

This lemma allows us to interchangeably use either complete-information-state MDPs M̂ or the

original Dec-POMDP counterpart M with no loss in optimality.

2.3.2 Optimality Criterion

In this paper, we consider the finite-horizon Dec-POMDP (and therefore the finite-horizon ι-MDP

M̂), where the optimality criterion is to find a separable joint policy that maximizes the expected sum

of rewards over the planning horizon starting at a given belief state. To find an optimal separable

joint policy, we first characterize the expected value to be gained from executing any arbitrary sep-

arable joint policy πt:T−1 starting from any arbitrary step-t information state. This characterization

represents the Dec-POMDP value function using the ι-MDP notation.
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Definition 7. Let πt:T−1 be a separable joint policy with respect to M̂. The value function VM̂,πt:T−1

denotes the expected cumulative reward obtained if the team of agents executes πt:T−1 from time

step t onward. For any arbitrary information state ιt, VM̂,πt:T−1
(ιt)

def
=

∑T−t−1
k=0 R(ιt+k, dt+k), where

ιt+k+1 = (ιt, dt, . . . , dt+k), ∀t ∈ {0, 1, . . . , T − 1} and ∀k ∈ {0, 1, . . . , T − t − 1}.

Example 5 (Multi-agent tiger — expected values given a separable joint policy and an information

state). Figure 6 depicts a mapping from step-1 private histories to private policies π1
1:T−1

and π2
1:T−1

for agents 1 and 2, respectively. These private histories result from agents taking one action and

receiving an observation, i.e., agent 1 took action al and received either observation zhl or zhr. The

mapping ensures decentralized control since private histories map to private policies. For example,

agent 1’s private history (al, zhl) maps to private policy x̄. However, the expected value of one

agent’s private policy depends on the other agents’ private policies. For this reason, we rely on

joint histories induced by information state ι1 as illustrated in Figure 7. Figure 7 depicts a mapping

from joint histories to future separable joint policies. Each joint history is a pair of private histories

from Figure 6, one for each agent. For example, joint history {(al, aol), (zhl, zhl)} maps to future

separable joint policy (x, α) as a separable joint policy tree. The contribution of separable joint

policy (x, α) to the expected value depends on the probability of joint history {(al, aol), (zhl, zhl)}

and the initial belief.

xx̄ αᾱ

∅

al

zhl

?

zhr

?

∅

aol

zhl

?

zhr

?

◮ private histories generated by

d1
0

and d2
0

◮ future separable joint policy

π1:T−1 = (π1
1:T−1
, π2

1:T−1
)

Figure 6: Mappings from private histories to future private policies for each agent.

Value function VM̂,πt:T−1
satisfies the following recursion:VM̂ ,πt:T−1

(ιt) = R(ιt, dt)+VM̂,πt+1:T−1
(P(ιt, dt))

where VM̂,πt+1:T−1
(P(ιt, dt)) describes the future value of executing separable joint policy πt+1:T−1

from time step t + 1 onward starting at information state ιt+1 = P(ιt, dt).

2.3.3 Bellman’s Optimality Equations

The standard definitions of optimality equations in a T -step ι-MDP follow. We first describe the

optimal value at a given information state as the highest value of any separable joint policy for that

information state. Let Πt:T−1 be the set of all separable joint policies with respect to M̂. For all

t ∈ {0, 1, . . . , T − 1}, the optimal step-t value function V∗
M̂,t

(ιt) at information state ιt is V∗
M̂,t

(ιt)
def
=
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b0

∅∅

al, aol

zhl, zhl

?, ?

zhr, zhr

?, ?
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zhl, zhr

?, ?

x α ᾱx x̄ α ᾱx̄

◮ joint histories

induced by ι1 = (b0, d0)

◮ future separable joint

policy π1:T−1

Figure 7: Mappings from joint histories to future separable joint policies.
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ι1
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· · ·
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|A1|

|A2|

d0 d0

Figure 8: The information-state search tree where search nodes are information states and arcs of

the search tree are labeled by separable joint decision rules.
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maxπ∈Πt:T−1
VM̂,π(ιt). The optimality equations (or Bellman’s optimality equations, see Bellman,

1957; Puterman, 1994) are:

V∗
M̂,t

(ιt)
def
= max

dt∈At

(

R(ιt, dt) + V∗
M̂,t+1

(P(ιt, dt))

)

, ∀ιt ∈ St,∀t ∈ {0, 1, . . . , T − 1}, (1)

with an added boundary condition V∗
M̂,T

(·)
def
= 0 for time step t = T .

Note that the optimal step-t value function is written in terms of the optimal step-(t + 1) value

function. This recursion implies an efficient procedure for computing step-t value functions which

we will discuss below. Moreover, an optimal separable joint policy can be directly extracted from

the optimal value functions. Suppose (V∗
M̂,t

)t∈{0,1,...,T−1} are solutions of the optimality equations (1)

subject to the boundary condition, then it is clear that an optimal separable joint policy π∗
0:T−1

=

(d∗t )t∈{0,1,...,T−1} satisfies:

d∗t ∈ arg maxdt∈At

(

R(ιt, dt) + V∗
M̂,t+1

(P(ιt, dt))

)

, ∀t ∈ {0, 1, . . . , T − 1}. (2)

This property implies that an optimal separable joint policy is found by first solving the optimal-

ity equations, and then for each time step choosing a separable joint decision rule that attains the

maximum of the right hand side of (2) for t ∈ {0, 1, . . . , T − 1}.

2.4 Optimally Solving Dec-POMDPs

We provide an overview of dynamic programming and heuristic search principles exact methods

build upon. For a thorough introduction to solution methods in Dec-POMDPs, the reader can refer

to surveys (e.g., Oliehoek, 2012; Amato, Chowdhary, Geramifard, Ure, & Kochenderfer, 2013).

Notice, however, that most dynamic programming methods do not explicitly consider information

states (instead considering value functions over underlying system states). They construct separa-

ble joint policies from the last step in the horizon to the first by evaluating the possible separable

joint policies at each step and pruning those that have provably lower value over the full state

space (Hansen et al., 2004; Boularias & Chaib-draa, 2008; Amato et al., 2009). Heuristic search

techniques implicitly use complete information states in developing Dec-POMDP solution methods

(Szer et al., 2005; Oliehoek et al., 2008; Oliehoek, Whiteson, & Spaan, 2009; Spaan, Oliehoek, &

Amato, 2011), but do not explicitly use the ιC-MDP representation.

2.4.1 Dynamic ProgrammingMethods

One class of Dec-POMDP solution methods is based on dynamic programming (Howard, 1960).

Here, a set of T -step separable joint policies is generated from the bottom up (Hansen et al., 2004).

At each step, all step-t separable joint policies are generated that build off separable joint policies

from step t+1. Any separable joint policy that has lower value than some other separable joint policy

for all states and possible separable joint policies of the other agents is then pruned (with linear

programming). These generation and pruning steps continue until the desired horizon is reached and

a separable joint policy with the highest value at the initial state is chosen. Given that the number

of separable joint policies grows doubly exponentially every generation step, the importance of

pruning away unnecessary separable joint policies is crucial. More efficient dynamic programming

methods have been developed, reducing the number of separable joint policies generated (Amato

et al., 2009) or compressing separable joint policy representations (Boularias & Chaib-draa, 2008).
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2.4.2 Heuristic SearchMethods

Another class of Dec-POMDP solution methods is based on heuristic search techniques. Unlike dy-

namic programming methods, heuristic search algorithms can take advantage of the initial complete

information state. Separable joint policies can be built from the top down using centralized heuristic

search methods over the search tree shown on Figure 8 (Szer et al., 2005).

In this case, a search node is a complete information state at a given horizon, t. These complete

information states can be evaluated up to that horizon and then a heuristic value can be added. The

resulting heuristic values are over-estimates of the true value, allowing an A*-style search through

the space of possible complete information states, expanding promising search nodes to horizon

t + 1 from horizon t. While in principle, A*-style search methods can find an optimal separable

joint policy, in practice the doubly exponential growth of the search tree makes it difficult. Recent

work has included clustering probabilistically equivalent complete information states (Boularias &

Chaib-draa, 2008) and histories (Oliehoek et al., 2009), and incrementally expanding nodes in the

search tree (Spaan et al., 2011; Oliehoek et al., 2013), greatly improving scalability of the original

algorithms.

2.4.3 Limitations of CurrentMethods

While current methods attempt to reduce the number of separable joint policies or information

states considered, they rely on explicit representations that consider all possible joint histories (even

though many of them may be unreachable). Moreover, existing techniques fail to generalize value

functions from one information state to other information states, which slows down the convergence

to an optimal joint policy. Finally, even though most solution methods use an offline centralized

planning phase, no concise representation of the information state has been identified (until now)

that allows for greater scalability. Simultaneous to this work one exception developed concise rep-

resentations based on observation histories, but did not show the value function over the resulting

MDP was piecewise linear and convex (Oliehoek, 2013). We are able to show this piecewise linear

and convex property and develop a novel algorithm to exploit the resulting structure. To do so, we

draw inspiration from advances in MDP and POMDP algorithms as discussed below.

Significant progress has been made in solving large MDPs and POMDPs. One reason for

progress in MDPs has been the use of approximate dynamic programming and function approx-

imation (Tsitsiklis & van Roy, 1996; De Farias & Van Roy, 2003; Powell, 2007) to represent the

state of the system and value functions more concisely. For POMDPs, efficient algorithms have been

developed by recasting problems as belief MDPs that utilize probability distributions over states of

the system, namely belief states (Smallwood & Sondik, 1973). This belief MDP is a continuous-

state MDP with a piecewise linear and convex value function, allowing algorithms to scale to large

problems while sometimes retaining performance bounds (Smith & Simmons, 2004; Shani et al.,

2013). We will take advantage of such advances by recasting a Dec-POMDP as a continuous-state

MDP with a piecewise linear and convex optimal value function. The resulting formulation opens

the door for direct application of POMDP methods and opens research directions on utilizing Dec-

POMDP structure in centralized planning representations. We discuss this formulation and some

progress in using this structure in the remaining sections.
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3. Solving Dec-POMDPs as Continuous-State MDPs

The contribution of this section is threefold. Section 3.1 introduces a statistic (i.e., the occupancy

state) which summarizes the information state. Section 3.1.4 demonstrates occupancy states are

sufficient for optimally solving Dec-POMDPs, i.e., occupancy states are sufficient statistics. Occu-

pancy states further allow transforming information-state MDPs into occupancy-state MDPs. Sec-

tion 3.1.6 establishes a fundamental property of the resulting MDP, namely the piecewise linear-

ity and convexity of the optimal value function over the occupancy states. Remember that these

methods assume centralized offline planning and actions as separable joint decision rules to en-

sure decentralized execution. These contributions enable the application of a vast collection of

MDP and POMDP solution methods to Dec-POMDP problems. Finally, Section 3.2 introduces the

occupancy-based heuristic search value iteration (OHSVI) algorithm for solving occupancy-state

MDPs that builds upon the HSVI algorithm for POMDPs (Smith, 2007).

3.1 Summarizing Complete Information States

Before providing a formal definition of occupancy states, we start with a brief motivation. Then,

we demonstrate that the occupancy state induces a deterministic process that is Markov, namely the

occupancy-state Markov decision process. Finally, we prove that the occupancy state is a sufficient

statistic for optimal decision-making in Dec-POMDPs.

3.1.1 Occupancy State

As discussed in Section 2.4.2, standard heuristic search methods for solving Dec-POMDPs rely on

complete information states (Szer et al., 2005; Oliehoek et al., 2008, 2009; Spaan et al., 2011).

While complete information states preserve the ability to find an optimal separable joint policy (see

Lemma 1), heuristic search methods using them can only solve small toy problems. One reason for

this poor behavior is that complete information states result in redundant and useless computations.

In particular, every time they estimate the immediate rewards R(ιC , d) the entire multivariate proba-

bility distribution Pr(s, θ|ιC) needs to be computed over all states and joint histories (see Definition

6). This operation is time-consuming because it involves exponentially many joint histories, includ-

ing unreachable ones. Since this operation occurs at every time step, it is important to reduce the

time required. To this end, we introduce a statistic called the occupancy state that we can maintain

in place of the complete information state.

Definition 8. The step-t occupancy state, denoted ξt, is defined as the posterior probability distribu-

tion of state st and joint history θt given complete information state ιCt , i.e., ξt(st, θt)
def
= Pr(st, θt |ι

C
t ),

∀t ∈ {0, 1, . . . , T }. We denote △t the step-t occupancy simplex, that is, the set of all possible step-t

occupancy states.

Example 6 (Multi-agent tiger — from complete information states to occupancy states). Figure 9

depicts a complete information state (left-hand side) and a corresponding occupancy state (right-

hand side) over joint histories and states of the system. We illustrate an occupancy state as a tree,

where branches are joint histories of the complete information state and leaves are state-probability

pairs. Note that the same initial belief is assumed in both state types.

The occupancy state represents a predictive model of the state that the system may end up in and

joint history the agents may experience given a complete information state. As such, in occupancy
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Figure 9: A step-1 occupancy state ξ1 that corresponds to complete information state ι1.

states, we need just to maintain state and joint history pairs that are reachable given the complete

information state.

3.1.2 Markov Property

This section proves that occupancy states induce a process that is Markov. In other words, the future

occupancy states of the process depend only upon the present occupancy state and the next-step

separable joint decision rule.

Theorem 1. Occupancy state ξt+1 depends on current occupancy state ξt and separable joint deci-

sion rule dt, i.e., for any arbitrary ṡ ∈ S , at ∈ A, zt+1 ∈ Z and θt ∈ Θt,

ξt+1(ṡ, (θt, at, zt+1)) = 1{at}(dt(θt))
∑

s∈S

ξt(s, θt) · p
at ,zt+1(s, ṡ), (3)

where 1{·}(·) is an indicator function which returns 1 when the actions at are chosen by dt, and

returns 0 otherwise.

Proof. In demonstrating this theorem we also derive a procedure for updating the occupancy states.

Let ιt be our step-t information state, which we will decompose as ιt = (ιt−1, dt−1) —i.e., the infor-

mation state ιt−1 prior to time-step t plus the known separable joint decision rule dt−1. By Definition

8, we can relate the occupancy state and the information state as follows: for any arbitrary state st

and joint history θt,

ξt(st, θt)
def
= Pr(st, θt |ιt). (4)

The substitution of ιt = (ιt−1, dt) into (4) yields

ξt(st, θt) = Pr(st, θt |ιt−1, dt−1). (5)

The expansion of the right-hand side of (5) over all states of the system at the end of time-step t − 1

produces

ξt(st, θt) =
∑

st−1∈S

Pr(st−1, st, θt |ιt−1, dt−1). (6)
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The expansion of the joint probability in (6) as the product of conditional probabilities results in

ξt(st, θt) =
∑

st−1∈S

Pr(at−1 |θt−1, dt−1) · Pr(st, zt |st−1, θt−1, ιt−1, dt−1) · Pr(st−1, θt−1 |ιt−1, dt−1). (7)

The first factor denotes the joint action at−1 that separable joint decision rule dt−1 prescribes at

θt−1. Since we assume that separable joint decision rules are deterministic, Pr(at−1 |θt−1, dt−1) ∈

{0, 1}. In fact, Pr(at−1 |θt−1, dt−1) = 1 if dt−1(θt−1) = at−1, otherwise Pr(at−1 |θt−1, dt−1) = 0. So,

Pr(at−1 |θt−1, dt−1) = 1{at−1}(dt−1(θt−1)), where 1F is an indicator function.

