
Optimally Solving the MCM Problem Using

Pseudo-Boolean Satisfiability

Nuno P. Lopes∗† Levent Aksoy∗ Vasco Manquinho∗†

José Monteiro∗†
∗ INESC-ID

† IST - TU Lisbon

May 17, 2011

Abstract

In this report, we describe three encodings of the multiple constant
multiplication (MCM) problem to pseudo-boolean satisfiability (PBS),
and introduce an algorithm to solve the MCM problem optimally. To
the best of our knowledge, the proposed encodings and the optimization
algorithm are the first formalization of the MCM problem in a PBS man-
ner. This report evaluates the complexity of the problem size and the
performance of several PBS solvers over three encodings.

1 Introduction

In several computationally intensive operations, such as Finite Impulse Response
(FIR) filters as illustrated in Figure 1, Discrete Cosine Transforms (DCT), and
Fast Fourier Transforms (FFT), the same input is multiplied by a set of constant
coefficients, an operation known as Multiple Constant Multiplications (MCM).
The MCM operation is a central operation and performance bottleneck in many
applications such as, digital audio and video processing, wireless communication,
and computer arithmetic. Hence, hardwired dedicated architectures are the best
option for maximum performance and minimum power consumption.

Since the design of a multiplication operation is expensive in terms of area,
delay, and power dissipation in hardware and the constants to be multiplied are
known beforehand in MCM, the full-flexibility of a multiplier is not necessary
in the implementation of the MCM operation. Hence, constant multiplications

��� �

� �� �

� � �� � 	

 �

� � �� � � �

 � �

� � ���� ��� � � ����

���

���

Figure 1: Transposed form of a hardwired FIR filter implementation.

1

are generally realized using addition/subtraction and shifting operations in the
shift-adds architecture [16]. Since shifts are free in terms of hardware in the
parallel realization of MCM, the MCM problem is defined as finding the min-
imum number of addition/subtraction operations that implement the constant
multiplications. The MCM problem has been proved to be NP-hard [4].

Over the years, many efficient exact and heuristic algorithms based on the
pattern search methods [12, 17], 0-1 Integer Linear Programming (ILP) tech-
niques [11, 8, 1], minimum spanning tree algorithms [10], difference-based ap-
proaches [15, 9], and graph-based methods [5, 18, 2] have been proposed for the
MCM problem. However, in this report, for the first time, we formalize the
MCM problem as a PBS problem and find the optimal solution using a generic
PBS solver. In this report, we analyze the worst case complexity of the problem
and compare the performance of prominent PBS solvers on the MCM problem
instances.

The rest of the report is organized as follows: Section 2 gives the background
concepts. The encodings of the MCM problem as a PBS problem and the exact
algorithm designed for the MCM problem are introduced in Section 3. The
experimental results are given in Section 4 and finally, the report is concluded
in Section 6.

2 Background

This section first gives the problem definition, and then presents an overview
on the previously proposed algorithms designed for the MCM problem. At last,
the main concepts on PBS and the algorithms designed for the PBS problem
are described.

2.1 Problem Definition

In the MCM problem, the main operation, called A-operation in [18], is an
operation with two integer inputs and one integer output that performs a single
addition or a subtraction, and an arbitrary number of shifts. It is defined as
follows:

w = A(u, v) = |(u� l1) + (−1)s(v � l2)| � r = |2l1u + (−1)s2l2v|2−r (1)

where l1, l2 ≥ 0 are integers denoting left shifts, r ≥ 0 is an integer indicating
the right shift, and s ∈ {0, 1} is the sign that denotes the addition/subtraction
operation to be performed.

In the MCM problem, it is assumed that the shifting operation has no cost,
since shifts can be implemented only with wires in hardware. Also, the sign
of the constant is assumed to be adjusted at some part of the design and the
complexity of an adder and a subtracter is equal in hardware. Thus, in the
MCM problem, only positive and odd constants are considered. Observe from
Eqn. (1) that in the implementation of an odd constant considering any two
odd constants at the inputs of an A-operation, one of the left shifts, l1 or l2, is
zero and r is zero, or both l1 and l2 are zero and r is greater than zero. Thus,
the MCM problem can be also defined as follows:

Definition 1 the mcm problem. Given the target set, T = {t1, . . . , tn} ⊂ N,
including the positive and odd unrepeated target constants to be implemented,

2

find the smallest ready set R = {r0, r1, . . . , rm} with T ⊂ R such that r0 = 1
and for all rk with 1 ≤ k ≤ m, there exist ri, rj with 0 ≤ i, j < k and an
A-operation rk = A(ri, rj).

Hence, the number of operations required to be implemented for the MCM
problem is |R| − 1 as given in [18]. Thus, to find the minimum number of oper-
ations solution of the MCM problem, one has to find the minimum number of
intermediate constants such that all the constants, target and intermediate, are
implemented using a single A-operation where its inputs are ‘1’, intermediate,
or target constants, and the MCM implementation is represented in a directed
acyclic graph.

