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Abstract. Low-resolution and signal-dependent noise distribution in positron

emission tomography (PET) images makes denoising process an inevitable step

prior to qualitative and quantitative image analysis tasks. Conventional PET de-

noising methods either over-smooth small-sized structures due to resolution lim-

itation or make incorrect assumptions about the noise characteristics. Therefore,

clinically important quantitative information may be corrupted. To address these

challenges, we introduced a novel approach to remove signal-dependent noise in

the PET images where the noise distribution was considered as Poisson-Gaussian

mixed. Meanwhile, the generalized Anscombe’s transformation (GAT) was used

to stabilize varying nature of the PET noise. Other than noise stabilization, it is

also desirable for the noise removal filter to preserve the boundaries of the struc-

tures while smoothing the noisy regions. Indeed, it is important to avoid signifi-

cant loss of quantitative information such as standard uptake value (SUV)-based

metrics as well as metabolic lesion volume. To satisfy all these properties, we ex-

tended bilateral filtering method into trilateral filtering through multiscaling and

optimal Gaussianization process. The proposed method was tested on more than

50 PET-CT images from various patients having different cancers and achieved

the superior performance compared to the widely used denoising techniques in

the literature.

Keywords: Positron emission tomography, trilateral filtering, generalized vari-

ance stabilizing transformation, denoising.

1 Introduction

Positron emission tomography (PET) is a 3-D non-invasive technique that uses ra-

dioactive tracers to extract physiological information. Like other low-photon count-

ing applications, the reconstructed image in PET scanners has low signal-to-noise ratio

(SNR), which can affect the diagnosis of disease through quantification of clinically rel-

evant quantities such as standardized uptake value (SUV) and metabolic lesion volume.

Therefore, a denoising mechanism for PET images has to be adopted as a preprocessing

step for accurate quantification [1, 2].
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Current approaches in PET denoising are mostly inherited from optical imaging

where primary criteria for denoising is qualitative rather than quantitative. Among

the effective methods derived from other biomedical imaging modalities, Gaussian

smoothing [3], anisotropic diffusion [4], non-local means [5], and bilateral filtering

approaches [6] either over-smooth the edges or violates the Poisson statistics of the

data; hence, corrupting vital information. Recently, multiscale denoising approaches

such as [7] and soft-thresholding methods [8] have been adapted for PET images to

avoid over-smoothing of the edges. These methods have shown improvement in SNR

compared to the conventional methods due to their superiority in preserving edges.

However, multiscale methods do not perform well in the vicinity of weak boundaries

because they fail to eliminate point-singularities. Soft thresholding approach, on the

other hand, is promising and shown to be superior to others since the noise is modeled

in more realistic way and boundaries of small-sized objects are preserved; however,

optimal transformation of noise characteristics has not been addressed yet [8].

Parametric denoising methods in the literature consider the noise in PET images to be

additive Gaussian [3]. However, Gaussian assumption in PET images may result in the

further loss of already poor resolution, increased blurring, and altered clinically relevant

imaging markers. Recent attempts such as [8] used a more realistic Poisson-distributed

noise assumption in PET images where authors first “Gaussianize” the Poisson mea-

surement followed by unbiased risk estimation based denoising filtering. Gaussianiza-

tion is achieved by applying a linear transformation such as a square-root and known

as variance stabilizing transformation (VST) [9]. However, the algebraic inverse VST

used by this denoising method may be sub-optimal. Regarding these difficulties, we

proposed a novel approach in this paper to denoise PET images using the optimal noise

characteristics and a 3-D structure preserving noise removal filtering.

2 Methods

We consider the noise in PET images as a mixed distribution of Poisson and Gaus-

sian. Our assumption stems from the Poisson nature of photon-counting and Gaussian

nature of the reconstruction process. In our proposed methodology, a linear transforma-

tion (i.e., GAT) was first used to stabilize the noise variation optimally. Second, trilateral

denoising filter (TDF) was developed and applied to the variance stabilized image. Fi-

nally, optimal exact unbiased inverse GAT (IGAT) was applied to obtain denoised PET

images.

2.1 Generalized Anscombe Transformation (GAT)

Let xi, i ∈ 1, . . . , N be the observed voxel intensity obtained through the PET ac-

quisition system. Poisson-Gaussian noise distribution models each observation as an

independent random variable pi, sampled from Poisson distribution with mean λi, and

scaled by a constant α > 0, and corrupted by Gaussian noise η∗i (with mean µi and

variance σ2
i ) as

x∗

i = αpi + η∗i , (1)
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where x∗

i ∼ P (λi) and n∗

i ∼ N
(

µi, σ
2
i

)

.

A variance stabilization transformation (GAT) assumes the existence of a function fσ
that can approximately stabilize the variation of x (i.e., var (f (x∗

i ) |pi) ≈ constant).