The second factor on the right-hand side of (7) is the transition probability

ξt(st, θt) = 1{at−1}(dt−1(θt−1))
∑

st−1∈S

pat−1,zt(st−1, st) · Pr(st−1, θt−1|ιt−1, dt−1). (8)

The last factor defines the prior occupancy state ξt−1 at state st−1 and joint history θt−1, which does

not depend on the current separable joint decision rule dt−1. Overall (6) becomes

ξt(st, θt) = 1{at−1}(dt−1(θt−1))
∑

st−1∈S

pat−1,zt(st−1, st) · ξt−1(st−1, θt−1).

Therefore, the calculation of the occupancy state after time-step t requires only the occupancy

state of the previous time-step t − 1 and the current separable joint decision rule. �

Equation (3) describes the transitions of a continuous-state MDP in which states are occupancy

states and actions are separable joint decision rules. For this process, the transitions are deterministic

but the state space is continuous. Next, we formally define the process occupancy states induce.

3.1.3 Occupancy-StateMarkov Decision Processes

We consider the MDP described by the occupancy states; we call it an occupancy-state Markov

decision process.

Definition 9. Let M̌ ≡ (△, A, R, P, b0, T ) be the occupancy-state Markov decision process with

respect to Dec-POMDP M, where:

• △ = ∪t∈{0,1,...,T } △t is the occupancy simplex, where ξ0 = b0 is the initial occupancy state;

• A = ∪t∈{0,1,...,T } At is the separable joint decision rule set;

• R : △ × A 7→ R is a reward function: the reward at (ξt, dt) is R(ξt, dt)
def
=

∑

s,θ ξt(s, θ) · rdt(θ)(s);

• P : △ × A 7→ △ is a transition function: next occupancy state ξt+1
def
= P(ξt, dt) as described in

Equation (3) given (ξt, dt);

• b0 is the initial belief state; and

• T denotes the planning horizon.
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Here, the states of the system represent the centralized knowledge of the planner while the

actions represent separable joint decision rules to ensure decentralized execution. The (occupancy)

state can be updated by using the known transition and observation functions of the Dec-POMDP

given the current (occupancy) state and the chosen separable joint decision rule. The rewards are

also calculated (as an expectation) using the known reward model of the Dec-POMDP. The optimal

value functions of M̌ are solutions of the optimality equations:

V∗
M̌,t

(ξt)
def
= max

dt∈A

(

R(ξt, dt) + V∗
M̌,t+1

(P(ξt, dt))

)

, ∀t ∈ {0, 1, · · · , T − 1}, (9)

with an added boundary condition V∗
M̌,T

(·)
def
= 0 for t = T .

Notice that once a solution (V∗
M̌,t

)t∈{0,1,...,T−1} of the optimality equations Eq. (9) has been found,

one can always retrieve an optimal separable joint policy starting at the initial occupancy state.

This is achieved by iteratively retrieving optimal separable joint decision rules for decision steps

t ∈ {0, 1, . . . , T − 1}. At each decision step t, the procedure selects the current occupancy state ξt
(starting with initial occupancy state ξ0). It uses the max operator to retrieve an optimal separable

joint decision rule d∗t at current occupancy state ξt:

d∗t
def
= arg maxdt∈A

(

R(ξt, dt) + V∗
M̌,t+1

(P(ξt, dt))

)

. (10)

Thereafter, it moves to the next occupancy state ξt+1 = P(ξt, d
∗
t ) and makes it the current one. The

procedure then repeats until final decision epoch T has been reached. The sequence of optimal

separable joint decision rules (d∗
0
, d∗

1
, . . . , d∗

T−1
) defines an optimal separable joint policy π∗ for an

occupancy-state MDP M̌. Furthermore, Theorem 2 proves that an optimal separable joint policy for

an occupancy-state MDP M̌ is an optimal separable joint policy for the original Dec-POMDP M.

Optimally solving a continuous-state MDP, such as the occupancy-state MDP, is a nontrivial

task. In general, there is no exact solution method for solving general continuous-state MDPs.

Methods often rely on structural assumptions about the shape of the optimal value function (Tsit-

siklis & van Roy, 1996; De Farias & Van Roy, 2003; Powell, 2007). We next demonstrate that a

useful structure does indeed exist for occupancy MDPs in the form of optimal value functions that

are piecewise linear and convex functions over the occupancy states.

3.1.4 Sufficiency of Occupancy States

We first show that the occupancy state is a sufficient statistic for optimal decision-making in Dec-

POMDPs. Throughout the remainder of this paper, we call a statistic a sufficient statistic when the

statistic of the information state is sufficient for optimal decision making in occupancy-state MDPs.

Theorem 2. Occupancy state ξt = Pr(s, θt |ι
C
t )s∈S ,θt∈Θt

is a sufficient statistic of complete infor-

mation state ιCt , i.e., it is sufficient for optimally solving occupancy-state MDPs. Furthermore, an

optimal joint policy for the occupancy-state MDP M̌ together with the correct estimation of the

occupancy states, is also optimal for information-state MDP M̂ (respectively Dec-POMDP M).

Proof. In demonstrating the sufficiency of the occupancy state with respect to its corresponding

information state, we need to demonstrate that (a) the optimal value function at an occupancy state

is identical to that of its corresponding information state and (b) the future occupancy states depend

only upon the current occupancy states (and next-step separable joint decision rule). We proved (b)

in Theorem 1, so it only remains to prove statement (a). We show this by induction.
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The sufficiency of the occupancy state with respect to its corresponding information state triv-

ially holds at the last time step of the problem. In fact, V∗
M̂,T

(ιC
T

) = V∗
M̌,T

(ξT ) = 0 for any arbitrary

complete information state ιC
T

and its corresponding occupancy state ξT (since the horizon has been

reached).

If we assume that statement (a) holds for time-step t+1, we can now show it holds for time-step

t. For any arbitrary step-t information state, Bellman’s optimality criterion prescribes the following:

V∗
M̂,t

(ιCt ) = max
dt∈A

R(ιt, dt) + V∗
M̂,t+1

(ιCt+1), (11)

where ιC
t+1
= (ιCt , dt). By the induction hypothesis, we have V∗

M̂,t+1
(ιC

t+1
) = V∗

M̌,t+1
(ξt+1), if ξt+1

corresponds to the occupancy state associated to ιC
t+1

. Hence, Equation (11) becomes

V∗
M̂,t

(ιCt ) = max
dt∈A

R(ιCt , dt) + V∗
M̌,t+1

(ξt+1). (12)

Moreover, given that R(ιCt , dt) =
∑

s,θ rdt(θ)(s) ·Pr(s, θ|ιCt ) = R(ξt, dt), the following expression holds

since ξt = (Pr(s, θ|ιCt ))s,θ:

V∗
M̂,t

(ιCt ) = max
dt∈A

R(ξt, dt) + V∗
M̌,t+1

(ξt+1), (13)

which ends the proof of statement (a) at time-step t, since V∗
M̌,t

(ξt) = maxdt∈A R(ξt, dt)+V∗
M̌,t+1

(ξt+1).

As a consequence, statement (a) holds for any arbitrary complete information state ιCt ∈ St and at

any arbitrary time-step t ∈ {0, 1, . . . , T − 1}. Combining statements (a) and (b), we are guaranteed

to find the optimal value function for M̂ by using occupancy states instead of information states.

As such, an optimal joint policy for the occupancy-state MDP M̌, together with the correct esti-

mation of the occupancy states, is also optimal for information-state MDP M̂ (or the original Dec-

POMDP M). Given the optimal value function of M̌, an optimal joint policy π∗ = (d∗t )t∈{0,1,...,T−1} is

given by:

d∗t = arg maxdt∈A R(ξt, dt) + V∗
M̌,t+1

(ξt+1), (14)

for any arbitrary information state ιt, and all t ∈ {0, 1, . . . , T − 1}, where ξt and ξt+1 correspond to ιCt
and ιC

t+1
= (ιCt , dt), respectively. �

This theorem demonstrates that by optimally solving any of M, M̂ or M̌, we are guaranteed to

find an optimal separable joint policy to the others.

3.1.5 Belief States versus Occupancy States

Note that there is a similarity between the occupancy state in Dec-POMDPs and the belief state

in POMDPs. Formally, a step-t belief state bt = (P(s|θt, b0))s∈S is a probability distribution over

states conditioned on step-t history θt. It is also a sufficient statistic for the total data available

to the centralized agent (i.e., the action-observation history) an algorithm can rely on to find an

optimal solution in POMDPs. Similarly, an occupancy state is a sufficient statistic for the total data

available to a centralized planner (i.e., the history of separable joint decision rules) an algorithm

can rely on to find an optimal separable joint policy in Dec-POMDPs. However, the occupancy

state remains fundamentally different from the belief state. First, the belief state is not sufficient for
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optimal decision making in Dec-POMDPs (because it is not geared to ensure the separability of the

joint policy). Second, a belief state defines a time-invariant statistic, i.e., the dimension of belief

states is bounded by the number of states. In contrast, the dimension of the occupancy states grows

exponentially with the horizon. Also, unlike the belief state, the occupancy state is only a plan

time sufficient statistic which is not used during execution time. Instead, agents still condition their

actions on local action-observation histories in Dec-POMDPs. These differences make algorithmic

and theoretic transfers from belief-state MDPs to occupancy-state MDPs nontrivial.

3.1.6 Piecewise-Linearity and Convexity Property

We now present one of the main results of this paper — the piecewise-linearity and convexity of the

optimal value function of the occupancy-state MDP.

For this discussion, we use vector (resp. matrix) representation for operators R(·, dt) and P(·, dt).

Vector rdt = (rdt(θ)(s))s,θ denotes the immediate reward of executing dt starting from any state and

joint history (i.e., R(ξt, dt) is the inner product of ξt and rdt for any occupancy state ξt ∈ △t).

Moreover, operator P(·, dt) transforms any step-t occupancy state to a step-(t + 1) occupancy state,

that is, P(·, dt) describes a transition matrix pdt such that P(ξt, dt) = ξt p
dt for every step-t occupancy

state ξt ∈ △t. With these linear transformations as a background, the following holds.

Theorem 3. The optimal value functions (V∗
M̌,t

)t∈{0,1,··· ,T } (solutions to Equations in (9)) are piecewise-

linear and convex functions of the occupancy states. Hence, for all t ∈ {0, 1, · · · , T − 1}, there exists

a finite set of length-n|Θt | vector values Λt such that, for any arbitrary occupancy state ξt ∈ △t, we

have:

V∗
M̌,t

(ξt) = max
βt∈Λt

〈ξt, βt〉, (15)

where 〈ξt, βt〉 denotes the inner product
∑

s

∑

θ ξt(s, θ) · βt(s, θ).

Proof. We show that (15) holds by induction. Since V∗
M̌,T

(ξT ) = 0 for all ξT ∈ △ (since the horizon

has been reached), we have that V∗
M̌,T

(ξT ) = maxβT∈ΛT
〈ξT , βT 〉, where βT (·) = 0 and ΛT = {βT }.

Hence, the property holds for k = T . Assume that the property holds for k ≥ t+1, that is, V∗
M̌,k

(ξk) =

maxβk∈Λk
〈ξk, βk〉 for k ≥ t + 1. Now we want to prove the property for k = t —i.e.,

V∗
M̌,t

(ξt) = max
dt∈A

(

R(ξt, dt) + VM̌,t+1(P(ξt, dt))
)

, ∀ξt ∈ △t.

Using linear transformations rdt and pdt , the following holds:

V∗
M̌,t

(ξt)
def
= max

dt∈A

(

R(ξt, dt) + VM̌,t+1(P(ξt, dt))
)

,

= max
dt∈A

(

〈ξt, r
dt 〉 + max

βt+1∈Λt+1

〈P(ξt, dt), βt+1〉

)

, (Inductive Hypothesis)

= max
dt∈A

max
βt+1∈Λt+1

(

〈ξt, r
dt 〉 +

〈

ξt · p
dt , βt+1

〉)

, (Rearranging Terms)

= max
dt∈A

max
βt+1∈Λt+1

(

〈ξt, r
dt + βt+1 · (pdt )⊤〉

)

.

Finally, if we let Λt be the set of all length-n|Θt | vectors βt
def
= rdt + βt+1 · (pdt )⊤ for all separable joint

decision rules dt ∈ A and all vectors βt+1 ∈ Λt+1, then V∗
M̌,t

(ξt) = maxβt∈Λt
〈ξt, βt〉. As a consequence,

the proof holds for every time step t ∈ {0, 1, . . . , T − 1}. �
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We demonstrated that the information states and value functions can be represented in a vector

space, the occupancy-state space, without loosing optimality. Next, we provide an approach for

extending MDP and POMDP solution methods to occupancy-state Markov decision processes.

3.2 Heuristic Search Solution Methods

This section presents the occupancy-based heuristic search value iteration (OHSVI) algorithm for

solving occupancy-state MDPs. This algorithm extends the heuristic search value iteration (HSVI)

algorithm for POMDPs (Smith & Simmons, 2004) as well as other heuristic search algorithms such

as A* (Hart, Nilsson, & Raphael, 1968) and LRTA* (Korf, 1990).

3.2.1 Heuristic Search Value Iteration for Occupancy-StateMDPs

HSVI is a state-of-the-art algorithm for solving POMDPs (Smith & Simmons, 2004). It produces

solutions by maintaining two-sided bounds on the optimal value function and updating them over

a number of sample trajectories. The upper bounds, (UM̌,t)t∈{0,1,··· ,T }, are represented as (belief)

state-value mappings, and the lower bounds, (LM̌,t)t∈{0,1,··· ,T }, are represented by vector sets. Each

trajectory begins at the initial belief state and continues until the time horizon is reached. Once a

trajectory is finished, the upper and lower bounds are updated at each belief state, in the reverse order

of visit. The trajectories can also be interrupted once they have reached a belief state where the upper

and lower bounds are equal, since there is no reason to expand a belief state whose optimal value

is provably known. Finally, it is often useful to prune lower and upper bounds to maintain concise

representations, by removing either dominated vectors or points, respectively (Pineau, Gordon, &

Thrun, 2006; Smith, 2007).

Algorithm 1: The OHSVI algorithm

function OHSVI((LM̌,t)t∈{0,1,··· ,T }, (UM̌,t)t∈{0,1,··· ,T })

while ¬Stop(ξ0) do Explore (ξ0)

function Stop(ξt)

return UM̌,t(ξt) = LM̌,t(ξt)

function Explore (ξt)

if ¬Stop(ξt) then

d∗t ← arg maxdt
R(ξt, dt) + UM̌,t+1(P(ξt, dt))

Explore(P(ξt, d
∗
t ))

update UM̌,t and LM̌,t at ξt

OHSVI (outlined in Algorithm 1) operates in a similar manner as described above, but remains

fundamentally different from HSVI. HSVI generates trajectories of belief states while OHSVI gen-

erates trajectories of occupancy states. Also, HSVI generates trajectories by (i) picking a greedy

action with respect to the upper bound (optimistic exploration), and (ii) performing the transition

corresponding to the largest gap in error. Due to the deterministic nature of occupancy-state MDPs,

OHSVI does not need HSVI’s gap-based heuristic to guide the state exploration (Smith, 2007).