2.2 Related Work

A straightforward way for the multiplierless realization of constant multipli-
cations, generally known as the digit-based recoding method [7], is to define
the constants in multiplications in binary representation and, for each ‘1’ in
the binary representation of the constant, shift the variable and add up the
shifted variables. As a simple example, consider the constant multiplications
29x = (11101)binx and 43x = (101011)binx. The decompositions of constant
multiplications are given as follows:

29x = (11101)2x = x� 4 + x� 3 + x� 2 + x

43x = (101011)2x = x� 5 + x� 3 + x� 1 + x

where 6 addition operations are required as illustrated in Figure 2(a). To further
improve the solution, one can also define the constants under Canonical Signed
Digit (CSD) representation, where each constant has a unique representation
with the minimum number of non-zero digits [3].

However, the algorithms that maximize the partial product sharing find the
most promising solutions to the MCM problem. They are generally categorized
in two classes: the Common Subexpression Elimination (CSE) algorithms [12,
17, 8], and the graph-based (GB) methods [5, 18, 2]. The CSE algorithms, that
are also referred to as the pattern search methods, initially define the constants
under a particular number representation, e.g., binary, CSD, or Minimal Signed
Digit (MSD), and then recursively find the “best” subexpression, generally the
most common. The 0-1 ILP formalizations of the MCM problem when the
constants are defined under a number representation were first introduced in [11,
8]. However, as shown in [8], the size of the 0-1 ILP problem, i.e., the number
of variables, constraints, and optimization variables, grows exponentially with
the number of non-zero digits in the representation of a constant. Although
problem reduction techniques, that significantly reduce the size of the 0-1 ILP
problem and consequently, decrease the CPU time required for a generic 0-
1 ILP solver to find a solution, have been proposed in [1], there are MCM
instances that exact CSE algorithm cannot handle in a reasonable time as shown
in [1]. For our example, suppose that the constants in multiplications are defined
in binary. The exact CSE algorithm [1] identifies the most common partial
products 3x = (11)2x and 5x = (101)2x in both multiplications and obtains a
solution with 4 operations as illustrated in Figure 2(b).

On the other hand, the GB algorithms are not limited to any particular num-
ber representation and consider a larger number of alternative implementations

3

���

���

�

�

���

���

��

���

�
���

�

���

��

���

�� 	 �
 	

���

���

�

�

���

���

��

���

�
���

�

�� ��
��� ���

� �

���

�

�

���

���

�

��

�

���

���

�� 	

Figure 2: Solutions of the algorithms for the shift-adds implementation of con-
stant multiplications 29x and 43x: (a) the digit-based recoding technique [7];
(b) the CSE method [1]; (c) the graph-based algorithm [2].

of a constant multiplication, yielding better solutions than the CSE algorithms,
as shown in [18, 2]. The exact GB algorithms that search the fewest num-
ber of intermediate constants in breadth-first and depth-first search manners
were introduced in [2]. Returning to our example, the exact GB algorithm [2]
finds a solution with 3 operations, 7x = x � 3 − x, 29x = 7x � 2 + x, and
43x = 7x� 1 + 29x, as given in Figure 2(c).

2.3 Pseudo-Boolean Satisfiability

Recent advances in algorithms for boolean satisfiability (SAT) have led to a
significant increase in the capacity and applicability of SAT solvers. One of
these applications is the pseudo-boolean satisfiability (PBS) and optimization
(PBO), also called 0-1 ILP (integer linear programming).

PBS constraints are of the form:

N∑
i=1

cixi ≥ b

where each variable xi may only take the values 0 or 1, and b and each ci are
arbitrary integers (including negative integers). In PBO, there is an additional
objective clause whose value should be minimized.

3 The Algorithm

In this section, we describe the formalization of the MCM problem as a PBS
problem. Unlike the exact CSE algorithms [11, 8], that extract all the possi-
ble implementations of a constant under a particular number representation,
our algorithm is not limited to any particular number representation and can
consider the search space of a GB algorithm.

We first describe the encoding of several auxiliary operations that are used in
the encodings of the MCM problem as a PBS problem. Then, we introduce three
different encodings, give their worst case analysis, and present the optimization

4

algorithm. At last, further possible reductions on the size of the problem are
described.

We use the big-endian encoding for the numbers. For example, 10 is repre-
sented as (assuming 4-bits numbers): x1 = 1 ∧ x2 = 0 ∧ x3 = 1 ∧ x4 = 0.

