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Optimally weighted loss functions for solving PDEs with Neural Networks
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Recent works have shown that deep neural networks can be employed to solve partial dif-
ferential equations, giving rise to the framework of physics informed neural networks [24].
We introduce a generalization for these methods that manifests as a scaling parameter which
balances the relative importance of the different constraints imposed by partial differential
equations. A mathematical motivation of these generalized methods is provided, which
shows that for linear and well-posed partial differential equations, the functional form is
convex. We then derive a choice for the scaling parameter that is optimal with respect to
a measure of relative error. Because this optimal choice relies on having full knowledge
of analytical solutions, we also propose a heuristic method to approximate this optimal
choice. The proposed methods are compared numerically to the original methods on a
variety of model partial differential equations, with the number of data points being updated
adaptively. For several problems, including high-dimensional PDEs the proposed methods
are shown to significantly enhance accuracy.

I. INTRODUCTION

Advances in computing power and rapid growth of available data in recent years have invigorated the
field of machine learning and data science. Although the theory to train deep learning models has been
available since the early 60’s, only recently has it become possible to train them on commonly available
hardware [26]. This has led to exceptional achievements in a wide range of problems, including image
recognition, natural language processing, genomics and reinforcement learning. Aside from these empirical
achievements, the theoretical understanding of such methods is also advancing rapidly. This has sparked
interest in solving more fundamental problems by utilizing these methods.

Previous work has shown the successes of Bayesian approaches for learning partial differential equation
(PDE) representations in linear settings [21], [23]; extensions to nonlinear regimes introduced certain limita-
tions [22], [25]. Motivated by the universal approximation theorems [14, 15], recent studies have considered
a different approach for solving (non)linear PDEs utilizing deep neural networks [5, 7, 11, 12, 19, 24, 27].
Specifically, the works of [24, 27] minimize a loss function which represents the PDE constraints, while
the work of [11] uses the backward stochastic differential equation (BSDE) representation. The work of [5]
studies the performance of different network architectures. These studies present several different advan-
tages that neural network based methods have over classical numerical methods. The most notable advan-
tage mentioned is that neural network based methods do not require any form of discretization. Constructing
a mesh can be especially prohibitive for high-dimensional problems, problems with complex geometries,
or domains with tiny structures. By alleviating this requirement, neural network based methods may have
great potential to outperform existing methods in these areas. As shown in e.g. [10] [2] [16], [6] neural
networks can provably overcome the curse of dimensionality in certain classes of PDEs. The study of [19]
mentions additional advantages, which include the differentiability of the obtained solution and the possi-
bility to efficiently parallelize the methods. While neural networks have been succesful in solving a variety
of PDEs, certain challenges remain. As mentioned in e.g. [28] neural networks can suffer from unbalanced
back-propagated gradients. Alternatively, when the PDE is only partially known and data-collection is ex-
pensive, it is not trivial how to employ neural networks; the work of [4] proposes transfer learning from
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low- to high-fidelity models as a solution.
The key concept brought forward in these studies is to approximate (part of) the solution of the PDE one

aims to solve with a deep neural network. Consider a general PDE for the scalar function u(x) : Rd → R
on the domain Ω ⊂ Rd given by {

N(x, u) = F (x) in Ω,
B(x, u) = G(x) on ∂Ω,

(1)

with x ∈ Ω ⊂ Rd and N and B the differential operators on the interior and boundary, resp., and F , G
are source functions. These operators and functions define constraints on u that must be satisfied to solve
the PDE. The neural network-based methods employ a deep neural network of which the input layer has d
neurons and the output layer has a single neuron representing the entire solution of the PDE. To solve the
PDE, the neural network must discover solutions that satisfy the constraints imposed by the PDE and the
boundary conditions. This discovery is done without using any explicit information about the true solution;
only the PDE and the boundary conditions that must be satisfied are provided. Therefore, these methods
can be categorized as unsupervised learning methods.

There are different ways to satisfy the constraints imposed by the PDE and the boundary conditions. The
study of [19] treats the boundary conditions of the PDE as a hard constraint by constructing an auxiliary
function that satisfies the boundary conditions. The remaining constraint that is imposed by the PDE itself is
treated as a soft constraint, which is approximately satisfied by minimizing some loss function. The studies
[7, 24, 27] use a different approach and treat all the constraints as soft constraints. This is implemented by
constructing a single loss function in which all of these constraints are included. These approaches are more
general, as they do not require special functions that depend on the problem one aims to solve. The result is
that the neural network directly serves as the approximation of the entire solution; feeding a locationx into
the neural network results in an output û(x) that approximates the true solution u(x).

To solve the general PDE given in eq. 1, the authors of [24] suggest rewriting the PDE into the form{
N (x, u) := N(x, u)− F (x) = 0 in Ω,
B(x, u) := B(x, u)−G(x) = 0 on ∂Ω,

(2)

and minimizing the loss functional

L(û) =
1

nI

nI∑
i=1

N (xIi , û)2 +
1

nB

nB∑
i=1

B(xBi , û)2, (3)

with a deep neural network. Here, xIi ∈ Ω and xBi ∈ ∂Ω are collocation points. The authors of [7, 24, 27]
provide empirical evidence that for several instances of well-posed problems, e.g. the Burgers’ equation and
the Poisson equation, these methods yield accurate results. Although these empirical results are promising,
it is still poorly understood why or when these methods work. The authors of [24] suggest that well-
posedness may be what determines whether or not these methods work. However, in Section VI we show
that instances of well-posed PDEs for which minimizing eq. 3 leads to inaccurate approximations are not
uncommon.

The main aim of this work is to augment the generality of the methods introduced in [24] by extending the
class of problems that may be solved with these methods. To this end, we aim to address the aforementioned
problems. Herein our focus will be on research around the neural network engine; The scientific community
has spent decades developing sophisticated training algorithms, and neural network training techniques are
expected to improve further. Our focus is on translating the PDEs to a minimization problem that is well
suited for neural networks to solve.

In Section II, we give a mathematical motivation for the original methods that were introduced in [24].
Here, we show that in the asymptotic regime of large neural networks, these methods should indeed be able
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to solve linear, well-posed problems. Then, Section III introduces a scaling parameter which generalizes
these methods. This parameter is optimized with respect to a measure of relative error. Section IV proposes a
heuristic method to perform this optimization which does not require the explicit knowledge of the analytical
solution. These theoretical results are analyzed numerically in Section VI. Here, several linear well-posed
model PDEs such as the Laplace equation and the convection-diffusion equation are considered. Instances
of these PDEs for which the original methods worked well and instances for which they do not are both
used to examine the impact of the proposed generalization.

II. METHOD MOTIVATION

This section aims to provide a mathematical motivation for the use of the methods introduced in [24].
This is done by showing that the loss function of eq. 3 can be viewed as a Monte-Carlo approximation of a
functional, and subsequently by showing that this loss functional satisfies several highly desirable properties
for well-posed linear PDEs. Although these properties are challenging to exploit directly, they can be used
to justify the use of approximate methods to solve such problems. Loss functionals are challenging to
compute exactly and therefore rarely used in practice for the purpose of training neural networks. However,
loss functionals are significantly easier to analyze mathematically; by focusing on them instead of their
Monte-Carlo counterparts, one can avoid all problems related to the distribution of the collocation points.
To emphasize the difference, loss functionals are denoted with a hat throughout this work, while their
Monte-Carlo approximations are denoted without one.

For the sake of generality, the analysis is performed on a generalized loss functional. Instead of con-
sidering the mean squared error, i.e. the second power of the L2 norm, the p-th power of the Lp norm is
considered for p ≥ 1. The resulting loss functional is given by

L̂(û) =
1

|Ω|

∫
Ω

|N (x, û)|p dx+
1

|∂Ω|

∫
∂Ω

|B(x, û)|p dxΓ. (4)

Note that for p = 2 the Monte-Carlo approximation of this functional is given by eq. 3. For notational
convenience, the constants present in eq. 4 are replaced by the constants 0 < c1, c2 ∈ R. This generalization
leads to the loss functional

L̂(û) = c1

∫
Ω

|N (x, û)|p dx+ c2

∫
∂Ω

|B(x, û)|p dxΓ. (5)

The integrals present in eqs. 4 and 5 are labeled as

L̂I(û) :=

∫
Ω

|N (x, û)|p dx (6)

L̂B(û) :=

∫
∂Ω

|B(x, û)|p dxΓ, (7)

and are referred to as the interior and boundary loss, respectively.
The functional given in eq. 4 has a much clearer correspondence to the PDE given in eq. 1 than the

Monte-Carlo approximation. Since the loss functional is positive, and only zero when N and B are zero
everywhere, its global minimizer coincides with the solution of the PDE. This is a property that the Monte-
Carlo approximation of the loss functional lacks, since minimizing that loss function only ensures that the
PDE is satisfied on a finite number of collocation points.