Instead, OHSVI always executes a greedy separable joint decision rule with respect to the upper

bounds, and then selects the next occupancy state based on this greedy separable joint decision rule.
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OHSVI can be also thought of as an extension of learning real-time A* (LRTA*) (Korf, 1990) that

takes advantage of the piecewise-linearity and convexity of the optimal value function.

(a) lower bound LM̌,t

ξt

V
∗ M̌
,t
(ξ

t)
≥
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k t
〉
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t

β0
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Figure 10: (a) Lower bounds are represented using sets of vectors, where vectors are dashed lines,

solid lines represent the upper surface of these vectors (lower-bound value function), and

the circle is the projection of the target occupancy onto the lower-bound value function.

(b) Upper bounds are represented using occupancy-value mappings, where dashed lines

denotes the convex hull formed by these points.

OHSVI relies on standard approaches to represent lower and upper bounds for piece-wise linear

and convex value functions: vector sets and occupancy-value mappings, which we detail in the next

section.

3.2.2 Vector Sets : Lower Bounds

As in HSVI or other algorithms (and depicted in Figure 10(a)), the lower bound LM̌,t can be repre-

sented as a finite collection Λt of n|Θt |-dimensional vectors, for every time-step t ∈ {0, 1, . . . , T }

(Smith, 2007; Kaelbling et al., 1998; Hauskrecht, 2000; Smallwood & Sondik, 1973). Lower

bounds can be iteratively updated using point-based backup steps as follows: ∀ξt ∈ △t,

Λ′t = Λt

⋃

{backup(Λt+1, ξt)} , where (16)

backup(Λt+1 , ξt) = arg max
g
ξt
dt

: dt∈A
〈ξt, g

ξt
dt
〉, (17)

g
ξt
dt
= rdt + arg max

g
βt+1
dt

: βt+1∈Λt+1
〈ξt, g

βt+1

dt
〉, (sum vectors in Rn|Θt |) (18)

g
βt+1

dt
= βt+1 · (pdt )⊤, (projection Rn|Θt+1 | 7→ Rn|Θt |) (19)

Λt being the vector set prior to backup and Λ′t the vector set after the backup. Lower bounds

(LM̌,t)t∈{0,1,...,T−1} initializes (Λt)t∈{0,1,...,T−1} with a single vector βt(·) = mins∈S ,a∈A (T − t) · ra(s), for

all t ∈ {0, 1, . . . , T }. Notice that the vector representation is suitable only for lower bounds.

3.2.3 Occupancy-ValueMappings : Upper Bounds

Upper bounds (UM̌,t)t∈{0,1,...,T−1} can be represented using mappings from occupancy states to reals,

see e.g., Figure 10(b). The upper bound is then the convex hull of the current point set. It is
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possible to interpolate the value for occupancy states whose mapping is not currently maintained

or is outdated. This can be achieved using linear approximation methods (e.g., Hauskrecht, 2000;

Smith, 2007). Of this family, the sawtooth linear interpolation maps every occupancy state ξ′ ∈ △t

and point set Ψt to upper-bound value

UM̌,t(ξ
′) = min {v∗ξ′ , v

ξ

ξ′
| (ξ 7→ vξ) ∈ Ψt}, where (20)

v
ξ

ξ′
= v∗ξ′ + (vξ − v∗ξ) · D(ξ, ξ′), and (21)

v∗ξ =
∑

s,θ

ξ(s, θ) · vs,∗. (22)

We refer to D(ξ, ξ′) = mins,θ : ξ(s,θ)>0 ξ
′(s, θ)/ξ(s, θ) as the sawtooth measure. To update the upper

bound UM̌,t at a specific occupancy state ξ using sawtooth, we need to compute a new value for ξ,

and add it to occupancy-value mapping UM̌,t, as follows:

Ψ′t = Ψt

⋃
{

(ξ 7→ vξ)
}

, (23)

vξ = max
d∈At

R(ξ, d) + UM̌,t+1(P(ξ, d)), (24)

where Ψt is the point set prior update and Ψ′t is the point set after the update. The upper bound

UM̌,t initializes Ψt = {ξ
s,∗ 7→ v

s,∗
t | s ∈ S } using the optimal value of the underlying MDP for corner

points, for every t ∈ {0, 1, . . . , T }.

Clearly, one can eventually find an optimal solution to the occupancy-state MDP using OHSVI

with the full lower and upper bounds. However, it quickly becomes intractable to maintain these

bounds in the full occupancy-state space since the number of state and joint-history pairs grows

as the horizon increases. This highlights the necessity for compact representations of occupancy

states, decision rules and vector values.

4. Solving Dec-POMDPs as Lossless Compact Occupancy-State MDPs

The previous sections show that every Dec-POMDP can be represented as an occupancy-state MDP

without losing optimality. The difficulty with using this representation is that common algorithms

for solving such MDPs with piecewise linear convex value functions quickly run out of time and/or

memory since state and action spaces become intractably large for most real-world problems. This

is not surprising given the NEXP-Complete worst-case complexity of general Dec-POMDPs, but

realistic Dec-POMDP applications often have significant structure.

In this section, we discuss optimally solving occupancy-state MDPs while potentially reducing

the dimensionality of the occupancy states, decision rules and value functions. In Subsection 4.1,

we reduce the dimensionality of occupancy states and decision rules by constructing clusters of

equivalent histories. Next, we define compact representations for occupancy states and decision

rules based upon clusters of histories rather than single histories. While the resulting compact

MDP may have exponentially fewer states and actions than the original model, the optimal value

function of the compact model may no longer be piecewise linear and convex. In Subsection 4.2,

we overcome this limitation, allowing values from one compact occupancy state to generalize to

another one using parametric value functions. Finally, Subsection 4.3 presents the feature-based

heuristic search value iteration algorithm and theoretical guarantees.
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4.1 Lossless Compact Occupancy-State MDPs

The dimension of occupancy states and decision rules typically grows exponentially with the hori-

zon. Because of this, it is often impractical to compute and store every component of occupancy

state and decision rule representations. We overcome this limitation by using compact represen-

tations of occupancy states and decision rules based on notions of equivalence between histories.

These notions of equivalence are fundamental to designing and analyzing algorithms for reducing

the dimensionality of the occupancy-state MDP, thereby improving scalability. Equivalence rela-

tions permit us to aggregate histories that convey the same information about the process. We target

equivalence relations that, upon replacing each group of aggregated histories by one element of the

group, allow us to produce compact representations for all occupancy states and decision rules while

still preserving the ability to find an optimal solution.

4.1.1 Probabilistic Equivalence for History Space Aggregation

We first present the equivalence notions that we build upon before defining compact representations

and proving that they preserve optimality. The definitions here are inspired by work on concise

information states (Boularias & Chaib-draa, 2008; Oliehoek et al., 2013). Here, we connect this

research to occupancy-state MDPs, and later provide natural algorithms for constructing and effec-

tively solving them.

Definition 10. Private histories θi, θ′i ∈ Θi
t of agent i ∈ I are locally probabilistically equivalent

with respect to occupancy state ξ ∈ △t —denoted ξ-LPE— if, and only if, for any state s ∈ S and

history θ¬i ∈ Θ¬i
t of the other agents I\{i}: Pr(s, θ¬i|θi, ξ) = Pr(s, θ¬i|θ′i, ξ).

It is worth noticing that ξ-LPE can be used to partition private history set Θi
t of any agent i ∈ I,

for all time steps t ∈ {0, 1, . . . , T }. This partition is a set of nonempty subsets (called clusters)

Bi
1
, Bi

2
, . . . , Bi

k
of private histories, such that Bi

1
∪ Bi

2
∪ . . . ∪ Bi

k
= Θi

t. We distinguish between two

sets of private histories for each agent i ∈ I and any occupancy state ξ. The first set, denoted Θi
t(ξ),

consists of private histories with non-zero probability with respect to ξ. The second set, denoted

Θi
t\Θ

i
t(ξ), consists of private histories with zero probability with respect to ξ. This difference is

particularly important, as we will show later. In fact, only nonzero private histories play a part in

demonstrating that ξ-LPE preserves optimality. In addition, it is useful to note that, for each agent,

ξ-LPE groups together all zero private histories w.r.t. ξ into the same cluster.

Given that all private histories are clustered that convey the same information, representations

of compact occupancy states, decision rules and value functions should depend only upon these

clusters. Unfortunately, maintaining clusters still requires a large amount of memory, which ex-

plains the impetus for labeled clusters. A labeled cluster is a cluster along with a label; all private

histories in a cluster match the corresponding label. Throughout the paper, we use the following

convention: each cluster of private histories maps to the minimum private history (of that cluster)

using lexicographical ordering. Specifically, the label of a cluster is chosen among private histories

in the cluster, which have non-zero probability w.r.t. the occupancy state. Therefore, the label of a

cluster is also a private history in that cluster, which leads to a clear relationship between a private

history, a cluster and its corresponding label. Thus, the representation of compact occupancy states,

decision rules and value functions should depend only upon labels instead of clusters.

Nonetheless, these compact representations make it hard to generalize the value function from

one compact occupancy state to another. As we will see later, this generalization requires the ability
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to quickly check whether a given private history belongs to a specified cluster. If we group histories

using ξ-LPE, checking whether private history θi belongs to cluster Bi whose label is another private

history ϑi ∈ Bi can now be replaced by checking whether private histories θi and ϑi are ξ-LPE, for

any arbitrary agent i ∈ I. Unfortunately, checking whether two private histories of an agent are

ξ-LPE requires enumerating all states and other agents’ nonzero histories w.r.t. ξ, which results in a

subroutine with complexity O(n|Θ¬i
t (ξ)|) — see Algorithm 3 in Appendix B. Given that we call this

procedure for exponentially many private histories, the importance of replacing local probabilistic

equivalence by a cheaper equivalence relation is clear. To this end, we introduce truncation proba-

bilistic equivalence w.r.t. ξ (denoted ξ-TPE). Before providing the formal definition of ξ-TPE, we

start with a motivation.

In many practical situations, all important information about the process to be controlled lies

in a history window (of a fixed length) of actions and observations the agents have experienced.

Based on this insight, we want truncation probabilistic equivalence to group private histories of

each agent that share: (i) the same model about states and other agent histories (i.e., be ξ-LPE)

and (ii) a common suffix of a fixed length m. In such a setting, once the private histories have

been clustered, checking if any particular private history belongs to a cluster can now be replaced

by checking whether both that private history and the label (another private history) for the cluster

share the same suffix of a specified length m — which is significantly faster than checking whether

two private histories are ξ-LPE: O(m) versus O(n|Θ¬i
t (ξ)|). That is, once the private histories are

clustered, any two private histories with the same suffixes of length m are already known to be ξ-

LPE though the clustering process and choice of m. It turns out that in defining the probabilistic

truncation equivalence w.r.t. ξ, we need to determine the suffix length (i.e., history window) mξ that

is sufficient — called the local truncation parameter w.r.t. ξ.

The local truncation parameter mξ with respect to occupancy state ξ ∈ △t has to be: (i) large

enough to ensure all nonzero private histories w.r.t. ξ that share the same suffix of length mξ are also

ξ-LPE; and (ii) small enough to group the maximum number of private histories. A straightforward

method (Algorithm 4 in Appendix B) to compute mξ starts with parameter m = 0 and proceeds

as follows: (step 1) If for any agent, nonzero private histories w.r.t. ξ that share a common suffix

of length m are also ξ-LPE with one another, then set mξ = m and terminate; (step 2) Otherwise,

increment m = m + 1 and go back to step 1. This algorithm is guaranteed to terminate after at most

t (the current time step) iterations, i.e., mξ = t in the worst case. The later case corresponds to the

boundary case where no clustering is done — i.e., each cluster corresponds to a single joint history.

We are now ready to formally define the truncation probabilistic equivalence relation.

Definition 11. Private histories θi, θ′i ∈ Θi
t of agent i ∈ I are truncation probabilistically equivalent

with respect to occupancy state ξ ∈ △t — we denote ξ-TPE — if, and only if, they hold the same last

mξ private actions and observations given mξ is found for the set of histories as discussed above.

Not surprisingly, ξ-TPE also partitions the private history sets. However, it often produces more

clusters than ξ-LPE since it further constrains ξ-LPE non-zero private histories w.r.t. ξ (since it also

requires the suffixes to be the same). In contrast to ξ-LPE, it spreads zero private histories w.r.t. ξ

over different clusters.

Recall that the advantage of ξ-TPE over ξ-LPE is that finding the appropriate cluster for a

private history (i.e., checking whether two private histories are equivalent) is cheaper using ξ-TPE

than using ξ-LPE. The former requires the comparison of their suffix for a fixed length, whereas the

latter needs the comparison of large distributions over states and joint histories.
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It is worth noticing that, to the best of our knowledge, TPE and LPE are the weakest assumptions

to date that can reduce the dimensionality of full occupancy states. Nevertheless, not all Dec-

POMDPs will benefit from these data reduction approaches. More precisely, it is unlikely that

these assumptions provide concise occupancy states in totally unstructured domains. Fortunately,

real-world domains are often very structured, as demonstrated in Section 5. Next, we address the

problem of using equivalence relations between private histories to find compact representations for

all occupancy states, decision rules and real vectors.

4.1.2 Compact States, Actions, Vectors andMDPs

We define the compact representations for occupancy states, decision rules and real vectors based

upon the aforementioned equivalence relations. Notice that the following definitions depend on

either local or truncation probabilistic equivalence relations only through the labeled clusters they

generate. Intuitively, compact occupancy states are distributions over states and joint labels, com-

pact decision rules are mappings from labels to private actions, and compact real vectors are map-

pings from pairs of states and joint labels to reals. Notationally, let Li
ξ

be the label set of agent i ∈ I

that occupancy state ξ generates (i.e., the set of labels generated from the histories which make up

ξ), and Bϑi be the labeled cluster of agent i ∈ I with label ϑi ∈ Li
ξ

and let Lξ =×i∈I Li
ξ
.

Definition 12. A compact occupancy state of ξ, denoted ξ̃, is a distribution over states and joint

labels: for all s ∈ S and (ϑi)i∈I ∈ Lξ,

ξ̃(s, ϑ1, ϑ2, . . . , ϑ|I|)
def
=

∑

θ1∈B
ϑ1

∑

θ2∈B
ϑ2

. . .
∑

θ|I |∈B
ϑ|I |

ξ(s, θ1, θ2, θ|I|). (25)

Example 7 (Multi-agent tiger — from full occupancy states to compact occupancy states). Figure

11 depicts a full occupancy state (left-hand side) and a corresponding compact occupancy state

(right-hand side) over joint histories and hidden states. To obtain this compact occupancy state, we

show that (al, zhl) and (al, zhr) are ξ1-LPE for agent green, and (al, zhl) and (aol, zhr) are ξ1-LPE

for agent red. As a consequence, one can group histories Bgreen ≡ {(al, zhl), (al, zhr)} for agent

green, and Bred ≡ {(aol, zhl), (aol, zhr)} for agent red, and replace each cluster by a single label.