3.1 Auxiliary procedures

3.1.1 2-operand XOR

The first operation is an XOR of two operands, with the result assigned to the
first variable. Formally, let the function XOR(a, b, c) be:

a⇔ (b XOR c)

−a + b + c ≥ 0 ∧
−a− b− c ≥ −2 ∧

a + b− c ≥ 0 ∧
a− b + c ≥ 0

3.1.2 Conditional 2-operand XOR

The second operation is also an XOR of two operands, but the result is only as-
signed to the result variable if the last variable (the condition) is true. Formally,
let the function cond XOR(a, b, c, d) be:

d⇒ (a⇔ (b XOR c))

−d− a + b + c ≥ −1 ∧
−d− a− b− c ≥ −3 ∧
−d + a + b− c ≥ −1 ∧
−d + a− b + c ≥ −1

3.1.3 3-operand XOR

This function is similar with the first one, but it computes the XOR of three
variables. Formally, let the function XOR(a, b, c, d) be:

a⇔ (b XOR c XOR d)

−a + b + c + d ≥ 0 ∧
−a + b− c− d ≥ −2 ∧
−a− b + c− d ≥ −2 ∧
−a− b− c + d ≥ −2 ∧

a− b− c− d ≥ −2 ∧
a− b + c + d ≥ 0 ∧
a + b− c + d ≥ 0 ∧
a + b + c− d ≥ 0

3.1.4 Conditional 3-operand XOR

This function is similar with the second one, but it conditionally computes the
XOR of three variables. Formally, let the function cond XOR(a, b, c, d, e) be:

5

e⇒ (a⇔ (b XOR c XOR d))

−e− a + b + c + d ≥ −1 ∧
−e− a + b− c− d ≥ −3 ∧
−e− a− b + c− d ≥ −3 ∧
−e− a− b− c + d ≥ −3 ∧
−e + a− b− c− d ≥ −3 ∧
−e + a− b + c + d ≥ −1 ∧
−e + a + b− c + d ≥ −1 ∧
−e + a + b + c− d ≥ −1

3.1.5 Conditional Bit Copy

This function copies one bit if the condition flag (first parameter) is true. For-
mally, let cond copy(a, b, c) be:

a⇒ (b⇔ c)

−a− b + c ≥ −1 ∧
−a + b− c ≥ −1

3.1.6 N-Bits Adder

This function implements a full adder with ripple carry, which stores the result
of the addition in the first argument. The variables d1..N−1 are fresh (i.e., they
are created in this function and they are not used elsewhere). di is the carry
bit used to compute the i-th result bit and therefore it is computed with the
(i + 1)-th operands and carry bits. Formally, let a← adder(b, c) be:

a1..N ⇔ b1..N + c1..N

(∗ compute the carry bits ∗)∧
i=1..N−2

−2di + bi+1 + ci+1 + di+1 ≥ 0 ∧

∧
i=1..N−2

2di − bi+1 − ci+1 − di+1 ≥ −1 ∧

−2dN−1 + bN + cN ≥ 0 ∧
dN−1 − bN − cN ≥ −1 ∧
(∗ disallow overflows ∗)
−b1 − c1 − d1 ≥ −1 ∧

(∗ and do the addition ∗)∧
i=1..N−1

XOR(ai, bi, ci, di) ∧

XOR(aN , bN , cN)

3.1.7 Conditional N-Bits Adder

This function also implements a full adder, but the result of the operation is
only assigned if the last argument (the condition) is true. The variables d1..N−1

(the carry bits) are fresh. Formally, let a← cond adder(b, c, e) be:

6

e⇒ (a1..N ⇔ b1..N + c1..N)

(∗ compute the carry bits ∗)∧
i=1..N−2

−2di + bi+1 + ci+1 + di+1 ≥ 0 ∧

∧
i=1..N−2

2di − bi+1 − ci+1 − di+1 ≥ −1 ∧

−2dN−1 + bN + cN ≥ 0 ∧
dN−1 − bN − cN ≥ −1 ∧
(∗ disallow overflows ∗)
−e− b1 − c1 − d1 ≥ −2 ∧

(∗ and do the addition ∗)∧
i=1..N−1

cond XOR(ai, bi, ci, di, e) ∧

cond XOR(aN , bN , cN , e)

3.1.8 Conditional N-Bits Adder with Conditional Carry

This function also implements a conditional full adder, with the difference be-
ing that the carry bits may not be fresh (e.g., they can be shared with other
conditional adders/subtractors, provided that at most one of them is enabled).
Formally, let a← cond adder(b, c, d, e) be:

e⇒ (a1..N ⇔ b1..N + c1..N)

(∗ compute the carry bits ∗)∧
i=1..N−2

−2e− 2di + bi+1 + ci+1 + di+1 ≥ −2 ∧

∧
i=1..N−2

−2e + 2di − bi+1 − ci+1 − di+1 ≥ −3 ∧

−2e− 2dN−1 + bN + cN ≥ −2 ∧
−e + dN−1 − bN − cN ≥ −2 ∧

(∗ disallow overflows ∗)
−e− b1 − c1 − d1 ≥ −2 ∧

(∗ and do the addition ∗)∧
i=1..N−1

cond XOR(ai, bi, ci, di, e) ∧

cond XOR(aN , bN , cN , e)

3.1.9 N-Bits Subtractor

This function implements a subtractor, similar with the first adder. The vari-
ables d1..N−1 are the borrow bits and they are fresh. Formally, let a← subtractor(b, c)
be:

a1..N ⇔ b1..N − c1..N

(∗ compute the borrow bits ∗)

