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1.1 The challenge of information asymmetry

Suppose you are a seller of a certain product and are aware of a potential buyer. You
have a single opportunity to offer this buyer a menu of several contracts to choose
from, where each contract prescribes the buyer’s order quantity and his total price.
However, the buyer does not blindly accept any contract: the proposed order quantity
and the corresponding price must be satisfactory to him. Any unfavourable contract
will be declined. That is, after offering the menu of contracts to the buyer, he will
either reject all contracts or accept the contract that is most beneficial to himself.
In the first case, you lose this potential buyer, since we assume that renegotiations
are not possible. Hence, whether the buyer accepts a contract needs to be taken into
account when designing the menu of contracts.

A complicating factor is that the buyer does not share all his information with
you for strategic bargaining reasons, which includes his acceptable combinations of
order quantities and prices. Facing this information asymmetry, how can you design
a menu of contracts such that your expected profit is maximised?

The described problem is called a principal-agent problem. The principal (the
seller) wants to persuade the agent (the buyer) to take a certain action, without hav-
ing all relevant information on the buyer. There is information asymmetry between
both parties: the buyer has private information, e.g., his maximum budget or his
maximum price per unit of products. To achieve his goal, the seller can design an
incentive mechanism to persuade the buyer to act in the seller’s interest and change
his default behaviour. We consider a mechanism consisting of a menu of contracts
where a side payment (a financial compensation) is used as incentive. In order to
make optimal use of a menu, these contracts must be carefully designed to be in line
with each other. Typically, an optimisation problem has to be solved to determine a
menu that maximises the seller’s profit.

The modelling of the principal-agent problem is essential for the resulting in-
centive mechanism. Small variations in the model can already change the buyer’s
observable behaviour in his choice of contracts. Two important modelling aspects
are the buyer’s private information and the maximum allowed number of contracts
in the menu. For example, if the private information can take on only two possible
values, then a natural approach is to offer a menu with two contracts, namely one
intended for each possibility. This idea can of course be extended to a general but
finite number of possibilities, referred to as the discrete case. If the private infor-
mation lies in a continuous range, the continuous case, we can interpret it as the
limit of the discrete case. However, we can question how you would communicate
the resulting menu with infinitely many contracts to the buyer. Perhaps we should
restrict the number of contracts, hopefully without losing too much expected profit.

We continue with a formal definition of the considered problem in order to elabo-
rate on the mentioned design choices and to position Chapters 2-5 in this framework.
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1.2 The principal-agent problem

We describe the principal-agent problem in a setting with a seller and a potential
buyer, where the buyer has private information. The seller has a single type of
product, which we assume is infinitely divisible. Selling x ∈ R≥0 products to the
buyer results in a seller’s utility ψ(x) expressed in monetary value, e.g., the utility
ψ(x) is the seller’s profit. The buyer’s utility for obtaining x products depends on his
private information. We restrict the problem to the case where the buyer’s private
information can be encoded in a single-dimensional parameter θ ∈ R. This parameter
is called the buyer’s type and models, for example, the buyer’s marginal value for a
unit of products. Thus, the buyer with type θ gains a utility φ(x|θ) for an order
quantity x.

From the seller’s perspective, we assume that the buyer’s type θ follows a strictly
positive distribution ω on a set Θ ⊆ R. The seller constructs a menu of contracts to
maximise his expected net utility, relative to the distribution ω, where each contract
specifies an order quantity x ∈ R≥0 and a side payment z ∈ R from the buyer to
the seller. These side payments form the incentive mechanism and allow the seller to
affect the buyer’s behaviour. If the buyer accepts a contract (x, z), then he obtains a
net utility of φ(x|θ)−z and the seller gains a net utility of ψ(x)+z. We assume that
the buyer is willing to accept a contract if his net utility meets a certain threshold
φ∗(θ), which might depend on his type. The threshold φ∗(θ) is called the buyer’s
reservation level or default option.

Given the described setting, the seller designs a number of contracts and assigns
each type θ ∈ Θ one of these contracts, denoted by (x(θ), z(θ)). The design and
assignment of contracts must satisfy two conditions. First, each assigned contract
must be acceptable for the corresponding buyer type by taking his reservation level
into account:

φ(x(θ)|θ) − z(θ) ≥ φ∗(θ), ∀ θ ∈ Θ. (1.1)

These are known as the Individual Rationality (IR) constraints. Second, the assigned
contract must be the buyer’s most preferred contract of the menu in terms of net
utility:

φ(x(θ)|θ) − z(θ) ≥ φ(x(θ̂)|θ) − z(θ̂), ∀ θ, θ̂ ∈ Θ. (1.2)

Constraints (1.2) are the Incentive Compatibility (IC) constraints and align the side
payments across the contracts. The IR and IC constraints are typical mechanism-
design constraints.

Since the buyer does not share his private information, he can lie about his type
θ, and will either reject all contracts or choose the most beneficial contract for him.
However, by designing the menu such that constraints (1.1) and (1.2) are satisfied, it
is always optimal for buyer type θ ∈ Θ to accept his intended contract (x(θ), z(θ)). In
other words, the mechanism prevents any (financial) incentive to lie. Consequently,
the buyer’s choice is directly related to his type and we can express the seller’s
expected net utility by Eθ

(
ψ(x(θ)) + z(θ)

)
.



4 Chapter 1

Hence, the seller’s optimisation problem is to determine a menu satisfying (1.1)
and (1.2) that maximises Eθ

(
ψ(x(θ)) + z(θ)

)
, referred to as the contracting problem.

We emphasise that with the described mechanism the buyer will always accept a
contract from the menu, regardless of his type. We call such a mechanism robust.

In the above description of the principal-agent problem and the incentive mecha-
nism, we have not specified whether the type distribution ω is discrete or continuous,
and how many contracts the menu can contain. These are important modelling deci-
sions and depend on, for example, the information on the buyer available to the seller
and the communication of the menu to the buyer. We will discuss three modelling
approaches in the next sections. These models differ in the distribution ω of the
buyer’s type (discrete or continuous) and in the number of contracts in the menu
(finite or infinite). Table 1.1 provides an overview of the contracting models.

Model type Number of contracts

Finite Infinite

Probability

distribution

Discrete
Discrete

-
(Chapter 2)

Continuous
Pooling Continuous

(Chapters 3-4) (Chapter 5)

Table 1.1: Variants of the contracting model.

1.2.1 The continuous model

The first contracting model we discuss is the continuous model, where the buyer’s
type θ is continuously distributed on an interval Θ = [

¯
θ, θ̄] ⊆ R. Furthermore, the

menu may contain infinitely many contracts. The continuous model is given by

max
x,z

∫ θ̄

¯
θ

ω(θ)
(

ψ(x(θ)) + z(θ)
)

dθ

s.t. φ(x(θ)|θ) − z(θ) ≥ φ∗(θ), ∀ θ ∈ [
¯
θ, θ̄],

φ(x(θ)|θ) − z(θ) ≥ φ(x(θ̂)|θ) − z(θ̂), ∀ θ, θ̂ ∈ [
¯
θ, θ̄],

x(θ) ≥ 0, ∀ θ ∈ [
¯
θ, θ̄].

The objective is to maximise the seller’s expected net utility. The constraints are
the IR constraints (1.1), the IC constraints (1.2), and the domain constraints.

To give an example of the continuous model, suppose the private information θ
is the buyer’s monetary value of a unit of products. A corresponding utility function
could be φ(x|θ) = θx, which directly expresses the monetary value of the order x.
The private information can also be more abstract and, for example, be related to
market saturation by having φ(x|θ) = rx − θx2. Here, r ∈ R≥0 is a given marginal
value of a unit of products. This concave utility function models a situation where
an excess of products results in additional costs for the buyer, implying that for each
type there is an order quantity maximising the buyer’s utility.
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1.2.2 The discrete model

The second contracting model is the discrete model. Here, the buyer’s type has a
discrete distribution on a finite set Θ = {θ1, . . . , θK} with corresponding strictly
positive probabilities ω1, . . . , ωK , for some K ∈ N≥1. In the discrete model the seller
offers a menu consisting of K contracts, denoted by (xk, zk) for k ∈ K = {1, . . . ,K}.
The formulation for the discrete model is

max
x,z

∑

k∈K
ωk

(

ψ(xk) + zk

)

s.t. φ(xk|θk) − zk ≥ φ∗(θk), ∀ k ∈ K,
φ(xk|θk) − zk ≥ φ(xl|θk) − zl, ∀ k, l ∈ K,

xk ≥ 0, ∀ k ∈ K.

For example, the discrete model can be used when the buyer outsources part of his
operations to a subcontractor, such as a warehouse owner where the buyer will store
his inventory. The available subcontractors are public knowledge and only finitely
many possibilities exist. The buyer’s private information is the used subcontractor,
determining the buyer’s holding cost for example, which affects his utility of an order
quantity.

1.2.3 The pooling model

Suppose that the buyer’s type is continuously distributed on Θ = [
¯
θ, θ̄]. Applying the

continuous model typically results in a complex menu of contracts, where each buyer
type is assigned a different contract. This effectively means that the seller needs
to communicate an infinite number of contracts. There are situations where such a
menu is undesirable, for example, due to the difficulty in communicating the menu
to the buyer. It would be more manageable if only a limited number of contracts are
offered.

If we discretise the interval [
¯
θ, θ̄] into K type representatives {θ1, . . . , θK}, we

can apply the discrete model to obtain a menu with K contracts. However, all non-
represented types do not exist in the discrete model and their choice of contracts is
not taken into account. In general, this implies that the resulting menu is not robust,
i.e., in some cases the buyer will reject all contracts.

To prevent this issue, we should use the pooling model, which we also call the
robust pooling model to emphasise its robustness property. It is a combination of
the discrete and continuous models. First, the seller decides the number of contracts
K ∈ N≥1 in the menu. Second, he partitions [

¯
θ, θ̄] into K subintervals, denoted by

[
¯
θk, θ̄k] for k ∈ K = {1, . . . ,K}. Finally, the seller uses a mechanism as seen before

to construct a menu of K contracts, where the k-th contract (xk, zk) will be assigned
to all types in [

¯
θk, θ̄k]. In other words, all buyer types in a subinterval are pooled

and are incentivised to accept the same contract. The pooling model is given by

max
x,z

∑

k∈K

(∫ θ̄k

¯
θk

ω(θ)dθ
)(

ψ(xk) + zk

)
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s.t. φ(xk|θk) − zk ≥ φ∗(θk), ∀ θk ∈ [
¯
θk, θ̄k], k ∈ K,

φ(xk|θk) − zk ≥ φ(xl|θk) − zl, ∀ θk ∈ [
¯
θk, θ̄k], k, l ∈ K,

xk ≥ 0, ∀ k ∈ K.

In contrast to the discrete model, the pooling model takes all buyer types into
account and guarantees a robust menu. Compared to the continuous model, the
pooling approach offers a controllable number of contracts in the menu. Furthermore,
the buyer types are pooled a priori by the partition in the pooling model. The
optimisation of the partition can be included into the optimisation model, eliminating
the fixed pooling, but this significantly increases the complexity of solving the model.

1.3 Outline

In Chapters 2-5 we analyse contracting models in various supply chain coordination
problem settings with two parties. These models are either as shown in the pre-
vious sections or variations thereof. In all chapters the downstream party of the
supply chain has single-dimensional private information. We refer to these chapters
for references to the literature on the introduced contracting concepts. Given the
mathematical setting as specified in each chapter, the main research goals are to
determine whether the associated contracting model can be solved efficiently and to
derive structural properties of the optimal menus of contracts.

Below, we will position the remaining chapters in the framework of mechanism
design by referring to the contracting models introduced in Section 1.2. Furthermore,
we will outline the topic of each chapter and state on which publication or report it
is based.

Tables 1.1 and 1.2 provide a classification of the models analysed in Chapters 2-5.
The differences in the model types, the probability distributions, and the number
of contracts have been discussed in the previous sections. Table 1.2 also shows if
the setting of the underlying supply chain coordination problem is a continuous or
combinatorial optimisation problem. In addition, the table lists whether the model
uses a single- or multi-objective approach. That is, the single-objective approach
maximises the seller’s expected net utility, whereas the multi-objective approach
balances expected and worst-case net utility. Finally, we indicate whether the buyer’s
reservation level φ∗ depends on his type. The type dependency leads to different
structures in the optimal menus and affects the solution approach.

Chapter Coordination Objective Probability Number of Type-dependent

problem approach distribution contracts reservation level

Chapter 2 Continuous Single Discrete Finite Yes
Chapter 3 Continuous Single Continuous Finite No
Chapter 4 Continuous Multi Continuous Finite No
Chapter 5 Combinatorial Single Continuous Infinite Yes

Table 1.2: Overview of the analysed contracting models.
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In Chapter 2 we analyse a contracting model in the context of a supplier and
a retailer, where the supplier designs a menu to minimise his expected costs. We
determine a solution approach for a general number of retailer types and derive
structural properties of the optimal menus. It is based on Kerkkamp et al. (2018c)
of which Kerkkamp et al. (2016) is an earlier report version.

Chapter 3 considers the pooling model for certain utility maximisation and cost
minimisation problems. In addition to solving the pooling models, we focus on opti-
mising the partition of the buyer types. This chapter is based on the report Kerkkamp
et al. (2017).

A similar analysis is performed in Chapter 4 for a specific utility maximisation
problem where the seller wants to balance his expected and worst-case net utility. We
apply a constraint-wise multi-objective approach and determine the optimal partition
for the resulting pooling model. The research is based on the report Kerkkamp et al.
(2018a).

In Chapter 5 we again consider a cost minimisation problem with a supplier and a
retailer. However, the costs follow from combinatorial optimisation problems and do
not have manageable closed-form formulas. We present a two-stage solution approach
and identify cases for which this approach has polynomial running time. The chapter
is based on the report Kerkkamp et al. (2018b).

Finally, we conclude our main findings in Chapter 6.
All chapters can be read independently as they will (re)introduce the necessary

concepts and notation. The research has been conducted independently under su-
pervision of the promotors who provided guidance in the research directions, verified
the mathematical results, and assisted in finalising the writing.

For completeness, this introductory chapter is an adaptation of Kerkkamp (2017).





Chapter 2

Two-echelon supply chain

coordination under

information asymmetry with

multiple types

Abstract

In this chapter, we analyse a principal-agent contracting model with
asymmetric information between a supplier and a retailer. Both the sup-
plier and the retailer have the classical non-linear economic ordering cost
functions consisting of ordering and holding costs. We assume that the re-
tailer has the market power to enforce any order quantity. Furthermore,
the retailer has private holding costs. The supplier wants to minimise
his expected costs by offering a menu of contracts with side payments
as an incentive mechanism. We consider a general number of discrete
single-dimensional retailer types with type-dependent default options.

A natural and common model formulation is non-convex, but we
present an equivalent convex formulation. Hence, the contracting model
can be solved efficiently for a general number of retailer types. We also
derive structural properties of the optimal menu of contracts. In partic-
ular, we completely characterise the optimum for two retailer types and
provide a minimal list of candidate contracts for three types. We show
that the retailer’s lying behaviour is more complex than simply lying to
have higher costs. Finally, we prove a sufficient condition to guarantee
unique contracts in the optimal solution for a general number of retailer
types.

This chapter is based on Kerkkamp et al. (2018c).
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2.1 Introduction

We consider the classical two-echelon Economic Order Quantity (EOQ) setting with
a supplier and a retailer. Both the supplier and the retailer act as fully rational
individualistic entities that want to minimise their own costs. It is well known that
such individualistic viewpoints are suboptimal for the entire supply chain. This loss
of efficiency is often called the price of anarchy, see for example Perakis and Roels
(2007). We assume that the supply chain uses a pull ordering strategy, i.e., the
retailer places orders at the supplier. Therefore, the retailer’s default ordering policy
is optimal for himself. The supplier can decrease his costs by somehow persuading
the retailer to change to a different ordering policy.

One way the supplier can do so is by offering a contract to the retailer that
typically includes a side payment or discounts. If the contract is accepted by the
retailer, the costs for the entire supply chain decrease and the resulting profit is
divided between the two parties as agreed upon in the contract. Being selfish, the
supplier wants the largest possible share of this profit. Depending on the type of
contract, it is non-trivial to determine a contract that maximises the supplier’s profit
and that is accepted by the retailer.

The complexity of the matter is increased significantly if the retailer has private
information that is not shared with the supplier. For example, the retailer’s cost
structure can be undisclosed. Furthermore, private information typically leads to
inefficiencies for the supply chain, see for example Inderfurth et al. (2013). This
partial cooperation between the supplier and the retailer leads to a principal-agent
optimisation problem with asymmetric information.

In the case that the retailer holds private information, the supplier can use mech-
anism design or incentive theory to improve his situation, see Laffont and Martimort
(2002). That is, he presents a specially designed menu of contracts for the retailer to
choose from. We focus on constructing the optimal menu of contracts that minimises
the supplier’s expected costs, provided that the retailer is not worse off by choosing
one of these contracts.

Our setting fits in the active broader research on supply chain coordination, see for
example Lambert and Cooper (2000), Leng and Parlar (2005), and Stadtler (2008).
Ideally, all parties in a supply chain should cooperate fully for maximum efficiency.
Such (centralised) cooperation is often difficult to achieve in practice, as parties do
not want to share their private information or become too dependent on each other.
However, even under information asymmetry, cooperation to improve efficiency is
essential in order to be part of the increasingly competitive market.

To further specify the considered optimisation problem and our contribution to
the literature, we need to introduce the economical setting.

2.1.1 Contracting model

The retailer faces external demand for a particular product with constant rate d ∈
R>0, which must be satisfied immediately, i.e., there is no backlogging. Placing an
order at the supplier has an ordering cost of f ∈ R>0 for the retailer. Delivery of the
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order is assumed to be instantaneous (no lead times). Furthermore, the retailer has
inventory holding cost of h ∈ R>0 per product unit and time unit.

Since we assume that the retailer minimises his own costs and can place any
order, he places an order if and only if his inventory is depleted (the zero-inventory
property). An order quantity of x ∈ R>0 units leads to an average holding cost per
time unit of 1

2hx and an average ordering cost of df 1
x . In total, the average costs per

time unit for the retailer is given by

φR(x) = df 1
x + 1

2hx,

which is minimised by ordering the well-known economic order quantity x∗
R =

√

2df/h
(see Banerjee (1986)). The minimal costs are φ∗

R = φR(x∗
R) =

√
2dfh.

The cost structure of the supplier is similar: the supplier has an order handling
cost F ∈ R>0 and inventory holding cost H ∈ R>0. Procurement by the supplier
takes place with constant rate p ∈ R≥d. To minimise his own costs, the supplier
follows a just-in-time lot-for-lot policy. That is, the supplier does not batch the
retailer’s orders and completes procurement of an order exactly on time. Note that
F can be interpreted as a production setup cost provided that p > d and batching is
not allowed.

Per time unit the supplier has average holding costs of 1
2H

d
px and average order

handling costs of dF 1
x . This leads to a total cost for the supplier of

φS(x) = dF 1
x + 1

2H
d
px,

which is minimised if the order quantity is x∗
S =

√

2Fp/H.
The supplier and retailer both have their own optimal order quantity and either

policy is suboptimal for the entire supply chain (unless x∗
R = x∗

S), see Banerjee (1986).
From the perspective of the supply chain, the supplier and retailer can cooperate to
lower the total joint costs. The joint costs are given by

φJ(x) = d(f + F ) 1
x + 1

2

(
h+H d

p

)
x,

with optimal joint order quantity x∗
J =

√

2d(f + F )/(h+H d
p ). It is not difficult to

verify that x∗
J always lies between x∗

R and x∗
S (see Lemma 2.17 on page 44). Therefore,

lower joint costs can be achieved by deviating from the individually optimal order
quantities. Whether such coordination takes place depends on further assumptions
on power relations and market options.

As mentioned before, we assume that both the supplier and the retailer behave
rationally and want to minimise their own costs. Furthermore, we assume that the
retailer has the market power to enforce any order quantity on the supplier. Con-
sequently, the retailer chooses his own optimal order quantity x∗

R by default, called
the default ordering policy or default option. By using incentive mechanisms, the
supplier can persuade the retailer to deviate from the default policy. We analyse
using a side payment z ∈ R to the retailer as an incentive mechanism for coopera-
tion. Note that side payments can be realised, for example, via contract-dependent
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quantity discounts. The pair (x, z) of an order quantity x and a side payment z is
called a contract.

The presented contract (x, z) must be constructed such that the retailer is not
worse off than with his default option: φR(x) − z ≤ φ∗

R. This condition is called
the Individual Rationality (IR) constraint or participation constraint. If the offered
contract leads to the same costs for the retailer as his default option, we assume that
the retailer is indifferent and that the supplier can convince the retailer to choose the
contract preferred by the supplier. By assumption, the supplier can do so without
any additional costs. Hence, the retailer always accepts the presented contract if it
satisfies the IR constraint.

If the supplier has complete information of the supply chain, it is straightforward
to determine that the optimal contract offers the joint order quantity x = x∗

J and
minimal side payment z = φR(x∗

J) − φ∗
R. The resulting ordering policy leads to

perfect supply chain coordination: it is optimal for the entire supply chain, as if
there is a central decision maker.

However, we study the case that the retailer has private information on his cost
structure: either the ordering cost f or the holding cost h is private (but not both).
We consider the case that the supplier is uncertain about the retailer’s holding cost,
which is without loss of generality as will be shown in Section 2.2.1. The supplier
has narrowed the retailer’s real holding cost down to K ∈ N possible scenarios. Each
scenario corresponds to a so-called retailer type. Type k ∈ K = {1, . . . ,K} has cost
function

φk
R(x) = df 1

x + 1
2hkx,

where 0 < h1 < h2 < · · · < hK−1 < hK are the possible holding costs. This affects
the retailer’s individually optimal order quantity, which now depends on the retailer’s
type. Consequently, the retailer’s default option is type dependent, since it is his own
optimal order quantity by our assumptions. As such, we add the index k ∈ K to our
notation to discern between retailer types. For example, for type k ∈ K the default
order quantity is xk∗

R =
√

2df/hk with corresponding costs φk∗
R = φk

R(xk∗
R ). Note that

type-independent default options can be used if, for example, logistical operations
can be outsourced to a third party for a fixed fee. We do not consider this option.

The supplier designs a menu of K contracts for the retailer to choose from, one
for each retailer type. For each type k ∈ K the supplier constructs a contract (xk, zk)
that is individually rational for that specific type, similar to before. However, the
retailer can lie about his type and choose any of the presented contracts if it is
beneficial for him to do so. This situation is also called a contracting or screening
game in the literature, see Laffont and Martimort (2002).

Furthermore, the supplier assigns an objective weight ωk ∈ R>0 to each type
k ∈ K, indicating its likelihood, and minimises his expected costs. Without loss of
generality, ω is a probability distribution (

∑

k∈K ωk = 1), but this is not required for
the model and our results.
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This leads to the following non-linear optimisation problem:

min
x,x̃,z,z̃

∑

k∈K
ωk (φS(x̃k) + z̃k) (2.1)

s.t. φk
R(xk) − zk ≤ φk∗

R , ∀ k ∈ K, (2.2)

(x̃k, z̃k) ∈ {(x1, z1), . . . , (xK , zK)} , ∀ k ∈ K, (2.3)

φk
R(x̃k) − z̃k ≤ φk

R(xl) − zl, ∀ k, l ∈ K, (2.4)

xk > 0, ∀ k ∈ K.

The designed contracts (xk, zk) must satisfy the IR constraints (2.2). The pair
(x̃k, z̃k) denotes the chosen contract by retailer type k ∈ K, which must be one
of the presented contracts, see constraints (2.3). The retailer chooses the most ben-
eficial contract for himself by possibly lying, which is enforced by constraints (2.4).
The supplier’s objective is to minimise his expected costs including side payments,
see (2.1).

Consider an optimal solution to the non-linear problem and suppose that the
retailer lies about his true type. By relabelling the presented contracts, we can
construct another optimal solution for which the retailer will never lie about his type,
i.e., (x̃k, z̃k) = (xk, zk) for all k ∈ K. This is also known as the revelation principle
(see Laffont and Martimort (2002) and Myerson (1982)), which states that without
loss of optimality the supplier can restrict his design to incentive-compatible direct
coordination mechanisms and obtain a truthful choice of contract by the retailer.

For example, suppose the retailer type k ∈ K lies being type l ∈ K. This implies
that (x̃k, z̃k) = (xl, zl) and in particular

φk
R(xl) − zl = φk

R(x̃k) − z̃k

(2.4)

≤ φk
R(xk) − zk

(2.2)

≤ φk∗
R .

So, contract (xl, zl) is individually rational for type k. Relabelling or redefining
(xk, zk) to be equal to (xl, zl) leads to an equivalent feasible solution where type k
does not lie.

A direct consequence is that we can use the following equivalent simpler non-linear
model:

min
x,z

∑

k∈K
ωk (φS(xk) + zk) (2.5)

s.t. φk
R(xk) − zk ≤ φk∗

R , ∀ k ∈ K, (2.6)

φk
R(xk) − zk ≤ φk

R(xl) − zl, ∀ k, l ∈ K, (2.7)

xk > 0, ∀ k ∈ K.