A compact decision rule w.r.t. ξ of agent i ∈ I, denoted d̃i
ξ

: Li
ξ
7→ Ai, is a mapping from label

set to private action set. In addition, a compact private policy w.r.t. (ξ0, ξ1, . . . , ξT−1) of agent i ∈ I,

denoted π̃i = (d̃i
ξt

)t∈{0,1,...,T−1}, is a sequence of compact decision rules of agent i ∈ I. A similar

definition follows for compact separable joint policies π̃ = (π̃i)i∈I .

A compact real vector w.r.t. ξ, denoted β̃ξ ∈ R
n|Lξ |, is a mapping from pairs of state s ∈ S and

joint label ϑ ∈ Lξ to reals.

Intuitively, distribution ξ̃ reassigns the probability mass of each joint cluster (Bϑi)i∈I to the corre-

sponding joint label (ϑi)i∈I . Algorithms 3 and 4 (see Appendix B) present a straightforward way to

compute a compact occupancy state using local and truncation probabilistic equivalence relations,

respectively. It is worth noticing that, for a given occupancy state ξ ∈ △, ξ-LPE always produces

a number of joint labels |Lξ | less than or equal to the number of labels that ξ-TPE produces. This

is because ξ-TPE is a stricter form of local probabilistic equivalence, as discussed above. Hence,

ξ-LPE produces compact occupancy states, decision rules and real vectors that are more concise

than those from ξ-TPE.
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Figure 11: A step-1 compact occupancy state ξ̃1 that corresponds to full occupancy state ξ1.

In demonstrating that compact occupancy states are sufficient for optimal decision making in

occupancy-state MDPs, we rely on the notion of compact occupancy-state MDPs.

Definition 13. The compact occupancy-state MDP w.r.t. occupancy-state MDP M̌ is given by tuple

M̃ ≡ (△̃, Ã, R̃, P̃, ξ̃0, T ):

• △̃ = ∪t∈{0,1,...,T } △̃t is the space of compact occupancy states, with ξ̃0 = ξ0 the initial compact

occupancy state;

• Ã = ∪t∈{0,1,...,T } Ãt is the space of compact joint (decentralized) decision rules;

• R̃ : △̃ × Ã 7→ R is a compact reward function where R̃(ξ̃, d̃ξ) =
∑

s,ϑ ξ̃(s, ϑ) · rd̃ξ(ϑ)(s);

• P̃ : △̃ × Ã 7→ △̃ is a compact transition function where P̃(ξ̃, d̃ξ)
def
= ξ̃′, with ξ′ = P(ξ̃, d̃ξ); and

• T denotes the planning horizon.

Analogous to occupancy-state MDPs, compact occupancy states can be updated using known

transition and observation functions of the Dec-POMDP given the current compact occupancy state

and the chosen compact separable joint decision rule. The rewards are also calculated (as expecta-

tions) using the known reward model of the Dec-POMDP. Finally, the optimal value function of M̃

is solution of the optimality equations:

V∗
M̃,t

(ξ̃t)
def
= max

d̃ξt∈ Ã

(

R̃(ξ̃t, d̃ξt ) + V∗
M̃,t+1

(P̃(ξ̃t, d̃ξt ))
)

, ∀t ∈ {0, 1, . . . , T − 1}, (26)

with an added boundary condition V∗
M̃,T

(·) = 0.

4.1.3 Sufficiency of Compact Occupancy States

Below, we prove that, when planning over compact occupancy states instead of full occupancy

states, the optimal separable joint policy for the compact model immediately induces a correspond-

ing optimal separable joint policy for the original model. Before proceeding any further, we first

demonstrate the optimality of compact policies.
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Note that this proof mirrors a similar proof showing that histories for an agent can be clustered

without any change to the optimal policy or loss in value by using probabilistic equivalence in

the traditional Dec-POMDP representation (Oliehoek et al., 2013). We extend these ideas to the

occupancy-state MDP case and incorporate truncation probabilistic equivalence here to show that

the compact policies preserve optimality.

Theorem 4 (Optimality of compact policies). In occupancy-state MDPs, there exists optimal poli-

cies of an agent that depend only upon labels of that agent produced based on either local or

truncation probabilistic equivalence with respect to occupancy states these optimal policies induce,

and not on private histories.

Proof. We construct the proof by induction. We first show that in the last step of the problem, an

agent policy depends on labels, but not on its private histories.

Given occupancy state ξT−1 ∈ △T−1 and policies π¬i
T−1
∈ Π¬i

T−1
of the other agents I\{i}, the policy

πi
T−1
∈ Πi

T−1
of agent i ∈ I is a best response to π¬i

T−1
. That is, it chooses for every private history

θi
T−1
∈ Θi

T−1
a private action so as to maximize value based on model (Pr(s, θ¬i

T−1
|θi

T−1
, ξT−1))s,θ¬i

T−1

occupancy state ξT−1 and private history θi
T−1

induce over possible histories of the other agents and

resulting states of the system:

πi
T−1(θiT−1) ∈ arg maxai∈Ai

∑

s,θ¬i
T−1

Pr(s, θ¬i
T−1|θ

i
T−1, ξT−1) · rai ,π¬i

T−1
(θ¬i

T−1
)(s). (27)

In assigning private actions to private histories given ξT−1, only nonzero private histories w.r.t. ξT−1

affect the outcome. That is, zero probability private histories w.r.t. ξT−1 can be prescribed any pri-

vate action without losing optimality (e.g., a private action identical to that of the associated labels

generated based on either local or truncation probabilistic equivalence relations). Hence, policy

πi
T−1

depends on zero probability private histories w.r.t. ξT−1 only through corresponding labels.

Next, we restrict our attention to nonzero probability private histories w.r.t. ξT−1. Recall that private

histories of this family that are ξ-TPE with one another are also ξ-LPE with one another. Therefore,

if we demonstrate the property for private histories of this family that are ξ-LPE with one another,

the proof follows immediately for those that are ξ-TPE.

Assume θi
T−1

is a nonzero probability private history w.r.t. ξT−1. If θi
T−1

is in the cluster of

ξT−1-LPE private histories with label ϑi
T−1

(another nonzero probability private history w.r.t. ξT−1),

then equality (Pr(s, θ¬i
T−1
|θi

T−1
, ξT−1))s,θ¬i

T−1
= (Pr(s, θ¬i

T−1
|ϑi

T−1
, ξT−1))s,θ¬i

T−1
holds. As a consequence,

policy πi
T−1

depends on nonzero probability private history w.r.t. ξT−1 only through corresponding

labels:

πi
T−1(θiT−1) ∈ arg maxai∈Ai

∑

s,θ¬i
T−1

Pr(s, θ¬i
T−1|ϑ

i
T−1, ξT−1) · rai ,π¬i

T−1
(θ¬i

T−1
)(s). (28)

Therefore, the property holds at the last step of the problem, for any arbitrary agent i ∈ I. This

allows us to define policies on the last step as mappings from labels to private actions, i.e., compact

policies.

Next, we rely on the concept of private policy tree, which is a tree that represents actions in

nodes and observations in edges with a depth that is the number of stages to go. The root node

determines the first private action to be taken. Then depending on private observation received,

the agent executes another private action; and so on until a leaf node is reached. A policy tree
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δi
t:T−1

is a portion of a private policy πi
t:T−1

, which prescribes private actions to be taken by agent

i ∈ I in the remaining stages starting at a given private history θit. By an abuse of the notation, let

δi
t:T−1

= πi
t:T−1

(θit), for all agents i ∈ I and all time steps t ∈ {0, 1, . . . , T }.

For the induction step, we can show that, if an agent policy-tree from step t+ 1 onward depends

on private histories only through the corresponding labels for either equivalence relations, then

that agent’s policy tree from step t onward also depends on its private histories only through the

corresponding labels for either equivalence relations. Given occupancy state ξt ∈ △t and policy

π¬i
t:T−1

∈ Π¬i
t:T−1

of the other agents I\{i}, policy πi
t:T−1

∈ Πi
t:T−1

of agent i ∈ I is as follows:

πi
t:T−1(θit) ∈ arg maxδi

t:T−1
∈Πt:T−1

∑

s,θ¬i
t

Pr(s, θ¬i
t |θ

i
t, ξt) · β

δi
t:T−1
,π¬i

t:T−1
(θ¬i

t )(s), (29)

where (δi
t:T−1
, π¬i

t:T−1
(θ¬i

t )) is a separable joint policy-tree and βδ
i
t:T−1
,π¬i

t:T−1
(θ¬i

t ) is the associated vector

value. Again, in assigning private actions to private histories given ξt, only nonzero probability

private histories w.r.t. ξt matter. In fact, the property trivially holds for zero probability private

histories w.r.t. ξt. For nonzero probability private histories w.r.t. ξt, the property holds for private

histories that belong to a cluster of ξt-TPE private histories since those histories would belong to a

cluster of ξt-LPE private histories, as previously discussed.

For this reason, we restrict our attention to nonzero probability private histories θit w.r.t. ξt that

belong to a cluster of ξt-TPE private histories with label ϑi
t. Then, equality (Pr(s, θ¬i

t |θ
i
t, ξt))s,θ¬i

t
=

(Pr(s, θ¬i
t |ϑ

i
t, ξt))s,θ¬i

t
holds. Hence,

πi
t:T−1(θit) ∈ arg maxδi

t:T−1
∈Πt:T−1

∑

s,θ¬i
t

Pr(s, θ¬i
t |ϑ

i
t, ξt) · β

δi
t:T−1
,π¬i

t:T−1
(θ¬i

t )(s). (30)

Consequently, an agent policy depends on private history for any step of the problem only through

corresponding labels for either equivalence relations. This demonstrates that a compact policy does

not lose information. �

Theorem 5. Compact occupancy state ξ̃ based on either local or truncation probabilistic equiva-

lence relations is a sufficient statistic of occupancy state ξ ∈ △t. Furthermore, an optimal separable

joint policy for compact occupancy-state MDP M̃, together with the correct estimation of the com-

pact occupancy states, immediately induces an optimal separable joint policy for occupancy-state

MDP M̌.

Proof. The proof proceeds similarly to that of Theorem 2. That is, in proving the sufficiency of

the compact occupancy state with respect to its corresponding full occupancy state, we need to

demonstrate: (a) the optimal value function at a compact occupancy state is identical to that of its

corresponding occupancy state and (b) the next-step compact occupancy states depend only upon

the current compact occupancy states (and next-step compact separable joint decision rules). We

stated (b) in Definition 13, so only statement (a) remains to be proved. We show this by induction.

The sufficiency of the compact occupancy state with respect to its corresponding occupancy

state trivially holds at the last step of the problem. In fact, V∗
M̃,T

(ξ̃T ) = V∗
M̌,T

(ξT ) = 0 for any

arbitrary occupancy state ξT and its corresponding compact occupancy state ξ̃T (since the horizon

has been reached). If we assume the statement (a) holds for time-step t + 1, we can now show
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that it holds for time-step t. For any arbitrary step-t occupancy state, Bellman’s optimality criterion

produces the following equality:

V∗
M̌,t

(ξt)
def
= max

dt∈A
R(ξt, dt) + V∗

M̌,t+1
(ξt+1), (31)

where ξt+1 = P(ξt, dt). By the inductive hypothesis, we have that V∗
M̃,t+1

(ξ̃t+1) = V∗
M̌,t+1

(ξt+1). This

results in equality:

V∗
M̌,t

(ξt) = max
dt∈A

R(ξt, dt) + V∗
M̃,t+1

(P̃(ξt, dt)). (32)

In addition, Theorem 4 demonstrated that by restricting our attention to compact (joint) decision

rules Ã, we preserve optimality. Thus, we obtain:

R(ξt, dt) =
∑

φṡ,ϑ∈Φξt

rdt(ϑ)(ṡ)
∑

s,θ

φṡ,ϑ(s, θ) · ξt(s, θ), (Theorem 4)

=
∑

φṡ,ϑ∈Φξt

rd̃ξt (ϑ)(ṡ) · ξ̃t(ṡ, ϑ), (Definition of ξ̃t)

= R(ξ̃t, d̃ξt ), (d̃ξt (ϑ) = dt(ϑ)).

Hence,

V∗
M̌,t

(ξt) = max
d̃ξt∈ Ã

R̃(ξ̃t, d̃ξt ) + V∗
M̃,t+1

(P̃(ξ̃t, d̃ξt )), (33)

= V∗
M̃,t

(ξ̃t). (34)

Therefore, statement (a) holds for any arbitrary occupancy state ξt ∈ △t and any arbitrary time

step t ∈ {0, 1, . . . , T − 1}. Combining statements (a) and (b), we are guaranteed to find the optimal

value function for M̌ by using compact occupancy states instead of occupancy states. In addition,

given the optimal value function (V∗
M̃,t

)t∈{0,1,...,T }, the optimal compact policy π̃
def
= (d̃t)t∈{0,1,...,T−1} is

obtained by successive one-step lookaheads: for all t ∈ {0, 1, . . . , T − 1},

d̃t ∈ max
d̃ξt∈ Ã

R̃(ξ̃t, d̃ξt ) + V∗
M̃,t+1

(P̃(ξ̃t, d̃ξt )), (35)

where ξ̃0 = ξ0 and ξ̃t+1 = P̃(ξ̃t, d̃t). This immediately induces a separable joint policy π
def
=

(dt)t∈{0,1,...,T−1} for the original occupancy-state MDP M̌ such that, for every agent i ∈ I and ev-

ery private history θit, we set di
t(θ

i
t) = d̃i

t(ϑ
i
t), where θit is in a cluster with label ϑi

t. Since both π̃ and

π yield the same expected value starting at the initial occupancy state, separable joint policy π is

optimal for the original occupancy-state MDP M̌. �

By solving the compact problem instead of the original one, we circumvent the exhaustive enu-

meration of occupancy states and decision rules and preserve ability to find an optimal solution

for the original problem. It is worth noticing that the optimal value function in the compact occu-

pancy space is not PWLC. This is because compact occupancy states are expressed using different

label sets. However, by exploiting the PWLC property of the optimal value function in the full

occupancy-state space, we develop methods that can generalize value from one compact occupancy
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state to another. Next, we propose a method for incrementally improving lower and upper bounds

that narrow the range of the optimal value function. But, in contrast to the OHSVI algorithm, we do

this using compact occupancy states and compact real vectors. More precisely, our compact upper

and lower bounds are defined on full occupancy states, but only through their compact representa-

tions.

4.2 Feature-Based Compact Bounds

In our algorithm, upper and lower bounds are of crucial importance. They can narrow the range

of the optimal value function, determine suboptimal regions of the search space, and speed up the

convergence towards an exact solution. Our approach approximates the full lower- and upper-bound

heuristic functions with heuristic functions defined over the same full occupancy space (Tsitsiklis &

van Roy, 1996; Hauskrecht, 2000; Roy, Gordon, & Thrun, 2005). The new heuristic functions are

typically more compact (with respect to traditional high-dimensional vector or point sets discussed

in Section 3.2.2 and Section 3.2.3), and are easier to compute than the full bounds. Our heuristic

functions can be formulated as feature-based compact functions which combine dimensionality

reduction (using the clustering methods discussed above) and function approximation (Tsitsiklis &

van Roy, 1996). Thus, to demonstrate that the new heuristic functions are valid bounds, we will

analyze our dimension reduction and approximation methods.