7

∧
i=1..N−2

2di + bi+1 − ci+1 − di+1 ≥ 0 ∧

∧
i=1..N−2

−2di − bi+1 + ci+1 + di+1 ≥ −1 ∧

−2dN−1 − bN + cN ≥ −1 ∧
dN−1 + bN − cN ≥ 0 ∧

(∗ disallow overflows ∗)
b1 − c1 ≥ 0 ∧
b1 − d1 ≥ 0 ∧
−c1 − d1 ≥ −1 ∧

(∗ and do the subtraction ∗)∧
i=1..N−1

XOR(ai, bi, ci, di) ∧

XOR(aN , bN , cN)

3.1.10 Conditional N-Bits Subtractor

This function implements a conditional subtractor, similar with the second
adder. The variables d1..N−1 are the borrow bits and they are fresh. Formally,
let a← cond subtractor(b, c, e) be:

e⇒ (a1..N ⇔ b1..N − c1..N)

(∗ compute the borrow bits ∗)∧
i=1..N−2

2di + bi+1 − ci+1 − di+1 ≥ 0 ∧

∧
i=1..N−2

−2di − bi+1 + ci+1 + di+1 ≥ −1 ∧

−2dN−1 − bN + cN ≥ −1 ∧
dN−1 + bN − cN ≥ 0 ∧

(∗ disallow overflows ∗)
−e + b1 − c1 ≥ −1 ∧
−e + b1 − d1 ≥ −1 ∧
−e− c1 − d1 ≥ −2 ∧

(∗ and do the subtraction ∗)∧
i=1..N−1

cond XOR(ai, bi, ci, di, e) ∧

cond XOR(aN , bN , cN , e)

3.1.11 Conditional N-Bits Subtractor with Conditional Borrow

This function implements a conditional subtractor, similar with the third adder.
The variables d1..N−1 are the borrow bits and they may not be fresh. Formally,
let a← cond subtractor(b, c, d, e) be:

e⇒ (a1..N ⇔ b1..N − c1..N)

(∗ compute the borrow bits ∗)

8

∧
i=1..N−2

−2e + 2di + bi+1 − ci+1 − di+1 ≥ −2 ∧

∧
i=1..N−2

−2e− 2di − bi+1 + ci+1 + di+1 ≥ −3 ∧

−2e− 2dN−1 − bN + cN ≥ −3 ∧
−e + dN−1 + bN − cN ≥ −1 ∧

(∗ disallow overflows ∗)
−e + b1 − c1 ≥ −1 ∧
−e + b1 − d1 ≥ −1 ∧
−e− c1 − d1 ≥ −2 ∧

(∗ and do the subtraction ∗)∧
i=1..N−1

cond XOR(ai, bi, ci, di, e) ∧

cond XOR(aN , bN , cN , e)

3.1.12 Conditional Left Shift

This function computes the left shift of the third parameter by a given con-
stant. The result is only assigned if the condition flag (first parameter) is true.
Formally, let cond shift left(a, b, c, C) be:

a⇒ (b1..N ⇔ (c1..N � C)), with C ∈ [0, N − 1].

(∗ zero out last C bits ∗)∧
i=(N−C+1)..N

−a− bi ≥ −1 ∧

(∗ copy remaining bits ∗)∧
i=1..(N−C)

cond copy(a, bi, ci+C) ∧

(∗ disallow overflows ∗)∧
i=1..C

−a− ci ≥ −1 ∧

3.1.13 N Bits Left Shifts

This function computes the left shift of the second parameter by some constant,
i.e., this function can return the second parameter shifted left by any amount in
the range [0, N − 1]. The variables c1..N are fresh, and they are used to restrict
the solution so that only one shift unit is enabled. Formally, let a← shift left(b)
be:
∃C ∈ [0, N − 1] : (a1..N ⇔ b1..N � C)

∑N
i=1 ci = 1 ∧∧

i=0..(N−1)

cond shift left(ci+1, a, b, i)

9

3.1.14 Conditional Right Shift

This function computes the right shift of the third parameter by a given con-
stant. The result is only assigned if the condition flag (first parameter) is true.
Formally, let cond shift right(a, b, c, C) be:

a⇒ (b1..N ⇔ (c1..N � C)), with C ∈ [0, N − 1].