Despite this, minimizing the loss function of eq. 3 to solve a PDE can still be motivated with the
properties of the loss functional of eq. 4 for well-posed PDEs. Definition 1 gives the formal definition of
well-posedness as given in [29].
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Definition 1. Consider a PDE of the form{
N (x, u) := N(x, u)− F (x) = 0 in Ω,
B(x, u) := B(x, u)−G(x) = 0 on ∂Ω,

(8)

on the finite and sufficiently smooth domain Ω, with N , B the operators that define the PDE, and F , G
source functions. Such a PDE is called well-posed if for all F,G there exists a unique solution, and if for
every two sets of data F1, G1 and F2, G2, the corresponding solutions u1 and u2 satisfy

‖u1 − u2‖ ≤ C{‖F1 − F2‖+ ‖G1 −G2‖} (9)

for some fixed, finite constant C ∈ R. Such a constant C will be referred to as the Lipschitz constant of the
PDE. Here, ‖ · ‖ denotes the L1 norm.

Motivating the use of the Monte-Carlo approximation of the loss functional of eq. 4 requires a statement
regarding the approximate optimization of these functionals; so far, it is only clear that minimizing the loss
functional exactly yields a solution of the PDE. However, when one minimizes the Monte-Carlo approxi-
mation instead, it is highly unlikely that this exact minimum is attained. Even if one were able to find a
solution for which the approximated loss function zeroes out completely, the loss functional would likely
remain nonzero. The following theorem bridges the gap between this approximate and exact optimization
of the loss functionals.

Theorem 1. Consider the well-posed PDE of order k given by{
N (x, u) := N(x, u)− F (x) = 0 in Ω,

B(x, u) := B(x, u)−G(x) = 0 on ∂Ω.
(10)

Let the exact solution of this PDE be given by u and let the loss functional be given by eq. 5 for some fixed
p ≥ 1 and c1, c2 > 0. Consider some approximate solution û of which the first k (partial) derivatives exist
and have finite Lp norm. Then, for any ε > 0 there exists a δ > 0 such that for the approximate solution û,

L̂(û) < δ =⇒ ‖û− u‖ < ε. (11)

Proof. Let ε > 0 be arbitrary. The aim is to find a δ for which eq. 11 holds. Because the PDE given in eq.
10 is assumed to be well-posed, there exists a finite Lipschitz constant C for this particular PDE. Given this
Lipschitz constant, and given the constants p, c1 and c2, choose

δ := εp
[
C

(
c
− 1
p

1 |Ω|
1− 1

p + c
− 1
p

2 |∂Ω|1−
1
p

)]−p
. (12)

and let û be some approximate solution of the PDE for which L̂(û) < δ. Because û may not exactly satisfy
the operators N and B of eq. 10, one can write

N(x, û) = F + F̂ , B(x, û) = G+ Ĝ. (13)

In other words, û satisfies a perturbed version of the PDE. Because the PDE is well-posed, it follows that

‖û− u‖ < C{‖(F̂ + F )− F‖+ ‖(Ĝ+G)−G‖} = C{‖F̂‖+ ‖Ĝ‖}. (14)

Using Hölder’s inequality [13], one finds for ‖F̂‖ the upper bound

‖F̂‖ =

∫
Ω

|F̂ (x)|dx ≤ |Ω|1−
1
p

[∫
Ω

|F̂ (x)|pdx
] 1
p

= |Ω|1−
1
p L̂I(û)

1
p . (15)
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Similarly, ‖Ĝ‖ can be bounded from above by

‖Ĝ‖ =

∫
∂Ω

|Ĝ(x)|dxΓ ≤ |∂Ω|1−
1
p

[∫
∂Ω

|Ĝ(x)|pdxΓ

] 1
p

= |∂Ω|1−
1
p L̂B(û)

1
p . (16)

Combining these results gives

‖û− u‖ < C{‖F̂‖+ ‖Ĝ‖} ≤ C{|Ω|1−
1
p L̂I(û)

1
p + |∂Ω|1−

1
p L̂B(û)

1
p}

≤ C

[
c
− 1
p

1 |Ω|
1− 1

p + c
− 1
p

2 |∂Ω|1−
1
p

]
L̂(û)

1
p .

(17)

Finally, applying the inequality L̂(û) < δ yields

‖û− u‖ < C

[
c
− 1
p

1 |Ω|
1− 1

p + c
− 1
p

2 |∂Ω|1−
1
p

]
δ

1
p = ε,

completing the proof.

Remark 1. When one approximates the solution u with a neural network, the activation function determines
whether the assumptions made in the Theorem 1 are satisfied. Activation functions that are in C∞ such as
the hyperbolic tangent result in neural networks that satisfy all assumptions.

Because Monte-Carlo approximations have a high probability of being close in value to the functions they
approximate, it is unlikely that a small approximated value arises when the functional itself is large, given a
sufficient number of collocation points. Theorem 1 can then be applied to conclude that a low loss function
implies with high probability that the approximations are accurate, validating the use of the approximation
for well-posed problems. This theorem also plays an important role in justifying the use of neural networks
to minimize these loss functions or functionals; although neural networks are universal approximators, they
are unable to exactly represent many functions, and may therefore not be able to exactly reach the minimum
of the loss functions or functionals. Theorem 1 shows that this is not a problem, as approximate optimization
is sufficient. Thus, Theorem 1 can be used to show that when neural networks reach a low loss value, the
approximation they define is likely accurate.

This theorem cannot be used to show that it is reasonable to expect neural networks to reach such small
loss values. Due to the significant gap between neural network theory and practice, it is beyond the scope
of this work to formally prove this. Therefore, instead of looking at sufficient conditions to guarantee
successful network training, one might look at necessary conditions. To this end, consider a loss functional
for which local minima exist. It can be shown that the corresponding loss function that would be used to
train the neural network would also have local minima for large neural networks with sufficiently smooth
activation functions.

By the universal approximation theorem, any smooth function and its derivatives can be approximated to
arbitrary accuracy on compact domains by large enough neural networks with sufficiently smooth activation
functions. This also means that local minimum points can be approximated to arbitrary accuracy by such
neural networks. Furthermore, note that these neural networks are continuous in their parameters, meaning
that a small change in the parameters will result in a small change of the function that the network defines,
as well as its derivatives. By assumption, functions close to the local minima have a loss that is larger than
the local minimum. Thus, the parameter vectors that map to this region of functions also have larger losses.
In other words, the local minimum also exists in the network’s parameters.

Popular training algorithms such as gradient descent do not handle local minima well. Though there are
methods to escape local minima, these methods typically have a performance cost associated and are not
guaranteed to find the global minimum. It is therefore very important that the loss functional does not have
local minima. Fortunately, showing that the loss functional does not have local minima can be done with
relative ease for linear PDEs. In fact, it can be shown that a much stronger property holds for these PDEs.
This is done in Theorem 2.
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Theorem 2. Consider a linear PDE of the form given in eq. 10 of order k. Then, the loss functional
L : F → R defined in eq. 5, where F is the space of functions whose partial derivatives up to order k exist
and have finite Lp norm, is convex.

Proof. To show that the loss functional is convex, it must be shown that for any two functions u1, u2 ∈ F
and for any t ∈ [0, 1], the inequality

L̂(tu1 + (1− t)u2) ≤ tL̂(u1) + (1− t)L̂(u2) (18)

holds. To this end, let u1, u2 ∈ F and t ∈ [0, 1] be arbitrary. For notational convenience, the interpolation
is labeled v(t) := tu1 + (1− t)u2. Note that v(t) ∈ F . The loss functional at the interpolation is given by
L̂(v(t)) = c1L̂I(v(t)) + c2L̂B(v(t)), with c1, c2 > 0. The interior loss is considered first. It is given by

L̂I(v(t)) =

∫
Ω

|N (v(t))|p dx =

∫
Ω

|N(v(t))− F (x)|p dx. (19)

For linear PDEs, N is linear, and hence, using additionally the triangle inequality, this can be bounded by

L̂I(v(t)) =

∫
Ω

|N(tu1 + (1− t)u2)− F (x)|p dx ≤
∫

Ω

(t|N (u1)|+ (1− t)|N (u2)|)p dx. (20)

Because |x|p is a convex function for p ≥ 1, it holds that

(t|N (u1)|+ (1− t)|N (u2)|)p ≤ t|N (u1)|p + (1− t)|N (u2)|p. (21)

Thus, it follows that

L̂I(v(t)) ≤
∫

Ω

(t|N (u1)|p + (1− t)|N (u2)|p) dx ≤ t

∫
Ω

|N (u1)|pdx+ (1− t)
∫

Ω

|N (u2)|pdx

= tL̂I(u1) + (1− t)L̂I(u2).

(22)

The same reasoning can be applied to show that when the boundary operator B is linear,

L̂B(v(t)) ≤ tL̂B(u1) + (1− t)L̂B(u2). (23)

Eqs. 22 and 23 can then be combined to complete the proof.

Thus, for any linear PDE, the loss functional defined in eq. 5 is convex. A direct consequence is that the
loss functional has no local minima. Therefore, any local minima that one encounters while training must
necessarily be a product of the configuration of the employed neural network. Although it is well known
that neural networks convert convex loss functionals into non-convex problems in parameter space, many
recent studies indicate that this non-convexity can be overcome when dealing with classification problems.
For instance, the study of [8] empirically shows that local minima can be connected with paths through
parameter space for which the loss stays low. Other work has also shown that in the limit of the number
of nodes tending to infinity, convexity can be assumed [1]. Even though classification problems cannot be
directly compared to solving PDEs, one would expect these problems to share some characteristics; after
all, in function space, classification problems are convex, just like solving linear PDEs.