4.2.1 Feature-Based Compact States and Vectors

One can think of feature-based compact representations as a dimension reduction model for rep-

resenting high-dimensional bounds using bounds of lower dimensionality. However, this approach

requires a set of basis functions (or feature set), in which lower-dimensional bounds can be ex-

pressed effectively. A basis function (or feature) is a function which maps high-dimensional data to

one salient feature of the problem at hand. In our setting for example, a feature can be an indicator

function of whether a private history matches one specified label. Features are at the core of the

feature-based compact representations of full occupancy states and real vectors, which ultimately

serve to represent upper and lower bounds using either feature-based compact vector or point sets

in a similar way as standard vector and point set representations.

Definition 14. A feature is an indicator function φs,(ϑi)i∈I
: S × Θ 7→ {0, 1} for one specified state

s ∈ S and one specified joint label (ϑi)i∈I ∈ Lξ that occupancy state ξ induces — i.e., for all ṡ ∈ S

and (θi)i∈I ∈ Θ,

φs,(ϑi)i∈I
(ṡ, (θi)i∈I) =

{

1, if s = ṡ and, for all i ∈ I, θi belongs to cluster with label ϑi,

0, otherwise.

The feature set w.r.t. ξ, denoted Φξ , is given by Φξ
def
= {φs,ϑ|s ∈ S , ϑ ∈ ×i∈IL

i
ξ
}.

The feature set w.r.t. ξ represents the partition of the state and joint history space that equivalence

relation ξ-LPE or ξ-TPE induces. This partition is a set of nonempty subsets (Bs,ϑ)s∈S ,ϑ∈Lξ (called

labeled joint clusters) such that ∪s∈S ,ϑ∈LξBs,ϑ = S × Θ. A labeled joint cluster Bs,ϑ consists of

the cross-product between the singleton {s} and labeled clusters Bϑ1 , Bϑ2 , . . . , Bϑ|I | that equivalence

relation ξ-LPE or ξ-TPE generates. Therefore, a feature can be interpreted as a way to check whether

a state and joint history pair belongs to a specified labeled joint cluster. Thus, features provide
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an alternative (possibly lossy) representation of compact occupancy states. One can express the

compact representation ξ̃ of full occupancy state ξ using its feature set Φξ, as follows

ξ̃ =



















∑

s∈S

∑

θ∈Θ(ξ)

φṡ,ϑ(s, θ) · ξ(s, θ)



















φṡ,ϑ∈Φξ

.

Specifically, for all state ṡ ∈ S and all labels ϑi ∈ Li
ξ

and all agent i ∈ I,

ξ̃(ṡ, ϑ1, ϑ2, . . . , ϑ|I|)
def
=

∑

θ1∈B
ϑ1

∑

θ2∈B
ϑ2

. . .
∑

θ|I |∈B
ϑ|I |

ξ(ṡ, θ1, θ2, θ|I|),

=
∑

(ṡ,θ)∈Bṡ,ϑ

ξ(ṡ, θ), (ϑ
def
= (ϑ1, ϑ2, . . . , ϑ|I|))

=
∑

s∈S

∑

θ∈Θ(ξ)

φṡ,ϑ(s, θ) · ξ(s, θ),

An analogous property holds for feature-based compact real vectors w.r.t. ξ. That is, a feature-based

compact real vector β̃ξ is a |Φξ |-dimensional real vector that is expressed using Φξ.

It is worth noticing that standard feature-based approaches assume a unique feature set and data

are all expressed based on that unique feature set, which eases bound generalization (Tsitsiklis &

van Roy, 1996). In our setting, however, different occupancy states yield different (possibly disjoint)

feature sets. Hence, feature-based compact occupancy states (or real vectors) are expressed based

on different feature sets, making it hard to transfer value from one feature-based compact occupancy

state to another one. Bounds generalize naturally among feature-based compact occupancy states

only if they share the same feature set. To remedy this, we introduce basis change operations for

both feature-based compact occupancy states and real vectors.

4.2.2 Change of Feature Set

In enabling the bound generalization, it is necessary to work with more than one feature set. Hence,

it is important to be able to easily transform feature vectors calculated with respect to one feature set

to their corresponding (possibly lossy) representations with respect to another feature set. To ease

the change of feature set, it is necessary to match features from the original feature set to those from

the destination feature set. We introduce two heuristic methods to match features from different

feature sets, thereby allowing the change of feature sets.

Definition 15. Let Φξ and Φξ′ be feature sets w.r.t. occupancy states ξ and ξ′, respectively. The

projection of feature-based compact occupancy state ξ̃ onto feature set Φξ′ , denoted FΦξ′ (ξ̃), is

given by probability distribution:

FΦξ′ (ξ̃)
def
=



















∑

φs,ϑ∈Φξ

φṡ,ϑ̇(s, ϑ) · ξ̃(s, ϑ)



















φṡ,ϑ̇∈Φξ′

, (36)

where FΦξ′ (ξ̃) reassigns the probability mass ξ̃(s, ϑ) of each pair (s, ϑ), such that φs,ϑ ∈ Φξ, to pair

(ṡ, ϑ̇), such that φṡ,ϑ̇ ∈ Φξ′ , if and only if they match, i.e., φṡ,ϑ̇(s, ϑ) = 1.
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This change of feature set describes a function from original feature set Φξ to destination feature

set Φξ′ . In particular, it is a surjective function (i.e., every feature φṡ,ϑ̇ in the destination set has at

least one corresponding feature φs,ϑ in the original set — those such that φṡ,ϑ̇(s, ϑ) = 1). The

transformation assigns to each feature in the destination set the probability mass of all corresponding

features in the original set. This heuristic method provides no guarantee that both FΦξ′ (ξ̃) and ξ̃ share

the same optimal value. By replacing a range of features in the original set by a single feature in the

destination set, we produce compact but possibly lossy representations, which ultimately precludes

ability to preserve the value of the original compact occupancy state. Fortunately, since we will use

these representations to provide bounds, even lossy representations can generate useful bounds.

Definition 16. Let Φξ and Φξ′ be feature sets w.r.t. occupancy states ξ and ξ′, respectively. The

projection of feature-based compact real vector β̃ξ using feature set Φξ′ , denoted GΦξ′ (β̃ξ), is given

by feature vector:

GΦξ′ (β̃ξ)
def
=



















∑

φs,ϑ∈Φξ

φs,ϑ(ṡ, ϑ̇) · β̃ξ(s, ϑ)



















φṡ,ϑ̇∈Φξ′

(37)

This change of feature set applies to real vectors, and describes a function from destination

feature set Φξ′ to original feature set Φξ. Specifically, every pair (ṡ, ϑ̇) along with feature φṡ,ϑ̇ in

the destination set has a corresponding pair (s, ϑ) along with a feature φs,ϑ in the original set —

i.e., the only one such that φs,ϑ(ṡ, ϑ̇) = 1. The transformation assigns to each pair (ṡ, ϑ̇) in the

destination set the value β̃ξ(s, ϑ) from their corresponding pair (s, ϑ) in the original set. Since not all

pairs in the original set can have their values represented in GΦξ′ (β̃ξ), the resulting feature vector is

a lossy representation of the original vector β̃ξ. The loss in the resulting feature vector depends on

original and destination feature sets, and the choice of the equivalence relation between histories.

As previously mentioned, we will make use of either ξ-LPE or ξ-TPE relations.

Using ξ-LPE, we distinguish between state and joint-history pairs that involve only non-zero

probability private history sets w.r.t. ξ (i.e., non-zero probability pairs), and state and joint-history

pairs that involve zero probability private history sets w.r.t. ξ (i.e., zero probability pairs). For the

sake of conciseness, compact real vectors maintain only values associated to non-zero probability

pairs. All zero probability pairs have the same default value, for example (T − t) mins∈S ,a∈A ra(s).

Hence, the change of feature set is such that all pairs (ṡ, ϑ̇) in the destination set, with a corre-

sponding non-zero probability pair (s, ϑ) in the original set, inherits the value β̃ξ(s, ϑ). However, all

pairs (ṡ, ϑ̇) in the destination set, with a corresponding zero probability pair (s, ϑ) in the original set,

inherits the default (and loose) value. Because the number of zero probability pairs in occupancy

state ξ is far larger than the number of non-zero probability pairs, feature vectors that result from

the change of basis via ξ-LPE have multiple components with a loose value.

Using ξ-TPE, we distinguish between state and joint-history pairs only through joint-history

suffixes of length mξ — see Definition 10. There are many pairs in the destination set, that would

have been associated to a corresponding zero probability pair in the original set using ξ-LPE. Us-

ing ξ-TPE, however, these pairs are associated to a non-zero probability pair in the original set.

Specifically, pair (ṡ, ϑ̇) in the destination set, whose probability is zero with respect to ξ, has a cor-

responding zero probability pair in the original set using ξ-LPE. Yet, if pair (ṡ, ϑ̇) in the destination

set and non-zero probability pair (s, ϑ) in the original set share a common length mξ history suffix,

then (ṡ, ϑ̇) is associated to (s, ϑ) using ξ-TPE. Thus, feature vectors that result from the change of
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feature set using ξ-TPE involve fewer components with a default, loose value than those from using

ξ-LPE.

Although heuristic methods for the change of feature set are not guaranteed to produce rep-

resentations that retain all information of their compact counterparts, in many cases the resulting

(possibly lossy) representation is sufficient to generalize bounds over the entire compact occupancy

space. The bound property (i.e., the ability to overestimate or underestimate the optimal value) of

the resulting representation can be determined by examining methods for the change of feature set.

The following theorem (proved in the Appendix) establishes that the FΦ and GΦ mappings we use

preserve the bound property.

Theorem 6. For any arbitrary feature set Φ, the change of feature set based on mappings GΦ and

FΦ preserve the bound property — i.e., ∀ξ̃ ∈ △̃t,

a. ∀ν ∈ R, if ν ≥ V∗
M̃,t

(ξ̃), then ν ≥ V∗
M̃,t

(FΦ(ξ̃));

b. ∀β̃ ∈ R|Φ
′|, if V∗

M̃,t
(ξ̃) ≥ 〈ξ̃,GΦξ (β̃)〉, then V∗

M̃,t
(ξ̃) ≥ 〈ξ̃,GΦξ (GΦ(β̃))〉.

Theorem 6 shows that bound properties for a given occupancy state are preserved for the oc-

cupancy state obtained upon the change of feature set using heuristic methods F or G. Next, we

discuss how to approximate full upper and lower bounds over the entire occupancy space.

4.2.3 Compact Point-ValueMappings: Upper Bounds

The full upper-bound value function can be approximated by a finite set of points and the sawtooth

interpolation rule that estimates the value of an arbitrary point of the compact occupancy space by

relying on the points already experienced and their associated values. A key aspect of this heuristic

approximation is the sawtooth interpolation rule over compact occupancy states.

In the full upper-bound value function, the sawtooth interpolation can only approximate points

expressed within the same basis set. Here, we demonstrate that it can apply even when points are

expressed in different feature sets by means of the change of feature set. Let Ψ̃ = {(ξ̃1 7→ v
ξ̃1), (ξ̃2 7→

vξ̃2), . . . , (ξ̃k 7→ v
ξ̃k )} be a set of point-value pairs that represents approximate function UM̌ defined

over the compact occupancy space, such that each point satisfies Theorem 6a. Then the approximate

value for an arbitrary compact occupancy state ξ̃′ based on point-value pair (ξ̃ 7→ vξ̃) can be obtained

using the sawtooth interpolation in a way that is similar to the calculation in the full upper-bound

value function:

v
ξ̃

ξ̃′
= v∗
ξ̃′
+ (vξ̃ − v∗

ξ̃
) · D(FΦξ′ (ξ̃), ξ̃

′), (38)

where v∗
ξ̃
=

∑

s,ϑ ξ̃(s, ϑ) · vs,∗. From Theorem 6a, we know that feature vector FΦξ′ (ξ̃) shares the

same upper bound vξ̃ with ξ̃. In addition, FΦξ′ (ξ̃) and ξ̃′ are expressed using the same feature set

Φξ′ . Hence the sawtooth interpolation can apply and produce upper-bound value v
ξ̃

ξ̃′
for compact

occupancy state ξ̃′ based on point-value pair (ξ̃ 7→ vξ̃). The optimization with respect to compact

occupancy state ξ̃′ is then acquired by choosing the best overall upper-bound value from all point-

value pairs in Ψ̃:

UM̃(ξ̃′) = min {v∗
ξ̃′
, v
ξ̃

ξ̃′
| (ξ̃ 7→ vξ̃) ∈ Ψ̃t}. (39)
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This heuristic approximation differs from the full upper-bound value function only because it re-

quires the change of feature set FΦ and compact occupancy states instead of full occupancy states.

Hence, this sawtooth interpolation is computationally more efficient than that of the full upper-

bound value function, because compact occupancy states are of lower dimensionality. As for the ac-

curacy of the resulting upper-bound values, it is not clear how this sawtooth interpolation compares

with that from the full upper-bound value function (i.e., whether or not the sawtooth interpolation

weakens the upper bounds). Yet, a collection of point-value pairs obtained for a selection of com-

pact occupancy states can be combined to define an approximate function of the upper-bound value

function as discussed next.

A feature-based compact value function (UM̃,t)t∈{0,1,...,T } over compact occupancy space △̃

is represented using sets (Ψ̃t)t∈{0,1,...,T } of point-value pairs that estimate values of any arbitrary

compact occupancy state. Initially, each set Ψ̃t contains |S | point-value pairs {ξs,∗ 7→ v
s,∗
t | s ∈ S }

that represent the step-t optimal value function of the underlying MDP. The sawtooth interpolation

estimates UM̃,t at any compact occupancy state ξ̃′ ∈ △̃t as follows:

UM̃,t(ξ̃
′) = min {v∗

ξ̃′
, v
ξ̃

ξ̃′
| (ξ̃ 7→ vξ̃) ∈ Ψ̃t}, ∀t ∈ {0, 1, . . . , T }.

Set Ψ̃t is updated for every compact occupancy state ξ̃′ ∈ △̃t, using a point-based backup step as

follows:

Ψ̃t = Ψ̃t

⋃
{

(ξ̃′ 7→ vξ̃
′

)
}

, ∀t ∈ {0, 1, . . . , T }

where vξ̃
′

= maxd̃ξ′∈ Ã R̃(ξ̃′, d̃ξ′) + UM̃,t+1(P̃(ξ̃′, d̃ξ′)). Approximate function (UM̃,t)t∈{0,1,...,T } is an

upper-bound value function similarly to the full upper-bound value function as stated below and

proven in Appendix A.

Theorem 7. Feature-based compact value function (UM̃,t)t∈{0,1,...,T }, as iteratively updated, upper

bounds the optimal value function over the entire compact occupancy space.

4.2.4 Compact Vector Sets: Lower Bounds

A full lower bound over the full occupancy space can be approximated by a finite set of compact

real vectors along with their associated feature sets and linear function updates. We take inspiration

from initialization, evaluation and update routines from the full lower-bound value function. One

important aspect of our approximation lies in the definition of the update operation, denoted ˜backup.