Mathematically, for the Poisson-Gaussian noise model x∗

i = αpi + η∗i , fσ(x) gives

the optimal variance stabilization when fσ is piecewise linear and having the following

form [10]:

fσ(x) =

{

2

α

√

αx+ 3

8
α2 + σ2 − αµ if x > − 3

8
− σ2

0 otherwise.
(2)

Note that GAT equals to the traditional Anscombe transformation when noise is con-

sidered Poisson only (α = 1, σ = 0, and µ = 0):

fσ(x) =

{

2
√

x+ 3

8
+ σ2 if x > − 3

8
− σ2

0 else,
(3)

where x = x∗

−µ
α

and σ = σ∗

α
.

2.2 Trilateral Denoising Filter (TDF)

Trilateral denoising filter (TDF) is an extension to bilateral filter, and similar to the

bilateral filters, TDF belongs to an edge preserving Gaussian filtering family. Herein,

we briefly describe the principal of TDF.

Let the GAT transformed image fσ(x) be fG. A bilateral filter is an edge preserving

filter defined as:

gf (i) =
1

k (i)

∫

fG (i+ a)w1 (a)w2 (a) (‖fG (i+ a)− fG (i)‖) da,

k (i) =

∫

w1 (a)w2 (‖fG (i+ a)− fG (i)‖) da, (4)

where a is an offset vector (i.e., defines a small neighborhood around the voxel i).

The weight parameters w1 and w2 respectively measure the geometric and photometric

similarities within a predefined local neighborhood Nx and are designed as Gaussian

kernels with standard deviations σ1 (geometric range) and σ2 (photometric range), the

size of the neighborhood is adjusted using σ1 and σ2. Function k (i) is the normalization

factor.

A trilateral filter is a gradient preserving filter. It preserves the gradient by applying

bilateral filter along the gradient plane. Let ∇fG be the gradient of the GAT transformed

image fG, the trilateral filter is initiated by applying a bilateral filter on ∇fG,

gf (i) =
1

∇k (i)

∫

∇fG (i+ a)w1 (a)w2 (a) (‖∇fG (i+ a)−∇fG (i)‖) da,

∇k (i) =

∫

w1 (a)w2 (‖∇fG (i+ a)−∇fG (i)‖) da. (5)
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For refinement, subsequent second bilateral filter is applied using the gf . Assuming

fG (i, a) = fG (i + a)− f (x)−agf (x) and let a neighborhood weighting function be

Ni =

{

1 if |gf (i+ a)− gf (i)| < c,

0 otherwise,
(6)

where c specifies the size of adaptive region. Ultimately, the final trilateral smoothed

image is given as

STDF (fG (i)) = fG (i) +
1

∇k (i)

∫

∇fG (i, a)w1 (a)w2 (∇fG (i, a))N (i, a) da

∇k (i) =

∫

w1 (a)w2 (∇fG (i, a))N (i, a) da.(7)

For TDF, σ1 (geometric range) is the only input parameter to trilateral filter, σ2 (photo-

metric range) can be defined as (see [11] for the justifications)

σ2 = 0.15
∣

∣

∣
max

i
gf (i)−min

i
gf (i)

∣

∣

∣
(8)

and gf (i) is the mean gradient of the GAT transformed image.

2.3 Optimal Exact-Unbiased Inverse of Generalized Anscombe Transformation

(IGAT)

After obtaining the fσ (x), we can treat the denoised data D = STDF (fG) as the

expected value E {fσ (x) |λ, σ}. The closed form of optimal exact unbiased IGAT is

given as,

I = E {fσ (x) |λ, σ} =

+∞
∫

−∞

fσ (x) p (x|λ, σ) dx

=

+∞
∫

−∞

2

√

x+
3

8
+ σ2

+∞
∑

k=0

(

λke−λ

k!
√
2πσ2

e−
(x−k)2

2σ2

)

dx. (9)

The optimal inverse I (in maximum likelihood sense) is applied to the denoised data D
followed by scaling and translation (i.e., αI(D) + µ) for obtaining the denoised PET

image.

3 Experiments and Results

We performed a comprehensive analysis and comparison of our approach with widely

used denoising methods (i) Gaussian filter, (ii) bilateral filter [6], (iii) anisotropic dif-

fusion filter [4], and (iv) our presented trilateral filter; without noise stabilization, with

Poisson noise stabilization (VST, eq. 3), and Poisson-Gaussian noise stabilization (GAT,

eq. 2).
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Data: We used both phantoms as well as clinical data for evaluation of the denoising

algorithms.

Phantoms: Data for the SNM Germanium Phantom were acquired using a GE DSTE-

16 PET/CT scanner (16-row MDCT) [12]. A total of 6 scans were acquired consisting

of 5, 7, and 30 minute acquisitions using both 3D (no septa) and 2D (with septa) modes.

A total of 36 reconstructions were completed consisting of 3 OSEM and 3 filtered back

projection (FBP) reconstructions per scan. Both OSEM and FBP images were recon-

structed using smoothing filters of 7, 10, and 13 mm (Fig. 2). The resulting activity

concentrations were also converted into target-to-background (T/B) ratios, and SUVs.