It is important to note that Theorem 2 required the assumption of linearity; for nonlinear PDEs, it is
not clear whether the loss functional is convex. For some nonlinear PDEs the loss functional may even
have local minima. In these cases, one might consider using global optimization algorithms instead of local
algorithms.
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III. LOSS FUNCTIONAL MODIFICATION

The previous section has provided a motivation for the use of the methods introduced in the study of
[24]. This was done by reframing the process of solving a PDE as a minimization problem.

In this section, the methods are considered from a different perspective to highlight an important choice
to be made. In this section a proposed modification to the loss functionals is discussed. This modification
results in a more general formulation that contains an additional hyperparameter. This parameter may be
chosen in a way that is tailored to the specific PDE one aims to solve, resulting in a method that is more
generally applicable.

A. Multi-Objective Optimization

Recall that solving a PDE is equivalent to finding a function satisfying certain constraints. So far, these
constraints have been included in the loss functionals, such as in eq. 5. Because there is more than a
single constraint in this functional, minimizing it can be viewed as a scalarization of the multi-objective
optimization problem given by

arg min
û

(
L̂I(û), L̂B(û)

)
. (24)

In other words, multiple objectives were merged into a single objective function. This method only works
under the assumption that a very low loss can be reached. When low losses are reached, the exact value of
the individual losses is not important, as both are necessarily small. However, given the limitations of the
capacity of finite neural networks, it may not always be possible to reach such low values. If the different
constraints that must be satisfied are not of similar difficulty, then the neural network might not optimize all
of them equally. In some cases the network might even sacrifice one objective to better optimize the others.
To avoid such problems, the multi-objective optimization problem should be treated more carefully.

Viewed from this perspective, it makes sense to apply a weighted scalarization. The question how these
weights should be chosen will be addressed later. To perform this weighted scalarization, we introduce the
scaling parameter λ ∈ (0, 1), such that the modified loss functional is given by

L̂(û) := λL̂I(û) + (1− λ)L̂B(û) (25)

= λ

∫
Ω

|N (x, û)|p dx+ (1− λ)

∫
∂Ω

|B(x, û)|p dxΓ.

This hyperparameter λ will be referred to as the loss weight. Note that theorem 1 holds for the redefined
loss functional of eq. 25 for any constant λ. With this modification, a scaled version of the original loss
function can be recovered by setting

λ =
|∂Ω|

|∂Ω|+ |Ω|
, (26)

and applying a Monte-Carlo approximation, though, there is little motivation for this particular choice of λ.
This family of loss functions can be used to solve a wider range of problems. This is a valuable property,
since the original methods were designed to be general. To exploit this, the choice of λ is investigated in
sections III B and IV. In the first of these sections, λ is treated as a constant. In Section IV, it is treated as a
function instead, allowing the hyperparameter to have a deeper effect when training the neural networks.

B. Optimized Loss Weights

This section investigates the previously introduced hyperparameter λ in more detail, under the assump-
tion that it is kept constant. This includes the derivation of an optimal choice for this loss weight with
respect to a specific error measure.
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Optimizing λ is not a straightforward process, mainly because it is unclear with respect to which quantity
this parameter should be optimized. Since the described methods all work by minimizing a loss function
to solve a PDE, one may consider choosing λ to optimize the relation between the loss functional and the
solution of the PDE; a weak relation between the accuracy and the loss functional might result in low losses,
but also in inaccurate approximations. On the other hand, a strong relation between these variables would
imply that the neural network spends its capacity as effectively as possible.

The strength of this relation can be probed by comparing the loss of a function to the error of this function.
The aim is to find the loss functional of which the minimizer is as close to the solution u as possible. Without
explicit knowledge about the network configuration, it is a-priori not clear which functions can and cannot
be reached by the neural network, and therefore it is also not clear which loss values may be achieved.
Here, a helpful assumption can be made. Under the current setting, the total loss functional interpolates two
different functionals with weight λ. If the value of λ is changed such that the interior loss becomes more
important, then the neural network might be able to reduce the interior loss at the expense of some accuracy
at the boundary. As a result, the total loss value may not change significantly if λ is changed. This provides
an important tool to perform the optimization: the optimal loss value can be held constant.

One could consider minimizing the absolute error of the solution for a given, fixed loss value. Although
this would yield the tightest upper bound on the error for any given loss value, practical results may not
benefit much from this: because neural networks cannot approximate every function equally easily, certain
error distributions may not arise in practice. In particular, the results of section VI suggest that the error
of the derivatives tends to be highly correlated with the derivatives of the true solution. Depending on the
shape of the true solution of a PDE, such error distributions often lead to absolute errors that are significantly
smaller than the worst-case scenario that would be assumed to derive absolute error bounds.

For this reason, instead of considering the absolute error, one could consider minimizing some form of
relative error, both of the solution itself and of its derivatives. More formally, this results in the following
definition.

Definition 2. A candidate solution û is called ε-close to the true solution u if it satisfies

|∂γxu(x)− ∂γx û(x)| ≤ ε |∂γxu(x)| (27)

for all x ∈ Rd and for any vector γ ∈ Rd with positive elements γi ≥ 0. Here, ∂γx denotes the parametrized
partial derivative given by

∂γxu :=

(
d∏
i=1

∂γi

∂xγii

)
u. (28)

This property represents the earlier mentioned observation that the error of solutions found by neural
networks seems to be highly correlated with the true solution. Intuitively, ε-closeness allows approximations
to have large errors in the derivatives where the true solution itself has large derivatives. In order to be ε-
close, approximations must be very accurate at the flatter regions of the true solution.

Given this definition, it is desirable that ε be small. Thus, ε can be used to guide the choice of λ. To this
end, consider a general, linear PDE given by

kI∑
i=1

αIi (x)∂βix u(x) = F (x), in Ω,

kB∑
i=1

αBi (x)∂γix u(x) = G(x), on ∂Ω.

(29)

The aim is to derive an upper bound for the losses under the assumption that the approximated solution û
is ε-close to u. First, consider the interior loss functional. Applying eq. 6 to the PDE results in the interior
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loss functional

L̂I(u) =

∫
Ω

|N (x, u)|p dx =

∫
Ω

∣∣∣∣∣
kN∑
i=1

αIi (x)∂βix u(x)− F (x)

∣∣∣∣∣
p

dx. (30)

Note that the solution u satisfies

N (x, u) =

kN∑
i=1

αIi (x)∂βix u(x)− F (x) = 0 (31)

for all x ∈ Ω. Therefore, it follows that

N (x, û) =

kN∑
i=1

αIi (x)
[
∂βix û(x)− ∂βix u(x)

]
. (32)

Substituting the approximation û into eq. 30 allows the integral to be written as

L̂I(û) =

∫
Ω

∣∣∣∣∣
kN∑
i=1

αIi (x)
[
∂βix û(x)− ∂βix u(x)

]∣∣∣∣∣
p

dx. (33)

Because it was assumed that û satisfies eq. 27, the integrand, which will be labeled lI(x, û), can be bounded
by

lI(x, û) =

∣∣∣∣∣
kN∑
i=1

αIi (x)
[
∂βix û(x)− ∂βix u(x)

]∣∣∣∣∣
p

≤

[
kN∑
i=1

∣∣αIi (x)
∣∣ ∣∣∂βix û(x)− ∂βix u(x)

∣∣]p

≤

[
kN∑
i=1

∣∣αIi (x)
∣∣ ε ∣∣∂βix u(x)

∣∣]p = εp

[
kN∑
i=1

∣∣αIi (x)∂βix u(x)
∣∣]p . (34)

The resulting upper bound for the interior loss is thus given by

L̂I(û) =

∫
Ω

lI(x, û)dx ≤ εp
∫

Ω

[
kN∑
i=1

∣∣αIi (x)∂βix u(x)
∣∣]p dx =: εpMI(u). (35)

One can derive an upper bound for the boundary loss functional in a similar fashion. For the PDE defined
in eq. 29, the resulting upper bound for the boundary loss is given by

L̂B(û) ≤ εp
∫
∂Ω

[
kB∑
i=1

∣∣αBi (x)∂γix u(x)
∣∣]p dxΓ =: εpMB(u). (36)

These inequalities define necessary, but not sufficient, conditions for a solution to be ε-close to the
true solution. Crucially, these bounds are extremely lenient. For a given ε, the upper bound on the loss
functional is much larger than a sufficient bound would need to be to guarantee the same absolute error.
This discrepancy arises mainly from the assumptions on the distributions of the derivatives. Note that
these assumptions result in loss bounds that depend on the true solution of the PDE. In contrast, sufficient
conditions to guarantee a certain absolute error would only depend on the PDE itself. This ties in with the
same reasoning as used before, i.e. solutions with large derivatives tend to have favorable error distributions,
and can therefore have larger errors in their derivatives to achieve the same accuracy.
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From a different perspective, eqs. 35, 36 can be used to obtain lower bounds on ε. Recall that the aim of
this section is to find the optimal value of λ that would result in the most accurate approximation, i.e. the
smallest ε such that the approximation is ε-close. Since training algorithms are only aware of the total loss,
it makes sense to perform this optimization with respect to some arbitrary, fixed value L̂(û).

