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Abstract

This paper demonstrates the use of exact op-

timisation algorithms for compressing digital

ElectroCardioGrams (ECG). As opposed to

traditional time-domainmethods using heuris-

tics for selecting a small subset of representa-

tive signal samples, we formulate the problem

of selecting this subset in rigorous mathemat-

ical terms. This approach enables us to de-

rive algorithms guaranteeing the smallest pos-

sible reconstruction error when interpolating

a bounded selection of signal samples. The

proposed model resembles well-known network

models, and is solved by a cubic dynamic pro-

gramming algorithm. When applied to stan-

dard test problems, the algorithm produces a

compressed representation for which the dis-

tortion is about one half of that obtained

by traditional time-domain compression tech-

niques at reasonable compression ratios. This

illustrates that in terms of accuracy of de-

coded signals, existing time-domain heuristics

for ECG compression may be far from what is

theoretically achievable. The current paper is

an attempt to bridge this gap.
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1 Introduction

Owing to the large amount of data involved,

storage or transmission of sampled Electro-

CardioGraphy (ECG) signals is expensive.

Compressing the data in such a way that accu-

rate reproductions can be made is therefore of

vital importance. Due to high redundancy in

sampled ECG signals, savings in transmission

time and storage requirements may be consid-

erable.

The problem of compressing ECG data

has traditionally been attacked by heuristic

time-domain methods such as AZTEC (COX

et al., 1968), CORTES (ABERNSTEIN and

THOMPKINS, 1982) and FAN (BARR, 1988).

Several attempts have been made recently to

improve the time-domainmethods, and among

these are techniques such as SLOPE and AZT-

DIS (TAI, 1991; 1993). The basic idea of all

these algorithms is to break the ECG signal

into consecutive linear segments. This is done

by selecting a set of signi�cant samples in the

encoder. The reconstruction, in the decoder,

is done by performing linear interpolation be-

tween the retained samples. Selection of signif-

icant samples is based on some heuristic which

is unique for each method. Instead of minimis-

ing the total reconstruction error, the heuris-

tic typically attempts to limit the maximum

reconstruction error.

In this paper we study how graph theory

and optimisation can be used to solve the com-

pression problem, and we formulate a math-

ematical model expressing the best possible



compression subject to given conditions. The

notion of goodness may be de�ned in various

ways, and the question of what conditions to

impose may have multiple answers. We make

a subjective choice of optimisation criterion

and corresponding restrictions to constitute

the model. Only time-domain methods are

considered in this paper.

The advantage of optimisation models and

algorithms is that given some realistic assump-

tions, they guarantee the best possible data

compression. However, such approaches may

su�er from lack of ability to satisfy the real-

time requirements implied by the application

in question. Although this is not true in every

case, the processing time of exact optimisa-

tion algorithms may by far exceed the one of

a simple heuristic. Hence the goal of the cur-

rent work is not to replace existing methods,

but rather the following:

� Provide a tool for analysing heuristic ap-

proaches to the problem.

� Serve as a source of ideas to alternative

methods.

In the references above, heuristics are com-

pared experimentally. If the answer to how

well the methods theoretically can perform

were available, such a comparison could be

given another dimension. The gap between the

quality of proposed methods and theoretically

achievable quality also holds important infor-

mation on the need for improvements. Such

considerations justify the �rst goal above.

In cases where exact algorithms are too in-

e�cient, these may still be a starting point to

simpler but su�ciently accurate methods. If

some conditions may be relaxed without seri-

ous loss of realism, or if shortcuts in the exact

versions can be made with only modest perfor-

mance degradations, useful techniques related

to optimisation can be obtained. In later sec-

tions we illustrate how this idea can be applied

to the problem under study.

A suggestion to how the optimisation prob-

lem can be formulated is given in the next sec-

tion. In Section 3, we discuss how the model

can be solved, and next the prospectives of

the method are discussed. In Section 5 we

demonstrate experimentally how optimisation

can contribute to ECG data compression, and

in the concluding section practical aspects of

the method are considered.

2 Optimisation model

Let y(1); y(2); : : : ; y(N ) be samples of an

ECG-signal made with constant interval

length, and de�ne the sample set S =

fy(1); y(2); : : : ; y(N )g. We seek an appropri-

ate compression set C = fn1; n2; : : : ; nMg �

f1; 2; : : : ; Ng and corresponding sampled val-

ues to represent S. Assume n1 = 1 and nM =

N . De�ne the approximations �y(n) = y(n)

if n 2 C, and �y(n) =
y(nm+1)�y(nm)

nm+1�nm
(n � nm)

when nm < n < nm+1.