Let Λ̃ be a set of compact real vectors that represents the approximate value function, such that

each compact real vector satisfies Theorem 6b. Then, a new compact real vector for any compact

occupancy state ξ̃ and compact decision rule d̃ξ can be computed efficiently as in the full lower-

bound value function (Section 3.2.2):

g
ξ̃

d̃ξ
= rd̃ξ + arg maxgα

d̃ξ
: α∈Λ̃

〈

ξ̃, gα
d̃ξ

〉

, (40)

where gα
d̃ξ
= GΦP(ξ̃,d̃ξ )

(α) · (pd̃ξ )⊤ is the expression of the projection of GΦP(ξ̃,d̃ξ )
(α) onto feature set

Φξ , and GΦP(ξ̃,d̃ξ )
(α) is the expression of α in feature set ΦP(ξ̃,d̃ξ)

. The optimization with respect to

compact occupancy state ξ̃ is then acquired by choosing the compact vector with the best overall
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value from all vectors g
ξ̃

d̃ξ
:

˜backup(Λ̃, ξ̃) = arg max
g
ξ̃

d̃ξ
: d̃ξ∈ Ã

〈

ξ̃, g
ξ̃

d̃ξ

〉

. (41)

The principal difference with respect to the full lower-bound value function lies in the use of trans-

formation GΦ and compact real vectors instead of high-dimensional real vectors. Hence, this backup

operation is more efficient than that of the full lower-bound value function, since operations are the

same but we now use only lower dimensional vectors, which is likely to save significant time. But

the change of feature set may produce weaker bounds. Nonetheless, a collection of compact vectors

obtained for a selection of compact occupancy states can be combined to define an approximate

function of the lower-bound value function as discussed next.

A feature-based compact value function (LM̃,t)t∈{0,1,...,T−1} over the compact occupancy space

△̃ is represented using sets (Λ̃t)t∈{0,1,...,T−1} of compact real vectors along with their associated feature

sets that estimate values of any arbitrary compact occupancy state. Initially, each set Λ̃t contains a

single compact real vector β̃t given by

β̃t(·) = (T − t) min
s∈S ,a∈A

ra(s), ∀t ∈ {0, 1, . . . , T }. (42)

The max-vector rule estimates LM̃,t at any compact occupancy ξ̃t ∈ △̃t as follows:

LM̃,t(ξ̃t) = max
(Φ 7→β̃t)∈Λ̃t

〈ξ̃t,GΦξt (β̃t)〉, ∀t ∈ {0, 1, . . . , T }. (43)

Set Λ̃t is updated for every compact occupancy state ξ̃t ∈ △̃t, using point-based backup steps as

follows:

Λ̃t = Λ̃t

⋃
{

(Φξt 7→
˜backup(Λ̃t+1, ξ̃t))

}

. (44)

Approximate function (LM̃,t)t∈{0,1,...,T−1} is a lower-bound value function since its main difference

with respect to the full lower-bound value function lies in the use of GΦ, which preserves the bound

property. For a complete proof, the reader can refer to Appendix A.

Theorem 8. Feature-based compact value function (LM̃,t)t∈{0,1,...,T }, lower bounds the optimal value

function over the entire compact occupancy space.

4.3 Feature-Based Heuristic Search Value Iteration Algorithm

This section presents the feature-based heuristic search value iteration algorithm (FB-HSVI) that

iteratively updates feature-based compact lower- and upper-bound representations. We also discuss

FB-HSVI’s theoretical guarantees.

4.3.1 Algorithm Description

Similar to OHSVI (Algorithm 1), FB-HSVI (Algorithm 2) solves occupancy-state MDPs by gen-

erating trajectories of occupancy states and iteratively updating lower and upper bounds, but in

the case of FB-HSVI, these are now compact occupancy states and feature-based compact lower

(LM̃,t)t∈{0,1,...,T } and upper bounds (UM̃,t)t∈{0,1,...,T }. FB-HSVI improves the scalability of OHSVI in
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several ways. First, FB-HSVI replaces full exact representations by compact representations for all:

occupancy states, decision rules, lower and upper bounds. In addition, it combines stopping criteria

from HSVI (Smith, 2007) and optimal classical heuristic search methods (e.g., Hart et al., 1968;

Korf, 1990), which may result in more efficient pruning of unnecessary subspaces.

Algorithm 2: The FB-HSVI Algorithm.

function FB-HSVI((LM̃,t)t∈{0,1,··· ,T }, (UM̃,t)t∈{0,1,··· ,T })
initialize LM̃,t and UM̃,t for all t ∈ {0, · · · , T − 1}.

while ¬ Stop (ξ̃0, 0) do Explore(ξ̃0, 0)

function Explore(ξ̃t, gt)

if ¬ Stop (ξ̃t, gt) then

d̃t ∈ arg maxd̃′t∈ Ã R̃(ξ̃t, d̃
′
t ) + UM̃,t+1(P̃(ξ̃t, d̃

′
t ))

Update UM̃,t

Explore(P̃(ξ̃t, d̃t), R̃(ξ̃t, d̃t) + gt)

Update LM̃,t

return gt

function Stop(ξ̃t, gt)

return UM̃,t(ξ̃t) ≤ LM̃,t(ξ̃t) ∨ LM̃,0(ξ̃0) ≥ gt + UM̃,t(ξ̃t)

FB-HSVI differs from OHSVI in four main ways:

1. compact representation of occupancy states, which significantly reduces the search space;

2. compact representation of decision rules, which speeds up the decision-rule selection;

3. compact representation of lower and upper bounds, which speeds up the convergence;

4. enhanced value function generalization and combination of stopping criteria, which results

in more efficient pruning of unnecessary subspaces.

4.3.2 Stopping Criteria

The stopping criteria of FB-HSVI build upon those from optimal classical heuristic search methods

(e.g., Hart et al., 1968; Korf, 1990; Smith, 2007). They determine when to stop the current trajectory

of compact occupancy states in the algorithm. Ideally, an optimal criterion would measure the dis-

tance from the current trajectory to an optimal trajectory, but this is not known. Instead, we use two

criteria based on the upper and lower bound values of trajectories and compact occupancy states.

The upper bound of the current trajectory, which we denote f (ξ̃t), is the sum of two functions: (1)

the past trajectory-reward function g(ξ̃0, ξ̃t), which is the sum of rewards from the starting com-

pact occupancy state ξ̃0 to the current occupancy state ξ̃t; and (2) the future trajectory-reward from

compact occupancy state ξ̃t, which is an admissible heuristic estimate, e.g., upper-bound UM̃,t(ξ̃t) at

compact occupancy state ξ̃t.

The first criterion relies on the fact that there is no reason to expand an occupancy state ξ̃t that

has f (ξ̃t) less than or equal to LM̃,0(ξ̃0), since it cannot lead to a solution better than the current best

solution; a criterion previously used in optimal classical heuristic search methods (e.g., Hart et al.,

1968; Korf, 1990).
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Criterion 1. A trajectory of occupancy states (ξ̃0, . . . , ξ̃t) is interrupted whenever heuristic value

f (ξ̃0) is less than or equal to LM̃,0(ξ̃0) — i.e., LM̃,0(ξ̃0) ≥ f (ξ̃0). The best solution found so far

is optimal if there is no expanded occupancy state ξ̃t on the frontier of the search space2 with a

heuristic-value f (ξ̃t) higher than LM̃,0(ξ̃0).

The second criterion builds upon the fact that there is no reason to expand an occupancy state ξ̃t
that has upper bound less than or equal to its lower bound (Smith, 2007).

Criterion 2. A trajectory of occupancy states (ξ̃0, . . . , ξ̃t) is interrupted whenever upper bound

UM̃,t(ξ̃t) is less than or equal to lower bound LM̃,t(ξ̃t) — i.e., LM̃,t(ξ̃t) ≥ UM̃,t(ξ̃t). The best solution

found so far is optimal if upper and lower bounds at the initial occupancy state are equal.

By interrupting any trajectory that satisfies either of criterion 1 or 2, FB-HSVI preserves the

ability to find an optimal separable joint policy, as shown below.

4.3.3 Convergence Guarantees

Theorems 7 and 8 show the feature-based compact functions (LM̃,t)t∈{0,1,··· ,T } and (UM̃,t)t∈{0,1,··· ,T } as

iteratively updated by FB-HSVI (Algorithm 2) upper and lower-bounds the optimal value function.

Next, we prove that upon the update of each trajectory no compact occupancy state has its bounds

depreciated, and at least one compact occupancy state improves its bounds. Since there is a finite

number of compact occupancy states, the bounds ultimately converge to the optimal value at the

initial occupancy state. Here, we use this argument to show that FB-HSVI converges to an optimal

separable joint policy after a finite number of iterations. To this end, a compact occupancy state is

said to be finished if either criterion 1 or 2 is satisfied; otherwise it is not finished. Moreover, all

compact occupancy states ξ̃T at the last time step T are finished since criterion 2 is satisfied at the

last time step T .

Theorem 9. The FB-HSVI algorithm always terminates after a finite number of trials and the solu-

tion found at termination — the separable joint policy the lower bound induces — is optimal.

Proof. First, we show by contradiction that the algorithm cannot terminate before an optimal solu-

tion is found. Suppose the algorithm terminates before finding an optimal solution which has value

f ∗(ξ̃0). Then, the sequence of f (ξ̃0) values generated while planning is f 0(ξ̃0), f 1(ξ̃0), . . . , f k(ξ̃0),

where f 0(ξ̃0) is the initial lower bound before any solution is found, f 1(ξ̃0) is the value of the first

solution found, and f k(ξ̃0) that of the last solution found. In addition, we know by hypothesis that

f 0(ξ̃0) < f 1(ξ̃0) < . . . < f k(ξ̃0) ≤ f ∗(ξ̃0), where the last inequality holds under the assumption that

the algorithm may terminate with a suboptimal solution.

Now consider an optimal path ξ̃0, ξ̃1, . . . , ξ̃T leading from the initial occupancy state to a terminal

occupancy state. Under the assumption that this optimal path was not found, there must be some

occupancy state ξ̃t along this path that was generated but not expanded. This is only possible if

f (ξ̃t) ≤ f k(ξ̃0). But by the admissibility of f , we know that f (ξ̃t) ≥ f ∗(ξ̃0) and therefore f (ξ̃t) ≥

f ∗(ξ̃0) > f m(ξ̃0) for any m ∈ {0, 1, . . . , k}. From this contradiction, it follows that the algorithm

cannot terminate before an optimal solution is found.

Next, we show that each trial turns at least one not finished occupancy state into a finished one.

Suppose the algorithm has not yet terminated and a trial is executed. Let the last two occupancy

2. Typically, search algorithms involves expanding nodes by adding all unexpanded neighboring nodes into a priority

queue, called a frontier of the search space.
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states encountered during the forward expansion be ξ̃t and ξ̃t+1. Given that the trial terminated at

ξ̃t+1, we know that before the trial, ξ̃t was not finished but ξ̃t+1 was finished. Because ξ̃t+1 results

from a greedy separable joint decision rule selection at ξ̃t, we know ξ̃t will be finished after being

updated. This is because only two scenarios are possible, each of which corresponds to a stopping

condition:

• either ξ̃t+1 yields its optimal value, then ξ̃t will also yield its optimal value after being updated,

making it a finished occupancy state after the update;

• or ξ̃t+1 has f (ξt+1) lower than or equal to LM̃,0(ξ̃0), then ξ̃t will also have an f (ξ̃t) lower than

or equal to LM̃,0(ξ̃0) after being updated.

Thus, executing a trial causes occupancy state ξ̃t, which was not finished, to become finished.

Finally, we show that the algorithm terminates after a finite number of trials. To this end, we

note that the search graph of the algorithm is a tree similar to Figure 8, with a bounded branching

factor |Ãt | at depth t ∈ {0, 1, . . . , T }. By hypothesis, only occupancy states that appear at depth t < T

are not finished. Thus, the total number of occupancy states at all depths up to time step T is upper

bounded by the total number of information states at all depths up to time step T :

| ∪T−1
t=0 St | = |A

∗|
|I||Z∗|T |A∗|T − 1

|Z∗||A∗| − 1
, (45)

where A∗ = maxi∈I Ai and Z∗ = maxi∈I Zi. Given that at least one occupancy state becomes finished

after each trial, the initial occupancy state must become finished after at most |∪T−1
t=0

St | trials, causing

the algorithm to terminate. �

Another important property of FB-HSVI is that it refines both upper and lower bounds through-

out planning. Since compact occupancy state expansions are interleaved with updates, FB-HSVI

offers an anytime solution. Furthermore, cutting off FB-HSVI trials at any time, we know that the

difference between the current best solution and the optimal one is bounded.

Theorem 10. At any iteration of FB-HSVI, the current solution — and the separable joint policy

induced by the current lower bound — is within ǫ = UM̃,0(ξ0) − LM̃,0(ξ0) of the optimal solution.

Proof. Formally, the difference in value between executing the separable joint policy πlb induced

by the current lower bound instead of an optimal separable joint policy π∗ is written as follows:

VM̌,π∗(ξ0) − VM̌,πlb(ξ0) = VM̌,π∗(ξ0) − LM̃,0(ξ0), (VM̌,πlb(ξ0) = LM̃,0(ξ0)) (46)

≤ UM̃,0(ξ0) − LM̃,0(ξ0). (VM̌,π∗(ξ0) ≤ UM̃,0(ξ0)) (47)

Consequently, whenever FB-HSVI is interrupted, its current solution is within the ǫ given above of

the optimal solution. �

5. Experiments

This section empirically demonstrates and validates the importance of our feature-based heuristic

search value iteration (FB-HSVI) algorithm. We show that FB-HSVI outperforms all existing exact

algorithms on all tested domains from the literature and that FB-HSVI can solve those problems

over unprecedented time horizons.
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5.1 Experimental Setup

As discussed throughout this paper, there are many key components that can affect the performance

of FB-HSVI. These key components include the (upper and lower) bound representations, the bound

update methods, the history compression, the value generalization, and the initial upper bound.

We present three variants of FB-HSVI, denoted OHSVI, FB-HSVI-LPE and FB-HSVI-TPE. The

two latter differ only on the notion of history equivalence they use in the feature-based compact

representations (see Table 2). When no equivalence relation is given, FB-HSVI refers to its default

(and better performing) implementation, FB-HSVI-TPE.

Algorithm Bound Representations Compression

OHSVI full none

FB-HSVI-LPE feature-based compact lpe

FB-HSVI-TPE feature-based compact tpe

Table 2: A review of the selected algorithmic components we use.

We selected benchmarks with the goal of spanning the range of properties that may affect the

performance of a Dec-POMDP solver. In Table 3, we review the selected domains and their proper-

ties. These domains can be downloaded at http://masplan.org.

domain M parameters |Π0:t | for different T

N |S | |Ai| |Zi| T = 2 T = 5 T = 10

Dec-Tiger 2 2 3 2 6561 3.43 × 1030 1.39 × 10977

Mabc 2 4 2 2 256 1.84 × 1019 3.23 × 10616

Grid-Small 2 16 5 2 390625 5.42 × 1044 3.09 × 101431

Recycling-Robots 2 4 3 2 6561 3.43 × 1030 1.39 × 10977

Box Pushing 2 100 4 5 3.34 × 107 5.23 × 10940 1.25 × 102939746

Mars Rovers 2 256 6 8 1.69 × 1014 1.88 × 107285 2.57 × 10238723869

Table 3: Domain parameters and maximum number of separable joint policies per horizons.