Because λ and ε have no direct relation, the lower bounds on ε given in eqs. 35, 36 should be minimized
instead. Rewriting these bounds into a single expression yields

ε ≥ ε̂ :=

[
max

{
L̂I(û)

MI(u)
,
L̂B(û)

MB(u)

}] 1
p

. (37)

While ε̂ is not dependent on λ, it can be bounded from above using the total loss functional. In particular,
for the interior loss one finds that

L̂I(û) =
1

λ

[
L̂(û)− (1− λ)L̂B(û)

]
≤ 1

λ
L̂(û). (38)

Similarly, one finds for the boundary loss that

L̂B(û) =
1

1− λ

[
L̂(û)− λL̂I(û)

]
≤ 1

1− λ
L̂(û). (39)

Thus, ε̂ is bounded from above by

ε̂ =

[
max

{
L̂I(û)

MI(u)
,
L̂B(û)

MB(u)

}] 1
p

≤

[
max

{
L̂(û)

λMI(u)
,

L̂(û)

(1− λ)MB(u)

}] 1
p

. (40)

Since L̂(û) is assumed to be constant, the optimal choice for λ then becomes

λ = arg min
λ

ε̂ = arg min
λ

[
max

{
1

λMI(u)
,

1

(1− λ)MB(u)

}]
. (41)

The smallest maximum occurs when both terms are equal, i.e. when

λMI(u) = (1− λ)MB(u), (42)

of which the solution is given by

λ =
MB(u)

MI(u) +MB(u)
. (43)

Notice that this choice of λ may be very different from the original choice as given in eq. 26.
Eq. 43 gives a choice of λ that is in some sense optimal: for a given loss value L̂(û), this choice of

λ results in the smallest ε for which û may be ε-close to u. This choice gives the loss functionals some
additional useful properties. Most notably, the relative importance of the interior and boundary losses
become scale-invariant. Specifically, when one rewrites a PDE of the form given in eq. 1 as{

c1N (x, u) = 0 in Ω,
c2B(x, u) = 0 on ∂Ω,

(44)

then the ratio
λL̂I(û)

(1− λ)L̂B(û)
(45)
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remains constant for all c1, c2 6= 0. This is a very important property. All PDEs come with some inherent
scale factors, and even the default choices c1 = c2 = 1 are difficult to justify. This choice of λ renders these
scales almost completely irrelevant.

However, it is important to realize that ε-closeness is contingent on some very strong assumptions, some
which are easily shown to not hold true in practice. In particular, functions that zero out anywhere in the
domain are problematic for this definition, since ε-closeness implies zero error for such functions at specific
regions. It is likely that the true dynamics of neural networks depend on the behavior of the target function
in a small area, rather than at a particular point.

This does not immediately render ε-closeness useless. However, one should carefully examine the PDE
before using ε-closeness to estimate the difficulty of optimizing the involved objectives. For instance, prob-
lems with homogeneous boundary conditions require different methods to properly estimate the difficulties;
applying ε-closeness to such problems results in zero expected boundary error, leading to an optimal loss
weight of 0. This definition is likely only useful if the behavior of the true solution on the boundary is
comparable to its behavior in the interior of the domain. Similarly, adding offsets to linear PDEs can have a
major impact on the theoretical optimal loss weight, even though neural networks can compensate for such
offsets by simply tuning the bias of the output layer. Therefore, the definition is best suited for problems
with solutions with zero mean.

IV. MAGNITUDE NORMALIZATION

The particular choice of λ derived in the previous section resulted in a relation between λ and the true
solution u. In many practical applications, the required information about u is unavailable. This section
addresses this problem by introducing a heuristic method that approximates the optimal choice as û ap-
proaches u. This heuristic method has one crucial difference compared to the methods discussed so far; λ
is no longer kept constant. Instead, λ is treated as an additional functional to be optimized by the neural
network.

The starting point of deriving this heuristic method is eq. 43. This optimal choice of λ depends solely
on the true solution of the PDE, leading to a total loss functional given by

L̂(û) =
MB(u)L̂I(û)

MI(u) +MB(u)
+

MI(u)L̂B(û)

MI(u) +MB(u)
. (46)

Since u is unavailable, and û is meant to approximate u, one could consider approximating this loss func-
tional by

L̂(û) =
MB(û)L̂I(û)

MI(û) +MB(û)
+

MI(û)L̂B(û)

MI(û) +MB(û)
. (47)

When û ≈ u, this redefined loss functional behaves similarly to the loss functional of eq. 25 with the
optimal choice of λ, since the bounds MI and MB will be relatively constant. However, when û differs
from u, the behavior may no longer be similar, as the approximated bounds MI(û) and MB(û) cannot be
treated as constants.

This behaviour is difficult to analyze without specific information about the PDE one aims to solve.
However, some quirks may be identified by considering examples. Many PDEs admit trivial solutions when
the boundary conditions are homogeneous. Even though such PDEs are generally only of interest with
inhomogeneous boundary conditions, the mere existence of these trivial solutions is problematic. To see
why, consider the linear, well-posed PDE given in eq. 48.{

N (x, u) = 0, in Ω,

u(x) = G(x), on ∂Ω,
(48)
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with G(x) 6= 0 and N (x, 0) = 0. Clearly, the trivial solution would solve this problem if and only if
G(x) = 0. To show why this is problematic, we consider behavior of the loss functional given in eq. 47 for
this function. For the interior and boundary losses, it holds that

L̂I(0) = 0, L̂B(0) =

∫
∂Ω

|G(x)|p dxγ > 0. (49)

Similarly, the bounds given in eq. 36-35 satisfy

MI(0) = 0, MB(0) =

∫
∂Ω

|G(x)|p dxγ = L̂B(0). (50)

Therefore, the total loss thus becomes

L̂(0) =
MB(0)L̂I(0) +MI(0)L̂B(0)

MI(0) +MB(0)
=
L̂B(0) · 0 + 0 · L̂B(0)

L̂B(0)
= 0. (51)

Thus, a function that violates the boundary conditions is able to bring the loss functional of eq. 47 down
to zero. Note that this problem can also arise if the boundary magnitude and losses can be zeroed out
simultaneously; in that case, the PDE does not need to be satisfied to find a solution with zero loss. Thus,
Eq. 47 is not a viable loss functional.

It turns out that this issue can be easily addressed while maintaining the relative sizes of the terms MBL̂I
and MIL̂B. This can be achieved by multiplying equation 47 with a single scale factor, such that the total
loss functional is given by

L̂(û) =
MI(û) +MB(û)

MI(û)MB(û)

[
MB(û)L̂I(û)

MI(û) +MB(û)
+

MI(û)L̂B(û)

MI(û) +MB(û)

]

=
L̂I(û)

MI(û)
+
L̂B(û)

MB(û)
.

(52)

The resulting loss functional has a very intuitive interpretation. Each loss functional is normalized by the
magnitude of the terms that comprise it. The resulting terms L̂I(û)

MI(û)
and L̂B(û)

MB(û)
can be viewed as relative

losses. The resulting method is called magnitude normalization.
This loss functional, unlike the functional defined in eq. 47, again possesses the property that the unique

global minimizer is the true solution of the PDE. However, it is not clear whether this loss functional
possesses additional local minima, which might compromise convergence to the true solution. Local minima
thus pose a threat to the stability of the method.

However, such local minima are characterized by strictly positive loss. In many cases, stability problems
can be therefore avoided by pre-training the network; if the neural network is brought to a state with loss
lower than one would have at a local minimum, then this local minimum should never be reached.

To further manage stability problems, some additional modifications are introduced. Many problems
come with Dirichlet or Neumann boundary conditions, i.e. known operator values along the boundary. This
allows one to compute the value MB(u) in advance. Using this value instead of approximating it with
MB(û) can significantly improve stability. Another stability concern arises from source functions. Since
ε-closeness does not depend on source functions, neither do MI and MB. However, source functions can
significantly inflate the initial value of the loss functional, allowing the network to converge to local minima
with higher losses. To prevent this from happening, source functions are included in MI . Close to the true
solution, this generally has little effect, as the effective loss weight may only change by up to a factor two.
Far away from the true solution, however, the behavior is much more stable. For a PDE of the form given in
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eq. 29 with Dirichlet or Neumann boundary conditions, the resulting magnitude normalized loss functional
is given by

L̂(û) =

∫
Ω

∣∣∣(∑kI
j=1 α

I
j (x)∂

βj
x û(x,θ)

)
− F (x)

∣∣∣p dx∫
Ω

[∑kI
j=1

∣∣∣αIj (x)∂βjx û(x,θ)
∣∣∣+ |F (x)|]p dx +

∫
∂Ω

[
∂γx û(x,θ)−G(x)

]p
dxΓ∫

∂Ω |G(x)|
p dxΓ

. (53)

Remark 2. Magnitude normalization can favor functions with large derivatives, since those functions lead
to a large denominator in the loss functional. While this can cause instabilities, it can also aid in solving
more difficult problems, as is shown in Section VI.

V. METHOD SETUP

As stated, this section aims to assess the methods by utilizing small neural networks in conjunction
with powerful training algorithms. In this section, the network configuration, the evaluation of the loss
functionals, and the specifics of the training algorithms are discussed.