Hence we arrive at a continuous piecewise

linear function which interpolates

f(n; y(n)) jn 2 C g. How well the func-

tion �ts the other sampled values de-

pends on the choice of C. One accept-

able �tness criterion might be the root

mean square error (RMS) de�ned as �C =qPN

n=1 (�y(n) � y(n))2. The contribution

to �
2
C from points along the straight line

between (nm; y(nm)) and (nm+1; y(nm+1)),

equals �m =
Pnm+1�1

n=nm+1
(�y(n)� y(n))2 and

hence �2C =
PM�1

m=1 �m.

De�ne the digraph D = (V;A) whose vertex

set V = f1; 2; : : : ; Ng. Furthermore, the arc

set A contains the ordered pair (i; j) if and

only if i; j 2 V and i < j. For any two vertices

n1; nM 2 V , the ordered set (n1; n2; : : : ; nM)

is said to be a path from n1 to nM in D if

2



n1; : : : ; nM 2 V are distinct vertices such that

(nm�1; nm) 2 A for m = 2; : : : ;M . In our

case this is equivalent to n1 < n2 < � � � < nM .

In this paper Pn denotes a path from vertex 1

to vertex n. Whenever the origin of a path is

unmentioned, it can be assumed to be vertex

1.

Any arc (i; j) 2 A represents the possibility

of including i and j as consecutive members

of C. Hence we actually explore D for a suit-

able path PN to N . The set of vertices tra-

versed by this path will constitute C. One ef-

fect of including i and j as consecutive vertices

in PN is a contribution to �2C from all interme-

diate vertices i+1; : : : ; j�1. This is expressed

as cij =
Pj�1

n=i+1 (�y(n) � y(n))2 where �y(n) is

found by linear interpolation from (i; y(i)) to

(j; y(j)). It is important to note that cij hence

only depends on y(i); y(i + 1); : : : ; y(j).

The heuristics proposed in (BARR, 1988),

(TAI, 1991) and (TAI, 1993), strive to �nd a

preferably small collection C such that the to-

tal RMS also is small. Computational experi-

ments show that the heuristics provide reason-

able compromise solutions to these con�icting

criteria. The idea in TAI(1993) is to start with

a su�ciently small C and gradually extend it

by samples for which the interpolation error

currently is large. Termination occurs when

this error at every sample is below a user-

supplied upper bound.

In an optimisation approach, one of the cri-

teria is de�ned the ultimate goal, whereas the

other is represented in terms of a constraint.

One possible model is hence to minimise RMS

subject to the constraint that no more than a

prescribed number (M ) of samples may enter

C.

Referring to the digraph de�ned above, the

problem amounts to minimising the length of

PN , such that PN contains no more than M

vertices. The length of a path is de�ned as the

sum of the lengths of the arcs connecting the

vertices on the path, and the length of each

arc is de�ned as cij.

The problem is an instance of the resource-

constrained shortest path problem (ANEJA et

al., 1983; BEASLEY and CHRISTOFIDES,

1989). The resource in question is the num-

ber of vertices on the path. Unlike the gen-

eral version of the problem, our model contains

only one resource constraint (JOKSCH, 1966;

ANEJA and NAIR, 1978; HANDLER and

ZANG, 1980; RIBEIRO and MINOUX, 1985).

Omitting the resource constraint, we simply

face the frequently studied shortest path prob-

lem (DIJKSTRA, 1958).

Because of the particular choice of resource

in our case, we term our problem the cardinal-

ity constrained shortest path problem (CCSP).

In the next section, we derive a recursive for-

mulation of CCSP, and based on this we give

an algorithm providing the exact solution.

3 Optimisation algorithm

In order to establish an e�cient solution

scheme, we propose the following precise prob-

lem formulation. De�ne Pjm as the shortest

path to j visiting exactly m vertices, and let

f(j;m) denote the length of Pjm. We ac-

tually search for a 1 < m
�
� M and the

corresponding PNm� for which f(N;m�) =

min1<m�M f(N;m). In our search, we com-

pute all such paths PNm in the order given by

increasing values of m. The CCSP problem

is hence solved when these quantities become

available.

Consider the path Pj;m+1, and denote the

second last vertex in Pj;m+1 by i. Obviously,

i < j and i � m. Hence Pj;m+1 contains a sub-

path throughm vertices to i. But this subpath

has to be Pi;m, because otherwise we could

�nd a shorter path through m vertices to i.