We call this simpler model the default contracting model. Here, (2.7) are the Incen-
tive Compatibility (IC) constraints that prevent types from lying, provided that we
make the following conventional assumption. If the IC constraint (2.7) where type
k compares to the contract for type l is tight, then type k is indifferent between
contracts (xk, zk) and (xl, zl). In this case, we assume that the supplier can convince
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the retailer to choose contract (xk, zk) without any additional cost. We address this
assumption in Section 2.5.2. Consequently, we can implicitly set (x̃k, z̃k) = (xk, zk)
and drop the choice of contracts completely from the model. Note that the menu of
contracts with (xk, zk) = (xk∗

R , 0) for all k ∈ K is a feasible solution.
From this point onwards, we denote a menu of contracts by (x, z), where x =

(x1, . . . , xK) and z = (z1, . . . , zK). A single contract is denoted by (xk, zk) for k ∈ K.

2.1.2 Connection to the literature

Similar models have been studied in the literature and there are many variations.
One variation is to consider a continuous range of retailer types such as in Corbett
and de Groote (2000) and Corbett et al. (2004). Kerschbamer and Maderner (1998)
and Pinar (2015) analyse contracting models with structurally different cost functions
and Mussa and Rosen (1978) consider a quality-differentiated spectrum of products.
Another variation is to analyse single-period contracting such as newsvendor prob-
lems (see Burnetas et al. (2007) and Cachon (2003)). In Cakanyildirim et al. (2012)
the roles of the supplier and retailer are swapped: the supplier has private informa-
tion and the retailer designs a menu of contracts. We focus on literature that closely
relates to our model, see also Table 2.1 for a comparison.

In this chapter, we assume that only one cost parameter of the retailer is private,
which leads to so-called single-dimensional types. Pishchulov and Richter (2016)
analyse the same setting, but with two-dimensional retailer types. That is, both
the ordering cost and the holding cost are private. Their research provides a com-
plete analysis of the model in Sucky (2006), who considers the same problem. Both
use optimality conditions to determine a list of candidates for the optimal solution.
However, the analysis is restricted to only two retailer types, whereas we consider
a general number of types, albeit single-dimensional types. From our results we see
different qualitative properties of the optimal solution for two types versus more than
two types.

Li et al. (2012) incorporate a controllable lead time into the contracting model.
The retailer has additional safety stock proportional to the square root of the lead-
time demand. Only two retailer types are considered. The two types are two-
dimensional, but the type with low costs has lower ordering and holding costs than
the type with high costs.

In Voigt and Inderfurth (2011) the supplier’s setup cost (or order handling cost)
is an additional decision variable in the contracting model. The supplier has to
decide whether to lower his setup cost at the cost of lost investment opportunities.
Furthermore, the supplier has no holding costs and the retailer no ordering costs.
Besides the differences in cost functions, their model assumes the same default option
for all retailer types. To our knowledge, their work is the only paper with a related
model that considers a general number of retailer types, although the authors do
make assumptions on the distribution of the retailer types. Our results show that
having type-dependent default options increases the complexity of the retailer’s lying
behaviour and the optimal menus, compared to having a type-independent default
option.



16 Chapter 2

Another model similar to ours is discussed in Zissis et al. (2015), but there are
only two retailer types. Furthermore, the supplier has no holding costs, which reduces
the number of optimal menus of contracts that can occur. Since we analyse the case
for two types in detail, our results generalise their derived structural properties of
the optimal menu of contracts.

In light of the previous references, we emphasise that the inclusion of both order-
ing/setup costs and holding costs for the retailer and supplier results in structurally
different optimal menus of contracts. This is because both involved parties have
a finite individually optimal order quantity. Deviating from that quantity leads to
higher costs. This is not true if only one type of cost (ordering or holding) is included,
since then the individually optimal order quantity is either zero or infinity. Further-
more, in the literature it is common to assume that the supplier prefers a larger
order quantity than the retailer. We do not make this assumption and therefore also
provide insight into contracts when the supplier prefers smaller order quantities.

Paper Supplier’s costs: Retailer’s costs: Number of types: Type-dependent Dimension of type:

Setup Holding Ordering Holding Two Multiple default option One Two

Sucky (2006) X X X X X X X X

Voigt and Inderfurth (2011) X X X X X

Li et al. (2012) X X X X X X X X

Zissis et al. (2015) X X X X X X

Pishchulov and Richter (2016) X X X X X X X X

This chapter X X X X X X X X

Table 2.1: Comparison of related literature.

2.1.3 Contribution

We consider a principal-agent contracting model with asymmetric information un-
der the EOQ setting. Our model distinguishes itself from the literature by having
a general number of retailer types with type-dependent default options. Further-
more, the supplier and the retailer have both ordering/setup costs and holding costs.
Consequently, a typical analysis using optimality conditions is complex and does not
appear to lead to a generalisable solution method.

Our main contributions are as follows. First, we show that our non-convex model
has a hidden convexity, which is achieved by a change of decision variables. Hence,
in practice we can numerically solve our model to optimality for a general number
of retailer types using various efficient techniques. Second, we determine structural
properties of the optimal solution for a general number of retailer types. The analysis
shows significant differences in the structure of optimal menus of contracts for two
types compared to more than two types. Third, we prove a sufficient condition to
guarantee unique contracts in the optimal solution. We provide counterexamples
when this condition is omitted.

In particular, we use the structural properties to analyse the difference between
two and three retailer types. To do so, we analytically solve the model for these two
cases. We provide a complete characterisation of the optimal solution for the case
with two retailer types. The derived closed-form formulas of the optimal solution
are not only simpler than those found in related literature, they also show additional



Chapter 2 17

structure of the solution. For the specific case of three retailer types we did not find
any results in the literature. We give a minimal list of candidate contracts for the
optimal solution of the problem with three retailer types. The analysis shows that
the retailer’s lying behaviour is more complex than simply lying to have higher costs.

To conclude, our results show that having type-dependent default options in-
creases the complexity of the retailer’s lying behaviour and the possible structures of
the optimal menus. In particular, certain properties and behaviour are only observed
for more than two retailer types.

The remainder is organised as follows. In Section 2.2 we present an alternative
model which shows the hidden convexity and leads to an efficient solution method.
We continue with structural properties of the contracting model in Section 2.3. In
Section 2.4 we discuss the optimal menus of contracts for two and three retailer
types, where we give examples of each occurring optimal menu. The derivations of
the optimal contracts are given in Appendix 2.D. We end with a general discussion
of our results in Section 2.5.

2.2 Efficient solution method

In this section we show that the contracting problem can be solved efficiently. This in-
sight becomes apparent after a change of decision variables of the contracting model.
Before we give the details, we prove that for single-dimensional retailer types we can
assume without loss of generality that the retailer’s holding cost is private. Conse-
quently, we can efficiently solve two kinds of contracting models.

2.2.1 Equivalence when one cost parameter is private

Consider a contracting problem where all retailer types instead have the same holding
cost h, but different ordering costs fk. We can transform any such problem to an
equivalent contracting problem where all types have the same ordering cost f̂ , but
different holding costs ĥk.

The transformation is as follows. For arbitrary d̂ ∈ R>0 and p̂ ∈ R≥d̂, define the
following parameters:

ω̂k = ωk, Ĥ = 2(dF )
p̂

d̂
, F̂ = ( 1

2H
d
p )

1

d̂
, f̂ = ( 1

2h)
1

d̂
, ĥk = 2(dfk).

These parameters are well defined and result in a contracting problem instance where
all retailer types have the same ordering cost, instead of the same holding cost. To
distinguish the instances, let Ŝ be the supplier and R̂ the retailer for the newly
constructed problem. We claim that both instances are equivalent, i.e., both have the
same optimal objective value and there is a bijection between the optimal solutions.

To show any equivalence between instances, the important expressions of the
contracting model are: φS , φk

R, and φk∗
R . Consider any order quantity xk ∈ R>0 and
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set x̂k = 1/xk, leading to the expressions:

φS(xk) = dF
1

xk
+

1

2
H
d

p
xk =

1

2
H
d

p

1

x̂k
+ dF x̂k = d̂F̂

1

x̂k
+

1

2
Ĥ
d̂

p̂
x̂k = φŜ(x̂k),

φk
R(xk) = dfk

1

xk
+

1

2
hxk =

1

2
h

1

x̂k
+ dfkx̂k = d̂f̂

1

x̂k
+

1

2
ĥkx̂k = φk

R̂
(x̂k),

φk∗
R =

√

2dfkh =

√

2d̂f̂ ĥk = φk∗
R̂
,

where the equalities follow by definition. Thus, any menu (x, z) is a feasible solution
for the original instance if and only if (x̂, z) is feasible for the newly constructed
instance. Moreover, the objective values of the two instances are equal.

To conclude, the qualitative properties of the contracting model with one private
cost parameter are irrespective of which cost parameter (ordering or holding cost) is
private.

2.2.2 Alternative convex model

The default contracting model is not convex, since the IC constraints (2.7) state

df
(

1
xk

− 1
xl

)
+ 1

2hk(xk − xl) + zl − zk ≤ 0, ∀ k, l ∈ K.

Here, the term −1/xl is not convex in the decision variables. Non-convex optimisation
problems are generally difficult to solve, but we show that this is not the case for our
problem. We reveal a hidden convexity of our problem by changing the perspective
from side payments to so-called information rents.

An alternative contracting model can be obtained by rescaling the side payments
as follows. The individual rationality constraints imply that zk ≥ φk

R(xk) − φk∗
R ≥ 0.

As such, it is natural to interpret the value φk
R(xk)−φk∗

R as the minimum side payment
that always has to be paid to satisfy the IR constraint. We introduce a new variable
yk which denotes the additional side payment required by the IC constraints:

yk = zk − (φk
R(xk) − φk∗

R ) ≥ 0.

This variable is also known as the information rent for type k. Substituting zk =
yk + φk

R(xk) − φk∗
R in the default contracting model leads to:

min
x,y

∑

k∈K
ωk

(
φS(xk) + φk

R(xk) + yk − φk∗
R

)
(2.8)

s.t. yk ≥ 0, ∀ k ∈ K, (2.9)

yl − yk + φl
R(xl) − φk

R(xl) ≤ φl∗
R − φk∗

R , ∀ k, l ∈ K, (2.10)

xk > 0, ∀ k ∈ K.

So, (2.9) are the IR constraints and (2.10) are the IC constraints. The new objective
function (2.8) exposes that the joint costs φS + φk

R for the entire supply chain have
to be minimised, together with the information rents yk. Hence, the aspect of supply
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chain coordination is more visible than in the default model. We call the new model
the alternative contracting model to differentiate it from the earlier defined default
model.

By definition of yk, there is a bijection between the feasible region of the alterna-
tive model and that of the default model. Furthermore, the corresponding objective
values are the same. Hence, we can solve the default model by solving the alternative
model and vice versa.

Although both models are equivalent in the sense mentioned above, there is one
significant difference. Notice that the non-linear terms in (2.10) cancel out if we
expand the cost functions:

yl − yk + 1
2 (hl − hk)xl = yl − yk + φl

R(xl) − φk
R(xl) ≤ φl∗

R − φk∗
R .

Thus, all constraints of the alternative model are linear in the decision variables.
Since the objective function is convex, we conclude that the alternative model is
convex. Moreover, the feasible solution xk = xk∗

R and yk = ǫ ∈ R>0 for all k ∈
K is a Slater point, i.e., strictly feasible. It is well known that a convex model
with differentiable functions and Slater points can be solved efficiently using scalable
methods such as interior-point or cutting-plane methods (see Bertsekas (2015) and
Boyd and Vandenberghe (2004)). This conclusion is stated in Theorem 2.1.

Theorem 2.1. The contracting model can be solved efficiently via the alternative
model.

Proof. The proof is given in the above discussion.

Remark 2.1. Recalling the results from Section 2.2.1, we note that the contracting
model with single-dimensional types can be solved efficiently. If both the ordering cost
f and the holding cost h are private information, we have two-dimensional retailer
types specified by cost parameters (fk, hk). In this case, both the default model and
the alternative model fall in the category of Difference of Convex functions (DC)
programming. In the literature, there exist good numerical methods to find local
optima of DC models, see Horst et al. (1991) and Pham Dinh and Le Thi (2014).
However, to guarantee global optimality such methods need to be incorporated into,
for example, a branch-and-bound procedure. �

To conclude, in practice we can determine optimal solutions of our problem nu-
merically. We have implemented a cutting-plane algorithm using Gurobi as linear-
programming solver. Typical computational times are less than a second for one
hundred types on a standard desktop computer. However, it is worthwhile to further
analyse the model theoretically. In the following sections we determine qualitative
properties of the optimal menu of contracts and in some cases even provide closed-
form solutions. The used model (default or alternative) has no significant effect on
the results. Hence, we present all results using the default model and place remarks
where needed for the alternative model.
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2.3 Structural properties

We continue with additional properties of the contracting model and its optimal
solutions. These results hold for a general number of retailer types. In particular, the
model is connected to a one-to-all shortest path problem in a certain directed graph.
This allows us to use the theory of the shortest path problem and have a different
view of the contracting model. Furthermore, we use the well-known Karush-Kuhn-
Tucker conditions to determine structures in the optimal solution. In the end, we
derive a sufficient condition to guarantee unique contracts in the optimal solution.
Moreover, the analysis leads to a minimal list of menus of contracts for two and three
retailer types which contains the optimal solution. These are discussed in Section 2.4.
All proofs of the results in this section are given in Appendix 2.B.

2.3.1 Shortest path interpretation

A closer look into the structure of the IR and IC constraints shows a connection
with a dual shortest path interpretation. For given fixed quantities xk, constraints
(2.6) and (2.7) can be seen as the dual constraints of a shortest path problem. To
be precise, for given xk the contracting model is equivalent to the dual of a specific
minimum cost flow formulation for the one-to-all shortest path problem. A similar
connection to shortest paths has been described in Rochet and Stole (2003) and
Vohra (2012).

The related flow problem is as follows. Consider the directed graph G = (V,A)
with nodes V = {s}∪K and arcs A = {(s, k) : k ∈ K}∪{(k, l) : k, l ∈ K, k 6= l}. That
is, G is the complete graph of K retailer nodes with a source added. See Figure 2.1
for an example. We call such a graph an IRIC graph, which stands for Individual
Rationality and Incentive Compatibility graph for reasons to become apparent. The
lengths (or costs) of the arcs are:

• arc (s, k) with k ∈ K has length φk∗
R − φk

R(xk),

• arc (k, l) with k, l ∈ K, k 6= l, has length φl
R(xk) − φl

R(xl).

Finally, node s has supply
∑

k∈K ωk and each retailer node k ∈ K has demand ωk.
There are no capacity restrictions on the arcs. Consequently, flow will be sent along
shortest paths in the optimal solution of the flow formulation. Hence, we see this
flow formulation as a one-to-all shortest path representation.

For fixed order quantities xk, the contracting problem needs to determine the
optimal side payments zk by solving (2.5)-(2.7). This is the dual of the flow problem
in the corresponding IRIC graph, see Appendix 2.A for the details on the (dual) flow
formulation.
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Figure 2.1: IRIC graph for K = 4 retailer types.

It is useful to mention some well-known properties of (dual) flow formulations, see
also Ahuja et al. (1993). Consider the optimal solution (x, z) of the contracting model.
The value −zk is equal to the length of the shortest (s, k)-path in the IRIC graph
corresponding to x. Moreover, strong duality implies that the IRIC graph contains
a negative cycle if and only if its dual flow problem is infeasible. In such cases
there exist no side payments that will satisfy the IC constraints for the considered
order quantities xk. Thus, the IC constraints can be satisfied if and only if the
corresponding IRIC graph has no negative cycles.

In the non-degenerate case, where the shortest (s, k)-path is unique for all k ∈ K,
the set of all used arcs in the optimal shortest paths from s to the other nodes forms
a spanning tree in the IRIC graph. In the degenerate case, this does not hold, but
the optimal shortest paths can be modified such that the used arcs form a spanning
tree again. In particular, if the set of all used arcs in the optimal shortest paths
contains cycles, these cycles must have length zero.

From the complementary slackness conditions it follows that if arc (i, j) is in
the spanning tree, then the corresponding constraint in the dual is satisfied with
equality. For example, if arc (s, k) is part of the shortest path tree, then the IR
constraint for type k is tight. If arc (k, l) is used, with k, l ∈ K, then the IC constraint
φl

R(xl) − zl ≤ φl
R(xk) − zk is satisfied with equality.

Due to the bijection between retailer types and retailer type nodes, and the bijec-
tion between arcs and the IR and IC constraints, we often interchange interpretation
and terminology. For example, we can refer to outgoing arcs out of a retailer type,
referring to the outgoing arcs of the corresponding node in the graph. These insights
explain why we use the name ‘IRIC graph’.

2.3.2 Adjacent retailer types

Since the types are ordered such that h1 < · · · < hK , there is a sense of adjacent or
neighbouring types. We define the neighbours of type k ∈ K to be the types k − 1
and k + 1, where types 1 and K have only one neighbour. The adjacency of types
plays an important role as we will see.
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Intuitively, one would expect that in an optimal solution a type with higher hold-
ing cost gets offered a lower order quantity (i.e., more frequent orderings) to prevent
too high inventory costs. Lemma 2.2 shows that this intuition is mathematically
correct.

Lemma 2.2. Any feasible menu of contracts satisfies x1 ≥ · · · ≥ xK .

The ordering (or monotonicity) in the order quantities often holds for contracting
models with single-dimensional types and well-behaved cost (or utility) functions.
However, this does not hold in general, even for single-dimensional types. See for
examples and further discussion Araujo and Moreira (2010), Laffont and Martimort
(2002), Schottmüller (2015), and Vohra (2012). There is no guaranteed monotonicity
in the side payments (see Section 2.4 for examples).

A consequence of Lemma 2.2 is that adjacent retailer types follow both from the
holding costs and from the (feasible) order quantities. In fact, using this result we can
restrict the incentive compatibility constraints to take only the neighbouring types
into account, without changing the feasible region. See Lemma 2.3 for the result. We
call these constraints the adjacent IC constraints.

Lemma 2.3. The adjacent incentive compatibility constraints are sufficient to ensure
general incentive compatibility.

We can use Lemma 2.3 to prove that order quantities satisfying x1 ≥ · · · ≥ xK > 0
can always be extended to a feasible menu of contracts (x, z), see Corollary 2.4.
Therefore, we call such order quantities feasible for the contracting model.

Corollary 2.4. For given order quantities satisfying x1 ≥ · · · ≥ xK > 0, it is feasible
and optimal to determine the side payments via the shortest path interpretation.

2.3.3 KKT conditions

Since the contracting model consists of continuously differentiable functions with a
continuous domain, there are well-known necessary conditions for optimality and even
sufficient optimality conditions in certain cases. Using these conditions we can design
candidate solutions for further inspection. This allows us to analytically investigate
properties of the optimal menu of contracts. In the following sections we use the
Karush-Kuhn-Tucker (KKT) optimality conditions to do so (see Karush (1939) and
Kuhn and Tucker (1951)).

The default contracting model is non-convex, but with a slight detour we can
show that the KKT conditions are necessary and sufficient. Recall that we have
an equivalent convex model with a Slater point, namely the alternative contracting
model of Section 2.2.2. Thus, the KKT conditions are necessary and sufficient for
the alternative model (see for example Boyd and Vandenberghe (2004)). It turns out
that both models lead to the same KKT conditions, from which we conclude that
the KKT conditions are also necessary and sufficient for the default model.

With the above mentioned remarks in mind, we determine the KKT conditions
for the contracting model. Using Lemma 2.3 we only incorporate the adjacent IC
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constraints in our model. The Lagrangian function with Lagrange multipliers λ ∈
R

K
≥0 and µ ∈ R

2K−2
≥0 is given by:

L(x, z, λ, µ) =
∑

k∈K
ωk (φS(xk) + zk) +

∑

k∈K
λk

(
φk

R(xk) − zk − φk∗
R

)

+
∑

k∈K\{1}
µk−1,k

(
φk

R(xk) − zk − φk
R(xk−1) + zk−1

)

+
∑

k∈K\{K}
µk+1,k

(
φk

R(xk) − zk − φk
R(xk+1) + zk+1

)
.

We deliberately choose this order of the indices of µ and will explain in Section 2.3.3.1
why this notation is useful.

The KKT conditions consist of primal and dual feasibility, complementary slack-
ness, and stationarity constraints (see Boyd and Vandenberghe (2004)). The dual
feasibility constraints require all multipliers to be non-negative. The complementary
slackness constraints are:

λk

(
φk

R(xk) − zk − φk∗
R

)
= 0, ∀ k ∈ K,

µk−1,k

(
φk

R(xk) − zk − φk
R(xk−1) + zk−1

)
= 0, ∀ k ∈ K \ {1},

µk+1,k

(
φk

R(xk) − zk − φk
R(xk+1) + zk+1

)
= 0, ∀ k ∈ K \ {K}.

For each k ∈ K, the stationarity constraints with respect to xk are:

ωk
dφS

dx
(xk) + λk

dφk
R

dx
(xk) + (µk−1,k + µk+1,k)

dφk
R

dx
(xk)

− µk,k−1
dφk−1

R

dx
(xk) − µk,k+1

dφk+1
R

dx
(xk) = 0, (2.11)

and with respect to zk:

ωk − λk − (µk−1,k + µk+1,k) + (µk,k−1 + µk,k+1) = 0, (2.12)

where all ill-defined multipliers with out-of-bound indices are set to zero. We can
simplify the stationarity constraints by substituting (2.12) in (2.11):

ωk

(

− d(f + F )

x2
k

+ 1
2

(
hk +H d

p

))

+ 1
2µk,k−1(hk − hk−1) + 1

2µk,k+1(hk − hk+1) = 0.

(2.13)

To conclude, the KKT conditions consist of the primal and dual feasibility con-
straints, complementary slackness constraints, and stationarity constraints (2.12) and
(2.13).

Remark 2.2. The KKT conditions for the alternative model directly give (2.12) and
(2.13). �
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We use the KKT conditions to determine candidate solutions to analyse properties
of the optimal menu of contracts. When solving the KKT conditions, only the non-
zero Lagrange multipliers are relevant. However, we do not know a priori which
multipliers are non-zero. Therefore, we initially consider all 23K−2 possible cases. For
each case, we partly solve the corresponding KKT conditions in order to completely
specify the corresponding menu (x, z) for this case. We do not solve for the Lagrange
multipliers. See Appendix 2.D for the details. This leads to candidate solutions,
which can be infeasible or suboptimal. We call these candidate solutions KKT menus
and their contracts KKT contracts. The optimal solution of our model satisfies all
KKT conditions and is equal to the best feasible KKT menu. KKT menus that are
optimal for some instance are called valid.

Thus, the KKT conditions lead to a (large) set of KKT menus. Without further
analysis, determining this set in general will be intractable due to its size. Hence, we
analyse our problem to exclude certain KKT menus and provide additional insight
into optimal menus of contracts. As we will see, we can express many structural
properties intuitively in terms of a graph closely related to the Lagrange multipliers
and the IRIC graph. Therefore, we first introduce this graph before continuing to
the analysis of KKT menus.

2.3.3.1 KKT graph

The shortest path interpretation of Section 2.3.1 still holds if we only use adjacent
IC constraints (Lemma 2.3). The corresponding Adjacent IRIC graph is shown in
Figure 2.2. Now notice that the order of indices of µ corresponds nicely to the
Adjacent IRIC graph. If µlk > 0, then the equality φk

R(xk) − zk = φk
R(xl) − zl

must hold by the KKT complementary slackness conditions. Hence, arc (l, k) is
used by the shortest paths, as discussed in Section 2.3.1. The same holds for λk,
constraint φk

R(xk) − zk ≤ φk∗
R , and arc (s, k). Consequently, we have bijections

between multipliers λ (or µ), the IR (or IC) constraints, and certain arcs in the
Adjacent IRIC graph. As such, we can refer to the multiplier of an arc in the
Adjacent IRIC graph.

s

1 2 3 4

Figure 2.2: Adjacent IRIC graph for K = 4 types.

We can visualise a KKT menu in the Adjacent IRIC graph by only considering
the arcs for which the corresponding multipliers are strictly positive. That is, we
have a directed graph Ĝ = (V, Â) with V = {s} ∪ K and arcs

• (s, k) with k ∈ K if λk > 0,
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• (k, k − 1) with k ∈ K \ {1} if µk,k−1 > 0,

• (k, k + 1) with k ∈ K \ {K} if µk,k+1 > 0.

We call this graph the KKT graph. The arcs of the KKT graph indicate which arcs
are for certain part of shortest paths in the IRIC graph. Unfortunately, there could
be arcs in a shortest path for which the multiplier is zero, as degenerate cases may
occur.

The KKT graph allows for easy-to-draw names of KKT menus. We call arc (s, k)
the Up arc for retailer type k ∈ K, arc (k, k + 1) the Right arc, and arc (k, k − 1)
the Left arc. The name of a KKT menu is simply a list of the Up, Left, and Right
arcs for each retailer type from 1 to K in the corresponding KKT graph. If a retailer
type has no Up, Left, and Right arcs, we denote it by ‘x’. For example, KKT menu
1Right2UpLeft3UpLeftRight4x is shown in Figure 2.3.

s
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Figure 2.3: KKT graph for 1Right2UpLeft3UpLeftRight4x.