5.2 Empirical Analysis of our Algorithms

In this section, we compare FB-HSVI to other exact solvers. The exact Dec-POMDP solvers consid-

ered are the state-of-the-art methods including: GMAA*-ICE (Oliehoek et al., 2013), IPG (Amato

et al., 2009), MILP (Aras & Dutech, 2010), and LPC (Boularias & Chaib-draa, 2008). IPG and

LPC perform dynamic programming, GMAA*-ICE performs heuristic search and MILP is a mixed

integer linear programming method. Results for GMAA*-ICE (provided by Matthijs Spaan), IPG,

MILP, LPC were conducted on different machines. Because of this, the timing results are not di-

rectly comparable, but are likely to only differ by a small constant factor. Our three FB-HSVI

variants (Table 2) were implemented in the same framework, using identical basic operations, such

as occupancy state and value function updates, and separable joint decision rule selection. We ter-

minate FB-HSVI whenever the distance between lower and upper bounds is within ǫ = 0.01. A

time limit was set to 1000ms.
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5.2.1 Comparing to other Exact Planners

T MILP LPC IPG ICE OHSVI FB-HSVI L0,M̃(ξ0)

multi-agent tiger

2 − 0.17 0.32 0.01 0.161 0.03 −4.00

3 4.9 1.79 55.4 0.01 28.567 0.40 5.1908

4 72 534 2286 108 1.36 4.8027

5 347 9.65 7.0264

6 24.42 10.381

7 33.11 9.9935

8 41.21 12.217

9 58.51 15.572

10 65.57 15.184

recycling robot

2 − − 0.30 36 0.04 0.01 7.000

3 − − 1.07 36 0.555 0.10 10.660

4 − − 42.0 72 696.8 0.30 13.380

5 − − 1812 72 0.34 16.486

10 0.52 31.863

30 1.13 93.402

70 2.13 216.47

100 2.93 308.78

meeting in a 3x3 grid

2 − − − − 93.029 0.03 0.0

3 − − − − 0.04 0.133

4 − − − − 0.79 0.432

5 − − − − 1.30 0.894

6 1.88 1.491

7 2.55 2.19

8 18.06 2.96

9 24.39 3.80

10 34.42 4.68

20 291.1 14.35

30 456.6 24.33

Table 4: Experiments comparing the computation times (in seconds) of all exact solvers (part 1).

Time limit violations are indicated by “ ”, “–” indicate unknown values. Bold entries

correspond to the best known results for these benchmarks, both in terms of computational

time and expected value.

Tables 4 and 5 show performance results for the exact algorithms. For each algorithm, we reported

the computation time, which includes the time to compute heuristic values when appropriate (since

all algorithms do not use the same heuristics). We also reported the best expected cumulative reward

LM̌,0(ξ0) at the initial occupancy state. Tables 4 and 5 clearly show that FB-HSVI allows for sig-

nificant improvement over the state-of-the-art solvers: for all tested benchmarks we provide results

for longer horizons than have been solved previously (the bold entries). In many cases, an (epsilon)

optimal solution can be found for horizons that are an order of magnitude larger than was previously

solvable. There are two main reasons for FB-HSVI’s performance. First, it searches in the space
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of policies mapping lower-dimensional features to actions, whereas the other exact solvers search

in the space of policies mapping full histories to actions. In addition, it uses a value function map-

ping occupancy states to reals allowing it to generalize the value function over unvisited occupancy

states whereas all other solvers use value functions mapping partial policies to reals. FB-HSVI per-

forms best when the domain possesses structure that results in a compact value function, as in the

recycling robot and mabc domains.

T MILP LPC IPG ICE OHSVI FB-HSVI L0,M̃(ξ0)

broadcast channel

2 − − − − 0.036 0.02 2

3 − − − − 3.446 0.22 2.99

4 − − − − 0.32 3.89

5 − − − − 0.33 4.79

10 0.78 9.29

30 14.0 27.42

50 41.7 45.50

100 473.3 90.76

grid small

2 0 − 0 36 0.911 0 0.37

3 0.65 − 0.18 36 0.1 0.91

4 1624 − 4.09 1512 0.73 1.55

5 − 77.4 242605 1.39 2.24

6 3.51 2.97

7 8.30 3.71

8 42.2 4.47

9 69.03 5.23

10 581.2 6.03

cooperative box-pushing

2 − − 1.07 36 0.294 0.1 17.600

3 − − 6.43 540 0.457 66.081

4 − − 1138 2596 0.622 98.593

5 5.854 107.72

6 10.7 120.67

7 24.96 156.42

8 28.97 191.22

9 184.3 210.27

10 293.7 223.74

Mars rovers

2 − − 83 1.0 0.027 0.10 5.80

3 − − 389 1.0 1.881 0.23 9.38

4 103 0.47 10.18

5 0.82 13.26

6 3.97 18.62

7 5.81 20.90

8 22.8 22.47

9 26.5 24.31

10 62.7 26.31

Table 5: Experiments comparing the computation times (in seconds) of all exact solvers (part 2).
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5.2.2 Choosing aMethod to Keep Information Concise

We now compare the local and truncation probabilistic equivalence notions we introduced to main-

tain concise the representations of the occupancy states, decision rules, and value functions.
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Figure 12: Comparison of compression methods to maintain concise data through FB-HSVI-LPE

and FB-HSVI-TPE. All graphs shows the memory requirements until convergence or

time exceeds in the y-axis given the various number of planning horizons in x-axis.

Clearly, algorithms that use feature-based compact representations provide significant savings

in the number of maintained histories over those that do not (e.g., OHSVI). Using OHSVI, the

number of generated histories grows (in the worst case) exponentially with the planning horizon.

It is this exponential growth that explains why OHSVI, which does not use history aggregation,
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cannot scale beyond planning horizon T = 4 over all tested domains (see Tables 4 and 5). For

Recycling Robot at horizon T = 5, experimental results together with Table 3 show that algorithms

that use our compression methods maintain up to 30 orders of magnitude less separable joint policies

than algorithms that do not. The number of histories retained is important as all occupancy states,

decision rules, and value functions are mappings from reachable histories (or corresponding labels).

To this end, we compare LPE and TPE over our selection of benchmarks and various planning

horizons.

As previously discussed, though LPE yields compact occupancy states that are more concise

than those that result from TPE, the latter eases the generalization of bounds, which speeds up the

convergence to an optimal solution. Figure 12 reports the total number of joint labels — denoted

|L| — that are explicitly maintained for FB-HSVI-LPE and FB-HSVI-TPE over various planning

horizons. We observe that TPE yields more concise bound representations than LPE over most

benchmarks and planning horizons (i.e., using TPE number |L| is lower than that using LPE). In

particular, we notice that, in all tested domains, there is a bounded number of labels that is sufficient

for representing optimal or near-optimal value functions. TPE often succeeds in identifying this

memory-bounded parametric space, resulting in more concise value functions, whereas LPE often

fails.

In the Recycling Robot problem for example, TPE yields no more than 6 joint labels (i.e.,

histories) for all horizons whereas LPE maintains up to 38 different joint labels, a number that

keeps growing as the planning horizon increases. In fact, (Dibangoye, Amato, & Doniec, 2012;

Becker, Zilberstein, Lesser, & Goldman, 2004) demonstrated that in the Recycling-Robot problem,

the most recent private observation is sufficient to summarize all past private histories of each agent

(i.e., only the four joint observations are necessary). Here, TPE yields 6 joint labels because it

relies on joint action-observation histories rather than joint observation histories. In the Broadcast-

Channel domain, TPE yields no more than 4 joint labels for all horizons whereas LPE produces up

to 20 different joint labels. Again, these results are due to the underlying structure of the Broadcast-

Channel domain. In such a scenario, the future states of the world are conditionally independent of

joint histories. Hence, TPE can forget about joint histories, and reason only about states. Another

domain of interest is the Dec-Tiger problem. In this problem, for T = 6, TPE produces no more

than 30 joint labels for all horizons whereas LPE maintains up to 126 different joint labels. Our

assumption is that there always exists an optimal separable joint policy that is periodic (with period

3) for the Dec-Tiger domain. In other words, there exists an optimal separable joint policy that

depends on histories only upon the most recent three action-observation pairs. Also, there are many

scenarios in which both equivalence relations would fail to identify a memory-bounded space of

histories, even if such a space exists. For example, important information in a history may be

spread over a few time steps, but not necessarily the last ones.

6. Discussion

While we have demonstrated that our method can solve Dec-POMDPs which are larger than those

previously solved, many practical applications are much larger than domains considered in this

paper. As a result, additional methods may be necessary to solve very large problems which do not

permit the construction of a concise feature space while preserving optimality. This is of concern

since the numbers of states and histories impact all occupancy states, separable joint decision rules,

and value functions. Maintaining these objects for large feature spaces is prohibitive. This highlights
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the necessity of addressing the scalability issue of FB-HSVI through more concise (and possibly

lossy) feature spaces. In that direction, we have already extended the general methodology presented

in this paper along two lines: error-bounded approximations and tractable subclasses.

6.1 Error-Bounded Approximations

FB-HSVI can find an optimal solution because it maintains concise representations that preserve

optimality. This is both an advantage and a liability. On the one hand, for problems of a reasonable

size, the algorithm can find an optimal solution. On the other hand, in many realistic applications,

it will run out of time or memory. These scalability limitations are because FB-HSVI maintains

accurate estimates of (compact) occupancy states, value functions and decision rules. To improve

the scalability of Dec-POMDP solvers, many researchers have investigated approximate solutions.

A notable example of this family includes the memory-bounded dynamic programming (MBDP)

algorithm for finite-horizon Dec-POMDPs (Seuken & Zilberstein, 2007; Carlin & Zilberstein, 2008;

Dibangoye, Mouaddib, & Chaib-draa, 2009; Kumar & Zilberstein, 2010; Wu, Zilberstein, & Chen,

2010). These are dynamic programming methods that require bounded computational resources

to produce heuristic solutions that empirically perform well in standard Dec-POMDP benchmarks.

However, these methods do not possess any theoretical guarantees concerning the quality of their

solutions.

Recently, we introduced a framework for monitoring the error in FB-HSVI by replacing an exact

estimate of (compact) occupancy states, decision rules and value functions, by their approximate

counterparts (Dibangoye, Mouaddib, & Chaib-draa, 2011; Dibangoye, Buffet, & Charpillet, 2014).

The resulting algorithm can solve Dec-POMDP instances with larger planning horizon while still

providing strong theoretical guarantees.

It is also worth noting that, because FB-HSVI is trial-based, it can be used as an anytime algo-

rithm. That is, it alternates between the generation of an occupancy-state trajectory and the update

of the current best value function. As the algorithm proceeds, the current (best) value function is

improved at the expense of increased computational time. The algorithm can be terminated either

when a satisfactory value function is attained, or when allocated planning time is exceeded. In either

case, this algorithm can always provide online performance bounds on the returned value function

illustrating how far from the optimal value function the current one is.

In the future, we also would like to explore using occupancy states over observation histories

(rather than action-observation histories), which were shown to be sufficient (along with action-

observation histories) simultaneous to this work (Oliehoek, 2013). The inclusion of observation

histories could lead to further scalability gains by reducing the dimensionality of the feature space.

6.2 Tractable Subclasses

Many attempts to address the scalability issues in Dec-POMDPs rely on the use of tractable sub-

classes. These subclasses have additional assumptions that allow more concise representations for

all occupancy states, decision rules and value functions; and therefore speed up the convergence

towards an optimal solution.

For instance, we have already shown that occupancy states over just states (and not agent histo-

ries) can be used in transition- and observation-independent Dec-MDPs (Becker et al., 2004) (where

the state is fully determined by the joint observation) to greatly increase scalability while preserving

optimality (Dibangoye et al., 2012; Dibangoye, Amato, Doniec, & Charpillet, 2013). By restrict-
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ing attention to decentralized Markov policies (i.e., mappings from private states to private actions)

we reduce the complexity significantly (NP versus NEXP), and make it possible to optimally solve

larger problems. We plan to investigate other forms of tractable structures including temporal de-

pendencies or constraints that induce structured domains in both single and multi-agent settings

(Dibangoye, Chaib-draa, & Mouaddib, 2008; Dibangoye, Shani, Chaib-Draa, & Mouaddib, 2009;

Pajarinen, Hottinen, & Peltonen, 2013). In that line of research, we introduced a novel approach

called structural analysis as a means of discovering the underlying structural properties embedded

in certain decentralized decision-making problems (Dibangoye, Buffet, & Simonin, 2015).

We also applied the general methodology presented in this paper to scale up the number of

agents involved in the process. To this end, we consider domains that exhibit the locality of inter-

actions (Dibangoye, Amato, Buffet, & Charpillet, 2015, 2014). Examples include the networked

distributed partially observable Markov decision processes (ND-POMDPs) (Nair, Varakantham,

Tambe, & Yokoo, 2005). We plan to explore applying our methodology and FB-HSVI to Dec-

POMDPs where agents have joint dynamics or rewards, as well as domains with delayed communi-

cation (Ooi & Wornell, 1996; Grizzle, Marcus, & Hsu, 1981; Oliehoek & Spaan, 2012), as a means

of reducing the memory burden.

A secondary (but no less important) issue concerning scalability in Dec-POMDPs pertains to

efficient methods to update occupancy states and value functions at the planning stage. The locality

of interaction among agents may be exploited statically (e.g., Nair et al., 2005; Kumar & Zilberstein,

2009; Amato, Konidaris, & Kaelbling, 2014) or dynamically (e.g., Canu & Mouaddib, 2011) by

considering factorization and graphical models in our representation and hence improve scalability.

This is a critical issue as the number of occupancy states necessary to obtain a good solution may

be exponential in the planning horizon. So, techniques that can efficiently update both occupancy

states and value functions are of great importance.

7. Conclusion

This paper describes a novel way of representing Dec-POMDPs, as continuous-state MDPs with

piecewise-linear convex value functions, and a scalable algorithm for generating ǫ-optimal solu-

tions. We summarize the key contributions below.

By exploiting the assumption of centralized planning for decentralized execution, our method

recasts the Dec-POMDP problem into an equivalent deterministic and centralized fully observable

MDP (using information that is available to all agents). Next, we identify a concise statistic — the

occupancy state — that represents the state of the resulting fully observable MDP, which we call

the occupancy-state MDP. We demonstrate that the optimal value functions of occupancy MDPs

are piecewise linear and convex functions of the occupancy states. We also prove that an optimal

solution of the occupancy-state MDP is an optimal solution to the corresponding Dec-POMDP.

We also present the feature-based heuristic search value iteration (FB-HSVI) algorithm to find

an optimal solution to the occupancy-state MDP. This algorithm builds off the theory for solving

POMDPs and MDPs, as our occupancy-state MDP allows these methods to be directly applied to

Dec-POMDPs for the first time. We believe FB-HSVI is a major step forward in scalable exact

solutions for Dec-POMDPs. This scalability is achieved by defining feature-based compact occu-

pancy states and decision rules through the use of equivalence relations between private histories.

These concise representations permit us to circumvent the exhaustive enumeration of an otherwise

intractable number of occupancy states and decision rules.
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Another aspect of the improved scalability stems from generalization of the value function.

This is achieved through the piecewise linear and convex functions in the occupancy-state MDP.

We show that, although feature-based compact lower and upper bounds are no longer piecewise-

linear and convex, they can still generalize value functions over the entire feature-based compact

occupancy-state space.