(∗ zero out first C bits ∗)∧
i=1..C

−a− bi ≥ −1 ∧

(∗ copy remaining bits ∗)∧
i=1..(N−C)

cond copy(a, bi+C , ci) ∧

(∗ disallow overflows ∗)∧
i=(N−C+1)..N

−a− ci ≥ −1 ∧

3.1.15 N Bits Right Shifts

The a← shift right(b) function is similar with shift left:
∃C ∈ [0, N − 1] : (a1..N ⇔ b1..N � C)

∑N
i=1 ci = 1 ∧∧

i=0..(N−1)

cond shift right(ci+1, a, b, i)

3.1.16 Equate Variable List to Variable

This function takes a list of variables and returns one of them. The variables
x1..|V | are fresh and are used to restrict the solution so that only one list member
is returned. Formally, let a← equate var list to var(V) be:
∃v ∈ V : (a1..N ⇔ v1..N)

|V |∑
i=1

xi >= 1 ∧

∀vj ∈ V :
∧

i=1..N cond copy(xj , vji, ai)

3.1.17 Equate Variable List to Constant

This function is similar to the previous one, but it matches the variable list
against a constant, and therefore an optimized encoding can be produced. The
variables x1..|V | are fresh. Formally, let equate var list to const(V,C) be:
∃v ∈ V : (C1..N ⇔ v1..N)

∑|V |
i=1 xi >= 1 ∧

∀ vj ∈ V :
∧

i=1..N Ci = 1⇒ −xj + vji ≥ 0 ∧
∀ vj ∈ V :

∧
i=1..N Ci = 0⇒ −xj − vji ≥ −1

10

Since C is a constant, the implications in the above formula are folded away
when encoding.

3.2 Encoding Algorithm

In this section we describe an algorithm that generates a PBS problem that is
equivalent to the problem of finding a solution of an MCM problem with a fixed
number of addition/subtraction operations. The algorithm is shown in Fig. 3.

The algorithm takes as input the set of positive, odd, and unrepeated target
constants, and the exact number of addition/subtraction operations required to
implement the multiplications (A-operations). The idea is to assign the output
of each possible operation to an intermediate variable. Using this set of variables,
we add additional constraints so that a final variable takes the value of one of
the other variables. In the end, we have x of these final variables (where x is
the number of operations). We then just need to constrain the solution so that
at least one of these variables equates each target constant.

The number of bits of each variable, N , is defined as the number of bits of
the largest target constant plus one.

The algorithm works as follows. In lines 2–13, we generate all the possible
candidate operations for each intermediate operation. The possible candidate
operations are all the combinations of additions and subtractions of the input
variable (possibly left shifted), and the previously generated intermediate op-
erations. In line 14, we generate a constraint to assign the value of one of the
candidates (possibly right shifted) to the intermediate variable.

Finally, in lines 15–19, we constrain the solution so that at least one inter-
mediate variable (possibly left shifted) is equal to each constant.

All the auxiliary functions were defined in the previous section, except the
exactly(x) function, which creates (and returns) a variable of N bits so that
exactly x bits are true. For example, exactly(1) represents the set of the powers
of two up to 2N−1. This function has a trivial encoding in PBS.

3.2.1 Alternative Encodings

The encoding given in Figure 3 is our first encoding. We have, however, imple-
mented alternative encodings. The other two encodings are generated with the
same algorithm, except for the following differences:

• Encoding 2 uses conditional adders/subtractors

• Encoding 3 uses conditional adders/subtractors with conditional carry/borrow

• Line 14 of the algorithm is deleted in both encodings

• exactly(1) and left shifts are computed just once per intermediate variable
in both encodings (i.e., their results are reused by the several adders/subtractors),
except in line 5 where we need to compute a second exactly(1)

The reuse of the results of the shifts and the exactly constraints are possible
since the addition and subtraction operations are made conditional. They all
output the result to the same variable (hence line 14 becomes useless). However,
they are restricted so that only one of them can produce the output.

11

1
2
3
4
5
6
7
8
9
10
11
12
13
14

15
16
17
18
19
20

procedure EncodeMCM
input

consts ⊂ IN
operations ∈ IN

vars
f - final PBS formula
v - list of alternative operations
M - map to store the variables of each operation

begin
f := true
for i = 1..operations do

v := ∅
v := v ∪ {exactly(2)}
v := v ∪ {subtractor(exactly(1), exactly(1))}
for op1 = 1..(i− 1) do

v := v ∪ {adder(left shift(M [op1]), exactly(1))}
v := v ∪ {subtractor(left shift(M [op1]), exactly(1))}
v := v ∪ {subtractor(exactly(1), left shift(M [op1]))}
for op2 = op1..(i− 1) do

v := v ∪ {adder(left shift(M [op1]), left shift(M [op2]))}
v := v ∪ {subtractor(left shift(M [op1]), left shift(M [op2]))}
v := v ∪ {subtractor(left shift(M [op2]), left shift(M [op1]))}

M [i] := right shift(equate var list to var(v))

for each c ∈ consts do
v := ∅
for i = 1..operations do

v := v ∪ left shift(M [i])
f := f ∧ equate var list to const(v, c)

return f
end

Figure 3: MCM encoding algorithm.

12

These alternative encodings reduce the number of variables at the expense
of bigger constraints. They also reduce considerably the number of constraints,
due to the sharing of the results of the shift operations.

3.2.2 Complexity of the Encoding

The third encoding (the smallest in terms of the number of variables and con-
straints) has the following complexity:

• Number of variables: O(A3N)

• Number of constraints: O(A3N2)

where A is the number of A-operations, and N is the number of bits. How-
ever, in the worst case, the size of the search space is still exponential in terms
of A and N .