In the results to come, we often use the term ‘connected component’ of the KKT
graph. To avoid confusion, a subset S ⊆ V is a connected component if between each
pair of nodes in S there exists an undirected path in the graph. Also, a ‘maximal’
set according to some condition is maximal by inclusion.

2.3.4 Properties of optimal contracts

The result that only adjacent IC constraints need to be taken into account greatly
reduces the number of possible KKT menus to consider. We continue to analyse
which cases can also be excluded from consideration, i.e., which combinations of
strictly positive multipliers (or which KKT graphs) can occur. We will express the
results in terms of intuitive structures of the KKT graph.

2.3.4.1 Reachable from source node

We start with Lemma 2.5, which shows an explicit connection to shortest paths and
spanning trees.

Lemma 2.5. Every retailer node k ∈ K must be reachable from source node s in the
KKT graph.

Notice that this is a stronger property than the fact that the side payments follow
from shortest paths. Shortest paths imply that each node is reachable from s using
only arcs for which the corresponding constraint is tight. As weak complementary
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slackness may hold, tightness does not automatically imply that the corresponding
multiplier is strictly positive. However, a strictly positive multiplier does imply
tightness of the constraint. This result allows us to discard certain combinations of
multipliers, significantly reducing the number of options.

The next lemma describes a general pattern (a ‘T-pattern’) that will never occur
in the optimal solution.

Lemma 2.6. There exist no k ∈ K \ {1,K} such that the constraints corresponding
to arcs (s, k), (k, k − 1), and (k, k + 1) are simultaneously satisfied with equality.

Corollary 2.7. A retailer node directly connected to node s in the KKT graph has
at most one outgoing arc.

Corollary 2.7 implies that the graph in Figure 2.3 is never a valid KKT graph,
since node 3 has Up, Left, and Right arcs (violating the corollary).

2.3.4.2 Cycles are restrictive

As a result of Lemma 2.3, the only cycles of interest are 2-cycles between adjacent
nodes. A node can be part of two 2-cycles, which leads to a so called 2-cycle chain:
nodes S = {i, i+ 1, . . . , j − 1, j} ⊆ K are part of a 2-cycle chain if µk,k+1, µk+1,k > 0
for k ∈ {i, . . . , j − 1}. We show that the retailer types of a 2-cycle chain in the
KKT graph have the same contract, also called bunching in the literature. This is
formalised in the next lemma and corollary.

Lemma 2.8. Both incentive compatibility constraints between retailer types i and j
are tight if and only if xi = xj. Furthermore, if xi = xj then zi = zj must hold.

Corollary 2.9. The retailer types of a 2-cycle chain in the KKT graph are offered
the same contract.

The KKT conditions become more restrictive if certain types have the same or-
der quantity, as it introduces additional dependency between the decision variables.
Using this fact, we can exclude more cases from consideration, see Lemma 2.10.

Lemma 2.10. In the KKT graph, a maximal 2-cycle chain must have at least one
ingoing arc (possibly from node s) and exactly one outgoing arc.

For example, the graph in Figure 2.3 is not a valid KKT graph, since nodes 1 and
2 form a 2-cycle but do not have an outgoing arc.

A direct consequence is that for two retailer types KKT graphs with 2-cycles are
not valid KKT graphs. For more than two retailer types 2-cycles in the optimal
solution can actually occur, see Section 2.4. This implies that types can get the same
contract in the optimal solution. We return to this issue in Section 2.3.5.

2.3.4.3 The joint order quantity

Recall that if a type k ∈ K is assigned its joint order quantity, xk = xk∗
J , then perfect

supply chain coordination occurs for that type. If a retailer node k ∈ K has no
outgoing arcs in the KKT graph it is straightforward to determine that xk = xk∗

J

must hold. The next lemma shows that this is an if-and-only-if relation.
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Lemma 2.11. In the optimal solution, xk = xk∗
J if and only if node k ∈ K has no

outgoing arcs in the KKT graph.

In fact, we can strengthen Lemma 2.11 to also relate the joint order quantity to
retailer nodes with outgoing arcs in the KKT graph, see Lemma 2.12.

Lemma 2.12. Let retailer node k ∈ K be part of a maximal 2-cycle chain S =
{i, i+ 1, . . . , k, . . . , j− 1, j} ⊆ K in the KKT graph. If node k is not part of a 2-cycle
we set i = j = k. The optimal solution satisfies the following properties:

• xk > xk∗
J if and only if µi,i−1 = 0 and µj,j+1 > 0,

• xk = xk∗
J if and only if µk,k−1 = 0 and µk,k+1 = 0 (so i = j = k),

• xk < xk∗
J if and only if µi,i−1 > 0 and µj,j+1 = 0.

In particular, Lemma 2.12 implies that x1 ≥ x1∗
J and xK ≤ xK∗

J must hold in the
optimal solution.

Our last result for this section, Lemma 2.13, states that at least one type is
assigned the joint order quantity in the optimal solution. Hence, perfect supply
chain coordination always occurs for at least one type.

Lemma 2.13. In the optimal solution the order quantity for at least one retailer
type is the joint order quantity. Moreover, the total costs for at least one retailer type
equals its default costs.

2.3.5 Uniqueness of contracts

Additional assumptions are needed in order to guarantee that each contract in the
optimal menu is unique. In this section, we consider the special case where we have
equidistant holding costs and uniformity on the retailer types. That is, we assume
that ωk = 1/K for all k ∈ K and hk+1 = hk + δ for all k ∈ K for some δ ∈ R>0.

The assumptions lead to the following KKT stationarity conditions for k ∈ K:

(

− 2d(f + F )

x2
k

+H d
p

)

+ hk + δ(µk,k−1 − µk,k+1) = 0, (2.14)

1 − λk − µk−1,k − µk+1,k + µk,k−1 + µk,k+1 = 0, (2.15)

where all ill-defined multipliers with out-of-bound indices are set to zero. Notice
that without loss of generality we set ωk = 1 in the KKT conditions by uniformly
rescaling all multipliers.

It turns out that uniformity on types and equidistant holding costs is sufficient
to guarantee a priori to obtain an optimal menu with unique contracts, see The-
orem 2.14. Be aware that the exclusion of 2-cycles in the KKT graph does not
automatically imply that all contracts are unique, at least not without improving the
result of Corollary 2.9.

Theorem 2.14. Assume uniformity on types and equidistant holding costs. In the
optimal solution all contracts are unique.
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Corollary 2.15. If we assume uniformity on types and equidistant holding costs, the
KKT graph has no cycles.

If we remove one of the two assumptions, there are instances where the optimal
menu does not have unique contracts. Table 2.2 provides such examples where the
optimal solution has non-unique contracts. Notice that there are no examples with
only two retailer types. In the next section, we will prove in Theorem 2.16 that the
optimal menu for two types always has unique contracts.

Optimal menu F H f h1 h2 h3 Objective x1 z1 x2 z2 x3 z3

1x 2LeftRight 3UpLeft 1 1 1 5 9 10 2.059 836 692 0.816 497 0.154 678 0.544 331 0.086 637 0.544 331 0.086 637
1Up 2LeftRight 3UpLeft 1 1 1 4 9 10 2.008 977 459 0.894 427 0.078 461 0.547 903 0.092 520 0.547 903 0.092 520
1UpRight 2LeftRight 3x 1 5 6 1 2 6 5.339 122 934 2 0.535 898 2 0.535 898 1.128 152 0.238 786
1UpRight 2LeftRight 3Up 1 4 9 1 2 6 5.231 467 672 2.459 866 0.646 029 2.459 866 0.646 029 1.414 214 0.214 297

(a) Examples for K = 3 with unevenly spaced holding costs, unit rates, and uniform types.

Optimal menu F H f h1 h2 h3 Objective x1 z1 x2 z2 x3 z3

1x 2LeftRight 3UpLeft 1 1 1 3 4 5 1.671 733 102 1 0.053 004 0.715 282 0.023 977 0.715 282 0.023 977
1Up 2LeftRight 3UpLeft 1 1 1 3 5 7 1.753 612 795 1 0.050 510 0.646 084 0.067 423 0.646 084 0.067 423
1UpRight 2LeftRight 3x 1 3 7 1 2 3 4.018 909 135 2.708 013 0.197 270 2.708 013 0.197 270 1.632 993 0.286 427
1UpRight 2LeftRight 3Up 1 3 1 1 2 3 2.522 142 495 1.035 276 0.069 350 1.035 276 0.069 350 0.816 497 0

(b) Examples for K = 3 with equidistant holding costs, unit rates, and type probabilities
ω1 = 10/21, ω2 = 1/21, ω3 = 10/21.

Table 2.2: Examples of non-unique contracts in the optimal solution for three retailer
types.

2.4 Optimal menus of contracts

The KKT conditions lead to a list of KKT menus (candidate solutions), one of which
is the optimal solution. The analysis of the KKT conditions in Section 2.3.4 excludes
certain KKT menus from consideration, which allows us to focus on the remaining
cases. Furthermore, when determining formulas for these KKT menus, we can often
reuse parts of the solution of subproblems or symmetric cases.

We have determined the formulas for all valid KKT menus for two and three
retailer types. These lists of KKT menus are minimal, i.e., if we omit any menu
there are instances for which we would fail to determine the optimum.

In principle, we can use the same techniques to solve the problem for more retailer
types. However, it seems that the number of KKT menus increases rapidly and that
we need to solve a few completely new cases when increasing the number of types.
Unfortunately, this implies that we do not end up with a practical analytical solution
method for a general number of retailer types. For a general solution method, we
resort to the procedure described in Section 2.2.2.

In the next sections, we provide and discuss example instances and their optimal
KKT menu for two and three retailer types. These instances have been solved by
determining the best feasible KKT menu, which are derived in Appendix 2.D. As a
verification step, all instances have also been solved using a cutting-plane procedure
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(see Section 2.2.2). Furthermore, to check the minimality of the lists of KKT menus,
we have verified that exactly one KKT menu is optimal.

When interpreting the KKT graphs, recall the theoretical results in Section 2.3.
For example, an arc (s, k) implies that the total costs for type k in the corresponding
menu is equal to its default costs. Furthermore, perfect supply chain coordination
occurs for types without any outgoing arcs. A cycle in the KKT graph implies
that those two types get the same contract, but not vice versa (see Section 2.3.5).
Finally, for k ∈ K and l ∈ {k − 1, k + 1} an arc (l, k) indicates that retailer type k
conceptually equally prefers contracts k and l, but chooses contract k by assumption.
This assumption is further discussed in Section 2.5.2. We refer to this situation by
saying that type k is prevented from lying to be type l. Thus, an arc between retailer
types points to the type that has been prevented from lying.

2.4.1 Two retailer types

From our analysis we can reduce the number of KKT menus significantly if there
are only two retailer types (K = 2). From the 24 = 16 cases, there remain 5 cases
that can occur, see Figure 2.4. For example, in Figure 2.4a there is perfect supply
chain coordination for both types, even with information asymmetry. The details of
the derivation of the corresponding KKT menus are given in Appendix 2.D.2. All 5
KKT menus can be optimal, see Table 2.3 for example instances and their optimal
solution. We conclude that our analysis is tight for K = 2, i.e., we cannot exclude
any of these KKT menus.
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Figure 2.4: All KKT graphs for two retailer types.
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Optimal menu F H f h1 h2 Objective x1 z1 x2 z2

1x 2UpLeft 2 1 1 1 2 2.181 540 551 1.732 051 0.055 748 1.224 745 0.041 241
1Up 2Up 1 1 1 1 2 1.439 157 589 1.414 214 0 1.154 701 0.020 726
1Up 2UpLeft 1 1 1 2 4 1.560 477 933 1.154 701 0.020 726 0.828 427 0.035 534
1UpRight 2x 1 2 4 1 2 2.569 918 513 2.236 068 0.078 461 1.581 139 0.164 500
1UpRight 2Up 1 1 4 1 2 1.562 913 839 2.343 146 0.050 253 1.825 742 0.016 632

Table 2.3: Example instances for two retailer types with unit rates and uniform types.

Although the KKT approach is viable for two retailer types, there is a faster
and easier solution approach. Theorem 2.16 provides closed-form formulas for the
optimal menu of contracts in this case. The theorem shows that the contracts for the
types are unique (i.e., not the same) and that each order quantity lies between the
default and joint order quantity for that type. This implies that the optimal menu
will always result in a better coordination between the supplier and the retailer, i.e.,
the joint costs for the entire supply chain are lower. These properties do not hold in
general for three or more types, which will be discussed in Section 2.4.3.

Theorem 2.16. For two retailer types (K = 2) the unique optimal menu of contracts
is given by:

x1 = min

{√

2d(f + F )

h1 +H d
p + ω2

ω1
(h1 − h2)

,max

{

2
√

2df√
h1 +

√
h2

,

√

2d(f + F )

h1 +H d
p

}}

,

x2 = max

{√

2d(f + F )

h2 +H d
p + ω1

ω2
(h2 − h1)

,min

{

2
√

2df√
h1 +

√
h2

,

√

2d(f + F )

h2 +H d
p

}}

,

z1 = df
1

x1
+

1

2
h1x1 −

√

2dfh1 + max

{

0,
√

2df(
√

h1 −
√

h2) +
1

2
(h2 − h1)x2

}

,

z2 = df
1

x2
+

1

2
h2x2 −

√

2dfh2 + max

{

0,
√

2df(
√

h2 −
√

h1) +
1

2
(h1 − h2)x1

}

,

where we ignore any ill-defined values if h1 +H d
p + ω2

ω1
(h1 − h2) ≤ 0.

Furthermore, we have that x1 > x2 and that each order quantity xk lies in the
closed interval with endpoints xk∗

R and xk∗
J . Finally, xk = xk∗

R if and only if x∗
S = xk∗

R ,
which implies xk∗

J = xk∗
R .

Proof. The proof is given in Appendix 2.C.

The closed-form formulas and properties in Theorem 2.16 for the optimal menu
of contracts can be determined relatively easily using only calculus for differentiable
convex functions. So there is no need to evaluate multiple menus or even use KKT
conditions to determine the optimal solution.

We relate our results for K = 2 to Pishchulov and Richter (2016), who analyse the
same problem for two retailer types but with two-dimensional private information.
They use a KKT approach to determine the optimal solution, which consequently
generalises our KKT approach for K = 2 (but not Theorem 2.16). Their results show
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that for two-dimensional types 8 KKT graphs can occur. The 3 additional cases
are variations with 2-cycles in the KKT graph, where bunching (x1 = x2) occurs.
However, for any instance only 5 KKT graphs need to be evaluated (determined by
checking if the joint order quantities coincide). In particular, no bunching occurs if
the two joint order quantities differ (which holds for our model).

The need to evaluate 5 cases also appears in the setting of Kerschbamer and
Maderner (1998), which is complementary to our model and results. For two retailer
types with strictly increasing convex cost functions (and a linear utility function for
the supplier) only 5 cases can occur, all without bunching. This is similar to our
findings for two types.

2.4.2 Three retailer types

For three retailer types (K = 3) our results reduce the number of KKT menus from
27 = 128 to only 23. For the details we refer to Appendix 2.D.3. For each of the 23
KKT menus, we have found instances where that menu is optimal. We conclude that
our analysis is tight for K = 3. See Table 2.4 for example instances and their optimal
solution. Observe that such examples can already be found in a small integer range
for the cost parameters.

The analysis and these examples show certain structures in the optimal solution
that do not occur in related literature. For example, Voigt and Inderfurth (2011)
study multiple retailer types, but due to their cost functions only the KKT graph
in Figure 2.5a occurs. For our model, many more possible optimal structures exist,
which complicates the analysis.

Furthermore, in certain optima the same contract is offered to multiple types:
see menus with cycles in their KKT graph, such as in Figure 2.5b. We also draw
additional attention to the solution corresponding to Figure 2.5c. Here, type 2 is
simultaneously prevented from lying to have lower holding cost h1 and higher cost
h3. Hence, we cannot limit our analysis to cases where all retailer arcs follow the same
direction, which does hold when the default option is type independent. In particular,
this shows that the retailer does not necessarily have an inherent incentive to pretend
to have a higher holding cost. As a final note, there is no monotonicity or general
ordering in the side payments.

Similar structures have been found for a different model in Kerschbamer and
Maderner (1998). They consider retailer types with strictly increasing convex cost
functions and a supplier with a linear utility function. In particular, their results
include (sometimes weaker) analogues to Lemmas 2.3, 2.5, and 2.12 and Corollary 2.2
for a general number of types. This allows them to reduce the number of cases to
consider. For three types, they determine just a few more possible structures than
our 23 cases, since they do not have an analogue to Lemma 2.6.
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Figure 2.5: Example KKT graphs for three retailer types that occur in optimal
solutions.

Optimal menu F H f h1 h2 h3 Objective x1 z1 x2 z2 x3 z3

1x 2UpLeft 3Up 1 1 1 3 4 20 2.027 573 769 1 0.079 821 0.816 497 0.029 311 0.436 436 0.331 090
1x 2UpLeft 3UpLeft 1 1 1 3 4 6 1.716 382 902 1 0.079 821 0.816 497 0.029 311 0.635 674 0.016 054
1x 2Left 3UpLeft 1 1 1 3 4 5 1.689 666 918 1 0.099 524 0.816 497 0.049 014 0.707 107 0.019 703
1x 2LeftRight 3UpLeft 1 1 1 5 9 10 2.059 836 692 0.816 497 0.154 678 0.544 331 0.086 637 0.544 331 0.086 637
1Up 2x 3UpLeft 1 1 1 1 3 4 1.552 112 933 1.414 214 0 1 0.079 821 0.816 497 0.029 311
1Up 2Up 3Up 1 1 1 1 2 9 1.653 409 937 1.414 214 0 1.154 701 0.020 726 0.632 456 0.184 548
1Up 2Up 3UpLeft 1 1 1 1 2 3 1.483 843 092 1.414 214 0 1.154 701 0.020 726 0.898 979 0.011 352
1Up 2UpLeft 3Up 1 1 2 3 4 8 1.535 007 626 1.224 745 0.006 009 1.071 797 0.009 619 0.816 497 0.058 622
1Up 2UpLeft 3UpLeft 1 1 1 2 3 5 1.606 428 503 1.154 701 0.020 726 0.898 979 0.011 352 0.712 788 0.022 634
1Up 2UpRight 3x 1 3 6 1 8 9 3.072 312 060 1.870 829 0.678 448 1.183 216 0.005 830 1.080 123 0.025 909
1Up 2UpRight 3Up 1 1 7 1 3 4 1.631 813 245 2.828 427 0.147 430 2.005 148 0.017 995 1.788 854 0.007 513
1Up 2Left 3UpLeft 1 1 1 2 3 4 1.580 844 039 1.154 701 0.020 726 0.898 482 0.011 470 0.758 372 0.006 931
1Up 2LeftRight 3UpLeft 1 1 1 4 9 10 2.008 977 459 0.894 427 0.078 461 0.547 903 0.092 520 0.547 903 0.092 520
1UpRight 2x 3Up 1 2 3 1 2 5 2.254 654 654 2 0.050 510 1.414 214 0.086 044 1.069 045 0.001 630
1UpRight 2x 3UpLeft 1 6 1 1 7 8 3.612 045 267 0.775 694 0.262 802 0.554 700 0.002 932 0.517 411 0.002 344
1UpRight 2Up 3Up 1 1 3 1 2 3 1.466 674 185 2.029 224 0.043 520 1.632 993 0.006 009 1.414 214 0
1UpRight 2Up 3UpLeft 1 5 1 1 6 7 3.281 949 676 0.819 955 0.215 343 0.603 023 0.003 279 0.555 112 0.002 673
1UpRight 2UpRight 3x 1 2 5 1 2 3 2.619 772 030 2.619 717 0.056 184 2 0.027 864 1.549 193 0.079 140
1UpRight 2UpRight 3Up 1 1 5 1 2 3 1.575 560 678 2.619 717 0.056 184 2.010 179 0.025 384 1.732 051 0.007 602
1UpRight 2Right 3x 1 3 3 1 2 3 3.078 862 750 2 0.050 510 1.414 214 0.086 044 1.154 701 0.173 530
1UpRight 2Right 3Up 1 2 4 1 2 5 2.393 966 461 2.239 120 0.077 549 1.584 379 0.161 041 1.195 229 0.010 156
1UpRight 2LeftRight 3x 1 5 6 1 2 6 5.339 122 934 2 0.535 898 2 0.535 898 1.128 152 0.238 786
1UpRight 2LeftRight 3Up 1 4 9 1 2 6 5.231 467 672 2.459 866 0.646 029 2.459 866 0.646 029 1.414 214 0.214 297

Table 2.4: Example instances for three retailer types with unit rates and uniform
types.

2.4.3 Differences between two or more types

In this section, we discuss observed differences in the optimal menus of contracts
for two and three retailer types. First of all, the bounds on the order quantities
in Theorem 2.16 are a unique property for the case with only two retailer types.
To be more specific, an optimal order quantity xk is not bounded by xk∗

R or xk∗
J
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when there are more than two retailer types. For an example, see Table 2.5 where
type 2 is not bounded by its default or joint order quantity. In fact, this can even
occur if the retailer type and the supplier both desire the same order quantity, i.e.,
xk∗

R = x∗
S = xk∗

J , as the example in Table 2.5 shows for type k = 2. Thus, for K = 2
the optimal menu will always result in a better coordination between the supplier
and the retailer, but this need not be the case for some contracts in the optimal
menu for K = 3. In such cases, an inefficient order quantity is optimal since the side
payments for the entire menu would otherwise be too high.

Furthermore, for three or more types it can be optimal to have duplicate con-
tracts in the menu, as we have shown in Sections 2.3.5 and 2.4.2. Recall that by
Theorem 2.14 we need additional assumptions to guarantee to have unique contracts.
In contrast, for two types we know from Theorem 2.16 that the optimal menu never
contains duplicate contracts.

Finally, related to the above points, we observe structurally different optimal
menus of contracts for three or more types compared to two types.

Unfortunately, our analysis suggests that for each number of retailer types K we
need to solve some cases from scratch. That is, we were unable to reuse old results
for K − 1 types in a scalable way to solve the problem for K types. For example,
cases similar to Figures 2.5c and 2.5d are troublesome. Therefore, the analytical
KKT approach does not seem to be a generalisable solution approach. For a general
number of retailer types, the scalable technique described in Section 2.2.2 is preferred.

To conclude, there are significant differences in the qualitative properties of the
optimal menu of contracts for two types compared to more than two types.

F H f h1 h2 h3 Optimal menu Objective

3 15 1 1 5 7 1UpRight 2Right 3Up 9.716 539

Type k xk zk xk∗

R
xk∗

J
φS(xk) + zk φS(xk∗

R
)

1 0.844 369 0.192 288 1.414 214 0.707 107 10.078 003 12.727 922
2 0.638 707 0.059 480 0.632 456 0.632 456 9.546 772 9.486 833
3 0.603 023 0.027 234 0.534 522 0.603 023 9.524 842 9.621 405

Table 2.5: Example instance for K = 3 with unit rates and uniform types.

2.5 Discussion and conclusion

Before we conclude with the main insights of our research, we discuss consequences
of two model assumptions. First, using the expected costs as objective function is
common in the literature. However, this can lead to the peculiar situation where the
supplier’s action to offer a menu of contracts results in an increase in the supplier’s
costs compared to taking no such action. See Section 2.5.1 for more details. Second,
we discuss the screening capability of the contracting model in Section 2.5.2. Finally,
we conclude our findings in Section 2.5.3.
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2.5.1 Unfavourable realisations

The objective of the contracting model is to minimise the expected costs of the
supplier based on the K scenarios, where each scenario corresponds to a retailer type.
Therefore, it could be that for a certain realisation of the scenarios the supplier is
worse off using the menu of contracts instead of accepting the retailer’s default option.
The example in Table 2.5 shows that this can indeed happen: for a realisation of the
scenario of retailer type 2 the supplier would be better off with the default option.
We note that examples for K = 2 also exist.

If this phenomenon is not allowed, then we have to add the following constraints
to the model to prevent it:

φS(xk) + zk ≤ φS(xk∗
R ), ∀ k ∈ K. (2.16)

We can interpret the new constraints (2.16) as the individual rationality constraints
for the supplier. Notice that the menu with all default order quantities and zero
side payments is still feasible. Furthermore, adding these constraints to the default
contracting model will lead to an optimal objective value at least that of the default
model.

If we consider the alternative convex model of Section 2.2.2, the equivalent con-
straints of (2.16) are convex. Therefore, we can still efficiently solve the alternative
model after adding the IR constraints for the supplier. Of course, the theoretical
analysis has to be redone after adding these constraints.

In the literature, models with and without individual rationality for the supplier
are used. For example, all references in Table 2.1 do not use (2.16). Including (2.16)
is out of scope for this chapter, but it would be interesting to determine its effect on
the structure of optimal menus.