For the sake of generality, only fully connected feedforward neural networks are considered here. The
networks have four hidden layers with twenty neurons each unless specified otherwise. This yields 1301 +
20d degrees of freedom, where d is the dimension of the PDE. This network size is kept constant throughout
this section. The hyperbolic tangent is used as the activation function, though alternative choices like
sinusoids seem to yield comparable results. Glorot initialization [9] is used to generate the initial weights
of the neural networks. Initially, the biases are set to zero.

There are many different algorithms with which these networks can be trained. First-order methods
such as Adam are among the most popular. Another prominent training algorithm is the limited-memory
version of the Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) [3]. This is a quasi-Newton method
that is able to achieve exceptionally accurate results, at the cost of one major drawback: this algorithm is
incompatible with batching, and must be provided with a dataset that is representative of the full solution.
The problems that are solved in this work are simple enough for this limitation to not be prohibitive, and
therefore this algorithm is the training method of choice in this work. We also tested first-order methods
such as Adam [18] and stochastic gradient descent, but these methods were always outperformed by L-
BFGS. For problems that require datasets that are too large to be processed at once, we recommend using
Adam.

A. Loss Functions

Thus, we aim to use L-BFGS to optimize the vector θ containing all parameters of the neural network
with respect to some objective function. As stated before, the integrals present in the loss functionals in
sections II-IV can be approximated using Monte-Carlo integration. We explicate this for linear PDEs of the
form of eq. 29. Recall that the general form of the interior and boundary loss functionals L̂I and L̂B is given
in eq. 30. Let the output of the neural network at position x be given by û(x,θ). Then, after applying a
Monte-Carlo approximation, we obtain the interior and boundary loss functions for the parameter vector θ
given by

LI(θ) =
1

nI

nI∑
i=1

∣∣∣∣∣
(

kI∑
j=1

αIj (x
I
i )∂

βj
x û(xIi ,θ)

)
− F (xIi )

∣∣∣∣∣
p

, (54)

LB(θ) =
1

nB

nB∑
i=1

∣∣∣∣∣
(

kB∑
j=1

αBj (xBi )∂γjx û(xBi ,θ)

)
−G(xBi )

∣∣∣∣∣
p

. (55)
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Here, the collocation points {xIi }
nI
i=1 and {xBi }

nB
i=1 are distributed uniformly over Ω and ∂Ω, respectively.

Using eqs. 54, 55, Monte-Carlo approximations of eqs. 4 with p = 2 and eq. 25 are given by

L(θ) = LI(θ) + LB(θ), (56)
L(θ) = ΩλLI(θ) + ∂Ω(1− λ)LB(θ), (57)

respectively. The Monte-Carlo approximation of Eq. 53 is given by

L(θ) =

∑nI
i=1

[(∑kI
j=1 α

I
j (x

I
i )∂

βj
x û(xIi ,θ)

)
− F (xIi )

]p
∑nI

i=1

[∑kI
j=1

∣∣∣αIj (xIi )∂βjx û(xIi ,θ)
∣∣∣+ ∣∣F (xIi )∣∣]p +

∑nB
i=1

[
∂γx û(x

B
i )−G(xBi )

]p∑nB
i=1

∣∣G(xBi )∣∣p . (58)

These loss functions define three methods of interest that will be considered in our experiments: the original
method as introduced in [24], our proposed modification to this method with an optimal loss weight, and
the heuristic approximation of this optimal weight, respectively. To perform the experiments, the norm
p = 2 is used. Note that instead of minimizing some function f(θ), one could equivalently minimize the
function g(f(θ)) for some monotonically increasing g. Because the loss functions are supposed to become
small during training, the gradients of these loss functions with respect to θ will likely become very small
as well. Therefore, instead of minimizing the loss functions directly, the logarithm of the loss functions is
minimized. In many cases, this significantly improves the results.

B. Adaptive Collocation Points

The loss functions depend on the hyperparameters nI and nB. Determining the required number of
collocation points, both on the boundary and in the interior of the domain, is generally challenging, as it
depends on the variance of the loss functions, which in turn depends on the state of the neural network.
We propose an alternative solution: choosing the point counts adaptively, by comparing the training loss
to some validation loss. First choose initial values for the point counts nI and nB and then generate two
different sets of collocation points, each consisting of nI interior and nB boundary points. The first set
is the training set, and the second set is the validation set. L-BFGS is used to minimize the loss function
evaluated on the training set. During training, the loss function is also evaluated on the validation set. If at
any point during training the interior or boundary validation loss is more than a factor q larger than either
the interior or boundary training loss, then the variance of the respective loss function is too large to be
accurately approximated with the number of collocation points used. In this case, the corresponding point
count nI or nB is doubled, new collocation point sets are generated, and training is resumed. The initial
point counts nI nd nB are generally set to 512. The precise value of the hyperparameter q seems to have
little effect, and q = 5 seems to be a reasonable trade-off between accuracy and speed.

C. GPU Acceleration

Neural networks are well suited for parallelization, as many of the computations that must be performed
to compute a training iteration are independent. The study of [20] identifies four different strategies with
varying granularity that can be used to parallelize neural network computations. This shows that the com-
putations can be distributed effectively across a large number of cores. To exploit this, many libraries have
been developed to aid the parallelization of deep learning. Notable examples of such libraries are Theano,
Pytorch and Tensorflow. In this work, we use Tensorflow version 1.15.0. to perform the computations in
parallel. Tensorflow does not explicitly use any of the four parallelization strategies identified in [20], but
rather uses the dataflow paradigm to explicitly construct graphs of operations required for the computations.
This exposes the data that is required for each step of the computations, allowing groups of independent op-
erations to be identified. Tensorflow then distributes these operations across the available cores to accelerate
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the computations. Python source code that implements the listed methods to solve a model problem can be
found at Github1. The numerical experiments presented in this work were computed on a Tesla K80 GPU
provided by Google’s Colaboratory project.

VI. EXPERIMENTAL RESULTS

This section aims to experimentally compare the methods developed in this work to the original method
introduced in the study of [24] by applying all methods to solve several different PDEs. Because this work
focuses on improving the problem formulation, rather than on fine-tuning hyperparameters of the neural
networks and training algorithms, it makes sense to use small neural networks in conjunction with powerful
training algorithms. Limiting the network capacity necessitates using this capacity efficiently, which will
highlight the differences between the methods. By using powerful training algorithms, we ensure that the
obtained solutions accurately reflect the properties of the methods of interest. The details regarding the
neural networks and the training algorithms that were used are given in Section V.

Two new methods were developed in work. Section III introduced loss weights, with the aim to balance
the priorities of the neural network, and derived an optimal choice for this loss weight. Section IV introduced
a heuristic method for approximating this optimum, which may be of value when limited information about
the analytical solution is available. We label the original method Original, and our new methods Optimal
Loss Weight and Magnitude Normalization, respectively.

To probe the limits of these three methods, we use them to solve several different model PDEs, which
are chosen such that they can easily be made more difficult. Section VI A covers the first two PDEs that we
consider: the Laplace and Poisson equations. Because these PDEs are well understood and easy to solve
with traditional numerical methods, they are also easy to analyze. Furthermore, these PDEs are commonly
used as testbeds. For instance, the study of [7], as well as the study of [19] solve boundary value problems of
the Poisson equation and report excellent accuracy. However, the problem instances that are solved in these
studies are particularly simple. Since we aim to probe the limits of the three methods, more challenging
variants of these PDEs are also considered here, including higher-dimensional problems and problems with
peaks.

Section VI C treats the convection-diffusion equation. This PDE becomes extremely challenging to solve
with traditional numerical methods if the diffusivity becomes small. As the diffusion rate approaches zero,
the solutions start to exhibit boundary layers, which often require prohibitively fine grids and small time
steps to solve. Decreasing the diffusion rate thus serves as the main tool to increase the difficulty of these
problems.

A. Laplace Equation

This section covers the Laplace equation, which describes the stationary heat equation and forms the
basis of many model PDEs. As mentioned, this PDE is well understood and therefore serves as the starting
point of the experimental analysis. Here, our focus is on analyzing behavior that is specific to neural net-
works. Traditional numerical methods are generally only dependent on the PDE and the grid size. However,
since neural networks have limited learning capacity based on their size, one would expect that the difficulty
of solving a PDE depends, among other things, on the complexity of the true solution. Therefore, choosing
boundary conditions that lead to increasingly complex solutions forms the basis of probing the limits of the
original and proposed methods. For a d-dimensional system, boundary value problems corresponding to the

1 https://github.com/remcovandermeer/Optimally-Weighted-PINNs

https://github.com/remcovandermeer/Optimally-Weighted-PINNs
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Laplace equation assume the form {
∇2u(x) = 0 in Ω,

u(x) = G(x) on ∂Ω.
(59)

To keep the arithmetic simple, problems are considered on the d-dimensional unit hypercube with boundary
conditions that correspond to the eigenfunctions of the Laplace equation, û(x) ≡

∏d
i=2 sinωixie

−ω1x1 , with

ωi multiples of π and ω1 =
√∑d

i=2 ω
2
i . This gives rise to inhomogeneous boundary conditions at x1 = 0

and x1 = 1, and homogeneous boundary conditions on the remaining 2d − 2 boundary hyperplanes. High
frequencies are expected to be challenging to learn compared to lower frequencies. Section VI A 1 covers
the problem in two dimensions. Section VI A 2 covers the Laplace equation in up to six dimensions.