These bounds can be obtained by observing the following:

1. Each iteration of the outer loop generates O(i2) addition/subtraction op-
erations, as well as left shifts (as the loop goes through all the possible
combinations of additions and subtractions of the previous intermediate
constants).

2. The outer loop executes A times, and thus we get a bound of O(A3) in
the number of addition, subtraction, and left shift operations.

3. Each addition and subtraction operation requires O(N) variables and con-
straints.

4. Each left shift operation requires O(N) variables and O(N2) constraints.

5. The number of target constants is at most A, and thus the number of
operations generated by the loop of lines 15–19 is bounded by O(A2).

3.3 Optimization Algorithm

In this section we describe an optimization algorithm that yields the optimal
solution for a given MCM problem. The algorithm is shown in Fig. 4.

1
2
3
4

procedure OptimalMCM
input

consts ⊂ IN
upperbound ∈ IN

begin
upperbound := upperbound− 1
while EncodeMCM(consts, upperbound) is SAT do

upperbound := upperbound− 1
return upperbound + 1

end

Figure 4: MCM optimization algorithm.

13

The OptimalMCM procedure takes two arguments: the set of target con-
stants, and an upper bound on the number of required addition/subtraction
operations. This bound can be efficiently computed by an approximate algo-
rithm, such as the ones described in Section 2.2. The only requirement on the
upper bound is that there must exist a solution to the problem with the given
number of operations.

The algorithm starts by trying to find the solution with one fewer operation
than the upper bound (line 1), since we already know that there exists a solution
with the upper bound number of operations. Then it decreases the maximum
number of operations until no solution exists (and thus the PBS solver returns
UNSAT). When this occurs, the algorithm returns the last solution found by
the solver.

3.4 Further Improvements

We now describe several optimizations that can be implemented to improve the
PBS encodings given before, and thus the overall running time:

1. Constrain the result of the subtractor of line 5 so that the result is non-
zero. This can be encoded as −a− b ≥ −1 for every pair of input bits.

2. Left shift of line 18 can be omitted if the constant is odd, since the result
of a non-zero left shift is always an even number.

3. Compute all possible constants generated by one operation before encod-
ing (computationally inexpensive). If any target constant can be imple-
mented by a single operation, then the number of possible operations is
reduced by one (since one operation is generating that constant). Unit
propagation can then be applied in the shifts that take the constant as
input. This procedure can be executed iteratively by combining all the
target constants that can be implemented with a single operation.

4. If the optimization step 3 is implemented, then lines 4 and 5 can be exe-
cuted only in the first x iterations of the loop, where x is the number of
intermediate constants (maximum number of operations minus the num-
ber of target constants). This optimization is possible since the previous
optimization will remove all the target constants that can be implemented
with a single operation.

5. If there are no target constants implementable with a single operation,
then the value of the variable i in the loop of line 17 can start from 2.

4 Evaluation

4.1 Random Tests

In this section we evaluate the three proposed encodings with different PBS
solvers (bsolo [13], minisat+ [6], and wbo [14]). We generated a random set
of tests with different number of bits and target constants. We also added a
test for a FIR filter (tests 10/11). The number of A-operations, the target
constants, and the satisfiability (if known) of each test is shown in Table 1. The

14

Test # Ops Target Constants SAT
01 5 731951 X
02 4 731951 ×
03 5 33951 X
04 3 33951 ×
05 12 15783; 47351; 1345; 111111; 9871 X
06 11 15783; 47351; 1345; 111111; 9871 ?
07 15 1571; 3579; 7777; 1351; 123; 9999; 135; 767 X
08 13 1571; 3579; 7777; 1351; 123; 9999; 135; 767 X
09 12 1571; 3579; 7777; 1351; 123; 9999; 135; 767 ?
10 17 1701; 709; 1015; 1269; 1203; 683; 201; 565; 1653; 681; 17; 261; 4621; 3435 X
11 16 1701; 709; 1015; 1269; 1203; 683; 201; 565; 1653; 681; 17; 261; 4621; 3435 ?

Table 1: Details (number of A-operations, target constants, and known satisfi-
ability) of the benchmarks.

Test Encoding 1 Encoding 2 Encoding 3
Clauses # Vars File # Clauses # Vars File # Clauses # Vars File

01 156,096 11,243 4.7 46,243 3,620 1.7 46,243 1,840 1.7
02 81,762 6,075 2.5 24,920 2,043 0.89 24,920 1,103 0.87
03 105,936 9,103 3.2 33,299 2,932 1.3 33,299 1,508 1.2
04 23,837 2,214 0.71 8,027 803 0.28 8,027 483 0.29
05 1,469,379 111,392 48 417,306 32,552 17 417,306 14,685 17
06 1,141,533 86,924 37 326,275 25,526 13 326,275 11,586 13
07 2,012,698 175,694 68 594,926 50,759 25 594,926 22,941 25
08 1,327,081 116,501 44 395,824 33,866 16 395,824 15,414 16
09 1,051,800 92,642 35 315,408 27,032 13 315,408 12,360 13
10 2,557,759 234,851 88 767,018 67,439 32 767,018 30,480 32
11 2,142,844 197,121 73 644,749 56,715 27 644,749 25,684 27

Table 2: PB complexity of the tests of Table 1 in terms of number of clauses,
number of variables, and OPB file size (in MB).