2.5.2 Screening capability

The contracting model is often called a screening model, i.e., it allows the supplier
to correctly identify the retailer’s type. The idea is as follows. We have shown that
there exists an optimal solution where the retailer does not lie about his type (also
known as the revelation principle). Therefore, by observing the contract chosen by
the retailer, we can determine his true type. Unfortunately, this idea has some issues,
which we discuss in this section.

First, we have the issue of the retailer’s indifference between contracts. Consider a
type k ∈ K. If the IC constraint where type k compares to the contract for type l ∈ K
is tight, then type k is indifferent between contracts (xk, zk) and (xl, zl). We have
assumed that in this case the supplier can convince the retailer to choose contract
(xk, zk) without any additional cost. Without this assumption, we need to model
the IC constraints as strict inequalities or add a secondary objective for the retailer
to determine its choice. For example, the retailer could be inequity averse, a topic
analysed in Voigt (2015).

Second, it may be optimal to assign the same contract to multiple retailer types.
We have showed in Section 2.4 that this phenomenon can indeed occur if and only if
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there are more than two types. For such an optimal solution, we cannot distinguish
those types by the retailer’s choice. Of course, we can modify the contract to be
unique at a small cost in objective value, by the hidden convexity of the feasible
region. Another possibility is to make assumptions on the retailer types to guarantee
unique contracts as seen in Section 2.3.5.

To conclude, the screening capability of the contracting model should be treated
with care, especially if there are more than two retailer types. These observations are
still in line with the revelation principle, since not lying is always a weakly-dominant
strategy for the retailer.

2.5.3 Main insights

Our model extends the current literature by having a general number of retailer
types with type-dependent default options. The inclusion of type-dependent default
options and both ordering/setup costs and holding costs for the retailer and supplier
increases the structural complexity of optimal menus of contracts.

Our analysis shows that an optimal menu of contracts for three or more retailer
types has different structural properties than an optimal menu for two types. For
two retailer types the contracts in the optimal menu are unique (see Theorem 2.16),
whereas for three or more retailer types it may be optimal to present the same con-
tract to multiple types. This insight affects the screening capability of the contracting
model, as discussed above. However, if the distribution of the retailer types is uni-
form and equidistant, then we are guaranteed to have different contracts for each
type (see Theorem 2.14).

Furthermore, for two retailer types the order quantities in the optimal menu
lie between their default and joint order quantities (see Theorem 2.16). Thus, all
contracts in the optimal menu improve the efficiency of the entire supply chain. This
does not hold for all contracts in the optimal menu for more than two types, as we
have counterexamples (see Table 2.5).

Besides the monotonicity in order quantities, there are also other general proper-
ties. In any optimal menu of contracts the order quantity for at least one type is its
joint order quantity (see Lemma 2.13). If the retailer’s true type is that specific type,
then perfect supply chain coordination takes place. Similarly, in any optimal menu
the resulting costs for at least one type is the same as its default costs. An important
observation for the previous two properties is that it could hold for any retailer type,
so not necessarily the type with either highest or lowest holding cost. In particular,
we have given examples where perfect supply chain coordination is achieved only for
the middle type and not for the lowest or highest type. Also, there are examples
where there is perfect coordination for all types. Therefore, we cannot consider the
types with highest or lowest holding cost as ‘best’ and ‘worst’ types, as is common
in the literature.

By considering more than two types we observe additional properties of the re-
tailer’s lying behaviour. For example, consider three adjacent types with different
contracts, say types 1, 2, and 3 with holding costs h1 < h2 < h3 respectively. The
following situation cannot occur: types 1 and 3 are simultaneously prevented from
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lying to have (higher, respectively lower) holding cost h2. However, it can happen
that type 2 is simultaneously prevented from lying to have lower (h1) and higher (h3)
holding cost. Thus, the retailer’s lying behaviour is more complex than just having
an inherent incentive to lie having higher costs. To our knowledge, such behaviour
is uncommon in the literature.

Overall, having type-dependent default options significantly impacts the retailer’s
lying behaviour and the possible optimal menus, especially for more than two retailer
types. Furthermore, not all properties for two retailer types generalise to more types.
These phenomena have to be taken into account when using contracting models.

To conclude, we can efficiently solve our model for a general number of retailer
types by a change of decision variables (see Theorem 2.1). Changing the perspec-
tive from side payments to information rents reveals the hidden convexity of our
model. Remarkably, the current literature seems to focus on formulations using side
payments. As our case illustrates, the change of perspective can lead to valuable in-
sights or solution approaches. Therefore, for other contracting models we would like
to promote the use or investigation of an alternative formulation using information
rents.

Appendix

2.A Flow problem in the IRIC graph

In Section 2.3.1 we showed a connection between the contracting model and a shortest
path interpretation. For fixed order quantities xk, the contracting model is equivalent
to the dual of the minimum cost flow problem in the corresponding IRIC graph. In
this appendix we explicitly state the involved flow formulations. The minimum cost
flow problem in the IRIC graph is given by:

min
u

∑

k∈K

(
φk∗

R − φk
R(xk)

)
usk +

∑

k∈K

∑

l∈K

(
φl

R(xk) − φl
R(xl)

)
ukl

s.t.
∑

k∈K
usk =

∑

k∈K
ωk,

∑

l∈K
ukl −

∑

l∈K
ulk − usk = −ωk, ∀ k ∈ K,

u ≥ 0.

Its dual is as follows:

max
v

∑

k∈K
ωkvs −

∑

k∈K
ωkvk

s.t. vs − vk ≤ φk∗
R − φk

R(xk), ∀ k ∈ K,
vk − vl ≤ φl

R(xk) − φl
R(xl), ∀ k, l ∈ K.

For a feasible dual solution v, adding the same constant to each vi results in another
equivalent feasible solution with the same objective value. Thus, we can set vs = 0
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without loss of generality, resulting in:

max
v

−
∑

k∈K
ωkvk

s.t. −vk ≤ φk∗
R − φk

R(xk), ∀ k ∈ K,
vl − vk ≤ φk

R(xl) − φk
R(xk), ∀ k, l ∈ K.

By taking the minus sign in the objective out of the optimisation problem, we obtain
a minimisation problem, which is equal to the contracting model with fixed order
quantities (see (2.5)-(2.7)).

2.B Proofs of Section 2.3

This appendix states all the proofs of Section 2.3. Most proofs condition on the
Lagrange multipliers and use linear combinations of the KKT conditions to derive
the desired results.

2.B.1 Proofs of Section 2.3.2

Proof of Lemma 2.2. Consider a feasible menu of contracts (x, z). From the shortest
path interpretation in Section 2.3.1 we know that no negative cycles exist in the
corresponding IRIC graph. In particular, any 2-cycle in the IRIC graph has non-
negative length. Without loss of generality, consider i, j ∈ K with hi < hj and
consider the length of the 2-cycle between nodes i and j, which must be non-negative:

(
φi

R(xj) − φi
R(xi)

)
+
(

φj
R(xi) − φj

R(xj)
)

≥ 0

⇐⇒ 1
2 (hj − hi)(xi − xj) ≥ 0

(hi<hj)⇐⇒ xi − xj ≥ 0.

Hence, xi ≥ xj must hold in any feasible solution.

Proof of Lemma 2.3. Let (x, z) be the optimal menu of contracts when we only use
the adjacent IC constraints, instead of all IC constraints. Consider a cycle C =
(i1, . . . , iC) of unique retailer nodes in the IRIC graph corresponding to (x, z). We
prove that any such cycle has non-negative length, implying that all IC constraints
are satisfied. The proof is by induction on the cardinality of C.

If C = 2, then the adjacent IC constraints enforce that the cycle length is non-
negative. Therefore, let C > 2 and without loss of generality, assume that type
iC has the greatest holding cost. By induction, the cycle (i1, . . . , iC−1) has non-
negative length. We compare the difference in length between the two cycles, see
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also Figure 2.6:

( (
φiC

R (xiC−1
) − φiC

R (xiC
)
)

+
(
φi1

R (xiC
) − φi1

R (xi1
)
) )

−
(
φi1

R (xiC−1
) − φi1

R (xi1
)
)

= φiC

R (xiC−1
) − φiC

R (xiC
) + φi1

R (xiC
) − φi1

R (xiC−1
)

= 1
2 (hiC

− hi1
)(xiC−1

− xiC
) ≥ 0.

The inequality follows from our assumptions on the holding costs (hiC
> hi1

) and
Lemma 2.2. Thus, C must have non-negative length as well. Consequently, all IC
constraints hold without explicitly incorporating the corresponding IC constraints
in the optimisation model. To conclude, (x, z) is also optimal for the complete
contracting model with all IC constraints.

i1

. . .

iC−1

iC

(a) Smaller cycle (i1, . . . , iC−1).

i1

. . .

iC−1

iC

(b) Larger cycle C = (i1, . . . , iC).

Figure 2.6: Relevant arcs in the induction proof of Lemma 2.3.

Proof of Corollary 2.4. From Lemma 2.3 it follows that for feasibility we only need to
determine side payments such that the IR constraints and the adjacent IC constraints
are satisfied. From the shortest path interpretation, we know that side payments
satisfying the adjacent IC constraints exist if and only if 2-cycles in the corresponding
graph have non-negative length. Now consider arbitrary i, j ∈ K with hi < hj . The
proof of Lemma 2.2 shows that the 2-cycle between i and j has non-negative length
if and only if xi ≥ xj , which holds by assumption.

Hence, we can determine feasible side payments by solving a one-to-all shortest
path problem as described in Section 2.3.1. Furthermore, this leads to the best
possible feasible side payments with respect to the given order quantities.

2.B.2 Proofs of Section 2.3.4

Proof of Lemma 2.5. First, suppose k ∈ K has no ingoing arcs, i.e., λk = µk−1,k =
µk+1,k = 0. From (2.12) we have:

ωk + µk,k−1 + µk,k+1 = 0 =⇒ µk,k−1 + µk,k+1 < 0.

This contradicts the fact that all multipliers are non-negative. Hence, any node in K
must have an ingoing arc.
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Second, let S = {i, i+ 1, . . . , j− 1, j} ⊆ K be a maximal (by inclusion) connected
component that is not reachable from s. Adding up (2.12) for all k ∈ S results in:

∑

k∈S
ωk − µi−1,i − µj+1,j + µi,i−1 + µj,j+1 = 0.

Notice that all internal arcs of S cancel out and λk = 0 for all k ∈ S. Furthermore,
µi−1,i = 0 and µj+1,j = 0 by maximality of S. This leads to a contradiction, since
ωk > 0 for all k ∈ K. To conclude, every maximal connected component is reachable
from s.

Finally, by iteratively using that each node has an ingoing arc we can conclude
that every node must be reachable from node s.

Proof of Lemma 2.6. Let i, j, k ∈ K, i < k < j, be such that the constraints corre-
sponding to arcs (s, k), (k, i), and (k, j) are simultaneously satisfied with equality.
Consequently, we have:

φk
R(xk) − zk = φk∗

R ,

φi
R(xi) − zi = φi

R(xk) − zk, φj
R(xj) − zj = φj

R(xk) − zk,

φi
R(xi) − zi ≤ φi∗

R , φj
R(xj) − zj ≤ φj∗

R .

Combining these relations leads to the following:

φi∗
R ≥ φi

R(xi) − zi = φi
R(xk) − zk = φi

R(xk) − φk
R(xk) + φk∗

R

= 1
2 (hi − hk)xk + φk∗

R ,

φj∗
R ≥ φj

R(xj) − zj = φj
R(xk) − zk = φj

R(xk) − φk
R(xk) + φk∗

R

= 1
2 (hj − hk)xk + φk∗

R .

Rewriting these results gives:

φi∗
R − φk∗

R

hi − hk
≤ 1

2xk ≤ φj∗
R − φk∗

R

hj − hk
.

Recall that φl∗
R =

√
2dfhl for all l ∈ K. Thus, we arrive at the following inequality:

√
hk −

√
hi

hk − hi
≤
√
hj −

√
hk

hj − hk
⇐⇒ 1√

hk +
√
hi

≤ 1
√
hj +

√
hk

⇐⇒
√

hi ≥
√

hj .

The first inequality compares two slopes between three points on the square root
curve. Such an inequality never holds for hi < hk < hj , as the equivalent inequality
shows.

Proof of Corollary 2.7. Suppose a node k ∈ K directly connected to s has more
outgoing arcs. The direct connection to node s implies λk > 0. Furthermore, the
outgoing arcs must be (k, k − 1) and (k, k + 1), so µk,k−1, µk,k+1 > 0. The KKT
complementary slackness conditions imply that the corresponding constraints are
tight, violating Lemma 2.6.
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Proof of Lemma 2.8. First, suppose the order quantities for types i, j ∈ K are the
same. The incentive compatibility constraints state:

φi
R(xi) − zi ≤ φi

R(xj) − zj = φi
R(xi) − zj ⇐⇒ zi ≥ zj ,

φj
R(xj) − zj ≤ φj

R(xi) − zi = φj
R(xj) − zi ⇐⇒ zj ≥ zi.

Thus, zi = zj must hold and both contracts are the same. Consequently, substituting
zi = zj shows that both incentive compatibility constraints are tight.

Second, suppose both incentive compatibility constraints between i and j are
tight:

φi
R(xi) − zi = φi

R(xj) − zj , φj
R(xj) − zj = φj

R(xi) − zi.

Combining both equalities leads to:

φi
R(xi) − φj

R(xi) = φi
R(xj) − φj

R(xj) ⇐⇒ 1
2 (hi − hj)xi = 1

2 (hi − hj)xj

⇐⇒ xi = xj .

The first equivalence follows from having the same ordering cost f and the last
equivalence from hi 6= hj . As proved above, xi = xj implies that zi = zj . Thus, the
contracts for types i and j are the same.

Proof of Corollary 2.9. A 2-cycle in the KKT graph means that µkl, µlk > 0 for
some adjacent k, l ∈ K. From complementary slackness it follows that both incentive
compatibility constraints between types k and l must be tight. Lemma 2.8 implies
that xk = xl and zk = zl. Repeating this argument for all 2-cycles in the 2-cycle
chain completes the proof.

Proof of Lemma 2.10. The statement that at least one ingoing arc exists follows di-
rectly from Lemma 2.5. We prove the statement for the outgoing arcs by contradic-
tion.

Let S = {i, i+ 1, . . . , j − 1, j} ⊆ K be such a maximal 2-cycle chain and suppose
that S as a whole has no outgoings arcs. By Corollary 2.9, all k ∈ S get the same
contract, say order quantity x. The stationarity conditions (2.13) state that

ωk

(

− d(f + F )

x2
+ 1

2

(
hk +H d

p

))

+ 1
2µk,k−1(hk − hk−1)
︸ ︷︷ ︸

>0

+ 1
2µk,k+1(hk − hk+1)
︸ ︷︷ ︸

<0

= 0.

By assumption, µi,i−1 = 0 or non-existent (if i = 1). Likewise, µj,j+1 = 0 or non-
existent (if j = K). The stationarity constraint for type i requires that:

−d(f + F )
1

x2
+

1

2

(
hi +H d

p

)
> 0.

This implies that the similar term in the stationarity constraint for j is also strictly
positive, as hi < hj . However, the resulting constraint only contains strictly positive
terms, which is infeasible. Thus, S as a whole has at least one outgoing arc.
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Suppose S as a whole has two outgoing arcs, i.e., µi,i−1, µj,j+1 > 0. By Lemma 2.5,
all nodes in S must be reachable from s via arcs with strictly positive multipliers.
Since all nodes in S have two outgoing arcs by assumption, Corollary 2.7 implies
that λi, . . . , λj = 0, otherwise the solution is infeasible. Therefore, µi−1,i > 0 and/or
µj+1,j > 0 must hold, but this contradicts the maximality of S. To conclude, S has
exactly one outgoing arc.

Proof of Lemma 2.11. First, suppose node k ∈ K has no outgoing arcs in the KKT
graph, i.e., µk,k−1 = µk,k+1 = 0. The KKT stationarity condition (2.13) requires
that:

ωk

(

− d(f + F )
1

x2
k

+
1

2

(
hk +H d

p

))

= 0 =⇒ xk = xk∗
J ,

which proves one direction of the lemma.
Second, suppose that xk = xk∗

J . Again using the KKT stationarity condition
(2.13), we get:

µk,k−1(hk − hk−1) + µk,k+1(hk − hk+1) = 0.

Since hk−1 < hk < hk+1, either µk,k−1, µk,k+1 > 0 (node k has two outgoing arcs) or
µk,k−1 = µk,k+1 = 0 (node k has no outgoing arcs). In the latter case we are done.
Therefore, suppose µk,k−1, µk,k+1 > 0. We discern two cases.

Case I: node k is not part of a 2-cycle, i.e., µk−1,k = µk+1,k = 0. By Lemma 2.5
node k must be reachable from node s, implying λk > 0. This case is infeasible, see
Corollary 2.7.

Case II: node k is part of a 2-cycle. Let k be part of the maximal 2-cycle chain
S = {i, i + 1, . . . , k, . . . , j − 1, j} ⊆ K. Recall that from Corollary 2.9 we know that
all types in S have the same contract. Furthermore, by Lemma 2.10 either µi,i−1 > 0
or µj,j+1 > 0 (but not both).

Consider the case that µi,i−1 > 0, and thus µj,j+1 = 0 and j > k. The KKT
stationarity conditions state:

ωj

(

− d(f + F )
1

x2
j

+
1

2

(
hj +H d

p

))

+
1

2
µj,j−1(hj − hj−1) = 0.

Since µj,j−1(hj − hj−1) > 0, it must hold that xj < xj∗
J . Since xk = xj , we have the

required contradiction:

xk∗
J = xk = xj < xj∗

J < xk∗
J .

The other case, µi,i−1 = 0 and µj,j+1 > 0, is similar and is omitted.
To conclude, if xk = xk∗

J node k must have no outgoing arcs in the KKT graph,
which completes the proof.

Proof of Lemma 2.12. First, assume that k is part of a 2-cycle chain (i < j). From
Corollary 2.9 we know that all types in S have the same contract. Furthermore, by
Lemma 2.10 either µi,i−1 > 0 or µj,j+1 > 0 (but not both), so we can consider these
two cases.
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Consider the case that µi,i−1 > 0 and thus µj,j+1 = 0. The KKT stationarity
conditions state:

ωj

(

dφS

dx
(xj) +

dφj
R

dx
(xj)

)

+
1

2
µj,j−1(hj − hj−1)
︸ ︷︷ ︸

>0

= 0 =⇒ xj < xj∗
J .

That is, the expression can only be zero if the first term is strictly negative. Since
xk = xj , we have the required result: xk = xj < xj∗

J ≤ xk∗
J .

Next, consider the other case, µi,i−1 = 0 and µj,j+1 > 0. Again, the KKT
conditions imply:

ωi

(
dφS

dx
(xi) +

dφi
R

dx
(xi)

)

+
1

2
µi,i+1(hi − hi+1)
︸ ︷︷ ︸

<0

= 0 =⇒ xi > xi∗
J .

Thus, we get xk = xi > xi∗
J ≥ xk∗

J . This concludes the proof if k is part of a 2-cycle.
Second, assume that k is not part of a 2-cycle (i = j = k). We consider each of

the four possible cases. If µi,i−1 > 0 and µj,j+1 = 0, or µi,i−1 = 0 and µj,j+1 > 0, we
can reuse the above cases. If µk,k−1 = µk,k+1 = 0, then k has no outgoing arcs and
Lemma 2.11 implies xk = xk∗

J . Finally, consider the last case: µk,k−1, µk,k+1 > 0.
Lemma 2.5 implies that λk > 0, µk−1,k > 0, or µk+1,k > 0. This either leads to
infeasibility by Lemma 2.6 or a 2-cycle which is excluded by assumption.

The statements also hold in the reverse direction by trivial contradiction argu-
ments using the above derived implications.

Proof of Lemma 2.13. The result that there exists a retailer type with the same total
costs as its default option follows directly from Lemma 2.5. That is, there exists a
k ∈ K such that λk > 0. Hence, φk

R(xk) − zk = φk∗
R by complementary slackness.

By combining Lemmas 2.10 and 2.11, we can prove the other claim as follows.
Suppose each retailer node has an outgoing arc in the KKT graph. Thus, arc (1, 2)
from type 1 to type 2 exists in the graph. If arc (2, 3) is in the graph, we continue
to type 3. If type 2 has only outgoing arc (2, 1), then type 2 forms a 2-cycle with
type 1. By Lemma 2.10 arc (2, 3) must exist as well, a contradiction. Repeat this
argument until we reach type K. Since node K also has an outgoing arc, a 2-cycle
with type K − 1 is formed. Again by Lemma 2.10, this cycle must have an outgoing
arc, namely arc (K − 1,K − 2). Repeat this argument until we reach type 1. Hence,
all retailer nodes are part of the same 2-cycle chain which contradicts Lemma 2.10.

Thus, there exists at least one type with no outgoing arcs. Lemma 2.11 states
that this retailer type is assigned the joint order quantity in the optimal solution.

2.B.3 Proofs of Section 2.3.5

Proof of Theorem 2.14. For all types k ∈ K, let ωk = 1/K and hk+1 = hk + δ for
some δ ∈ R>0. First, realise that if xk = xl for some l > k+ 1, then all intermediate
types also have the same order quantity: xk = xk+1 = · · · = xl−1 = xl. This follows
from the ordering of the order quantities (Lemma 2.2). Second, if xk = xl then
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automatically zk = zl must hold to be feasible (Lemma 2.8). So, both contracts are
exactly the same.

Assume that there are contracts for retailer types that are the same, else there
is nothing to prove. Let S = {i, i + 1, . . . , j − 1, j} ⊆ K with i < j be a maximal
set of types with the same contract. Note that Lemmas 2.6 and 2.8 imply that
λi+1, . . . , λj−1 = 0. We have to distinguish two cases based on the KKT multipliers.

Case I: µi,i−1 > 0. We have three direct implications: λi = 0 (by Lemma 2.6),
µi−1,i = 0 (by maximality of S and Corollary 2.9), and thus µi+1,i > 0 (by Lemma 2.5).
Furthermore, since all nodes in S must be reachable (Lemma 2.5), we have that
µi+1,i, . . . , µj,j−1 > 0. Finally, we can conclude that µj,j+1 = 0 with a simple argu-
ment by contradiction using the maximality of S or Lemmas 2.5 and 2.6.

Now we can derive two contradictory equations. The first equation is as follows.
Since λi, . . . , λj−1 = 0, the sum of the corresponding KKT conditions (2.15) from i
to j − 1 is equal to

(j − i) + µi,i−1 − µj,j−1 + µj−1,j = 0.

For the second equation we need to consider the KKT conditions (2.14) for type i
and j. As xi = xj both conditions have a common part, hence the difference must
be equal:

hi + δ(µi,i−1 − µi,i+1) = hj + δµj,j−1 ⇐⇒ µi,i−1 − µi,i+1 = (j − i) + µj,j−1.

Finally, both equations combined state that

−µi,i+1 = 2(j − i) + µj−1,j ≥ 2 + µj−1,j > 0.

This contradicts that µi+1,i is non-negative.
Case II: µi,i−1 = 0. The KKT stationarity for type i simplifies to

(

−2d(f + F )

x2
i

+H d
p

)

+ hi = δµi,i+1 ≥ 0.

Therefore, for any k ∈ S, k > i, it must hold that µk,k+1 > 0, since xk = xi and
from the above inequality:

0 =

(

−2d(f + F )

x2
k

+H d
p

)

+ hk + δ(µk,k−1 − µk,k+1)

≥ (hk − hi) + δ(µk,k−1 − µk,k+1).

Consequently, λj = 0 by Lemma 2.6, and µj+1,j = 0 by maximality of S and Corol-
lary 2.9.

As in Case I, we derive two contradictory equations. The sum of the corresponding
KKT conditions (2.15) from i+ 1 to j is equal to

(j − i) + µi+1,i − µi,i+1 + µj,j+1 = 0.
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The KKT conditions (2.14) for type i and j lead to:

hi − δµi,i+1 = hj + δ(µj,j−1 − µj,j+1) ⇐⇒ −µi,i+1 = (j − i) + µj,j−1 − µj,j+1.

These two equations give a contradiction:

0 = 2(j − i) + µj,j−1 + µi+1,i ≥ 2.

To conclude, a menu with non-unique contracts between retailer types is never
optimal, irrespective of the actual value of δ. This shows that uniformity of types
and equidistant holding costs are sufficient for unique contracts.

Proof of Corollary 2.15. Suppose the KKT graph has a 2-cycle (which are the only
cycles possible). Corollary 2.9 implies that those two types have the same contract,
which contradicts Theorem 2.14.

2.C Proof of Theorem 2.16

In this appendix, we give the proof of Theorem 2.16. The proof only requires some
basic calculus for differentiable convex functions and the results from Section 2.3.2.
In particular, we do not use the KKT conditions in any way. First, we give two
lemmas that relate certain values that appear in optimal contracts and are needed
to prove the theorem.

Lemma 2.17. For k ∈ K, xk∗
J lies in the closed interval with endpoints xk∗

R and x∗
S,

and is equal to either endpoint if and only if xk∗
R = x∗

S.