Clinical Data: With the IRB approval, PET-CT scans from 51 patients pertaining to

various cancer diseases were collected retrospectively. All patients underwent PET-CT

imaging (on Siemens Biograph 128 scanners) such that patients were instructed to fast

for a minimum of 6-hours before scanning. At the end of the 6 hour period, 3.7-16.3 mCi

(median=10.1 mCi, mean=9.45 mCi) of 18F-FDG was administered intravenously to the

patients depending on the body weight. PET images were obtained in two dimensional

mode. The intrinsic spatial resolution of the system was 678.80 mm. CT was performed

primarily for attenuation correction with the following parameters: section thickness, 3

mm; tube voltage, 120 kVp; tube current, 26 mAs; field of view, 500× 500 mm.

3.1 Qualitative and Quantitative Evaluations

We qualitatively performed a comparison of our proposed method with above men-

tioned methods with different combinations of variance stabilization (no stabilization,

VST, GAT). Results of GAT+anisotropic filter, GAT+bilateral filter, VST+TDF, and

GAT+TDF are presented in Fig. 1. As pointed out with arrows, the boundary contrast is

the highest in the proposed GAT+TDF; whereas other methods either over-smoothed or

over-saturated the noisy areas. This is ensured using the TDF by employing an iterative

approach coupled with narrow spatial window to preserve edges at finer scales. Also

VST+TDF result (Fig. 1) verifies that Poisson noise assumption is more realistic than

Gaussian but suboptimal with respect to the Poisson-Gaussian assumption.

To evaluate the potential loss of resolution and enhanced blurring after the denoising

procedure, we employed line profiling through lesion ROIs in phantom image (shown

in Fig. 2). Superiority of GAT+TDF can be readily depicted from the figure.

For quantitative evaluation of PET imaging markers, we manually drew the region of

interest (ROI) around lesions/tumors and large homogeneous regions such as liver and

lung in the PET scans. Quantitative information including SNR was then extracted from

these ROIs as shown in the boxplot (Fig. 3(a)). The SNR of the image from selected

ROIs was defined as

SNRi = 20log10

(

mi

σi

)

, (10)

where mi is the mean and σi is the variance of the ith ROI. In addition, the relative

contrast (RC) of the ROIs (Fig. 3(b)) was calculated using the following relationship [8]

RCi =
|mi −MB|√

σiσB

(11)
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Fig. 1. Qualitative evaluation of the proposed method with current methods. Each row shows

PET scans from different subjects. Each row shows different patient. (a) original noisy image, (b)

GAT+anisotropic filter, (c) GAT+bilateral filter, (d) VST+trilateral filter, and (e) GAT+trilateral

filter (proposed). Black arrows indicate the object of interest where edge information is preserved.

Fig. 2. Profile plots on all six spheres for simulated phantom dataset

In clinics, an optimal denoising method is expected to reduce the noise and in-

crease the SNR whilst preserving the clinically significant information such as SUVmax,

SUVmean, metabolic tumor volume, etc. To assess how these values were affected from

the denoising process, we measured significance of the percentage change in SUVmax

and SUVmean in different ROIs using Kruskal-Wallis test, a non-parametric one-way

analysis of variance. The results of the test for SUVmean and SUVmax together for our

method in comparison other methods is presented in Table 1. As shown in the table,

the change in SUV matrices are not statistically significant with our approach. Other

imaging markers (SUVmax and metabolic tumor volume) have shown similar trends.
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Fig. 3. Box-plots for (a) SNR (eq. 10) and (b) relative contrast (eq. 11) are demonstrated

Table 1. Kruskal-Wallis one-way analysis of variance for different denoising methods of SUVmean

and SUVmax together. df=Degrees-of-freedom.

Method df χ
2

p-value

Gaussian filter 1 18.86 0.001

Bilateral filter 1 3.77 0.05

Perona-Malik 1 3.67 0.05

TDF 1 3.24 0.07

VST+Gaussian filter 1 11.32 0.001

VST+Perona-Malik 1 2.75 0.09

Method df χ
2

p-value

VST+TDF 1 1.12 0.289

GAT+Gaussian filter 1 2.34 0.12

GAT+Bilateral filter 1 0.27 0.60

GAT+Perona-Malik 1 0.28 0.59

GAT+TDF (proposed) 1 0.18 0.67

4 Discussion and Conclusion

Inspired by the study [8], in which the authors showed that variance stabilization trans-

formation is an important step in denoising, we proposed a novel approach for denoising

PET images. In particular, we presented an optimal formulation for variance stabiliza-

tion transformation and its inverse. Furthermore, a more realistic noise distribution of

PET images (i.e., Poisson-Gaussian) was considered. For smoothing of PET images af-

ter Gaussianizing the noise characteristics, we extended bilateral filtering into trilateral

denoising filter that is able to preserve the edges as well as quantitative information such

as SUVmax and SUVmean. Experimental results demonstrated that our proposed method:

(i) effectively eliminate the noise in PET images, (ii) preserve the edge and structural

information, and (iii) retain clinically relevant details. As an extension to our approach,

we plan to integrate our algorithm with partial volume correction step in order to study

the impact of the combined method on object segmentation. We are also determined to

compare our algorithm with the trending soft-thresholding and non-local means based

algorithms in a larger evaluation platform where objective comparison and assessment

of the denoising steps will be possible.
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