PB complexity of each test and encoding in terms of number of clauses and
number of variables is show in Table 2. Our implementation does not consider
right shifts, since they are usually not necessary in order to achieve an optimal
solution, and because they increase the search space.

The objectives of this evaluation were: check if the proposed method scales
to a realistic number of bits and target constants, measure the time to prove
a solution satisfiable and unsatisfiable (so that we could derive an optimiza-
tion algorithm), and quantify how worse are the approximated solutions when
compared with the optimal one.

The running time of each of the solvers over each of the three proposed
encodings is shown in Table 3.

First we note that proving UNSAT is considerably slower than proving SAT,
and that is why the optimization algorithm we propose searches for the optimal
solution starting at the upper bound. Second, we note that finding a solution

15

Test Encoding 1 Encoding 2 Encoding 3
bsolo minisat+ wbo bsolo minisat+ wbo bsolo minisat+ wbo

01 17727.83 104.78 285.92 35.69 9.93 5.37 796.49 3.12 4.85
02 T/O 1989.27 5003.81 T/O 390.56 1345.10 T/O 292.64 463.01
03 32.32 10.84 6.74 0.64 1.31 0.84 2.45 1.13 0.45
04 69.28 2.44 3.11 14.79 1.09 2.02 16.62 1.36 1.74
05 T/O T/O T/O T/O T/O T/O T/O T/O T/O
06 T/O T/O T/O T/O T/O T/O T/O T/O T/O
07 T/O T/O T/O T/O T/O T/O T/O T/O T/O
08 T/O T/O T/O T/O T/O T/O T/O T/O T/O
09 T/O T/O T/O T/O T/O T/O T/O T/O T/O
10 T/O T/O T/O T/O T/O T/O T/O T/O T/O
11 T/O T/O T/O T/O T/O T/O T/O T/O T/O

Table 3: Time (in seconds) that each PBS solver takes to solve the benchmarks.
T/O means that the solver timed out (the limit was twelve hours).

with a bigger number of operations is faster, since the number of solutions is
higher, and thus it increases the chances that the solver will find a solution more
quickly.

Regarding the different encodings, the third one yields the best results. In
terms of solvers, minisat+ solves as many problems as wbo (with the third
encoding), but minisat+ scales better.

Finally, we note that no solver scales to the bigger tests (either with a high
number of bits or with a high number of intermediate constants).

4.2 Random FIR filers

We performed a second set of tests. We automatically generated these tests
from 600 randomly generated FIR filters of 10 and 11 bits. We generated two
tests per filter, changing only the number of operations: one with the upper
bound value (a SAT test), and another with one fewer operations (most likely
UNSAT, since approximate algorithms are usually close to the optimal for small
numbers).

We run the tests for four weeks, with the three solvers in parallel, and we
gave five days of time limit for each test. In this experiment, we only considered
the third encoding, since it showed to be the most beneficial and the more
succinct (even so, some tests had several thousand of variables and millions of
constraints).

The maximum number of tests considered by a solver was 440, but only 124
(28 %) of these were non-trivial. 32 % of the tests were marked as trivially SAT,
and 40 % were marked as trivially UNSAT. Trivial tests are marked as such by
the encoding program when it can solve the problem itself without needing a
solver. Thereby the tests marked as trivial were not run by the solvers, and we
do not take them into account in the results.

The non-trivial tests had an average number of clauses of 284,986 (with
67,146 of minimum, and 1,282,690 of maximum), and an average number of
variables of 12,808 (with 3,164 of minimum, and 55,296 of maximum).

16

Solver SAT UNSAT Combined
Tests Avg. Time # Tests Avg. Time # Tests Avg. Time %

VBS 53 9,712 s 28 19,280 s 81 13,019 s 65.3 %
bsolo 19 28,835 s 11 28,656 s 30 28,770 s 24.2 %

minisat+ 30 3,017 s 20 25,922 s 50 12,179 s 40.3 %
wbo 51 9,755 s 26 1,730 s 77 7,045 s 62.1 %

Table 4: Number of instances solved, and the average solving time that each
solver took to give the solution in our FIR filters benchmark.

Solver SAT UNSAT Combined
Tests % # Tests % # Tests %

VBS 53 42.7 % 28 22.6 % 81 65.3 %
bsolo 0 0 % 0 0 % 0 0 %

minisat+ 13 10.5 % 8 6.5 % 21 16.9 %
wbo 40 32.3 % 20 16.1 % 60 48.5 %

Table 5: Number and percentage of instances where each solver yielded the best
running time in our FIR filters benchmark.