Proof. This follows from simple algebraic manipulation. Let ∼ denote the ordering
relation between two numbers, i.e., ∼ ∈ {=,≥, >,≤, <}. We have:

xk∗
J ∼ xk∗

R ⇐⇒ 2d(f + F )

hk +H d
p

∼ 2df

hk
⇐⇒ hk(f + F ) ∼ f(hk +H d

p )

⇐⇒ hkF ∼ fH d
p ⇐⇒ 2dF

H d
p

∼ 2df

hk

⇐⇒ x∗
S ∼ xk∗

R ,

and a similar equivalence for the supplier: xk∗
J ∼ x∗

S ⇐⇒ xk∗
R ∼ x∗

S .

Lemma 2.18. For k, l ∈ K with k < l, we have:

xk∗
R >

2(φl∗
R − φk∗

R )

hl − hk
> xl∗

R .

Proof. The square root function is concave, so we can relate its gradient as follows,
using hk < hl:

1

2
√
hk

>

√
hl −

√
hk

hl − hk
>

1

2
√
hl

.
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Therefore, we have

xk∗
R =

√

2df

hk
> 2
√

2df

(√
hl −

√
hk

hl − hk

)

=
2(φl∗

R − φk∗
R )

hl − hk
,

xl∗
R =

√

2df

hl
< 2
√

2df

(√
hl −

√
hk

hl − hk

)

=
2(φl∗

R − φk∗
R )

hl − hk
.

This proves the lemma.

We continue with the proof of Theorem 2.16.

Proof of Theorem 2.16. By Lemma 2.2 any feasible solution must satisfy x1 ≥ x2.
Assuming x1 ≥ x2 the optimal side payments are determined by the shortest paths
in the corresponding IRIC graph (see also Corollary 2.4). There are only two paths
possible: directly from node s or via the other retailer node. Thus, the side payments
are:

z1 = − min
{
φ1∗

R − φ1
R(x1),

(
φ2∗

R − φ2
R(x2)

)
+
(
φ1

R(x2) − φ1
R(x1)

)}

= max

{

φ1
R(x1) − φ1∗

R , φ
1
R(x1) − φ2∗

R +
1

2
(h2 − h1)x2

}

= φ1
R(x1) − φ1∗

R + max

{

0, φ1∗
R − φ2∗

R +
1

2
(h2 − h1)x2

}

,

and likewise

z2 = φ2
R(x2) − φ2∗

R + max

{

0, φ2∗
R − φ1∗

R +
1

2
(h1 − h2)x1

}

.

Therefore, the contribution of x1 to the objective function is

ω1

(
φS(x1) + φ1

R(x1)
)

+ ω2 max

{

0, φ2∗
R − φ1∗

R +
1

2
(h1 − h2)x1

}

. (2.17)

The expression (2.17) is a continuous convex function in x1 with one non-differentiable
point. Consequently, its minimiser is the value of x1 such that the derivative is zero
or changes from negative to positive. The derivative of (2.17) is given by







ω1

(

−d(f + F ) 1
x2

1

+ 1
2

(

h1 +H d
p

))

+ 1
2ω2(h1 − h2) if x1 <

2(φ2∗

R −φ1∗

R )
h2−h1

ω1

(

−d(f + F ) 1
x2

1

+ 1
2

(

h1 +H d
p

))

otherwise
.

This implies that there are three critical values for x1:

x1 = x1∗
J , x1 =

√

2d(f + F )

h1 +H d
p + ω2

ω1
(h1 − h2)

, x1 =
2(φ2∗

R − φ1∗
R )

h2 − h1
.
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Notice that we have the following relation indicated by ∼ ∈ {=,≥, >,≤, <}:

ω1

(

−d(f + F )
1

x2
1

+
1

2

(

h1 +H
d

p

))

+
1

2
ω2(h1 − h2) ∼ 0

⇐⇒
(

h1 +H
d

p
+
ω2

ω1
(h1 − h2)

)

x2
1 ∼ 2d(f + F ).

So if h1 + H d
p + ω2

ω1
(h1 − h2) ≤ 0, the gradient is strictly negative for all x1 <

2(φ2∗
R − φ1∗

R )/(h2 − h1). In this case, the minimiser is given by

x1 = max

{
2(φ2∗

R − φ1∗
R )

h2 − h1
, x1∗

J

}

.

Otherwise, h1 +H d
p + ω2

ω1
(h1 − h2) > 0 and all critical values are well-defined. Using

the fact that

x1∗
J =

√

2d(f + F )

h1 +H d
p

<

√

2d(f + F )

h1 +H d
p + ω2

ω1
(h1 − h2)

,

we end up with three cases (orderings of the critical values) for x1, see Figure 2.7.
Determining the minimiser for these cases is straightforward and leads to the optimal
value of x1:

x1 = min

{√

2d(f + F )

h1 +H d
p + ω2

ω1
(h1 − h2)

,max

{
2(φ2∗

R − φ1∗
R )

h2 − h1
, x1∗

J

}}

.

The proof for x2 is similar. Its contribution to the objective value is

ω2

(
φS(x2) + φ2

R(x2)
)

+ ω1 max

{

0, φ1∗
R − φ2∗

R +
1

2
(h2 − h1)x2

}

.

The corresponding derivative is







ω2

(

−d(f + F ) 1
x2

2

+ 1
2

(

h2 +H d
p

))

+ 1
2ω1(h2 − h1) if x2 >

2(φ2∗

R −φ1∗

R )
h2−h1

ω2

(

−d(f + F ) 1
x2

2

+ 1
2

(

h2 +H d
p

))

otherwise
,

with three critical values for x2:

x2 = x2∗
J , x2 =

√

2d(f + F )

h2 +H d
p + ω1

ω2
(h2 − h1)

, x2 =
2(φ2∗

R − φ1∗
R )

h2 − h1
.

In contrast to the case for x1, these critical values are always well-defined. See also
Figure 2.7 for the minimisers, given by the formula

x2 = max

{√

2d(f + F )

h2 +H d
p + ω1

ω2
(h2 − h1)

,min

{
2(φ2∗

R − φ1∗
R )

h2 − h1
, x2∗

J

}}

.
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It remains to verify the final claims on these optimal values for x1 and x2. The
fact that x1 > x2 follows from the formulas for the optimal order quantities and

√

2d(f + F )

h2 +H d
p + ω1

ω2
(h2 − h1)

<

√

2d(f + F )

h2 +H d
p

<

√

2d(f + F )

h1 +H d
p

<

√

2d(f + F )

h1 +H d
p + ω2

ω1
(h1 − h2)

.

Thus, the formulas do indeed give feasible order quantities (as x1 ≥ x2 is feasible by
Corollary 2.4).

Finally, the statement that the optimal order quantities lie between the default
and joint order quantities follows from the formulas and

x1∗
R >

2(φ2∗
R − φ1∗

R )

h2 − h1
> x2∗

R ,

which has been proved in Lemma 2.18. The details are as follows. We have:

x1∗
R > x1∗

J =⇒







x1 ≤ max
{

2(φ2∗

R −φ1∗

R )
h2−h1

, x1∗
J

}

< x1∗
R

x1 ≥ min

{√
2d(f+F )

h1+H d
p

+
ω2
ω1

(h1−h2)
, x1∗

J

}

= x1∗
J

,

x1∗
R ≤ x1∗

J =⇒
{

x1 = min

{√
2d(f+F )

h1+H d
p

+
ω2
ω1

(h1−h2)
, x1∗

J

}

= x1∗
J ,

x2∗
R ≥ x2∗

J =⇒
{

x2 = max

{√
2d(f+F )

h2+H d
p

+
ω1
ω2

(h2−h1)
, x2∗

J

}

= x2∗
J ,

x2∗
R < x2∗

J =⇒







x2 ≥ min
{

2(φ2∗

R −φ1∗

R )
h2−h1

, x2∗
J

}

> x2∗
R

x2 ≤ max

{√
2d(f+F )

h2+H d
p

+
ω1
ω2

(h2−h1)
, x2∗

J

}

= x2∗
J

.

Moreover, xk = xk∗
R if and only if it equals the joint order quantity xk∗

J and thus
corresponds with the supplier’s own optimal order quantity x∗

S (see also Lemma 2.17).
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x1

−

√

2d(f+F )

h1+H d
p

− 0

√

2d(f+F )

h1+H d
p
+

ω2

ω1
(h1−h2)

+ ∗

2(φ2∗

R −φ1∗

R )
h2−h1

+

x1

−

√

2d(f+F )

h1+H d
p

− ∗

2(φ2∗

R −φ1∗

R )
h2−h1

+

√

2d(f+F )

h1+H d
p
+

ω2

ω1
(h1−h2)

+

x1

− ∗

2(φ2∗

R −φ1∗

R )
h2−h1

− 0

√

2d(f+F )

h1+H d
p

+

√

2d(f+F )

h1+H d
p
+

ω2

ω1
(h1−h2)

+

x2

−

√

2d(f+F )

h2+H d
p
+

ω1

ω2
(h2−h1)

− 0

√

2d(f+F )

h2+H d
p

+ ∗

2(φ2∗

R −φ1∗

R )
h2−h1

+

x2

−

√

2d(f+F )

h2+H d
p
+

ω1

ω2
(h2−h1)

− ∗

2(φ2∗

R −φ1∗

R )
h2−h1

+

√

2d(f+F )

h2+H d
p

+

x2

− ∗

2(φ2∗

R −φ1∗

R )
h2−h1

− 0

√

2d(f+F )

h2+H d
p
+

ω1

ω2
(h2−h1)

+

√

2d(f+F )

h2+H d
p

+

Figure 2.7: The sign of the derivative of the contribution of x1 and x2 to the objective
value. An asterisk denotes that the point is non-differentiable. The circle indicates
the minimiser.
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2.D Derivation of KKT menus

In this appendix, we derive the menus of contracts that follow from the KKT con-
ditions. We only consider the cases with two or three retailer types. First, in Sec-
tion 2.D.1 we give the KKT menus for certain generalisable patterns that are used
for both two and three types. In Section 2.D.2 we derive all KKT menus for two
types. For three types, we only show the analysis for certain cases from which all
results can be reproduced, see Section 2.D.3.

2.D.1 Simple KKT menus

We can distinguish two types of KKT menus based on the corresponding KKT graph.
If the KKT graph is a spanning tree, we call the corresponding menu a simple KKT
menu. The other cases give so-called complex KKT menus. Recall that by Lemma 2.5
the KKT graph is either a spanning tree or a strict superset of a spanning tree.

There are three fundamental patterns for simple KKT menus: the Up-tree, Right-
tree, and Left-tree, see Figure 2.8. That is, for a simple menu each connected com-
ponent is one of these patterns. Note that by Lemma 2.6 we have no ‘T-pattern’. In
the next sections, we derive the corresponding KKT menus for each of these simple
patterns.

s

1 2
. . .

K − 1 K

. . .

(a) Up-tree pattern.

s

1 2
. . .

K − 1 K

(b) Right-tree pattern.

s

1 2
. . .

K − 1 K

(c) Left-tree pattern.

Figure 2.8: The fundamental patterns for simple KKT menus.

2.D.1.1 Up-tree pattern

For the Up-tree pattern no retailer node has outgoing arcs. Therefore, we can apply
Lemma 2.11 to determine the order quantities, i.e., we have xk = xk∗

J for all k ∈ K.
The side payments follow from complementary slackness: since λk > 0 for all k ∈ K,
it must hold that φk

R(xk) − zk = φk∗
R . This leads to the KKT contract for all k ∈ K:

xk =

√

2d(f + F )

hk +H d
p

, zk = φk
R(xk) − φk∗

R .
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2.D.1.2 Right-tree pattern

Based on the spanning tree in the KKT graph, we can determine formulas for the
side payments. Complementary slackness with respect to λ1 > 0 implies that z1 =
φ1

R(x1) − φ1∗
R . Likewise, φ2

R(x2) − z2 = φ2
R(x1) − z1 must hold, since µ1,2 > 0. After

substituting the known value for z1, we obtain: z2 = φ2
R(x2)+φ1

R(x1)−φ2
R(x1)−φ1∗

R .
In general, for retailer type k ∈ K we have:

zk = φk
R(xk) +

k−1∑

i=1

(
φi

R(xi) − φi+1
R (xi)

)
− φ1∗

R .

For the order quantities, first notice that adding up all KKT stationarity conditions
(2.12) leads to

∑

k∈K λk =
∑

k∈K ωk. For the Right-tree pattern, we have λ1 =
∑

k∈K ωk. Consequently, the conditions (2.12) imply:

ω1 − λ1 + µ1,2 = 0 =⇒ µ1,2 = λ1 − ω1 =

K∑

i=2

ωi,

ωk − µk−1,k + µk,k+1 = 0 =⇒ µk,k+1 = µk−1,k − ωk =
K∑

i=k+1

ωi,

ωK − µK−1,K = 0 =⇒ µK−1,K = ωK .

Thus, KKT stationarity conditions state

ωk

(

−2d(f + F )

x2
k

+ hk +H d
p

)

+ (hk − hk+1)

K∑

i=k+1

ωi = 0,

which for k ∈ K implies the order quantity:

xk =

√

2d(f + F )

hk +H d
p + (hk − hk+1) 1

ωk

∑K
i=k+1 ωi

.

Note that the order quantities can be complex numbers (infeasible).

2.D.1.3 Left-tree pattern

For the Left-tree pattern, the analysis is by symmetry similar to the Right-tree
pattern. We have

xk =

√

2d(f + F )

hk +H d
p + (hk − hk−1) 1

ωk

∑k−1
i=1 ωi

> 0,

zk = φk
R(xk) +

K∑

i=k+1

(
φi

R(xi) − φi−1
R (xi)

)
− φK∗

R .

Here, the order quantities are always well-defined.
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2.D.2 KKT menus for two types

For two retailer types (K = 2) we can reduce the number of KKT menus to consider
from 24 = 16 to 5 cases. Table 2.6 and Figure 2.4 provide the details of these 5 cases.
In the following sections we derive formulas for the KKT menus. As expected, we see
the same possible optimal order quantities as derived in Theorem 2.16. Furthermore,
there is a bijection between the optimal order quantity x and the KKT graph. See
Section 2.4.1 for numerical examples.

Case Menu λ1 λ2 µ12 µ21

1 1Up 2Up > 0 > 0 = 0 = 0
2 1UpRight 2x > 0 = 0 > 0 = 0
3 1x 2UpLeft = 0 > 0 = 0 > 0
4 1UpRight 2Up > 0 > 0 > 0 = 0
5 1Up 2UpLeft > 0 > 0 = 0 > 0

Table 2.6: All cases of Lagrange multipliers for two retailer types.

2.D.2.1 Case 1Up2Up

Since this is a simple KKT menu, the derivation is already given in Section 2.D.1.1.
The menu of contracts is as follows:

x1 =

√

2d(f + F )

h1 +H d
p

> 0, x2 =

√

2d(f + F )

h2 +H d
p

> 0,

z1 = φ1
R(x1) − φ1∗

R ≥ 0, z2 = φ2
R(x2) − φ2∗

R ≥ 0.

2.D.2.2 Case 1UpRight2x

This menu is a Right-tree pattern, see Section 2.D.1.2. The KKT menu is given by:

x1 =

√

2d(f + F )

h1 +H d
p + ω2

ω1
(h1 − h2)

, x2 =

√

2d(f + F )

h2 +H d
p

> 0,

z1 = φ1
R(x1) − φ1∗

R ≥ 0, z2 = φ2
R(x2) − φ2

R(x1) + φ1
R(x1) − φ1∗

R .

Note that x1 might be infeasible if h2 is large. Likewise, z2 could be negative (infea-
sible) for certain cost parameters.

2.D.2.3 Case 1x2UpLeft

By symmetry, this case is similar to the 1UpRight2x contract, with the roles of types
1 and 2 interchanged:

x1 =

√

2d(f + F )

h1 +H d
p

> 0, x2 =

√

2d(f + F )

h2 +H d
p + ω1

ω2
(h2 − h1)

> 0,

z1 = φ1
R(x1) − φ1

R(x2) + φ2
R(x2) − φ2∗

R , z2 = φ2
R(x2) − φ2∗

R ≥ 0.
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Note that z1 could be negative (infeasible) for certain cost parameters.

2.D.2.4 Case 1UpRight2Up

By complementary slackness and λ1, λ2 > 0, we can directly derive the side payments:

z1 = φ1
R(x1) − φ1∗

R ≥ 0, z2 = φ2
R(x2) − φ2∗

R ≥ 0.

Furthermore, since node 2 has no outgoing arcs, x2 is the joint order quantity:

x2 =

√

2d(f + F )

h2 +H d
p

> 0.

Finally, by complementary slackness and µ12 > 0, we have φ2
R(x2)−z2 = φ2

R(x1)−z1.
Substituting the formulas for the side payments results in:

φ2∗
R = φ2

R(x1) − φ1
R(x1) + φ1∗

R ⇐⇒ 1

2
(h2 − h1)x1 = φ2∗

R − φ1∗
R .

Hence, type 1 has order quantity:

x1 =
2
(
φ2∗

R − φ1∗
R

)

h2 − h1
> 0.

2.D.2.5 Case 1Up2UpLeft

Again by symmetry, we can reuse the analysis of the 1UpRight2Up contract to obtain:

x1 =

√

2d(f + F )

h1 +H d
p

> 0, x2 =
2
(
φ2∗

R − φ1∗
R

)

h2 − h1
> 0,

z1 = φ1
R(x1) − φ1∗

R ≥ 0, z2 = φ2
R(x2) − φ2∗

R ≥ 0.

2.D.3 KKT menus for three types

In this section we derive the menus for three retailer types (K = 3), see also Sec-
tion 2.4.2. Table 2.7 provides an overview of all possible cases. The cases indi-
cated as reducible can be solved by reusing KKT contracts for K = 2 and by using
Lemma 2.11. That is, one retailer type gets offered the joint order quantity according
to Lemma 2.11. For the other two types we can use the contracts for K = 2 derived
earlier. This leaves 14 new cases to solve, but due to symmetry in the cases only 8
important cases remain. These are shown in Figure 2.9 and solved below. Compare
this to the 27 = 128 cases that would need to be analysed without using our results.
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Case Menu Reducible λ1 λ2 λ3 µ12 µ21 µ23 µ32

1 1Up 2Up 3Up Yes > 0 > 0 > 0 = 0 = 0 = 0 = 0
2 1UpRight 2Up 3Up Yes > 0 > 0 > 0 > 0 = 0 = 0 = 0
3 1Up 2UpLeft 3Up Yes > 0 > 0 > 0 = 0 > 0 = 0 = 0
4 1Up 2UpRight 3Up Yes > 0 > 0 > 0 = 0 = 0 > 0 = 0
5 1Up 2Up 3UpLeft Yes > 0 > 0 > 0 = 0 = 0 = 0 > 0
6 1UpRight 2UpRight 3Up No > 0 > 0 > 0 > 0 = 0 > 0 = 0
7 1UpRight 2Up 3UpLeft No > 0 > 0 > 0 > 0 = 0 = 0 > 0
8 1Up 2UpLeft 3UpLeft No > 0 > 0 > 0 = 0 > 0 = 0 > 0

9 1Up 2UpRight 3x Yes > 0 > 0 = 0 = 0 = 0 > 0 = 0
10 1UpRight 2UpRight 3x No > 0 > 0 = 0 > 0 = 0 > 0 = 0

11 1UpRight 2x 3Up Yes > 0 = 0 > 0 > 0 = 0 = 0 = 0
12 1Up 2x 3UpLeft Yes > 0 = 0 > 0 = 0 = 0 = 0 > 0
13 1UpRight 2Right 3Up No > 0 = 0 > 0 > 0 = 0 > 0 = 0
14 1Up 2Left 3UpLeft No > 0 = 0 > 0 = 0 > 0 = 0 > 0
15 1UpRight 2x 3UpLeft No > 0 = 0 > 0 > 0 = 0 = 0 > 0
16 1UpRight 2LeftRight 3Up No > 0 = 0 > 0 > 0 > 0 > 0 = 0
17 1Up 2LeftRight 3UpLeft No > 0 = 0 > 0 = 0 > 0 > 0 > 0

18 1x 2UpLeft 3Up Yes = 0 > 0 > 0 = 0 > 0 = 0 = 0
19 1x 2UpLeft 3UpLeft No = 0 > 0 > 0 = 0 > 0 = 0 > 0

20 1UpRight 2Right 3x No > 0 = 0 = 0 > 0 = 0 > 0 = 0
21 1UpRight 2LeftRight 3x No > 0 = 0 = 0 > 0 > 0 > 0 = 0

22 1x 2Left 3UpLeft No = 0 = 0 > 0 = 0 > 0 = 0 > 0
23 1x 2LeftRight 3UpLeft No = 0 = 0 > 0 = 0 > 0 > 0 > 0

Table 2.7: All cases of Lagrange multipliers for three retailer types.
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Figure 2.9: Relevant KKT graphs for three retailer types. Not showing reducible or
symmetric cases.

2.D.3.1 Case 1UpRight2UpRight3Up

As usual, the side payments follow directly from the complementary slackness con-
ditions:

z1 = φ1
R(x1) − φ1∗

R , z2 = φ2
R(x2) − φ2∗

R , z3 = φ3
R(x3) − φ3∗

R .



Chapter 2 55

Since node 3 has no outgoing arcs, we can apply Lemma 2.11 to obtain the order
quantity:

x3 =

√

2d(f + F )

h3 +H d
p

.

Finally, we use the complementary slackness conditions of the remaining active arcs.
First, consider the following:

φ2∗
R = φ2

R(x2) − z2 = φ2
R(x1) − z1 = φ2

R(x1) − φ1
R(x1) + φ1∗

R =
1

2
(h2 − h1)x1 + φ1∗

R .

Likewise,

φ3∗
R = φ3

R(x3) − z3 = φ3
R(x2) − z2 = φ3

R(x2) − φ2
R(x2) + φ2∗

R =
1

2
(h3 − h2)x2 + φ2∗

R .

Solving both equalities leads to:

x1 =
2(φ2∗

R − φ1∗
R )

(h2 − h1)
, x2 =

2(φ3∗
R − φ2∗

R )

(h3 − h2)
.

2.D.3.2 Case 1UpRight2Right3Up

This case is more difficult to solve. The side payments are straightforward to deter-
mine:

z1 = φ1
R(x1) − φ1∗

R , z2 = φ2
R(x2) − φ2

R(x1) + φ1
R(x1) − φ1∗

R , z3 = φ3
R(x3) − φ3∗

R .

Lemma 2.11 specifies the order quantity for retailer type 3:

x3 =

√

2d(f + F )

h3 +H d
p

.

Furthermore, we have

φ3∗
R = φ3

R(x3) − z3 = φ3
R(x2) − z2 = φ3

R(x2) − φ2
R(x2) + φ2

R(x1) − φ1
R(x1) + φ1∗

R

=
1

2
(h3 − h2)x2 +

1

2
(h2 − h1)x1 + φ1∗

R ,

that is,

(h2 − h1)x1 + (h3 − h2)x2 = 2(φ3∗
R − φ1∗

R ).

We also need to rewrite two KKT stationarity conditions, resulting in:

ω1

(h1 − h2)

(

−2d(f + F )
1

x2
1

+ h1 +H
d

p

)

+ µ12 = 0,

ω2

(h2 − h3)

(

−2d(f + F )
1

x2
2

+ h2 +H
d

p

)

+ µ23 = 0.
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Combining these two equations and using ω2 − µ12 + µ23 = 0 leads to:

ω1

(h1 − h2)

(

−2d(f + F )
1

x2
1

+ h1 +H
d

p

)

− ω2

(h2 − h3)

(

−2d(f + F )
1

x2
2

+ h2 +H
d

p

)

+ ω2 = 0,

which is equivalent to

−2d(f + F )ω1

(h1 − h2)

1

x2
1

− −2d(f + F )ω2

(h2 − h3)

1

x2
2

=
ω2

(h2 − h3)

(

h2 +H
d

p

)

− ω1

(h1 − h2)

(

h1 +H
d

p

)

− ω2.

To conclude, we have to solve a pair of equations for which we can use Lemma 2.19
in Section 2.D.3.9. As proved in the lemma, there exists a unique strictly positive
and real solution. Both exact closed-form formulas and an efficient numerical solution
method exist to solve these equations. Unfortunately, the formulas for x1 and x2 are
too verbose to state here and are omitted.

2.D.3.3 Case 1UpRight2UpRight3x

The side payments are:

z1 = φ1
R(x1) − φ1∗

R , z2 = φ2
R(x2) − φ2∗

R , z3 = φ3
R(x3) − φ3

R(x2) + φ2
R(x2) − φ2∗

R .

As seen before, the order quantity of type 3 follows from Lemma 2.11:

x3 =

√

2d(f + F )

h3 +H d
p

.

Complementary slackness states that

φ2∗
R = φ2

R(x2) − z2 = φ2
R(x1) − z1 = φ2

R(x1) − φ1
R(x1) + φ1∗

R ,

that is,

x1 =
2(φ2∗

R − φ1∗
R )

h2 − h1
.