Experimentally, we show that FB-HSVI is able to outperform all current state-of-the-art exact

Dec-POMDP solvers in common benchmark domains. These results show that ǫ-optimal solutions

can be found for larger horizons in all problems and for horizons that are sometimes an order of

magnitude larger than those that have previously been solved.
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Appendix A. Correctness of Feature-Based Compact Bounds

A.1 Proof of Theorem 6

(a) By hypothesis, we have ξ̃ ∈ △̃t, such that v ≥ V∗
M̃,t

(ξ̃). Hence, we obtain successively:

v ≥ V∗
M̃,t

(ξ̃) (48)

= V∗
M̌,t

(ξ) (ξ̃ = FΦξ (ξ) by Theorem 5), (49)

def
= max
β∈Λt

∑

s,θ

ξ(s, θ) · β(s, θ) (by definition of V∗
M̌,t

(ξ)), (50)

≥ max
β∈Λt

∑

φṡ,ϑ̇∈Φξ

















∑

s,θ

φṡ,ϑ̇(s, θ) · ξ(s, θ)

















· β(ṡ, ϑ̇) (ξ projected onto Φξ), (51)

= max
β∈Λt

∑

φṡ,ϑ̇∈Φξ

ξ̃(ṡ, ϑ̇) · β(ṡ, ϑ̇), (52)

≥ max
β∈Λt

∑

φs,ϑ∈Φ





















∑

φṡ,ϑ̇∈Φξ

φs,ϑ(ṡ, ϑ̇) · ξ̃(ṡ, ϑ̇)





















· β(s, ϑ) (ξ̃ projected onto Φ), (53)

def
= V∗

M̃,t
(FΦ(ξ̃)), (54)

which ends the proof of Theorem 6.a. �

(b) By hypothesis, we have ξ̃ ∈ △̃t such that V∗
M̃,t

(ξ̃) ≥ 〈ξ̃,GΦξ (β̃)〉 for any arbitrary β̃ ∈ R|Φ
′|. To

prove V∗
M̃,t

(ξ̃) ≥ 〈ξ̃,GΦξ(GΦ(β̃))〉 for any arbitrary feature set Φ, we successively show:

〈ξ̃,GΦξ(GΦ(β̃))〉
def
=

∑

φs,ϑ∈Φξ

ξ̃(s, ϑ)
∑

φṡ,ϑ̇∈Φ

φṡ,ϑ̇(s, ϑ)
∑

φs̈,ϑ̈∈Φ
′

φs̈,ϑ̈(ṡ, ϑ̇) · β̃(s̈, ϑ̈), (55)

=
∑

φs,ϑ∈Φξ

ξ̃(s, ϑ)
∑

φs̈,ϑ̈∈Φ
′

β̃(s̈, ϑ̈) ·





















∑

φṡ,ϑ̇∈Φ

φs̈,ϑ̈(ṡ, ϑ̇) · φṡ,ϑ̇(s, ϑ)





















, (Re-ordering). (56)
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Before proceeding any further, we need to prove quantity φs̈,ϑ̈(s, ϑ) is greater or equal to quantity
∑

φṡ,ϑ̇∈Φ
φs̈,ϑ̈(ṡ, ϑ̇) · φṡ,ϑ̇(s, ϑ) (in the bracket of the last expression above). To this end, we start with

the interpretations of each expression. The first expression asks whether state-history pair (s, ϑ)

belongs to cluster along with feature φs̈,ϑ̈, an affirmative answer results in value φs̈,ϑ̈(s, ϑ) = 1

otherwise 0. Let φṡ∗,ϑ̇∗ be the feature in Φ whose cluster includes state-history pair (s, ϑ). Then, the

second expression asks whether both state-history pairs (ṡ∗, ϑ̇∗) and (s, ϑ) belong to cluster along

with feature φs̈,ϑ̈ ∈ Φ
′, an affirmative answer will result in value

∑

φṡ,ϑ̇∈Φ
φs̈,ϑ̈(ṡ, ϑ̇) · φṡ,ϑ̇(s, ϑ) = 1

otherwise 0. Clearly, the second expression is a stricter form of the first expression, hence φs̈,ϑ̈(s, ϑ)

is greater or equal to
∑

φṡ,ϑ̇∈Φ
φs̈,ϑ̈(ṡ, ϑ̇) · φṡ,ϑ̇(s, ϑ). Thus, by replacing

∑

φṡ,ϑ̇∈Φ
φs̈,ϑ̈(ṡ, ϑ̇) · φṡ,ϑ̇(s, ϑ)

by φs̈,ϑ̈(s, ϑ), we obtain:

〈ξ̃,GΦξ(GΦ(β̃))〉 =
∑

φs,ϑ∈Φξ

ξ̃(s, ϑ)
∑

φs̈,ϑ̈∈Φ
′

β̃(s̈, ϑ̈) ·





















∑

φṡ,ϑ̇∈Φ

φs̈,ϑ̈(ṡ, ϑ̇) · φṡ,ϑ̇(s, ϑ)





















(57)

≤
∑

φs,ϑ∈Φξ

ξ̃(s, ϑ)
∑

φs̈,ϑ̈∈Φ
′

φs̈,ϑ̈(s, ϑ) · β̃(s̈, ϑ̈), (58)

def
= 〈ξ̃,GΦξ(β̃)〉 (59)

≤ V∗
M̃,t

(ξ̃), (60)

which ends the proof Theorem 6.b. �

A.2 Proof of Theorem 7

The proof proceeds by induction. Heuristic function (UM̃,t)t∈{0,1,...,T }, initially upper bounds the

optimal value function, since it is initialized using the underlying MDP value function.

For the induction step, we assume heuristic function (UM̃,t)t∈{0,1,...,T } represented using point sets

(Ψ̃t)t∈{0,1,...,T } upper bounds the optimal value function.

Next, we show that, at any arbitrary time step t ∈ {0, 1, . . . , T }, heuristic function U′
M̃,t

, after the

update of UM̃,t resulting in upper bound vξ̃ at occupancy state ξ̃, is also an upper bound on V∗
M̃,t

over

the entire compact occupancy space △̃t. That is,

∀ξ̃′ ∈ △̃t : UM̃,t(ξ̃
′) ≥ U′

M̃,t
(ξ̃′) ≥ V∗

M̃,t
(ξ̃′). (61)

We first show that ∀ξ̃′ ∈ △̃t : UM̃,t(ξ̃
′) ≥ U′

M̃,t
(ξ̃′). Using the sawtooth interpolation approach3,

we obtain successively:

U′
M̃,t

(ξ̃′)
def
= min

{

v∗
ξ̃′
, v
ξ̃′′

ξ̃′
| (ξ̃′′ 7→ vξ̃

′′

) ∈ Ψ̃t ∪ {ξ̃ 7→ v
ξ̃}

}

, (see sawtooth definition) (62)

= min

{

v
ξ̃

ξ̃′
,UM̃,t(ξ̃

′)

}

, (63)

≤ UM̃,t(ξ̃
′), (64)

which proves the first part of expression (Eq. 61).

Now, we show ∀ξ̃′ ∈ △̃t : U′
M̃,t

(ξ̃′) ≥ V∗
M̃,t

(ξ̃′). To this end, we distinguish between before and

after the update of the UM̃,t.

3. Here, we adapted the sawtooth interpolation to replace full occupancy states by compact occupancy states.
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Before the update, the following holds:

∀ξ̃′ ∈ △̃t : U′
M̃,t

(ξ̃′) ≥ V∗
M̃,t

(ξ̃′), (65)

by the inductive hypothesis.

After the update, we obtain two important results. On the one hand, we have that the resulting

value vξ̃ is an upper bound at ξ̃:

vξ̃
def
= max

d̃ξ∈ Ã
R̃(ξ̃, d̃ξ) + UM̃,t+1(P̃(ξ̃, d̃ξ)), (66)

≥ max
d̃ξ∈ Ã

R̃(ξ̃, d̃ξ) + V∗
M̃,t+1

(P̃(ξ̃, d̃ξ)), (67)

def
= V∗

M̃,t
(ξ̃). (68)

On the other hand, we show that from vξ̃ one can extrapolate an upper bound value v
ξ̃

ξ̃′
for any other

compact occupancy state ξ̃′. This is mainly thanks to Theorem 6.a, in which we demonstrate: if

expression V∗
M̃,t

(ξ̃) ≤ vξ̃
′

holds, then for any arbitrary ξ̃′ ∈ △̃t, expression V∗
M̃,t

(FΦξ′ (ξ̃)) ≤ v
ξ̃ holds

as well. The sawtooth interpolation method concludes this argument as follows:

v
ξ̃′

ξ̃′′

def
= v∗
ξ̃′
+ (vξ̃

′

− v∗
ξ̃
) · D(FΦξ′ (ξ̃), ξ̃

′), (69)

≥ V∗
M̃,t

(ξ̃′). (70)

In fact, the sawtooth interpolation can always generate an upper-bound for one compact occupancy

state from the upper bound of any compact occupancy state as long as both are expressed into the

same feature set. �

A.3 Proof of Theorem 8

The proof proceeds by induction as well. Heuristic function (LM̃,t)t∈{0,1,...,T } initially lower bounds

the optimal value function since we initialize it using the value function associated with the worst

separable joint policy. The one that prescribes the agents the joint action that yields the minimum

reward, and this over all time steps, i.e., LM̃,t(·)
def
= (T − t) mins,a ra(s), for all t ∈ {0, 1, . . . , T }.

For the induction step, we assume heuristic function (LM̃,t)t∈{0,1,...,T } represented using compact

vector sets (Λ̃t)t∈{0,1,...,T } lower bounds the optimal value function. Next, we show that for any

arbitrary time step t ∈ {0, 1, . . . , T }, heuristic function L′
M̃,t

, which results from the update of lower

bound LM̃,t and produces compact vector β̃ξ along feature set Φξ , is also a lower bound on V∗
M̃,t

over

the entire compact occupancy space △̃t. That is,

∀ξ̃′ ∈ △̃t : LM̃,t(ξ̃
′) ≤ L′

M̃,t
(ξ̃′) ≤ V∗

M̃,t
(ξ̃′). (71)

We first show that ∀ξ̃′ ∈ △̃t : LM̃,t(ξ̃
′) ≤ L′

M̃,t
(ξ̃′). In fact,

LM̃,t(ξ̃
′)

def
= max
β̃∈Λ̃t

〈ξ̃′,GΦξ′ (β̃)〉, (72)

≤ max
β̃∈Λ̃t∪{β̃ξ}

〈ξ̃′,GΦξ′ (β̃)〉, (73)

def
= L′

M̃,t
(ξ̃′), (74)
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which proves the first part.

Now, we show ∀ξ̃′ ∈ △̃t : L′
M̃,t

(ξ̃′) ≤ V∗
M̃,t

(ξ̃′). To this end, we distinguish between before and

after the update of LM̃,t.

Before the update, by the induction hypothesis, we have:

∀ξ̃′ ∈ △̃t : L′
M̃,t

(ξ̃′) ≤ V∗
M̃,t

(ξ̃′). (75)

After the update, we obtain: ξ̃′ ∈ △̃t,

V∗
M̃,t

(ξ̃′)
def
= max

d̃ξ′∈ Ã
R̃(ξ̃′, d̃ξ′) + V∗

M̃,t+1
(P̃(ξ̃′, d̃ξ′)), (76)

= max
d̃ξ′∈ Ã

〈ξ̃′, rd̃ξ′ 〉 + max
α̃∈Λ̃∗

t+1

〈ξ̃′pd̃ξ′ ,GΦ
ξ̃′ p

d̃ξ′
(α̃)〉, (77)

= max
d̃ξ′∈ Ã,α̃∈Λ̃∗

t+1

〈ξ̃′, rd̃ξ′ +GΦ
ξ̃′ p

d̃ξ′
(α̃) · (pd̃ξ′ )⊤〉, (re-arranging terms ) (78)

≥ max
d̃ξ′∈ Ã,α̃∈Λ̃t+1

〈ξ̃′, rd̃ξ′ +GΦ
ξ̃′ p

d̃ξ′
(α̃) · (pd̃ξ′ )⊤〉, (replace Λ̃∗t+1 by Λ̃t+1 ) (79)

≥ max
d̃ξ∈ Ã,α̃∈Λ̃t+1

〈ξ̃′,GΦξ′ (r
d̃ξ +GΦ

ξ̃p
d̃ξ

(α̃) · (pd̃ξ )⊤))〉, (Lemma 6) (80)

≥ 〈ξ̃′,GΦξ′ (
˜backup(ξ̃, Λ̃t+1))〉, (retain one element). (81)

Merging together arguments before and after the update, i.e., L′
M̃,t

(ξ̃′) ≤ V∗
M̃,t

(ξ̃′), we prove the

second part of the proof. This ends the proof. �

Appendix B. Subroutines

This section gives subroutines that are required to compute feature-based compact occupancy states

using either local or truncation probabilistic equivalence relations (Algorithm 3).

Algorithm 3: Compact feature-based occupancy state through LPE.

function Compact-LPE(ξt)

S ← {(s, θ) ∈ S × Θt : ξt(s, θ) > 0}

foreach (s, θ) ∈ S do

S ← S\{(s, θ)} and ξ̃t(s, θ)← ξt(s, θ)

foreach (ṡ, θ′) ∈ S do

if AreStateJointHistoryPairsLPE((s, θ), (ṡ, θ′), ξt) then

S ← S\{(ṡ, θ′)} and ξ̃t(s, θ)← ξ̃t(s, θ) + ξt(ṡ, θ′)

return ξ̃t

function Compact-TPE(ξt)

mξt ← getTruncationParam(ξt) and S ← S × Θt(ξ)

foreach (s, θ) ∈ S do

S ← S\{(s, θ)} and ξ̃t(s, θ)← ξt(s, θ)

foreach (ṡ, θ′) ∈ S do

if AreStateJointHistoryPairsTPE((s, θ), (ṡ, θ′),mξt) then

S ← S\{(ṡ, θ′)} and ξ̃t(s, θ)← ξ̃t(s, θ) + ξt(ṡ, θ′)

return ξ̃t
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Algorithm 4: Subroutines for compact feature-based occupancy state through LPE and TPE.

function ArePrivateHistoriesLPE(θit, θ
′i
t , ξt)

foreach θ¬i
t ∈ Θ

¬i
t (ξt) and s ∈ S do

if Pr(s, θ¬i
t |ξ0, θt) , Pr(s, θ¬i

t |ξ0, θ
′
t ) then return False

return True

function AreStateJointHistoryPairsLPE((s, 〈θit〉i∈I ), (ṡ, 〈θ′it 〉i∈I), ξt)

if s , ṡ then return False

foreach i ∈ I do

if ¬ArePrivateHistoryLPE(θit, θ
′i
t , ξt) then return False

return True

function getTruncationParam(ξt)

m← 0

foreach i ∈ I do

foreach θit, θ
′i
t ∈ Θ

i
t(ξt) do

if Suffix(θit,m) = Suffix(θ
′i
t ,m) then

if ¬ArePrivateHistoriesLPE(θit, θ
′i
t , ξt) then m← m + 1;

return m

function ArePrivateHistoriesTPE(θit, θ
′i
t ,mξt)

return Suffix(θit,mξt) = Suffix(θ
′i
t ,mξt)

function AreStateJointHistoryPairsTPE((s, 〈θit〉i∈I ), (ṡ, 〈θ′it 〉i∈I),mξt)

if s , ṡ then return False

foreach i ∈ I do

if ¬ArePrivateHistoryLPE(θit, θ
′i
t ,mξt) then return False

return True
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