1. Two-Dimensional Problems

In two dimensions, eigenfunctions are characterized by a single eigenfrequency ω. The three methods
are compared for various frequencies ranging from ω = π to ω = 10π. For these problems, the optimal loss
weight follows from the magnitude bounds of eq. 36-35, which are given by

MI(u) =

∫
Ω

[
2ω2e−ωx1 sinωx2

]2
dx = ω3(1− e−2ω),

MB(u) =

∫
∂Ω

[
e−ωx1 sinωx2

]2
dxΓ =

1

2
(1 + e−2ω).

(60)

The optimal loss weight is thus approximately given by λ = MB(û)
MB(û)+MI(û)

≈ 1
1+2ω3 . As a result, optimal

loss weights range from approximately 1.58e-2 for ω = π to 1.61e-5 for ω = 10π. This forecasts signif-
icant differences between the original method given in [24] and the proposed ones, especially for higher
frequencies.

To perform the training we use adaptive collocation point counts, starting with 2 interior and boundary
collocation points. L-BFGS ran for 20,000 iterations. The relative L2 and L∞ errors obtained by the three
methods are given in table I.

ω
Original Optimal Loss Weight Magnitude Normalization

L2 L∞ L2 L∞ L2 L∞

1π 9.07e-5 1.34e-4 2.76e-5 1.10e-4 2.38e-5 6.79e-5
2π 1.12e-3 2.61e-3 6.36e-5 1.91e-4 2.38e-4 5.07e-4
4π 2.11e-2 6.44e-2 7.27e-4 4.63e-4 1.75e-3 1.31e-3
6π 7.50e-1 9.77e-1 1.01e-3 3.39e-4 3.77e-3 1.50e-3
8π 8.25e-1 1.21 1.84e-2 8.71e-3 5.95e-3 2.08e-3
10π 2.44 1.65 1.53e-2 9.26e-3 7.05e-3 2.30e-3

TABLE I: Relative L2 and L∞ errors of the approximations that were obtained by the three methods for
various frequencies. Problems with frequencies higher than 4π were not solved accurately by the original
method. Magnitude normalization and optimal loss weights both resulted in significantly more accurate
approximations.

Table I shows that there is a significant difference in accuracy between the original method and the
methods proposed in this work, which becomes even more pronounced for higher frequencies. In most
cases, the proposed methods were at least one order of magnitude more accurate than the original. Fig. 1
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illustrates this difference in accuracy for the frequency ω = 10π. The original method uses a loss weight
that is several orders of magnitude larger than the theoretical optimum, and thus focuses excessively on
satisfying the PDE. This is reflected by the shape of the obtained approximation: the boundary conditions
were not satisfied, but the Laplacian of the solution was extremely small.

(a) (b)

FIG. 1: Boundary conditions and solutions of the two-dimensional Laplace equation with eigenfrequency
ω = 10π as obtained by the original method (fig. 1a) and magnitude normalization (fig. 1b). The original
method yielded a solution of which the loss function was completely dominated by the boundary loss, as
one would expect based on the optimal value of the loss weight.

To better understand the differences between the three methods, the values of the functions LI(u) and
LB(u) during training are plotted in fig. 2. This highlights that our proposed methods do not yield solutions
with lower losses than the original method; instead, the interior loss is sacrificed to better approximate the
boundary. The figure also shows that the training behavior of magnitude normalization and optimal loss
weights are quite similar. There are two key differences between these two methods. Firstly, the optimal
loss weight method uses the optimal loss weight from the very first iteration, while magnitude normalization
must first discover the overall shape of the true solution before the optimal loss weight is approximated.
This is reflected by the loss profile, which shows a slower initial decrease of the boundary loss and a slower
initial increase of the interior loss for magnitude normalization compared to optimal loss weights. Secondly,
the loss profile of magnitude normalization has significantly larger spikes. The reason for this lies in the
additional ways this method has to reduce the total loss: next to directly reducing the interior and boundary
losses, the magnitudes can also be increased. Increasing the magnitudes locally to reduce the overall loss
generally results in overfitting. Though overfitting was accounted for by using adaptive point counts, the
resulting spikes remain visible.

To gain some insight in the adaptive point counts that were used to obtain the results, the number of
collocation points used for the extreme frequencies are given in table II. This table highlights the strong
dependency of the required point counts on the complexity of the true solution, as well as the differences
between the three methods. In particular, observe how magnitude normalization tends to use more colloca-
tion points. This is caused by its tendency to overfit, as stated earlier.

We remark that these point counts are increased over the course of the training algorithm, and are there-
fore tied to the iteration count. Underfitting typically results in a very low point count, while overfitting
tends to result in higher point counts. In table II this is reflected in the boundary points that were used by
the original method for the frequency ω = 10π, which severely underfitted the boundary conditions.
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(a) (b)

FIG. 2: Loss profiles of the different methods during training for the problem with frequency ω = 10π.
Fig 2a shows the interior loss, and fig. 2b shows the boundary loss. Even though the original method
resulted in a very inaccurate approximation, the interior loss was much smaller, showing that it is
important to assign the right weight to the different loss terms. Note that the neural networks were trained
to minimize the logarithm of these losses.

ω
Original Optimal Loss Weight Magnitude Normalization

Interior Boundary Interior Boundary Interior Boundary

1π 512 64 128 128 512 64
10π 4096 128 4096 512 8192 512

TABLE II: Adaptive point counts used by the three methods for the extreme problem frequencies. The
higher frequency problem required significantly more collocation points, as expected.

Despite small differences in training behavior and collocation point counts, the two proposed methods
performed reasonably well for even the most difficult problem tested. However, a decline in accuracy
can be observed in table I for higher frequency problems. This makes sense, as more complex solutions
are typically more difficult to learn with neural networks. Typically, either the network capacity must be
increased, or the capacity must be utilized better to maintain the same level of accuracy. Since we increased
neither the network size nor the number of iterations, a drop in accuracy is expected. Conversely, one would
expect accuracy improvements when using larger networks or when training over more iterations.

As observed in table I, increasing the frequency leads to a drop in accuracy. To confirm that accuracy
improvements can be achieved by increasing the network size or the training iterations, the problem with
frequency ω = 10π is solved with the three methods using a neural network with five layers of 50 neurons.
Here, L-BFGS with adaptive points, starting with 2 interior and boundary collocation points, was performed
for 50,000 iterations. The resulting errors and final collocation point counts are given in table III. The
collocation point counts generally exceeded the number of points used with the smaller network; this likely
resulted from the bigger network being slightly more prone to overfitting.

To end this section, we briefly consider ε-closeness, which forms the foundation on which the proposed
methods are built. As mentioned, ε-closeness likely only holds approximately. To examine this, the loss and
error of the solution obtained by the unscaled method using optimal loss weights are depicted in fig. 3. This
figure highlights that while ε-closeness is not satisfied exactly, as errors are nonzero where the true solution
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Original Optimal Loss Weight Magnitude Normalization

Relative L2 error 9.61e-1 1.04e-3 1.03e-3
Relative L∞ error 1.13 6.43e-4 6.81e-4
Interior point count 16,384 16,384 32,768
Boundary point count 64 512 512

TABLE III: The problem with frequency ω = 10π solved by the three different methods, using a neural
network with five layers of 50 neurons. L-BFGS was run for 50,000 iterations with adaptive point counts,
starting with 2 interior and boundary collocation points. The proposed methods achieved excellent
accuracy, exceeding the accuracy obtained by the original method when solving the problem with
frequency ω = 2π using a smaller network.

zeros out, the overall distributions of the errors are shaped similarly to the true solution. Both the loss
function, which measures the errors of the second derivatives, and the absolute errors decay significantly in
x1, just like the true solution, showing that ε-closeness can be a useful concept even in practice.

(a) (b)

FIG. 3: Loss (fig. 3a) and error (fig. 3b) distributions of the solution of the problem with frequency
ω = 10π, obtained by using optimal loss weights. Notice how both the loss and the error vanish as the
solution becomes flat, highlighting that although ε-closeness does not hold exactly, it can be used to predict
the overall behavior of the loss function.

2. Higher-Dimensional Problems

With basic results established, let us turn to higher-dimensional problems, as they form one of the core
motivations for the development of neural network based solvers. As in the previous section, the eigenfunc-
tions are used to generate boundary conditions with easy-to-analyze solutions. Using the Laplace eigen-
functions, d − 1 frequencies can be chosen freely, while ω1 is determined by the other frequencies. To
prevent the solutions from becoming exponentially complex, d− 2 frequencies are held constant at ωi = π,
and the frequency ω2 is set to 4π. The focus of this section is on examining the effects of the dimensionality.
The results for different dimensionalities are given in table IV. Here, L-BFGS with adaptive point counts,
starting with 2 interior and boundary collocation points, was used.
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d
Original Optimal Loss Weight Magnitude Normalization

L2 L∞ L2 L∞ L2 L∞

3 2.00e-1 4.35e-1 2.02e-3 4.22e-3 2.66e-3 4.21e-3
4 7.29e-1 9.68e-1 1.00e-2 2.49e-2 8.66e-3 3.54e-2
5 9.84e-1 1.01 1.22e-2 2.31e-2 1.47e-2 2.22e-2
6 1.06 9.84e-1 4.31e-2 4.13e-2 4.32e-2 4.38e-2

TABLE IV: Relative L2 and L∞ errors of the approximations that were found by the three methods for
different dimensionalities. The original method has trouble solving even the three-dimensional problem,
while the proposed methods gradually become less accurate as the dimensionality grows.