Finally, from the KKT stationarity conditions we have µ23 = ω3 and

ω2

(

−2d(f + F )
1

x2
2

+ h2 +H
d

p

)

+ ω3(h2 − h3) = 0,

leading to

x2 =

√

2d(f + F )

h2 +H d
p + ω3

ω2
(h2 − h3)

.
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2.D.3.4 Case 1UpRight2Right3x

This is a simple KKT menu, namely the Right-tree pattern (see Section 2.D.1.2).
The menu of contracts is given by the order quantities

x1 =

√

2d(f + F )

h1 +H d
p + ω2+ω3

ω1
(h1 − h2)

, x2 =

√

2d(f + F )

h2 +H d
p + ω3

ω2
(h2 − h3)

,

x3 =

√

2d(f + F )

h3 +H d
p

,

and side payments

z1 = φ1
R(x1) − φ1∗

R ,

z2 = φ2
R(x2) − φ2

R(x1) + φ1
R(x1) − φ1∗

R ,

z3 = φ3
R(x3) − φ3

R(x2) + φ2
R(x2) − φ2

R(x1) + φ1
R(x1) − φ1∗

R .

2.D.3.5 Case 1UpRight2Up3UpLeft

We apply the general solution technique to find:

z1 = φ1
R(x1) − φ1∗

R , z2 = φ2
R(x2) − φ2∗

R , z3 = φ3
R(x3) − φ3∗

R ,

and

x2 =

√

2d(f + F )

h2 +H d
p

.

Now use complementary slackness:

φ2∗
R = φ2

R(x2) − z2 = φ2
R(x1) − z1 = φ2

R(x1) − φ1
R(x1) + φ1∗

R .

We obtain a similar equation for x3. Hence, we have

x1 =
2(φ2∗

R − φ1∗
R )

h2 − h1
, x3 =

2(φ3∗
R − φ2∗

R )

h3 − h2
.

2.D.3.6 Case 1UpRight2x3UpLeft

This case is one of the more difficult cases. The side payments are:

z1 = φ1
R(x1) − φ1∗

R , z2 = φ2
R(x2) − φ2

R(x1) + φ1
R(x1) − φ1∗

R , z3 = φ3
R(x3) − φ3∗

R .

The order quantity for type 2 is straightforward:

x2 =

√

2d(f + F )

h2 +H d
p

.
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We use complementary slackness to find the following equation:

φ2
R(x1) − z1 = φ2

R(x2) − z2 = φ2
R(x3) − z3

⇐⇒ φ2
R(x1) − φ1

R(x1) + φ1∗
R = φ2

R(x3) − φ3
R(x3) + φ3∗

R

⇐⇒ (h2 − h1)x1 + (h3 − h2)x3 = 2(φ3∗
R − φ1∗

R ).

The following derivation has been used before. We rewrite two KKT stationarity
conditions:

ω1

(h1 − h2)

(

−2d(f + F )
1

x2
1

+ h1 +H
d

p

)

+ µ12 = 0,

ω3

(h3 − h2)

(

−2d(f + F )
1

x2
3

+ h3 +H
d

p

)

+ µ32 = 0.

Next, combine both equations and use ω2 − µ12 − µ32 = 0:

ω1

(h1 − h2)

(

−2d(f + F )
1

x2
1

+ h1 +H
d

p

)

+
ω3

(h3 − h2)

(

−2d(f + F )
1

x2
3

+ h3 +H
d

p

)

+ ω2 = 0,

which is equivalent to

−2d(f + F )ω1

(h1 − h2)

1

x2
1

− −2d(f + F )ω3

(h2 − h3)

1

x2
3

=
ω3

(h2 − h3)

(

h3 +H
d

p

)

− ω1

(h1 − h2)

(

h1 +H
d

p

)

− ω2.

Thus, we solve the pair of equations using Lemma 2.19. As stated in the lemma,
a unique strictly positive and real solution exists. The formulas for x1 and x3 are
too verbose and are omitted.

2.D.3.7 Case 1UpRight2LeftRight3Up

From Corollary 2.9 we know that x1 = x2 and z1 = z2. Hence, we have side payments

z1 = z2 = φ1
R(x1) − φ1∗

R , z3 = φ3
R(x3) − φ3∗

R .

As before, the order quantity of type 3 is:

x3 =

√

2d(f + F )

h3 +H d
p

.

Using complementary slackness results in:

φ3∗
R = φ3

R(x3) − z3 = φ3
R(x2) − z2 = φ3

R(x1) − z1 = φ3
R(x1) − φ1

R(x1) + φ1∗
R .

Solving for x1 gives:

x1 = x2 =
2(φ3∗

R − φ1∗
R )

h3 − h1
.
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2.D.3.8 Case 1UpRight2LeftRight3x

The 2-cycle implies that x1 = x2 and z1 = z2. First, we give the side payments:

z1 = z2 = φ1
R(x1) − φ1∗

R , z3 = φ3
R(x3) − φ3

R(x2) + φ1
R(x1) − φ1∗

R ,

where by Lemma 2.11

x3 =

√

2d(f + F )

h3 +H d
p

.

The KKT stationarity conditions state that µ23 = ω3, hence µ12 − µ21 = ω2 + ω3.
Adding up the KKT conditions

ω1

(

−2d(f + F )
1

x2
1

+ h1 +H
d

p

)

+ µ12(h1 − h2) = 0,

ω2

(

−2d(f + F )
1

x2
1

+ h2 +H
d

p

)

+ µ21(h2 − h1) + ω3(h2 − h3) = 0,

leads to:

(ω1 + ω2)

(

−2d(f + F )
1

x2
1

+H
d

p

)

+ ω1h1 + ω2h2

+ (ω2 + ω3)(h1 − h2) + ω3(h2 − h3) = 0.

To conclude, the order quantity for types 1 and 2 is equal to:

x1 = x2 =

√

2d(f + F )

h1 +H d
p + ω3

ω1+ω2
(h1 − h3)

.

2.D.3.9 Special system of equations

In this section we discuss a special system of equations that needs to be solved for
certain KKT contracts. See Lemma 2.19 for the details.

Lemma 2.19. Consider the pair of equations of the following form:

α1x1 + α2x2 = γ1, β1
1

x2
1

− β2
1

x2
2

= γ2,

where α1, α2, β1, β2, γ1 ∈ R>0 and γ2 ∈ R are given parameters. These equations
always have a unique strictly positive real solution, i.e., satisfying x1, x2 ∈ R>0.

Proof. First, suppose γ2 = 0. We have

β1
1

x2
1

= β2
1

x2
2

⇐⇒ x1 =
√

β1

β2
x2.
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Thus, the other equation implies that

α1

√
β1

β2
x2 + α2x2 = γ1 ⇐⇒ x2 =

γ1

α1

√
β1

β2
+ α2

> 0.

This proves the claim for γ2 = 0.
Next, consider the case that γ2 < 0. Notice that we can solve this case by finding

the roots of a forth degree polynomial, for which an exact closed-form formula exists.
This polynomial follows from substitution of one equation in the other. What remains
is to show that exactly one of these four roots is strictly positive and real. To do so,
solve the non-linear equation for x2:

x2 =

√

β2

β1
1

x2
1

− γ2

=

√
β2x1

√

β1 − γ2x2
1

.

This is a well-defined strictly positive solution for x1 > 0. Furthermore, we have
x2 = γ1/α2 −(α1/α2)x1. Figure 2.10a shows the corresponding curves in the positive
quadrant. Since the limits for x1 → 0 and x1 → ∞ are well-defined, this proves that
a unique strictly positive real solution exists.

The case that γ2 > 0 is similar, see Figure 2.10b, and will not be shown.

(0, 0)
(

γ1

α1

, 0
)

(

0, γ1

α2

)

(

0,
√

β2

−γ2

)

x1

x2
α1x1 + α2x2 = γ1

β1
1

x2

1

− β2
1

x2

2

= γ2

(a) Curve if γ2 < 0.

(0, 0)
(

γ1

α1

, 0
)

(

0, γ1

α2

)

(√

β1

γ2

, 0
)

x1

x2
α1x1 + α2x2 = γ1

β1
1

x2

1

− β2
1

x2

2

= γ2

(b) Curve if γ2 > 0.

Figure 2.10: Solution curve in the positive quadrant.

For completeness sake, we show how to numerically find the solution efficiently.
Again, we assume γ2 < 0 (γ2 > 0 is similar). Consider the function θ for x ∈ R≥0:

θ(x) =

√
β2x

√

β1 − γ2x2
+
α1

α2
x− γ1

α2
∈
[

− γ1

α2
,∞
)

,

dθ

dx
(x) =

β1

√
β2

(β1 − γ2x2)
3/2

+
α1

α2
∈
(

α1

α2
,

√

β2

β1
+
α1

α2

]

.
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Solving θ(x) = 0 is equivalent to finding the value x1. We only need to search in the
bounded domain x ∈ (0, γ1/α1), since

α1x1 = γ1 − α2x2 < γ1 =⇒ x1 < γ1/α1,

and x1, x2 > 0. As α1/α2 > 0, the derivative of θ is never zero. For example, if
α1 = α2 = β1 = β2 = 1, then the derivative lies between 1 and 2. This suggests
that methods such as Newton-Raphson should work very well and numerical results
confirm fast and accurate convergence in typically less than 10 iterations.





Chapter 3

Robust pooling for

contracting models with

asymmetric information

Abstract

In this chapter, we consider principal-agent contracting models between
a seller and a buyer with single-dimensional private information. The
buyer’s type follows a continuous distribution on a bounded interval. We
present a new modelling approach where the seller offers a menu of finitely
many contracts to the buyer. The approach distinguishes itself from
existing methods by pooling the buyer types using a partition. That is,
the seller first chooses the number of contracts offered and then partitions
the set of buyer types into subintervals. All types in a subinterval are
pooled and offered the same contract by the design of our menu.

We call this approach robust pooling and apply it to utility maximi-
sation and cost minimisation problems. In particular, we analyse two
problems adapted from the literature. For both problems we are able to
express structural results as a function of a single new parameter, which
remarkably does not depend on all instance parameters. We determine
the optimal partition and the corresponding optimal menu of contracts.
This results in new insights into the (sub)optimality of the equidistant
partition. For example, the equidistant partition is optimal for a fam-
ily of instances for one of the problems. Finally, we derive performance
guarantees for the equidistant and optimal partitions for a given number
of contracts. For the considered problems the robust pooling approach
has good performances when using only a few contracts.

This chapter is based on Kerkkamp et al. (2017).
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3.1 Introduction

In principal-agent contracting problems, a principal wants to persuade an agent to
perform a certain action and uses financial incentives to do so. Both parties are
individually rational and only want to improve their own situation. We consider
contracting problems where the principal is a seller of a certain product and the
agent is a potential buyer. Thus, the seller desires either to initiate new trade with
the buyer or to change the existing buyer’s order quantity. In order to do so, the
seller offers a contract to the buyer, describing the order quantity (the action) and
a side payment (the incentive). The contract design must balance the value of the
contract for both parties, since the buyer can refuse a disadvantageous contract.

The complexity of the contracting problem increases significantly when the buyer
has private information on his valuation of contracts, i.e., when there is information
asymmetry. In terms of mechanism design, the buyer’s private information is repre-
sented by so-called types. That is, the buyer’s identity is an element of a known set
of types P and specified by a probability distribution on P. The distribution of types
is assumed to be common knowledge, in particular also to the seller. We consider
the case where the buyer has single-dimensional private information, represented by
the type p ∈ P.

In case of information asymmetry, the seller offers a menu of contracts, typically
one contract for each of the possible buyer types. First, the optimal menu is de-
termined by solving a certain optimisation problem, which we will discuss in later
sections. Second, this menu is offered to the buyer. Finally, the buyer either chooses
to accept a contract of the menu or refuses the offer, depending on what is most
beneficial for the buyer. Note that the buyer can lie about his true type and choose
any contract, which complicates the seller’s optimisation process.

The modelling of the buyer types P is crucial for the contracting problem. In
the mechanism design literature there are two typical choices. First, we have the
classical discrete model: a finite discrete set P = {p1, . . . , pK} ⊆ R for some K ∈ N≥1

(discrete distribution). Here, the menu consists of K contracts, one for each type.
Hence, the buyer chooses from a finite number of contracts. Second, we have the
classical continuous model: a bounded interval P = [

¯
p, p̄] ⊆ R with p̄ >

¯
p (continuous

distribution). Here, the menu is a function that maps every type to a contract. In
other words, infinitely many contracts are offered to the buyer.

Our goal is to design and analyse a model that combines aspects of both the
discrete and continuous models. For this model, the buyer’s type is continuously
distributed on P = [

¯
p, p̄] ⊆ R with p̄ >

¯
p, but only finitely many contracts are offered.

The main motivation for this approach is that offering finitely many contracts is often
preferred in practice, as such menus are easier to communicate and implement. The
discrete and continuous approaches are not suitable for achieving this goal, which
we will later discuss in more detail. This combination of the discrete and continuous
approaches has received limited attention in the literature, which we will review in
the next section.

We present a modelling approach which we call robust pooling in order to achieve
the stated goal. For the robust pooling model, the buyer’s type lies in a bounded
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interval [
¯
p, p̄], but only finitely many contracts are offered. First, the seller chooses

the number of contracts K ∈ N≥1 that will be offered. Second, he partitions the
interval [

¯
p, p̄] into K subintervals denoted by [

¯
pk, p̄k] for k ∈ {1, . . . ,K}. Third, he

designs a menu of K contracts with a single contract intended for each subinterval
[
¯
pk, p̄k]. Finally, he offers the menu to the buyer, as usual.

Our modelling approach has two fundamental properties: pooling of types and
robustness. First, the (discrete) pooling property refers to offering finitely many
contracts, and thus offering the same contract to multiple types, by design. Second,
the (continuous) robustness property means that each type p ∈ P accepts a contract
from the menu and that this choice is correctly reflected in the model (for example
in the objective function). In other words, the menu specifies an intended contract
for each type and each type chooses its intended contract. Consequently, the buyer
always accepts a contract from the menu, making the menu robust to the buyer’s
private information. In our case, for each k ∈ {1, . . . ,K} it is for all types in [

¯
pk, p̄k]

most beneficial to choose the k-th contract.
In our approach, the seller must decide on a partition scheme, i.e., the number of

contracts and an appropriately corresponding partition of [
¯
p, p̄]. The robust pooling

model enables us to determine the effect of different partition schemes, since our
model handles an arbitrary number of contracts and any partition in a natural way.
Due to the robustness property, we can evaluate the use of different schemes in a fair
way by directly comparing the resulting objective values of the model.

Such a fair comparison is not possible with the classical discrete approach, since
varying the number of contracts also implies changing the distribution of the buyer’s
type, effectively changing which scenarios could happen. Moreover, if the discrete
distribution is actually an approximation of a continuous distribution, then the dis-
crete approach is generally not robust. The classical continuous approach does not
pool types by design and is therefore also unsuitable.

As already hinted, there are several aspects of the robust pooling model to anal-
yse. First, what is the complexity of the model? In particular, can we identify
conditions under which the model can be solved efficiently? Second, can we quantify
the performance of partition schemes? A natural choice for a partition is the equi-
quantile partition, where [

¯
p, p̄] is partitioned into subintervals of equal probability.

However, is the equiquantile partition the best possible partition and if not, how
much performance is lost? Also, offering infinitely many contracts (the continuous
approach) results in the best possible objective value and is partition independent.
When using our approach, how many contracts should be offered to guarantee, say,
95% of this best possible value?

We continue with a literature review of related modelling techniques and con-
tracting problems.

3.1.1 Connection to the literature

For a general reference for the classical discrete and continuous modelling approaches,
see for example Laffont and Martimort (2002). To our knowledge, a combination
of the discrete and continuous approaches, such as our robust pooling model, has



Chapter 3 67

received limited attention in the literature. Bergemann et al. (2011) consider a linear-
quadratic model based on Mussa and Rosen (1978), but with limited communication
between the seller and the buyer. The limited communication implies that only a
menu with a limited number of contracts can be offered. Their approach is effectively
a restricted form of the classical continuous approach, where the menu is restricted
to have finitely many contracts. The resulting model satisfies our desired pooling
and robustness properties. They are able to reformulate the problem into a mean
square minimisation problem and apply quantisation theory (Lloyd-Max conditions)
to determine the optimal menu of contracts and the optimal partition scheme. In
particular, they show that compared to offering infinitely many contracts the loss in
performance is of the order Θ(1/K2) when using K optimal contracts.

The same modelling approach is used in Wong (2014), who analyses a more general
version of the non-linear pricing problem in Bergemann et al. (2011). He determines
general results on the loss of performance when offering K optimal contracts. Among
other results, he proves that the loss in performance is of the order O(1/K2) under
more general assumptions than Bergemann et al. (2011).

We shall refer to the modelling approach used in Bergemann et al. (2011) and
Wong (2014) as the limited variety model. In general, our robust pooling model is
more restrictive than the limited variety model, since we partition (pool) types into
subintervals a priori. We note that under the considered assumptions in Bergemann
et al. (2011) and Wong (2014), the limited variety model effectively also partitions
the types. We show in Appendix 3.A.3 that under our considered assumptions, both
modelling approaches are equivalent provided that the optimal partition scheme is
used. Nevertheless, we use our robust pooling approach for the following reasons.

First, the robust pooling model has an added benefit regarding information ex-
traction. The seller can extract private information from the buyer by observing the
buyer’s chosen contract. Recall that by design the k-th contract is chosen by all types
in [

¯
pk, p̄k]. Thus, after observing the buyer’s choice, the seller can narrow down the

buyer’s type to one of the subintervals of the partition. Since the used partition is a
decision made by the seller, he is able to control the accuracy of said identification in
a natural and intuitive way. In general, the limited variety model cannot guarantee
such structured information extraction.

Second, an implicit goal of offering a limited number of contracts is to have a
simple mechanism. Partitioning [

¯
p, p̄] using a certain heuristic (e.g., equidistantly or

according to some ‘square-root’ rule) is simple and intuitive, and could have a decent
performance. That is, the formulation promotes the experimentation with partition
schemes. Moreover, it could be that the additional loss in performance by restricting
to a partition scheme a priori is negligible.

The robust pooling model is also related to robust optimisation (see Ben-Tal et al.
(2009)). That is, our model can be interpreted as a robust optimisation variant for
the discrete model, where each subinterval [

¯
pk, p̄k] is the so-called uncertainty set of

type pk. This will be further discussed when we have formalised the model.
In the recent years, there has been an increase in the application of robust op-

timisation to mechanism design models in the literature. For examples, see Aghassi
and Bertsimas (2006), Bandi and Bertsimas (2014), Bergemann and Morris (2005),
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and Pinar and Kizilkale (2017). The main focus lies on making contracting models
robust to the distribution of the buyer’s type, i.e., it only depends on which types
can occur and not on any probabilities. To our knowledge, robust optimisation has
not been applied to obtain a model similar to our robust pooling model.

In the robust pooling approach, the seller must decide on a partition scheme, i.e.,
the number of contracts and an appropriately corresponding partition of [

¯
p, p̄]. Due

to the robustness property, we can compare the performance of different partition
schemes in a straightforward and fair way. For performance guarantees of the optimal
partition scheme for utility maximisation problems we refer to the results of Wong
(2014), provided the required assumptions are met. However, the actually attained
performance of any partition scheme is difficult, if not impossible, to determine an-
alytically in general. Therefore, we focus on two specific problems for which we are
able to derive the performance of any partition scheme for any problem instance.

The first problem is based on a decreasing marginal utility setting for the buyer as
his order quantity increases. It is the robust pooling variant and a generalisation of
the linear-quadratic-uniform model considered in Wong (2014). The second problem
uses the classical economic order quantity setting. It is the robust pooling variant
of, for example, Corbett and de Groote (2000), Pishchulov and Richter (2016), and
Voigt and Inderfurth (2011). Both problems will be formalised in later sections.

3.1.2 Contribution

Our contributions are as follows. We present a new modelling approach for con-
tracting problems called robust pooling. Our approach distinguishes itself from the
classical discrete and continuous models by having a continuous distribution for the
buyer’s type and offering a menu with finitely many contracts. Its two fundamental
properties are pooling of types by design and robustness. Compared to the limited
variety model, we use a partition to pool types a priori. Consequently, our mod-
elling approach promotes the experimentation of heuristic partition schemes leading
to simple mechanisms. We restrict the analysis to single-dimensional types, but the
robust pooling principle can be applied to more general settings. We show that under
certain assumptions robust pooling models have a simplified reformulation and can
be solved efficiently.

We apply robust pooling to the Decreasing Marginal Utility (DMU) problem and
the Economic Order Quantity (EOQ) problem. Both problems assume a uniform
distribution of the buyer’s type, which although restrictive allows for closed-form
formulas. Consequently, the equiquantile partition is equidistant, which we use as a
simple and intuitive benchmark partition.

For both problems, our contributions to the literature include the following. First,
we derive closed-form formulas for the optimal menu and corresponding optimal
objective value for any number of contracts and any partition. Second, we show that
structural results and performance measures can be expressed by functions of a single
new parameter based on the instance parameters. Remarkably, this parameter does
not depend on all instance parameters, implying families of instances with the same
structure. Third, we determine the optimal partition scheme, either analytically or
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numerically, depending on the problem. In particular, this leads to new insights
into the (sub)optimality of the equidistant/equiquantile partition. Finally, we give
performance guarantees for the equidistant and optimal partitions.

As a special case, we extend and complete the analysis of the linear-quadratic-
uniform model in Wong (2014), which reveals that the equidistant partition is opti-
mal for certain instances. Furthermore, to our knowledge, our results for the EOQ
problem are new to the literature.

The remainder of this chapter is organised as follows. In Section 3.2 we consider
robust pooling models in the context of utility maximisation and apply the concept
to the mentioned DMU problem in Sections 3.2.3-3.2.5. In Section 3.3 we perform
a similar analysis to cost minimisation models and apply it to the mentioned EOQ
problem in Section 3.3.2. Finally, we conclude our findings in Section 3.4.

3.2 Contracting for maximising utility

In this section we consider principal-agent contracting models in the setting of utility
maximisation. We first formalise the robust pooling model in Section 3.2.1, which
we reformulate and analyse under certain assumptions in Section 3.2.2. Finally, in
Sections 3.2.3-3.2.5 we consider the DMU problem and analyse the performance of
partition schemes in detail. All proofs are given in Appendix 3.A.

3.2.1 The model

The principal is a seller of products and wants to initiate trade with the agent, referred
to as the buyer. The seller desires to enter a contractual agreement with the buyer
to provide the goods. However, the buyer does not share all his information with the
seller, complicating the design of a contract. Therefore, the seller uses mechanism
design to construct a menu of contracts such that the buyer can be persuaded to
order at the seller.

A contract is given by an order quantity x ∈ R≥0 and a side payment z ∈ R from
the buyer to the seller. That is, the contract effectively specifies how many units of
product the buyer receives and for which price. The buyer can refuse any contract,
but we assume he acts individually rationally and accepts an offered contract if this
is most beneficial to himself.

The buyer has private information, which we assume can be represented by a
single parameter p ∈ R≥0. Let φB(x|p) be the utility of order quantity x for the buyer
with private parameter p. Likewise, φS(x) is the seller’s utility for order quantity x.
By default there is no contract (no trade) between the seller and the buyer, resulting
in a default utility of zero for the buyer. Therefore, a contract (x, z) is accepted by the
buyer if its net utility is non-negative: φB(x|p) − z ≥ 0. This is called the Individual
Rationality (IR) constraint. The difficulty in designing a suitable contract is that
the private utility parameter p is not shared with the seller. We assume that the
parameter p follows a continuous distribution with strictly positive density function
ω : [

¯
p, p̄] → R>0 on the interval [

¯
p, p̄] ⊆ R≥0 with p̄ >

¯
p. This distribution is known

to the seller. Each p ∈ [
¯
p, p̄] is called a (buyer) type.
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Instead of offering a single contract, the seller designs a menu consisting of K ∈
N≥1 contracts for the buyer to choose from. The number of contracts K is a decision
made by the seller and plays a central role in the results to come. We define K =
{1, . . . ,K}. Next, the seller partitions [

¯
p, p̄] into K subintervals [

¯
pk, p̄k] with p̄k >

¯
pk.

We call this a proper K-partition. Finally, the seller constructs K contracts, where
contract (xk, zk) is designed for subinterval [

¯
pk, p̄k] for each k ∈ K. The contracts

are determined by solving the following optimisation problem:

max
x,z

∑

k∈K

(∫ p̄k

¯
pk

ω(p)dp
)

(φS(xk) + zk) (3.1)

s.t. φB(xk|pk) − zk ≥ 0, ∀ pk ∈ [
¯
pk, p̄k], k ∈ K, (3.2)

φB(xk|pk) − zk ≥ φB(xl|pk) − zl, ∀ pk ∈ [
¯
pk, p̄k], k, l ∈ K, (3.3)

xk ≥ 0, ∀ k ∈ K.

We refer to this model as the robust pooling model. Constraints (3.2) specify that
contract (xk, zk) must be individually rational for the buyer with respect to all cor-
responding types pk ∈ [

¯
pk, p̄k]. Constraints (3.3) are the Incentive Compatibility

(IC) constraints. These ensure that the buyer with type pk ∈ [
¯
pk, p̄k] prefers and

chooses the intended contract (xk, zk) over all the other contracts in the menu. Re-
call that the buyer chooses the most beneficial contract for himself from the menu.
To be precise, we need the following assumption, which is conventional in the mech-
anism design literature. If the IC constraint (3.3) where type pk ∈ [

¯
pk, p̄k] compares

contract (xk, zk) to contract (xl, zl) holds with equality, then type pk is indifferent
between contracts (xk, zk) and (xl, zl). In this case, we assume that the seller can
convince the buyer to choose contract (xk, zk).