Augmenting this with vertex j yields a path

shorter than Pj;m+1 (through m + 1 vertices)

ending at j, contradicting the fact that Pj;m+1
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Algorithm CCSP

for j = 2; : : : ; N

f(j; 2) = c1j // Length of two-vertex path

p(j; 2) = 1 // from 1 to j

m
� = 2 // Assume the two-vertex path to N is optimal

for m = 2; : : : ;M � 1 // Find m + 1-vertex paths

for j = m + 1; : : : ; N // Find the path to j

p(j;m + 1) = m // Assume Pj;m+1 = f1; 2; : : :;m; jg

f(j;m + 1) = f(m;m) + cm;j // The length of this path

for i = m+ 1;m+ 2; : : : ; j � 1 // Pj;m+1 may equal Pim [ fjg

if f(i;m) + cij < f(j;m + 1) // Shorter!

f(j;m + 1) = f(i;m) + cij // Update the shortest length

p(j;m+ 1) = i // Record the last step

if f(N;m + 1) < f(N;m�) // Shortest path to N so far

m
� = m + 1 // Optimal number of vertices in path to N

end

Figure 1: Algorithm for the CCSP problem

is the shortest of all such paths.

Hence we have that f(j;m+ 1) = f(i;m) +

cij for some i = m;m + 1; : : : ; j � 1. Fur-

thermore, it is clear that i must be the vertex

minimising the right hand side in this equa-

tion. Supplying the obvious condition that

f(j; 2) = c1j, we arrive at the recursive equa-

tions

f(j; 2) = c1j (1)

f(j;m + 1) =

minff(i;m) + cij ji = m; : : : ; j � 1g (2)

When j = 2; : : : ; n and m = 2; : : : ;M �

1 are inserted in (1)-(2), f(N;M ) is uniquely

de�ned.

Equations(1)-(2) constitute a dynamic pro-

gramming formulation of CCSP. Similar for-

mulations have been proposed for various

constrained shortest path problems (SAI-

GAL, 1968; ROSSEEL, 1968; BEASLEY and

CHRISTOFIDES, 1989). The formulation

above resembles the one given in (SAIGAL,

1968), but in (2) we exploit the fact that

(i; j) 2 A only if j > i. Furthermore, we dis-

regard f(i;m) for all i < m since all paths

terminating at i have at most i vertices.

From the above formulation, the algorithm

in Figure 1 suggests itself (p(j;m) signi�es the

predecessor of j in Pjm).

The compression set can thus be recorded

by the algorithm:

nm� = N

for m = m
�
;m

�
� 1; : : : ; 2

nm�1 = p(nm;m)

This produces the interpolation points

(n1; y(n1)) ; (n2; y(n2)) ; : : : ; (nm� ; y(nm� )).

It is easily seen that when all arc lengths

are available, the computations above involve

O(MN
2) arithmetic operations. Computation

of all cij-values can be shown to require no

more than a total of O(N2) operations.
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4 Bene�ts of CCSP

Given the compression rate, there exists no

better (in terms of RMS) encoded represen-

tation than the one generated by the algo-

rithm in Figure 1. Although the truth of this

statement is restricted to time-domain meth-

ods involving linear interpolation between se-

lected sample points, the algorithm guaran-

tees to produce more accurate representations

than several popular methods. Experiments

reported in the next section show that com-

pared to conventional methods, the RMS re-

duction achieved by the CCSP approach is

considerable.

Usually, signi�cant error reductions are

computationally expensive, and the suggested

approach is de�nitely more time consuming

than traditional methods. But even in cases

where the algorithm might violate the time

constraint induced by the real time appli-

cation, it serves as a powerful tool when

analysing possible heuristic methods.

When considering what compression

method to use in a given project, various

heuristics may be compared in terms of e.g.

computational e�ciency and total error in the

decoded signal. In order to assess the poten-

tial in further re�nements of the heuristics,

the theoretical minimumsignal error holds im-

portant information. If results close to this

bound are observed when applying a suggested

method to realistic data, there is not much

point in further enhancements. Otherwise, it

is indicated that attempts to improve the sam-

ple selection may be worthwhile. Since our

method produces the minimum interpolation

error, the CCSP solution hence is a reference

for any other time-domainmethod in question.

In addition to purposes of the kind men-

tioned above, considering data compression

problems in terms of graph theory may be

bene�cial when developing heuristic methods.

Once the problem is recognised as a cardinality

constrained shortest path problem, we know

precisely what the heuristic should look for.

Possible ways of locating short paths with a

limited number of vertices include

� Divide the samples into d periods, and

perform CCSP on each of these. Execu-

tion time is reduced by about d2.