Adaptive point counts never resulted in more than 16,384 interior or boundary collocation points, even
for six-dimensional problems, indicating that high-dimensional problems do not necessarily require massive
amounts of data to be solved accurately; instead, this likely only depends on the complexity of the solution.
This highlights a big advantage of neural network based methods over traditional numerical methods, which
would suffer from an exponential increase in computational cost.

Like in the previous section, results degraded as the problem difficulty was increased. We again attribute
this to the constant network size and number of iterations, which in practice ought to be increased for
more difficult problems. To verify this, the six-dimensional problem was solved with a neural network
with five layers of 50 neurons over 100,000 iterations, using magnitude normalization with adaptive point
counts, starting with 2 interior and boundary collocation points. The obtained solution had a relative L2

error of 5.99e-3 and a relative L∞ error of 9.88e-3. This again shows that the accuracy can be improved by
increasing the available computational resources.

B. Poisson Equation

This section covers the Poisson equation, which is the extension of the Laplace equation with a source
function. This PDE is analyzed in order to assess the effects of source functions on the proposed methods.
The main aim of this section is to show that ε-closeness, which by construction does not depend on source
functions, is a useful concept even for inhomogeneous PDEs. The Poisson equation has also been studied
in other works on neural network based PDE solvers, including the studies of [7, 17, 19]. However, the
problems that are solved accurately in these studies are generally characterized by very smooth solutions,
whereas our interest lies in solving more complicated problems, as we did in Section VI A 1. Only the study
of [17] considers a problem with less regular behavior, but the authors did not manage to solve it accurately.

As in the previous section, we aim to solve increasingly complex problems in order to probe the limits of
the proposed methods. We restrict ourselves to the 2-dimensional case. In the first part of this section, we
consider source functions corresponding to the eigenfunctions of this PDE. These problems can be made
more difficult by increasing the frequency. In the second part of this section we solve the problem with a
peak source function that was studied but not solved in [17].

1. Oscillating Solutions

For a 2-dimensional system, boundary value
problems corresponding to the Poisson equation can be defined by{

∇2u(x, y) = F (x, y) in Ω,

u(x, y) = G(x, y) on ∂Ω.
(61)
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We consider problems on the unit square Ω = [0, 1] × [0, 1]. We first consider the eigenfunction prob-
lems, with solutions given by û(x, y) = cos(ωπx) sin(ωπy). These solutions are prescribed as Dirichlet
boundary conditions on the entire boundary of the domain. The source functions that correspond to these
eigenfunctions are given by F (x, y) = −2ω2 cos(ωπx) sin(ωπy). This set of problems is parametrized
by the frequency ω, which can be utilized to control the difficulty. Similar to the Laplace equation, high
frequency problems are expected to be more challenging to solve with these methods than low frequency
problems. In addition to this, the optimal loss weights vary based on the frequency. For these problems, the
optimal weights follow from

MI(û) =

∫
Ω

[
2ω2 cos(ωx1) sin(ωx2)

]2
dx = ω4, (62)

MB(û) =

∫
∂Ω

[cos(ωx1) sin(ωx2)]2 dxΓ = 1, (63)

such that

λ =
MB(û)

MB(û) +MI(û)
=

1

1 + ω4
. (64)

This dependency of λ on ω is even stronger than it was for the Laplace equation, which is why we consider
a smaller range of frequencies, given by ω ∈ [π, 6π]. For this range of frequencies, the optimal loss weights
vary between λ ≈ 1.02e-2 for ω = π to λ ≈ 7.90e-6 for ω = 6π. Based on these optimal values, one
would again expect significant differences between the three methods for higher frequencies. The problems
were solved using the three methods using adaptive collocation point counts, starting with 2 interior and
boundary collocation points. 20,000 iterations were performed. Table V contains the relative errors of the
obtained approximations. The final numbers of collocation points used for the extreme frequencies are
given in table VI.

ω
Original Optimal Loss Weight Magnitude Normalization

L2 L∞ L2 L∞ L2 L∞

1π 6.66e-4 3.51e-3 3.47e-5 1.86e-4 2.82e-5 1.16e-4
2π 3.01e-2 1.14e-1 1.99e-4 5.28e-4 2.47e-4 5.35e-4
4π 4.56e-1 8.57e-1 2.94e-2 7.36e-2 7.74e-3 1.21e-2
6π 9.82 1.27e1 2.43e-2 1.08e-1 3.71e-2 5.03e-2

TABLE V: Relative L2 and L∞ errors of the approximations obtained by the three methods for different ω.
The original method failed to solve problems with frequencies of 4π or higher, while the proposed
methods could solve all considered problems. The decline in accuracy for higher frequency problems can
likely be explained by the increased complexity of the solutions of these problems.

These results are similar in nature to our results of the Laplace equation; as expected, the accuracy of
the original method drops off much faster than the accuracy of the proposed methods. The approximated
solutions obtained by respectively the original and the magnitude normalized methods for the problem with
frequency ω = 6π are depicted in fig. 4. We furthermore observed that the large error of the original method
again arises mainly from the boundary conditions not being satisfied, while the two proposed methods
were able to fit the boundary conditions, even for the highest frequency considered here. For the Laplace
equation, the original method resulted in a solution that interpolated the boundary conditions. However,
the Poisson equation is overall more challenging to satisfy than the Laplace equation, as is reflected in the
obtained accuracy. As a result, the original method essentially ignored the boundary conditions, since they
barely contributed to the total loss. In contrast to the results of the original method, both proposed methods
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(a) (b)

FIG. 4: The solutions to the problem with frequency ω = 6π obtained by the original method (fig. 4a) and
by magnitude normalization (fig. 4b). The original method arrived at a solution that satisfies the PDE quite
well in the interior of the domain. However, the boundary conditions were practically ignored. In contrast,
magnitude normalization yielded a much more accurate solution that satisfied both the boundary
conditions and the PDE itself reasonably well.

yielded approximations that did not visibly deviate from the true solution, even for the highest frequency
considered here. Another difference compared to the results of the Laplace equation is the behavior of
adaptive collocation point counts. Although it is not clear why, the presence of a source function seems to
increase the rate at which the methods overfit the data, which increases the number of interior collocation
points used. This effect was most notable for lower frequencies. The numbers of boundary collocation
points used are consistent with the results of the Laplace equation.

To conclude this section, our results thus show that the concept of ε-closeness remains valid even in
the presence of source functions. Both optimally weighted method and magnitude normalization make it
possible to solve problems with much greater derivatives.

ω
Original Optimal Loss Weight Magnitude Normalization

Interior Boundary Interior Boundary Interior Boundary

1π 1024 64 1024 64 512 64
6π 1024 8 2048 256 1024 256

TABLE VI: Adaptive point counts used by the three methods for the extreme problem frequencies. Source
functions seem to increase the required number of collocation points. Note that the number of boundary
collocation points that the original method used for the high-frequency problem was extremely low. This is
indicative of a too low focus on the respective loss term: even as few as eight points did not lead to
overfitting.

Our results thus show that the concept of ε-closeness remains valid even in the presence of source func-
tions. Both optimally weighted method and magnitude normalization make it possible to solve problems
with much greater derivatives. However, we remark that source functions do affect the stability of magni-
tude normalization. This did not affect the results presented in this subsection, but does become problematic
when one aims to solve problems with even higher frequencies. For such high frequencies, convergence to
the true solution is contingent on the initialization of the neural network. In our experiments, these instabil-
ities could always be overcome by using some form of pre-training, i.e. finding a set of network parameters
which result in lower loss than the random initialization. It is beyond the scope of this work to address this
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in detail.

2. Source Functions with Peaks

Next, we consider the problem mentioned earlier that has been studied in [17], however without a con-
vincing solution so far. As mentioned, this problem is characterized by the peak in the source function,
which causes a peak in the solution. The problem is defined by its solution, which is chosen as

u(x, y) = sin(πx) + e−1000((x− 1
2

)2+(x− 1
2

)2) − 1

2
. (65)

The optimal loss weight of this problem is approximately given by λ ≈ 4.45e-5, which suggests that the
proposed methods might be better suited to solving this problem than the original method. To perform
the experiments, we again use adaptive collocation point counts, starting with 2 interior and boundary
collocation points. For each method we performed 20,000 L-BFGS iterations. The results of the three
methods, as well as the final numbers of collocation points, are given in table VII.

Original Optimal Loss Weight Magnitude Normalization

relative L2 error 1.24e-1 4.01e-3 2.08e-3
relative L∞ error 7.56e-2 2.49e-3 2.94e-3
Interior point count 8192 8192 8192
Boundary point Count 8 64 512

TABLE VII: Relative L2 errors of the approximations obtained for the problem with a peak. The original
method is outperformed by the two proposed methods. Note that magnitude normalization used a large
number of boundary collocation points. This was caused by an instability that occurred during early
training, but was eventually overcome by the method.