Thus, a buyer with type pk ∈ [
¯
pk, p̄k] always chooses contract (xk, zk) by design

of the menu. This is related to the well-known revelation principle (see Laffont and
Martimort (2002) and Myerson (1982)). This principle states that without loss of
optimality the seller can restrict his design to incentive-compatible direct coordina-
tion mechanisms and obtain a truthful choice of contract by the buyer. In other
words, for a buyer with type pk ∈ [

¯
pk, p̄k] it is a weakly-dominant strategy to choose

contract (xk, zk).
With this insight, we return to the robust pooling model. Notice that

ωk ≡
∫ p̄k

¯
pk

ω(p)dp ∈ (0, 1] (3.4)

for k ∈ K defines the probability ωk that the buyer’s type lies in [
¯
pk, p̄k] and con-

sequently that the buyer chooses contract (xk, zk). The seller’s objective (3.1) is to
maximise his own expected net utility, which is the weighted sum of his valuation
φS(xk) of the order quantity xk and the received side payment zk.

The robust pooling model has a strong connection to robust optimisation models
(see Ben-Tal et al. (2009)). Our model has finitely many decision variables and
infinitely many constraints. Furthermore, for k ∈ K the interval [

¯
pk, p̄k] can be

interpreted as the so-called uncertainty interval for pk. Thus, the robust pooling



Chapter 3 71

model can be seen as a robust optimisation variant of the classical discrete model
with K uncertain parameters p1, . . . , pK . We will not require robust optimisation
techniques in the following sections. However, these techniques can be useful to
analyse more complex robust pooling models.

To conclude, the robust pooling model pools the possible buyer types p into
finitely many subintervals, enabling the seller to offer finitely many contracts in the
menu. Furthermore, the contracts are robust by design, meaning that the buyer will
always accept a contract from the menu for any possible type p ∈ [

¯
p, p̄] and this

choice is correctly reflected in the objective function.
From this point onwards, we denote a menu of contracts by (x, z), where x =

(x1, . . . , xK) and z = (z1, . . . , zK). A single contract is denoted by (xk, zk) for k ∈ K.
Also, we use ωk defined by (3.4) in the objective instead of the integral notation.

3.2.2 Reformulation and analysis

In the robust pooling model the number of contracts K and the proper K-partition
of [

¯
p, p̄] are decisions made by the seller. Therefore, if solving the model is sufficiently

easy, we can focus on quantifying the effect of the number of contracts and the chosen
partition. For example, how many contracts should be offered to obtain 90% of the
maximum possible expected net utility? Also, the equiquantile partition is a natural
choice, but is it also optimal?

In order to answer such questions, we need to make assumptions and consider
explicit models, as a general approach seems impossible. The first assumption is on
the buyer’s utility function.

Assumption 3.1. The buyer’s utility function is φB(x|p) = ψ(x)+pχ(x), where the
functions ψ : R≥0 → R and χ : R≥0 → R≥0 do not depend on the type p. Moreover,
χ is non-decreasing and non-negative.

Under Assumption 3.1, we make a change of variables by splitting the side pay-
ment into two parts:

zk = ψ(xk) + yk,

where yk will replace zk as decision variable. Substitution of this definition leads to
an equivalent model with simplified constraints:

max
x,y

∑

k∈K
ωk (φS(xk) + ψ(xk) + yk)

s.t. pkχ(xk) − yk ≥ 0, ∀ pk ∈ [
¯
pk, p̄k], k ∈ K, (3.5)

pkχ(xk) − yk ≥ pkχ(xl) − yl, ∀ pk ∈ [
¯
pk, p̄k], k, l ∈ K, (3.6)

xk ≥ 0, ∀ k ∈ K.

The benefit of this formulation is that several utility functions can be analysed as
one model: different choices of φS and ψ can lead to the same function φS + ψ.
Furthermore, if φS + ψ is concave and χ linear, this formulation is concave, has
linear constraints, and can be solved efficiently.
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We continue with the first structural result for the robust pooling model. In
Lemma 3.1 we essentially identify an embedded dual shortest path problem as in
Rochet and Stole (2003) and Vohra (2012).

Lemma 3.1. Under Assumption 3.1, for any feasible x it is optimal to set

yk =
¯
pkχ(xk) −

k−1∑

i=1

(p̄i −
¯
pi)χ(xi) ∀ k ∈ K. (3.7)

Lemma 3.1 allows us to eliminate the variable y (or z) and obtain an optimisation
problem in terms of x. However, in order to do so, we need to be able to express the
feasible region in terms of x. This is shown in Lemma 3.2.

Lemma 3.2. Under Assumption 3.1, any x is feasible if and only if x satisfies
0 ≤ x1 ≤ · · · ≤ xK .

In mechanism design, the buyer’s type is often related to efficiency: type pk > pl

gets more utility from a fixed order quantity than type pl, i.e., φB(x|pk) ≥ φB(x|pl)
for all x ≥ 0. Thus, type pk is more efficient. Lemma 3.2 shows that the order
quantities are weakly ordered in terms of the corresponding type’s efficiency: a less
efficient type is offered a lower or equal order quantity than a more efficient type.

We can now combine our results to get an equivalent and much simpler formula-
tion for the robust pooling model under our assumptions, see Theorem 3.3. Notice
in particular that the reformulation has finitely many linear constraints.

Theorem 3.3. Under Assumption 3.1, the robust pooling model with infinitely many
constraints is equivalent to the following problem with finitely many and linear con-
straints:

max
0≤x1≤···≤xK

∑

k∈K
ωk

(

φS(xk) + ψ(xk) +
(

¯
pk − (p̄k −

¯
pk)

K∑

i=k+1

ωi

ωk

)

χ(xk)

)

. (3.8)

The computational complexity of solving (3.8) depends on the shape of φS + ψ
and χ. Furthermore, (3.8) allows for specialised (numerical) solvers, since the feasible
region is independent of φS + ψ and χ. In Appendix 3.A.2 we derive an explicit
solution for (3.8) under additional assumptions.

In conclusion, we have shown how to reformulate and solve certain robust pooling
models for maximising utility. In particular, the analysis allows us to show equiv-
alences between the robust pooling model under Assumption 3.1 and other models
from the literature (see Appendix 3.A.3). We now shift to the analysis of the DMU
model to quantify the effect of the chosen partition.

3.2.3 Decreasing marginal utility problem

In this section we consider a specific contracting model that fits our robust pooling
setting of Section 3.2.1 and can be analysed in detail. The model is based around the
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concept that the marginal utility of a product decreases for the buyer as the order
quantity increases.

For order quantity x ∈ R≥0 the buyer’s marginal utility of an additional product
is given by p − rxn for some fixed parameters r, n ∈ R>0. Here, p ∈ [

¯
p, p̄] ⊆ R≥0

with p̄ >
¯
p is the private parameter of the buyer, as introduced in Section 3.2.1. This

leads to the following utility function for the buyer:

φB(x|p) =

∫ x

0

(p− run)du = − 1
n+1rx

n+1 + px ≡ ψ(x) + pχ(x).

The buyer’s utility function is strictly concave in x and is negative for large order
quantities. Therefore, the buyer has a finite individually optimal order quantity. For
example, this could be the case if excess products are difficult to dispose of. The case
of n = 1, a quadratic buyer’s utility function, is for example used in Chellappa and
Mehra (2018) and Wong (2014).

The seller’s utility function is linear in the order quantity: φS(x) = Px, where
P ∈ R>0 is a fixed parameter. Therefore, the seller simply wants to sell as many
products as possible. Consequently, ordering no products leads to zero utility for
both the seller and the buyer.

For the entire section, we assume that the distribution of p is uniform. The
seller designs a menu of contracts using the robust pooling methodology described in
Section 3.2.1. We refer to this problem as the Decreasing Marginal Utility (DMU-n)
problem.

First, we derive the optimal solution and optimal objective value in Section 3.2.3.1.
Second, we show how to express relative performance measures as 1-dimensional
functions in Section 3.2.3.2. Finally, we discuss properties of the optimal partition
in Section 3.2.3.3. These results hold for the DMU-n problem for any n ∈ R>0 and
are applied in Sections 3.2.4 and 3.2.5 for n = 1 and n = 2, respectively. Note that
the DMU-1 model is essentially the same model as in Wong (2014).

3.2.3.1 Optimal solution and objective value

The optimal solution and optimal objective value of the DMU-n model can be ex-
plicitly determined, as shown in the next theorem.

Theorem 3.4. For given K ∈ N≥1 and proper K-partition of [
¯
p, p̄], the optimal

solution for the DMU-n problem is given by

xk =

{
0 if k < k∗

n

√
P +p̄k+

¯
pk−p̄

r if k ≥ k∗
,

where the index of the first non-zero order quantity is k∗ = min{k ∈ K : P − p̄+ p̄k +

¯
pk > 0}. Thus, trade occurs for types p ∈ [

¯
pk∗ , p̄]. The optimal objective value ΓK is

ΓK =
n

n+ 1

1
n
√
r

K∑

k=k∗

p̄k −
¯
pk

p̄−
¯
p

(
P − p̄+ p̄k +

¯
pk

)n+1

n . (3.9)
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The optimal objective value ΓK is the main focus in the results to come. Notice
that Γ1 is independent of any partition, since there is no partition for a single contract
(K = 1). For a given instance, Γ1 is the lowest possible expected utility for the seller
when using robust pooling. Furthermore, k∗ = 1 for K = 1, since P − p̄+ p̄K +

¯
pK =

P +
¯
pK = P +

¯
p > 0. Thus, the optimal objective value for K = 1 simplifies to

Γ1 =
n

n+ 1

1
n
√
r

(
P +

¯
p
)n+1

n .

Likewise, using infinitely many contracts, i.e., letting K → ∞ using sensible
partitions, also leads to an objective value independent of any partition. We denote
this value by Γ∞, which is the highest possible expected utility for the seller when
using robust pooling:

Γ∞ =
n

n+ 1

1
n
√
r

∫ p̄

p∗

1

p̄−
¯
p

(P − p̄+ 2p)
n+1

n dp,

where p∗ = min{p ∈ [
¯
p, p̄] : P − p̄+ 2p ≥ 0} is the continuous version of k∗. That is,

p∗ is the threshold for which the optimal order quantity is non-zero. To be precise,
we have

p∗ = max{
¯
p, 1

2 (p̄− P )}.

Therefore, Γ∞ can be written as

Γ∞ =







n
n+1

n
2n+1

1
2(p̄−

¯
p)

1
n
√

r

(

(P + p̄)
2n+1

n −
(
P − p̄+ 2

¯
p
) 2n+1

n

)

if p∗ =
¯
p

n
n+1

n
2n+1

1
2(p̄−

¯
p)

1
n
√

r
(P + p̄)

2n+1

n if p∗ = 1
2 (p̄− P )

.

Notice that ΓK is the composite midpoint rule for numerical integration applied
to the integrand of Γ∞. In other words, determining the optimal partition for robust
pooling is equal to choosing the optimal partition for the composite midpoint rule.
For more details on this numerical integration, see for example Dragomir et al. (1998)
and Kirmaci (2004). Therefore, we could apply results from numerical integration to
obtain performance guarantees for ΓK compared to Γ∞. In particular, this insight
implies that loss in performance (the difference between ΓK and Γ∞) is of the order
O(1/K2). This is in line with the results of Bergemann et al. (2011) and Wong
(2014). However, by analysing the performance of robust pooling in more detail, we
can determine the achieved performances exactly.

3.2.3.2 Performance measures

For a given partition, we would like to compare the optimal objective value ΓK for
different number of contracts K. In order to do so, it is useful to redefine the partition
as follows:

¯
pk =

¯
p+ δk−1(p̄−

¯
p) and p̄k =

¯
p+ δk(p̄−

¯
p),
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where δ0 = 0, δk ∈ [0, 1] for k = 1, . . . ,K−1, and δK = 1. Notice that δ0 corresponds
to

¯
p and δK to p̄. Furthermore, δk for k = 1, . . . ,K − 1 encode the chosen points

to partition [
¯
p, p̄]. Thus, a proper K-partition satisfies 0 = δ0 < · · · < δK = 1. We

denote the partition by ∆ = {δ0, . . . , δK}. Substitution of this definition in (3.9)
gives

ΓK =
n

n+ 1

1
n
√
r

K∑

k=k∗

(δk − δk−1)
(
P +

¯
p+ (δk + δk−1 − 1)(p̄−

¯
p)
)n+1

n . (3.10)

With this reformulated expression, we can for example consider the improvement of
offering K contracts compared to a single contract:

ΓK

Γ1
=

K∑

k=k∗

(δk − δk−1)

(

1 + (δk + δk−1 − 1)
p̄−

¯
p

P +
¯
p

)n+1

n

.

The parameter (p̄−
¯
p)/(P +

¯
p) plays a central role in all the following analysis. We

call this parameter the instance parameter α ∈ R>0:

α =
p̄−

¯
p

P +
¯
p
.

We will see that all structural results can be expressed in terms of α, i.e., it captures
the essence of the instance. Returning to improvement ΓK/Γ1, we get

ΓK

Γ1
=

K∑

k=k∗

(δk − δk−1)
(

1 + (δk + δk−1 − 1)α
)n+1

n

.

In terms of α, we have k∗ = min
{
k ∈ K : δk + δk−1 >

α−1
α

}
, since

P − p̄+ p̄k +
¯
pk > 0

⇐⇒ P +
¯
p+ (δk + δk−1 − 1)(p̄−

¯
p) > 0

⇐⇒ 1 + (δk + δk−1 − 1)α > 0 ⇐⇒ δk + δk−1 >
α−1

α .

Thus, if 0 < α ≤ 1 any partition satisfies k∗ = 1, i.e., all contracts instigate trade
between the seller and buyer.

It is now straightforward to determine the following bounds on the relative im-
provement for any K > 1 and proper K-partition:

lim
α→0

ΓK − Γ1

Γ1
= 0 and lim

α→∞
ΓK − Γ1

Γ1
= ∞.

Hence, for any arbitrarily large relative improvement there exists an instance that
exceeds this relative improvement. In particular, this holds for two contracts and
any proper 2-partition.

It is useful to introduce a normalisation factor ν:

ν = n+1
n

n
√
r(p̄−

¯
p)− n+1

n .
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This leads to the more manageable formula

νΓK =

K∑

k=k∗

(δk − δk−1)
(

1
α + δk + δk−1 − 1

)n+1

n . (3.11)

The normalisation factor ν will cancel out in relative performance measures, allowing
us to use (3.11) in these expressions.

Similarly, we can express Γ∞ in terms of α. First, we focus on p∗ and realise that

¯
p ≥ 1

2 (p̄− P ) ⇐⇒ P +
¯
p− (p̄−

¯
p) ≥ 0 ⇐⇒ 1 − α ≥ 0.

Thus, we have

p∗ =

{

¯
p if α ≤ 1
1
2 (p̄− P ) if α > 1

.

For 0 < α ≤ 1 this leads to p∗ =
¯
p and

νΓ∞|0<α≤1 =
n

2(2n+ 1)

(

( 1
α + 1)

2n+1

n − ( 1
α − 1)

2n+1

n

)

. (3.12)

Similarly, for α > 1 we have p∗ = 1
2 (p̄− P ) and

νΓ∞|α>1 =
n

2(2n+ 1)
( 1

α + 1)
2n+1

n . (3.13)

Notice that for α = 1 (3.12) and (3.13) give the same value, as expected. Furthermore,
realise that νΓK and νΓ∞ are completely determined by α. However, for a fixed α
the values ΓK and Γ∞ can take on any value in (0,∞) by changing the parameter r.

The main benefit of robust pooling is the finite number of contracts in the menu.
However, limiting the number of contracts will typically come at the cost of having
a lower expected utility for the seller. Therefore, the main performance measure of
interest is the pooling performance ΓK/Γ∞, which measures the fraction of expected
utility achieved by offering K contracts in terms of the maximum obtainable expected
utility Γ∞.

With the above analysis, we can express relative performance measures as 1-
dimensional functions of α. Hence, we are able to make graphs of performance
measures in terms of α and determine performance bounds. This requires us to
make n ∈ R>0 explicit and choose a partition scheme (see Sections 3.2.4 and 3.2.5).
Before we do so, we determine general properties of an optimal partition for the
DMU-n problem.

3.2.3.3 Properties of an optimal partition

A partition is equidistant if it partitions [
¯
p, p̄] into equally sized subintervals. That

is, we have δequi
k = k/K, or equivalently δequi

k+1 −δequi
k = 1/K for k = 1, . . . ,K−1. The

equidistant partition ∆equi is a natural default choice, especially in the literature on
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numerical integration. However, is it the optimal partition for the DMU-n problem,
i.e., does it maximise ΓK?

First of all, one should realise that the optimality of partitions is not affected
by the normalisation factor ν and thus only depends on the instance parameter
α. Consequently, we can work with νΓK to simplify notation. For the equidistant
partition, (3.11) becomes

νΓequi
K = 1

K

K∑

k=k∗

(
1
α + 2k−1

K − 1
)n+1

n . (3.14)

With the equidistant partition, the index k∗ can be determined as follows:

δequi
k + δequi

k−1 >
α−1

α ⇐⇒ 2k − 1

K
> α−1

α ⇐⇒ k > 1
2

(
1 +K

(
α−1

α

))

=⇒ k∗ = max
{

1,
⌊
1 + 1

2

(
1 +K

(
1 − 1

α

))⌋}
.

The range of k∗ depends on the parity of K. For K odd we have k∗ ∈ {1, . . . , 1
2 (K +

1)} and for K even k∗ ∈ {1, . . . , 1
2K + 1}.

Intuitively, if k∗ ≥ 3 for the equidistant partition, there is an inefficiency in the
corresponding optimal menu of contracts, since we are offering the contract (x, z) =
(0, 0) multiple times. These duplicate contracts in the menu are pointless and can
be used more efficiently by changing them. The next lemma confirms this intuition.

Lemma 3.5. For any K ∈ N≥1 an optimal partition must satisfy 0 = δ0 < δ1 <
· · · < δK−1 < δK = 1 and k∗ ∈ {1, 2}.

Corollary 3.6. For K ∈ N>3 the equidistant partition is suboptimal if α ≥ K
K−3 .

Corollary 3.6 does not prove or disprove whether the equidistant partition can be
optimal at all. In the next sections, Sections 3.2.4 and 3.2.5, we consider the DMU-n
problem for n = 1 and n = 2 and provide the answer to this question. Note that a
general formula for the optimal partition seems impossible. The difficulty in finding
the optimal partition becomes clearer in the next sections.

3.2.4 Application to the DMU-1 problem

In this section we specialise the results of Section 3.2.3 to the DMU-1 problem (n = 1).
Here, the buyer has a linearly decreasing marginal utility for the products, which
leads to a quadratic utility function φB . The DMU-1 problem is essentially the same
as the linear-quadratic-uniform model in Wong (2014). We extend and complete
his analysis by considering all possible instances, relating structural results to the
instance parameter α, deriving formulas for the performance of any partition, and
evaluating the performance of the equidistant partition. In particular, this reveals
the new insight that the equidistant partition is optimal for a family of instances.

As we will see, the DMU-1 problem is special compared to other DMU-n problems
in the sense that the optimal partition has an exceptional structure and is relatively
straightforward to determine. We will first derive the optimal partition for DMU-1
in Section 3.2.4.1. In Section 3.2.4.2 we analyse the performance of the equidistant
and optimal partitions in terms of the number of contracts K.
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3.2.4.1 Optimal partition

Recall that for any proper K-partition of [
¯
p, p̄] the normalised optimal objective value

is given by (3.11), which for the DMU-1 problem is

νΓK =

K∑

k=k∗

(δk − δk−1)
(

1
α + δk + δk−1 − 1

)2
,

where k∗ = min{k ∈ K : δk + δk−1 >
α−1

α }. We will now optimise the partition to
maximise ΓK . By Lemma 3.5, we know that the optimal partition satisfies 0 = δ0 <
· · · < δK = 1 and k∗ ∈ {1, 2}. The following theorem gives the optimal partition for
the DMU-1 problem.

Theorem 3.7. For K ∈ N≥1 the optimal partition ∆opt for the DMU-1 problem is
given by

δopt
k =

{
k
K if α < K

K−1

1 − K−k
2K−1

(
1
α + 1

)
if α ≥ K

K−1

for k ∈ {1, . . . ,K − 1}.

Hence, for α < K/(K − 1) the equidistant partition is optimal and all contracts
instigate trade (k∗ = 1). For α ≥ K/(K − 1) the equidistant partition is suboptimal
and a single contract instigates no trade (k∗ = 2).

The result of Theorem 3.7 is quite remarkable: for α < K/(K−1) the equidistant
partition is the optimal partition. From Corollary 3.6 we know that the equidistant
partition is not always optimal. Therefore, we expected that the equidistant partition
is never optimal or optimal in the limit, e.g., for α → 0 or α → ∞. However, the
equidistant partition is optimal for any instance satisfying α < K/(K − 1). For
α ≥ K/(K − 1) it turns out that we effectively only have to optimise δ1, since it
is optimal to partition the remaining subinterval [δ1, 1] equidistantly. This fact can
be verified from the formula or the stationarity conditions mentioned in the proof of
Theorem 3.7.

We will show that the optimal objective value Γopt
K approximates Γ∞ with an

almost correctly shaped function of α when using the optimal partition. This does
not hold for the equidistant partition, which gives additional insights into why it is
sometimes suboptimal. The details are as follows. For 0 < α ≤ 1 the normalised
objective value νΓ∞ is given by (3.12), which simplifies to

νΓ∞|0<α≤1 = 1
6

(
( 1

α + 1)3 − ( 1
α − 1)3

)
= 1

α2 + 1
3 . (3.15)

For 0 < α < K/(K − 1), which implies 0 < α ≤ 1, we use (3.11) for the equidistant
partition:

νΓequi
K |

0<α<
K

K−1
= 1

K

K∑

k=1

(
1
α + 2k−1

K − 1
)2

= 1
α2 + 1

3 (1 − 1
K2 ).
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Hence, νΓequi
K is of the correct order Θ(α−2) for 0 < α ≤ 1 compared to νΓ∞, but

there is an error in the constant. Now consider α ≥ K/(K − 1). For α > 1, which is
implied by α ≥ K/(K − 1), (3.13) simplifies to

νΓ∞|α>1 = 1
6 ( 1

α + 1)3. (3.16)

This is not of the same order as νΓequi
K , which is Θ(α−2) for any α > 0. The optimal

partition satisfies

δopt
k − δopt

k−1 =
1

2K − 1

(
1

α
+ 1

)

=
1

2K − 1

(
P + p̄

p̄−
¯
p

)

,

P +
¯
p+ (δopt

k + δopt
k−1 − 1)(p̄−

¯
p) =

(

1 − 2K − 2k + 1

2K − 1

)

(P + p̄) =
2(k − 1)

2K − 1
(P + p̄).

Therefore, the corresponding optimal objective value (3.10) is

Γopt
K |

α≥ K
K−1

=
1

2r

(P + p̄)3

p̄−
¯
p

K∑

k=2

(2(k − 1))2

(2K − 1)3
=

1

2r

(P + p̄)3

p̄−
¯
p

2(K − 1)K

3(2K − 1)2
,

or when normalised:

νΓopt
K |

α≥ K
K−1

=
2(K − 1)K

3(2K − 1)2

(
1
α + 1

)3
. (3.17)

Again, we see that the term (1/α+1)3 is correct, but there is an error in the coefficient.
Thus, in both cases Γopt

K approximates Γ∞ with an almost correctly shaped function
of α. In particular, the formulas show that the approximation converges to Γ∞ as
K → ∞, as should be the case.

If the equidistant partition is not optimal, the optimal partition points δopt
k deviate

from the equidistant values δequi
k . Before completing the analysis, we expected that

δopt
k < δequi

k and δopt
k > δequi

k can both occur. However, this is not the case, as
explained in the next corollary.

Corollary 3.8. For K ∈ N≥1 the optimal partition for the DMU-1 problem satisfies
δopt

0 = 0, δopt
K = 1, and

δequi
k = k

K ≤ δopt
k < K+k−1

2K−1 for k ∈ {1, . . . ,K − 1}.