Table 4 shows the number of tests solved by each solver. We also give
the average time taken by each solver, plus the overall percentage of solved
instances. VBS (virtual best solver) is also shown in the results, which is a
theoretical solver that gives the best result obtained by the combination of the
three solvers tested. This can be achieved in practice by, for example, running
all the solvers in parallel and stop when one of the solvers finishes.

Table 5 shows the number and the percentage of instances where each solver
resulted in the best running time. Although there is no absolute winner, wbo
is the best overall performer. bsolo, on the other hand, never outperformed the
other solvers.

5 Acknowledgments

This work was partially supported by FCT under research project iExplain
(PTDC/EIA-CCO/102077/2008), the grant SFRH/BD/63609/2009, and INESC-
ID multiannual funding through the PIDDAC program funds.

6 Conclusions

In this report, we presented, to the best of our knowledge, the first encoding
of the MCM problem to PBS. We describe an exact algorithm for the problem,
and we evaluate three different solvers on a set of benchmark problems.

Our approach scales only up to about 10/11 bits of the target constants with
a moderate number of A-operations. Further optimizations in the encoding and
smarter PBS algorithms are still required in order to make our approach scale
to more realistic problems.

17

References

[1] L. Aksoy, E. Costa, P. Flores, and J. Monteiro. Exact and Approximate
Algorithms for the Optimization of Area and Delay in Multiple Constant
Multiplications. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits, 27(6):1013–1026, 2008.

[2] L. Aksoy, E. Gunes, and P. Flores. Search Algorithms for the Multiple Con-
stant Multiplications Problem: Exact and Approximate. Microprocessors
and Microsystems, 34:151–162, 2010.

[3] A. Avizienis. Signed-digit Number Representation for Fast Parallel Arith-
metic. IRE Transactions on Electronic Computers, EC-10:389–400, 1961.

[4] P. R. Cappello and K. Steiglitz. Some Complexity Issues in Digital Signal
Processing. IEEE Transactions on Acoustics, Speech and Signal Processing,
32(5):1037–1041, Oct. 1984.

[5] A. Dempster and M. Macleod. Use of Minimum-Adder Multiplier Blocks
in FIR Digital Filters. IEEE Transactions on Circuits and Systems II,
42(9):569–577, 1995.

[6] N. Eén and N. Sörensson. Translating Pseudo-Boolean Constraints into
SAT. Journal on Satisfiability, Boolean Modeling and Computation, 2:1–
26, 2006.

[7] M. Ercegovac and T. Lang. Digital Arithmetic. Morgan Kaufmann, 2003.

[8] P. Flores, J. Monteiro, and E. Costa. An Exact Algorithm for the Maximal
Sharing of Partial Terms in Multiple Constant Multiplications. In Proc.
of the International Conference on Computer-Aided Design, pages 13–16,
2005.

[9] O. Gustafsson. A Difference Based Adder Graph Heuristic for Multiple
Constant Multiplication Problems. In Proc. of the IEEE International
Symposium on Circuits and Systems, pages 1097–1100, 2007.

[10] O. Gustafsson, H. Ohlsson, and L. Wanhammar. Improved Multiple Con-
stant Multiplication Using a Minimum Spanning Tree. In Proc. of the
Asilomar Conference on Signals, Systems, and Computers, pages 63–66,
2004.

[11] O. Gustafsson and L. Wanhammar. ILP Modelling of the Common Subex-
pression Sharing Problem. In Proc. of the International Conference on
Electronics, Circuits and Systems, pages 1171–1174, 2002.

[12] R. Hartley. Subexpression Sharing in Filters Using Canonic Signed Digit
Multipliers. IEEE Transactions on Circuits and Systems II, 43(10):677–
688, 1996.

[13] V. M. Manquinho and J. P. M. Silva. On Using Cutting Planes in Pseudo-
Boolean Optimization. Journal on Satisfiability, Boolean Modeling and
Computation, 2:209–219, 2006.

18

[14] V. M. Manquinho, J. P. M. Silva, and J. Planes. Algorithms for Weighted
Boolean Optimization. In Proc. of the 12th International Conference on
Theory and Applications of Satisfiability Testing (SAT), 2009.

[15] K. Muhammad and K. Roy. A Graph Theoretic Approach for Synthesizing
Very Low-Complexity High-Speed Digital Filters. IEEE Transactions on
Computer-Aided Design of Integrated Circuits, 21(2):204–216, 2002.

[16] H. Nguyen and A. Chatterjee. Number-Splitting with Shift-and-Add De-
composition for Power and Hardware Optimization in Linear DSP Synthe-
sis. IEEE Transactions on VLSI, 8(4):419–424, 2000.

[17] I.-C. Park and H.-J. Kang. Digital Filter Synthesis Based on Minimal
Signed Digit Representation. In Proc. of the Design Automation Confer-
ence, pages 468–473, 2001.

[18] Y. Voronenko and M. Püschel. Multiplierless Multiple Constant Multipli-
cation. ACM Transactions on Algorithms, 3(2), 2007.

19