� Start with the path involving vertices 1

and N only, and augment it gradually

by one vertex until an M -vertex path is

achieved.

� Start with an arbitrary path with M ver-

tices, and change vertices on the path

successively such that the path length is

gradually reduced.

This paper will be followed up by research

on heuristics of the above kind.

0 50 100 150 200 250 300 350 400 450 500
700

800
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1100

1200

1300

Figure 2: Recording represented by 500 sam-

ples from the mit200 record

5 Numerical experiments

To investigate the performance of the CCSP

approach, and hence to evaluate the perfor-

mance of existing time-domain ECG coders,

two arbitrary ECG recordings (Figure 2 and

Figure 3) from the MIT (MOODY, 1992)
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Figure 3: The reconstructed and the original signal of a 500 samples long recording from the

mit100 record. The 30 samples selected by the FAN algorithm and the CCSP algorithm are

indicated with an 'o' and a 'x', respectively.

databases were selected. In comparison with

other time-domain coders, the FAN algorithm

has been reported to give high compression ra-

tio, in addition to producing a reconstructed

signal with high �delity (JALALEDDINE et

al., 1990). Thus, an appropriate choice will be

to represent the traditional time-domain tech-

niques by the FAN method, and compare it

with the CCSP algorithm in the following nu-

merical experiments.

In practice the selected samples are usually

entropy coded. However, in our case we shall

restrict ourselves to present compression ratio

in terms of the fraction between the number of

samples in the original signal and the number

of retained samples, so that

Sample reduction rate =

Number of samples in original signal

Number of retained samples
: (3)

Assuming that the probability distributions of

the coded sequences produced by each tech-

nique are approximately equal, the compres-

sion ratio in terms of bit reduction will be pro-

portional to the sample reduction ratio.

An error estimate which appears frequently

in the ECG coding literature is the Percent
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Figure 4: Sample reduction ratio versus PRD

for record mit100

Root-mean-square Di�erence (PRD) de�ned

as

PRD =

vuut
PN

n=1 [y(n) � �y(n)]
2

PN

n=1 [y(n) � y]
2

� 100%; (4)

where y is the mean value of the original signal.

This estimate is proportional to the error cri-

terion RMS used in the CCSP algorithm, and

the results shown in Figure 4 and 5 clearly

illustrate the impressive performance of this

algorithm in terms of compression e�ciency.

For a low sample reduction ratio, the di�er-

ence in PRD is minor. However, as we increase

the sample reduction ratio, the CCSP algo-

rithm becomes superior. This trend has been

manifested by numerous experiments with a

larger selection of ECG records from the MIT

database.

6 Conclusions

This paper demonstrates that a graph theo-

retic approach to the problem of compressing

ECG data can be very useful. We consider the

digraph where each vertex represents a sample

point in the original ECG signal, and each arc

signi�es inclusion of the samples correspond-

ing to its connecting vertices as consecutive

retained signal samples. Hence we seek a se-

lection of arcs and incident vertices in the di-

graph, and this selection is to constitute a path

from the �rst to the last sample point.

The algorithm proposed for the problem

proves to converge in cubic time, and has been

successfully applied to standard test prob-

lems. Compared to conventional time-domain

heuristics, our approach contributes to a dras-

tic reduction in the total error of the decoded

signal, depending on the compression rate.

From this we learn the lesson that frequently

applied time-domain methods su�er from sig-

ni�cant deviations from the theoretical opti-

mum. Furthermore, the lower error bound can

actually be reached by applying the suggested

method.

FAN 
CCSP
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Figure 5: Sample reduction ratio versus PRD

for record mit200

Numerical experiments reported in this pa-

per show that exact solutions to data com-

pression problems, where the signal length is

500 and the sample reduction rate is 10, can

7



be found in about 8.8 CPU-seconds on an

HP/9000 work station. This is fairly close

to the real time requirement of about 1 sec-

ond. The need for faster methods is however

present, and it is our belief that graph theo-

retic considerations may contribute to e�cient

heuristics as well.

Shorter execution time can be achieved by

using a higher sample reduction rate, as the

number of operations required by the CCSP

algorithm are proportional to the number

of samples retained. In Section 5 we ob-

served that the di�erence in reconstruction er-

ror between CCSP and the FAN algorithm

increased, as the sample reduction ratio in-

creased. Thus, in applications where high

compression is desirable, we can conclude that

the CCSP algorithmat this stage can be a real-

istic alternative to the traditional time-domain

coders.
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