Overall, these results line up with the expectations. However, the difference between the three methods
is fairly small, despite the very small optimal value of the loss weight. We suspect that the reason that
this difference is so small originates from the different characteristics present in the solution; during the
early training, the few collocation points present are likely only able to capture the low frequency part of
the solution, leading to early approximations that already satisfy the boundary conditions. When more
collocation points are added, the peak starts affecting the loss function, which causes the original method
to neglect the boundary conditions from then on. However, at this stage, the neural network already fits the
boundary conditions rather well. All three methods yielded significantly better results than were obtained
in [17], showing that our approach is promising.

To highlight the difference between three methods of interest, the approximations obtained by the origi-
nal method and by magnitude normalization are depicted in fig. 5. Here one can observe that both methods
were able to capture the overall behavior of the solution. Furthermore, the figure clearly shows that the
error of the original method is caused by a poor satisfaction of the boundary conditions. The behavior of the
obtained approximation in the interior of the domain perfectly aligns with the source function. The solution
obtained by magnitude normalization did not deviate visibly from the true solution. These results show that
these methods are capable of discovering solutions with irregular behavior. To further highlight this, the
error of the approximation obtained with magnitude normalization is depicted in fig. 6. This figure shows
that the error distribution is smooth, even in the region of the peak of the solution.
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(a) (b)

FIG. 5: The solutions to the problem with a peak obtained by the original method (fig. 5a) and by
magnitude normalization (fig. 5b). Both approximations have captured the overall behavior of the true
solution, and satisfy the PDE in the interior of the domain quite well. However, the original method did not
accurately satisfy the boundary conditions.

FIG. 6: The error of the approximation obtained by using magnitude normalization. The distribution of the
error is smooth, indicating that no artifacts were introduced by the neural network to handle the sudden
change in behavior near the peak.

C. Convection-Dominated Convection-Diffusion Equation

So far only nicely elliptic PDEs have been discussed. The experimental results suggest that for hyper-
bolic PDEs, choosing the loss weight according to the theoretical optimum can have a significant positive
effect on the accuracy of these methods. Magnitude normalization, which has qualitatively different behav-
ior, generally results in similar accuracy improvements, but can also be unstable. These instabilities reveal
an underlying property of this method: it acts as a driving force towards larger derivatives.

It turns out that this quirk can be exploited to solve a certain class of problems: singularly perturbed
problems. These problems are typically challenging to solve with traditional numerical methods because of
extreme differences in the behavior of the solutions. One instance of this class of problems is the stationary
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convection-dominated convection-diffusion equation. This PDE gives rise to solutions with boundary lay-
ers, which are small regions where the solution has dramatically different behavior compared to the rest of
the solution. For this particular PDE, boundary layers are characterized by extremely large gradients. In this
section we briefly show that the tendency of magnitude normalization to find solutions with large gradients
makes this method a promising candidate for solving problems with boundary layers.

In one dimension, the stationary convection-diffusion equation is given by v
du

dx
+ α

d2u

dx2
= 0 in Ω,

u(x) = G(x) on ∂Ω.

We examine this PDE on the domain x ∈ [0, 1] with v = 1, subject to the boundary conditions u(0) = 1
2
,

u(1) = −1
2
. The analytical solution of these problems take the form

u(x) =
e−

vx
α

1− e− vα
− 1

2
. (66)

Eq. 66 implies that the size of the boundary layer is proportional to the diffusivity α. Therefore, one would
expect that these problems more are challenging to solve as α→ 0. Thus, reducing the diffusivity provides
an excellent tool to tune the difficulty of the problem. The three methods are compared for various α,
ranging from α = 10−1 down to α = 10−4. Here, we use adaptive point counts, starting with 2 interior
points. The 2 boundary collocation points fully cover the boundary domain, and are hence kept constant.
We performed 20,000 iterations for each problem. The results are given in table VIII.

α
Original Optimal Loss Weight Magnitude Normalization

L2 L∞ L2 L∞ L2 L∞

10−1 1.25e-8 2.28e-8 1.48e-6 3.02e-6 4.45e-8 8.87e-8
10−2 1.50e-7 4.11e-7 2.34e-6 4.63e-6 2.87e-7 5.80e-7
10−3 1.02 1.14 1.14 1.98 9.25 4.56e1
10−4 1.01 1.20 1.15 2.00 1.91 3.51e1

TABLE VIII: Relative L2 and L∞ errors of the approximations that were obtained by the three methods for
various α. For α ≤ 10−3, no good approximations were found. For larger diffusivity, all three methods
yielded very accurate approximations.

The results given in Table VIII show that for α ≥ 10−2, all three methods yielded very accurate results.
Remarkably, the original method outperformed the proposed methods. We suspect that due to the extreme
variance of the true solution, a single loss weight is not sufficient to simultaneously deal with the different
behaviors inside and outside of the boundary layer. If this is indeed the issue, a local loss weight λ(x)
would likely improve the results. However, that is beyond the scope of this work. For smaller α, none of
the three methods were able to obtain accurate results.

We will show that it only takes a small modification for magnitude normalization to solve these problems.
In particular we observed that magnitude normalization with adaptive point counts resulted in a very large
number of collocation points. This was caused by magnitude normalization being unstable for this problem.
Eliminating instabilities is not straightforward, and this process typically depends on the nature of the
instability. We already mentioned that pre-training is a valid way of overcoming instabilities. However, it
may also be helpful to increase the initial number of collocation points, as this prevents the method from
introducing spikes into the solution between collocation points. For the particular problem with α = 10−4,
it seems to be sufficient: starting the algorithm with 256 interior collocation points resulted in a relative
L2 error of 1.41e-4, and a relative L∞ error of 8.78e-4. Here, adaptive point counts ultimately resulted in
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65,536 interior collocation points, which is a fairly small number considering the size of the boundary layer.
This suggests that the poor accuracy of magnitude normalization as shown in table VIII was indeed caused
by instabilities. The approximated solution when starting with 256 interior collocation points is depicted in
fig. 7.

(a) (b)

FIG. 7: The approximation obtained using magnitude normalization with 256 initial interior collocation
points. Even in the boundary layer, no deviations from the true solution are visible.

We remark that increasing the initial number of collocation points does not enable the other two methods
to solve the problems with small α. It only slightly improved the obtained accuracy for the problems with
large α, at significant computational cost.

VII. DISCUSSION AND CONCLUSION

The study of [24] introduces an unsupervised learning method that solves PDEs by simultaneously min-
imizing two objective functions: one encoding the boundary conditions, and one encoding the PDE itself.
This method lends itself to solving certain types of problems more efficiently than traditional numerical
solvers. For example, neural networks do not suffer from the curse of dimensionality, as they are able
to recognize low-dimensional features in high-dimensional space. Furthermore, this method is likely well
suited to solving problems for which the underlying geometry is challenging to discretize.

In this work, we generalized this method by introducing a loss weight which compensates for potential
imbalances in these two objective functions, which the original method simply adds together with equal
weight. To derive an optimal value for this loss weight, the notion of ε-closeness was introduced in Section
III. This concept was used to predict the deviations of a neural network approximation and its derivatives
from the target function, and allowed us to express an optimal value for the loss weight in terms of the
true solution of a PDE. We also derived a heuristic method to approximate this loss weight in terms of the
approximated solution, which we coined magnitude normalization. Furthermore, we introduced a method
of adaptively updating the number of collocation points based on the training loss and a test loss.

The significance of ε-closeness and the accompanying optimal loss weights was showcased in Section
VI, which contains several model problems that were specifically constructed to have imbalanced objective
functions. Using our proposed methods, much better accuracy was obtained for most problems we consid-
ered. This shows that neural network based PDE solvers have inherently different behavior compared to
traditional numerical methods; their accuracy does not only depend on the PDE one aims to solve, but also
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on the complexity of the solution. Magnitude normalization was also shown to have useful properties for
solving singularly perturbed problems.

We must, however, mention that magnitude normalization in its current form can be sensitive to the
initialization of the neural network, and may be unstable for more difficult problems. These instabilities pose
challenges that remain to be solved in future work. The singularly perturbed problems that we considered
also indicate that using constant loss weights may not always be ideal, in particular when the solution is
characterized by changing behavior. In these cases, a local loss weight λ(x) might prove useful. Such a
local loss weight can likely be derived from ε-closeness, since this is a local concept. Local loss weights
might even be the key to stabilizing magnitude normalization.

Other open problems that remain have already been identified by the authors of the original study of
[24]: error bounds and convergence guarantees are currently non-existent. Given the computational cost of
training a neural network, we agree that these methods should not yet be used to solve a single problem
instance of a PDE for which traditional methods are available. However, these methods can likely be used
to solve parametrized families of problems. While the computational costs involved in training a neural
network are large, neural networks are typically cheap to evaluate. Being able to solve many PDEs at
once would hence provide a computational reason to prefer neural network based methods over traditional
solvers.

The progress made in this work should bring us one step closer to being able to solve parametrized prob-
lems: the theoretical results presented here concern the simultaneous optimization of two general objective
functions, and should extend beyond the setting of solving PDEs. A natural next step would be to combine
more than two objectives, e.g. by solving multiple PDEs at once.
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