Thus, Corollary 3.8 shows that the optimal partition points δopt
k always deviate

to the right (larger values). A possible explanation is that for α ≥ K/(K − 1) we
have k∗ = 2 for the optimal partition. In other words, one contract instigates no
trade: (x1, z1) = (0, 0). If α increases we have observed before that k∗ increases
for the equidistant partition. Since k∗ > 2 is suboptimal by Lemma 3.5, we must
have δopt

1 > δequi
1 in order to prevent k∗ > 2. Given δopt

1 , the remaining subinterval
[δopt

1 , 1] is partitioned equidistantly to obtain δopt
k for k = 2, . . . ,K − 1. Thus, since

δopt
1 > δequi

1 we also get δopt
k > δequi

k for k = 2, . . . ,K − 1.
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Figure 3.1a shows the optimal partition for K = 2 in terms of α. The two curves
are δopt

1 in red and (α − 1)/α in black. Left of α = 2 (the dotted line) the optimal
partition satisfies k∗ = 1 and all contracts instigate trade. Right of α = 2 there
is no trade with the most inefficient types p ∈ [

¯
p,

¯
pk∗). The transition in formulas

of δopt
1 is continuous at the breakpoint α = 2. Furthermore, this transition occurs

exactly when the equidistant partition switches from k∗ = 1 to k∗ = 2, i.e., when
δequi

1 = (α− 1)/α, as seen in the proof of Theorem 3.7.
The optimal partition for K = 5 is illustrated in Figure 3.1b. For α ≥ 5/4, notice

that as α increases, the seller refuses the 20% most inefficient (lowest) types p which
rapidly increases to 45%, with 55% as limit.

To conclude, we have determined the optimal partition for DMU-1 and all rele-
vant values can again be expressed in terms of α. Therefore, we can compare the
performance of the equidistant and optimal partitions, which is the topic of the next
section.

(a) For K = 2 contracts. (b) For K = 5 contracts.

Figure 3.1: DMU-1: optimal partition ∆opt in terms of α.

3.2.4.2 Performance of partition schemes

We compare two partition schemes: the equidistant partition ∆equi and the optimal
partition ∆opt. As mentioned in Section 3.2.3.2 the main performance measure of
interest is the pooling performance ΓK/Γ∞. For the DMU-1 problem, Γ∞ is given
by (3.15) and (3.16). For the equidistant partition, we have

νΓequi
K = 1

K

K∑

k=k∗

(
1
α + 2k−1

K − 1
)2
,

where k∗ = max
{

1,
⌊
1 + 1

2

(
1 +K

(
1 − 1

α

))⌋}
. This allows us to express Γequi

K /Γ∞ in
terms of α. For 0 < α < K/(K − 1) the optimal partition is equal to the equidistant
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partition, but for α ≥ K/(K − 1) we have (3.17) and the pooling performance

Γopt
K

Γ∞
|
α≥ K

K−1
=

4(K − 1)K

(2K − 1)2
= 1 − 1

(2K − 1)2
.

Notice that this pooling performance is constant with respect to α ≥ K/(K − 1).
Figure 3.2 shows the pooling performance for K ∈ {1, 2, 3} for the equidistant and
optimal partitions. By inspection of the graphs, we conclude that the infimum of
Γequi

K /Γ∞ is reached for α → ∞ and the infimum of Γopt
K /Γ∞ is attained for each

α ≥ K/(K − 1). We have limα→∞ Γequi
K /Γ∞ = 1 − 1/K2. This implies that the

following lower bounds are tight:

Γequi
K

Γ∞
≥ 1 − 1

K2
and

Γopt
K

Γ∞
≥ 1 − 1

(2K − 1)2
.

For several values of K, the performance guarantees are listed in Table 3.1.
We observe that Γ1/Γ∞ → 0 as α → ∞, i.e., offering a single robustly pooled

contract can perform arbitrarily bad compared to offering infinitely many contracts.
However, offering two contracts with the equidistant partition always achieves at
least 75% of the maximum obtainable expected utility. For the optimal partition
this is 88%. The reason is as follows. A large α can be interpreted as having a large
uncertainty of the buyer’s efficiency, i.e., a large interval [

¯
p, p̄]. In order to obtain a

high expected utility, the seller wants to offer different contracts to inefficient and
efficient types. This is why for k∗ > 1 the seller refuses to trade with the most
inefficient types (with p ∈ [

¯
p,

¯
pk∗)). For K = 1, a single contract, the seller cannot

make a distinction between efficient and inefficient types and always instigates trade
with the buyer (k∗ = 1). In contrast, for K ≥ 2 the seller can refuse inefficient types
(k∗ > 1 for α large enough).

Thus, it is essential for the seller to be able to refuse the most inefficient types
when there is a high uncertainty in the buyer’s efficiency. This is especially noticeable
for the optimal partition: for α large enough (such that k∗ = 2) inefficient types are
refused, resulting in a constant pooling performance onwards.

Finally, notice that the optimal partition greatly outperforms the equidistant
partition for large values of α. In particular, Table 3.1 shows that the seller can
achieve the same performance guarantee with far fewer contracts when using the
optimal partition. For example, for a guarantee of 96% the seller has to offer 3
contracts with the optimal partition and 5 contracts with the equidistant partition.
For either partition, good performances can be achieved with only a few contracts,
which validates the robust pooling approach.

Wong (2014) restricts his analysis to instances with α ≥ K/(K − 1) (such that
k∗ = 2) and determines the corresponding optimal partition and its pooling perfor-
mance. Thus, our results extend and complete the analysis of DMU-1. In particular,
by considering all possible instances, we observe the remarkable optimality of the
equidistant partition for each α < K/(K − 1).
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Figure 3.2: DMU-1: the pooling perfor-
mance ΓK/Γ∞ for the equidistant and op-
timal partitions as functions of the instance
parameter α.

Equidistant Optimal
K LB LB

1 0 0
2 0.7500 0.8888
3 0.8888 0.9600
4 0.9375 0.9795
5 0.9600 0.9876
6 0.9722 0.9917
∞ 1 1

Table 3.1: DMU-1: lower bounds
for the pooling performance
ΓK/Γ∞ for the equidistant and
optimal partitions.

3.2.5 Application to the DMU-2 problem

To illustrate the special structure of the DMU-1 problem, we perform a similar anal-
ysis for the DMU-2 problem (n = 2). The buyer has a quadratically decreasing
marginal utility for the products. Hence, for 0 < x < 1 the marginal utility is higher
than for the DMU-1 problem, but lower for x > 1. In Section 3.2.5.1 we show the
complexity of finding closed-form formulas for the optimal partition. However, we
can optimise the partition using numerical methods. In Section 3.2.5.2 we determine
the performance of the equidistant and optimised partitions. Keep in mind that all
values shown with four digits are truncated or rounded.

3.2.5.1 Optimal partition

For the DMU-2 problem, the normalised optimal objective value is given by

νΓK =

K∑

k=k∗

(δk − δk−1)
(

1
α + δk + δk−1 − 1

) 3
2 ,

where k∗ = min{k ∈ K : δk + δk−1 >
α−1

α }. Again, we know by Lemma 3.5 that
the optimal partition must be strictly ordered and must satisfy k∗ ∈ {1, 2}. In
Theorem 3.9 we determine the optimal partition for K = 2 contracts. Due to the
existence of multiple local optima, determining the optimal partition is more difficult
compared to the DMU-1 problem.
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Theorem 3.9. For the DMU-2 problem and K = 2, the optimal partition is

δopt
1 =

{
1

30

(√

36 1
α2 − 15 + 15 − 6 1

α

)

if α < αtrans

1 − 2
5 ( 1

α + 1) if α ≥ αtrans
,

where αtrans ≈ 1.5371. Furthermore, δopt
1 satisfies the tight bounds 0.3397 < δopt

1 < 3
5 .

Hence, for α < αtrans all contracts instigate trade (k∗ = 1). For α ≥ αtrans a single
contract instigates no trade (k∗ = 2).

In Figure 3.3a the δopt
1 for K = 2 is shown in red. Left of αtrans (the dotted line)

we have k∗ = 1 and on the right k∗ = 2. As detailed in the proof, the difficulty of de-
termining δopt

1 is the existence of two local maxima, denoted by δ+
1 and δ∗

1 . As shown,
the optimal partition jumps discontinuously from δ+

1 to δ∗
1 at αtrans. Figure 3.3a il-

lustrates this jump and the coexistence of the local maxima δ+
1 (shown in cyan) and

δ∗
1 (in blue) for α ∈ [3/2, 2/5

√
15]. Comparing this figure with Figure 3.1a, it is clear

that the properties of the optimal partition for DMU-1 are indeed exceptional.
Theorem 3.9 shows that the equidistant partition is never optimal for the DMU-2

problem (except in the limit α → 0). Furthermore, as α increases, δopt
1 first decreases,

then jumps to a lower value, and finally increases. Thus, if the uncertainty in the
buyer’s efficiency is large enough the optimal menu refuses trade with the most
inefficient types. Moreover, as this uncertainty increases, trade is refused for more
types, as is the case for the DMU-1 problem.

For a general number of contracts K, we can attempt to imitate the proof of The-
orem 3.9. However, this requires to solve a complicated non-linear system of equali-
ties, for which a general solution seems impossible. Instead, we optimise the partition
numerically using the gradient-based methodology described in Appendix 3.A.7. Al-
though the used solver can only guarantee local optimality, its performance is stable
and the results correspond to our theoretical results when available. Therefore, all
results indicate that the method finds the global optimum.

We see a similar structure in the optimised partition for K ≥ 2 as observed
for the optimal partition for K = 2: decreasing in α at first, then a discontinuous
jump to a lower value, and finally increasing in α. See Figure 3.3b for the optimised
partition for K = 5. Notice that the optimised partition points are not bounded by
the equidistant partition points, as is the case for DMU-1.

To conclude, this analysis for the DMU-2 shows the special structure of the DMU-
1, for which the equidistant partition can be optimal and general formulas can be
determined. For the DMU-2 problem, we can numerically optimise the partition for
any number of contracts. In the next section, we compare the performance of the
equidistant and optimised partitions.
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(a) Optimal δopt

1 for K = 2 contracts. (b) Optimised for K = 5 contracts.

Figure 3.3: DMU-2: optimised partition in terms of α.

3.2.5.2 Performance of partition schemes

As in Section 3.2.4.2, we compare the pooling performance ΓK/Γ∞ for the equidistant
and optimised partitions. Recall that the related formulas for Γ∞ and Γequi

K are (3.12),
(3.13), and (3.14). As explained in the previous section, we only have numerical
results for the optimised partition.

Figure 3.4 shows the pooling performance for K ∈ {1, 2, 3} for the equidistant
and optimised partitions. First of all, Γ1/Γ∞ is not shown completely, because it
goes to zero for α → ∞ as seen for the DMU-1 problem. In contrast to DMU-1,
the performance of the equidistant partition has local minima and maxima, and the
infimum is typically attained at some finite value for α (so not for α → ∞). Further-
more, for a fixed instance, an equidistant (K + 1)-partition does not always perform
better than an equidistant K-partition. For example, for α = 20 the equidistant
4-partition outperforms the equidistant 5-partition, as can be verified with (3.14).
The lower bounds on the pooling performance are given in Table 3.2. Note that the
lower bounds for the equidistant partition with 4 and 5 contracts are effectively the
same.

For α such that k∗ = 2 for the optimised partition, we see that the pooling per-
formance is constant and minimal. For K = 2 this can be verified with Theorem 3.9.
This property also holds for DMU-1. Table 3.2 also includes the lower bounds for
the optimised partition.

To conclude, as for the DMU-1 problem, offering a single robust contract is not
recommended. However, by offering only a few contracts, high pooling performance
can be achieved of at least 88% (equidistant partition) or 92% (optimised partition).
The partition can be optimised using numerical methods, which is in particular ben-
eficial for up to five contracts.
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Figure 3.4: DMU-2: the pooling perfor-
mance ΓK/Γ∞ for the equidistant and opti-
mised partitions as functions of the instance
parameter α.

Equidistant Optimised
K LB LB

1 0 0
2 0.8838 0.9295
3 0.9065 0.9763
4 0.9681 0.9882
5 0.9681 0.9929
6 0.9842 0.9953
∞ 1 1

Table 3.2: DMU-2: lower bounds
for the pooling performance
ΓK/Γ∞ for the equidistant and
optimised partitions.

3.3 Contracting for minimising costs

In this section we analyse the robust pooling model in the setting of cost minimisation
using the same approach as in Section 3.2. We formalise the model in Section 3.3.1.
Although the models for maximising utility and for minimising cost have a similar
structure, they are not equivalent under the considered assumptions. Nevertheless,
the general analysis is similar and is provided in Appendix 3.B.1. When needed,
we will highlight the differences between cost minimisation and utility maximisation.
We apply the robust pooling model to a classical cost minimisation model based
on the economic order quantity setting in Section 3.3.2. All proofs are given in
Appendix 3.B.

3.3.1 The model

As in Section 3.2, the principal is a seller of products and the agent a buyer. The
seller offers contracts to the buyer, which specify the order quantity x ∈ R≥0 and a
side payment z ∈ R. In contrast to utility maximisation, here we define z to be the
side payment from the seller to the buyer to be consistent with the literature related
to the model considered in Section 3.3.2.

As before, we assume that the buyer’s private information can be captured by
a parameter p ∈ [

¯
p, p̄] ⊆ R≥0 with p̄ >

¯
p. The buyer’s cost for order quantity x

is φB(x|p) and the corresponding seller’s cost is φS(x). The seller applies the same
robust pooling approach as before. First, the seller decides how many contracts
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are offered, denoted by K ∈ N≥1. Second, he divides the interval [
¯
p, p̄] into K

subintervals, using a proper K-partition. Third, the seller designs a menu of K
contracts by solving the following optimisation model:

min
x,z

∑

k∈K
ωk (φS(xk) + zk)

s.t. φB(xk|pk) − zk ≤ Θ, ∀ pk ∈ [
¯
pk, p̄k], k ∈ K, (3.18)

φB(xk|pk) − zk ≤ φB(xl|pk) − zl, ∀ pk ∈ [
¯
pk, p̄k], k, l ∈ K, (3.19)

xk ≥ 0, ∀ k ∈ K.

Except for (3.18), the model is essentially the same as in Section 3.2.3. Constraints
(3.18) ensure individual rationality for the buyer, which need further clarification.
The parameter Θ ∈ R≥0 is the buyer’s reservation level: if the buyer’s net cost for
a contract would exceed Θ he will not accept it. In the literature, Θ is often the
cost for ordering at an outside option. Hence, Θ is also called the outside option or
default option.

For utility maximisation problems, such as the DMU-n problem in Section 3.2.3,
it is common that the default option is to have no trade and thus zero utility. This
implies Θ = 0. Therefore, we did not include Θ in the model description in Sec-
tion 3.2. For cost minimisation problems this is not the case, as there is no common
natural default option. For example, if the default option is to have no trade, which
(virtual) cost should be assigned? If the default is to use an outside option, does the
corresponding cost depend on [

¯
p, p̄] or not? For the problem analysed in Section 3.3.2,

and its default option, it is useful to mention Θ explicitly in the model as it affects
the results.

To prepare for Section 3.3.2, we make the following assumption on the buyer’s
cost function to derive a simpler reformulation of the robust pooling model.

Assumption 3.2. The buyer’s cost function is φB(x|p) = ψ(x) + pχ(x), where the
functions ψ : R≥0 → R and χ : R≥0 → R≥0 do not depend on the type p. Moreover,
χ is non-decreasing and non-negative.

Although we can rewrite the cost minimisation problem into a utility maximisa-
tion problem, Assumption 3.2 does not fit into the framework of Section 3.2, because
of the resulting negative term −pχ(x) in the buyer’s utility function. Under Assump-
tion 3.2, we can derive results equivalent to those in Section 3.2.2, which are given in
Appendix 3.B.1. The proofs and results are essentially identical, with the following
highlighted exceptions.

First, the change of variables by redefining the side payment includes the outside
option Θ: zk = ψ(xk) + yk − Θ. Consequently, Θ appears as a constant in the
objective function of the reformulated models.

Second, the structure of the optimal side payments and the feasible region is
‘reversed’ in terms of the contract indices k. For example, the feasible region is
x1 ≥ · · · ≥ xK ≥ 0. However, in terms of buyer type’s efficiency the result is not
reversed. Here, a buyer with a lower parameter p is more efficient, since he has lower
costs for an order quantity.
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We continue to apply robust pooling to the economic order quantity model in the
next section.

3.3.2 Economic order quantity problem

We consider a contracting model to which we can apply the robust pooling setting of
Section 3.3.1. The considered cost functions are those of the classical economic order
quantity model, which model the average cost of a trade agreement over an infinite
horizon. The context of the problem is as follows.

The buyer has external demand with constant rate d ∈ R>0 on an infinite time
horizon, which must be satisfied without backlogging. He can order products at
the seller, which has an ordering cost of f ∈ R>0 for the buyer. Furthermore, the
buyer has an inventory holding cost of h ∈ R>0 per product and time unit. The
buyer’s holding cost h is the private parameter. To minimise his own costs, the
buyer orders if and only if his inventory is depleted (the zero-inventory property).
Therefore, an order quantity of x ∈ R>0 products leads to a total cost per time unit
of φB(x) = df 1

x + 1
2hx.

The seller has a similar cost structure: setup cost F ∈ R>0 and inventory holding
cost H ∈ R>0. Production takes place with constant rate ρ ∈ R>d and according to
a just-in-time lot-for-lot policy. This leads to a total costs per time unit for the seller
of φS(x) = dF 1

x + 1
2H

d
ρx.

To simplify notation, we define R = dF , P = 1
2H

d
ρ , r = df , and p = 1

2h. Hence,

the buyer’s cost function is φB(x|p) = r 1
x + px, where r ∈ R>0 is a fixed parameter

and p ∈ [
¯
p, p̄] ⊆ R≥0 the buyer’s private parameter. We assume that the distribution

of p is uniform. Likewise, the seller’s costs are given by φS(x) = R 1
x + Px for fixed

parameters R,P ∈ R>0.
Given this setting, the seller constructs a menu of contracts using the robust

pooling approach of Section 3.3.1. We refer to this problem as the Economic Or-
der Quantity (EOQ) problem, which is analysed in detail in the following sections.
In Section 3.3.2.1, we determine the optimal solution and corresponding optimal
objective value. Section 3.3.2.2 focuses on performance measures. We show that
performance measures can be expressed in terms of an instance parameter α, similar
to the DMU-n problem. In Section 3.3.2.3, we analyse the optimal partition for the
EOQ problem. Finally, the derived results are used in Section 3.3.2.4 to determine
the performance of the equidistant partition and the optimised partition.

3.3.2.1 Optimal solution and objective value

The following theorem states the optimal solution and optimal objective value of the
EOQ problem.

Theorem 3.10. For given K ∈ N≥1 and proper K-partition of [
¯
p, p̄], the optimal

solution for the EOQ problem is given by

xk =

√

R+ r

P −
¯
p+ p̄k +

¯
pk
.
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Hence, x1 > · · · > xK > 0 and trade always occurs. The optimal objective value ΓK

is

ΓK = 2
√
R+ r

K∑

k=1

p̄k −
¯
pk

p̄−
¯
p

√

P −
¯
p+ p̄k +

¯
pk − Θ. (3.20)

Recall that for the DMU-n problem the optimal menu could include contracts
that instigated no trade (xk = 0 for some k ∈ K). By Theorem 3.10 trade always
occurs for the EOQ problem (xk > 0 for all k ∈ K).

As in Section 3.2.3 there are two extreme choices for K, namely K = 1 and
K = ∞. The optimal objective value Γ1 is the highest expected cost for the seller
when using robust pooling:

Γ1 = 2
√
R+ r

√

P + p̄− Θ.

In contrast, Γ∞ is the lowest expected cost for the seller:

Γ∞ = 2

√
R+ r

p̄−
¯
p

∫ p̄

¯
p

√

P −
¯
p+ 2p dp− Θ

=
2

3

√
R+ r

p̄−
¯
p

(
(
P + 2p̄−

¯
p
) 3

2 −
(
P +

¯
p
) 3

2

)

− Θ.

Again, we recognise that ΓK is the composite midpoint rule for numerical integration
applied to the integrand of Γ∞.

3.3.2.2 Performance measures

We redefine the partition into terms of δ as in Section 3.2.3:

¯
pk =

¯
p+ δk−1(p̄−

¯
p) and p̄k =

¯
p+ δk(p̄−

¯
p),

where δ0 = 0, δk ∈ [0, 1] for k = 1, . . . ,K − 1, and δK = 1. Thus, (3.20) becomes

ΓK = 2
√
R+ r

K∑

k=1

(δk − δk−1)
√

P +
¯
p+ (δk + δk−1)(p̄−

¯
p) − Θ. (3.21)

We introduce the same instance parameter α ∈ R>0 as for the DMU-n problem, but
a different normalisation factor ν:

α =
p̄−

¯
p

P +
¯
p
, ν =

(

2
√
R+ r

√

p̄−
¯
p
)−1

.

Consequently, the normalised optimal objective values are given by

νΓK =

K∑

k=1

(δk − δk−1)
√

1
α + δk + δk−1 − νΘ, (3.22)

νΓ∞ = 1
3

(
(

1
α + 2

) 3
2 −

(
1
α

) 3
2

)

− νΘ. (3.23)
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For performance measures that use differences, such as (Γ1 − ΓK)/(Γ1 − Γ∞),
the outside option Θ cancels out. Therefore, these performance indicators are 1-
dimensional functions in terms of α. However, the relative improvement (Γ1 −
ΓK)/Γ1, for example, is more difficult to analyse, since νΘ is in the denominator.

For other EOQ contracting problems in the literature it is common to assume that
by default the buyer places orders using his own individually optimal order quantity.
Hence, Θ is the corresponding minimal cost for the buyer, which implies that Θ
depends on the buyer’s type. However, a type-dependent outside option greatly
increases the complexity of the solution structure, i.e., multiple cases would need to
be considered and a general analytical approach seems impossible. The techniques
and complexity are comparable to those in Chapter 2. Instead, we assume that the
outside option is type independent and equal to the most restrictive minimal buyer’s
cost. In terms of the robust pooling model, this assumption leads to

Θ∗ = inf
p∈[

¯
p,p̄]

inf
x≥0

φB(x|p) = 2
√
r
¯
p, (3.24)

which implies that

νΘ∗ =
√

r
R+r

√

¯
p

p̄−
¯
p .

From this point onwards, we assume that the outside option Θ is set according to
(3.24).

When determining performance bounds, we take supremum or infimum of the
performance measure with respect to all possible instances. This often means that
νΘ∗ must be as large or as small as possible. For example, consider (Γ1 − ΓK)/Γ1.
For fixed α > 0, we want that νΘ∗ is as small (large) as possible for the infimum
(supremum). Now notice that any fixed α can be attained for any R > 0 and P > 0
by using the parameters

¯
p and p̄. Thus, the infimum can be reached for R → ∞, for

which

lim
R→∞

νΘ∗ = 0.

Likewise, the supremum can be reached for R → 0 and P → 0, which implies that

lim
P →0

lim
R→0

νΘ∗ = lim
P →0

√
1
α − P

p̄−
¯
p = 1√

α
.

To conclude, when assuming (3.24) the bounds for (Γ1 − ΓK)/Γ1 and similar
performance measures can still be determined by a 1-dimensional function of α.

3.3.2.3 Optimal partition

As is the case for the DMU-2 problem, a general formula for the optimal partition
for the EOQ problem seems impossible. We do note that the optimal partition only
depends on α and in particular not on Θ. Furthermore, the optimal partition must
be a proper K-partition, see Lemma 3.11.
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Lemma 3.11. For any K ∈ N≥1 an optimal partition ∆ must satisfy 0 = δ0 < δ1 <
· · · < δK−1 < δK = 1.

We show the difficulty of finding formulas for the optimal partition by deriving
the optimal partition for K = 2, see (the proof of) Theorem 3.12.

Theorem 3.12. For the EOQ problem and K = 2, the optimal partition is

δopt
1 =

1

6α
(
√

α2 + 8α+ 4 + α− 2),

which satisfies the tight bounds 1
3 < δ1 <

1
2 .

For a general number of contracts, we need to solve a complicated non-linear
system of equalities. However, a numerical approach is viable. We apply a similar
methodology as in Section 3.2.5.1. Notice that we do not need to account for k∗,
which simplifies the procedure. See Figure 3.5a for the optimal partition δopt

1 for
K = 2 and Figure 3.5b for the optimised partition for K = 5.

Both Theorem 3.12 for K = 2 and the numerical results for K ≥ 2 show that
δopt

k ≤ δequi
k . This is also the case for DMU-1, but not DMU-2. Thus, whether δopt

k

is bounded by δequi
k seems to be a problem-specific property.

To conclude, by using a numerical solution approach, we can determine opti-
mised partitions for the EOQ problem. We continue by determining the pooling
performance of the equidistant and optimised partitions.

(a) Optimal δopt

1 for K = 2 contracts. (b) Optimised for K = 5 contracts.

Figure 3.5: EOQ: optimised partition in terms of α.



Chapter 3 91

3.3.2.4 Performance of partition schemes

In Section 3.3.2.2 we have shown that the infimum and supremum of relative perfor-
mance measures can still be expressed as 1-dimensional functions of α. In particular,
the pooling performance is calculated by rewriting ΓK/Γ∞ into 1 + (ΓK − Γ∞)/Γ∞.
Thus, for upper bounds on the pooling performance, we use formulas (3.22) and
(3.23) with νΘ∗ = α−1/2.

The results are shown in Figure 3.6 and Table 3.3. The performances for the
equidistant and optimised partitions have roughly the same shape as Γ1/Γ∞, i.e.,
there is a global maximum for a finite α and a (lower) asymptote for α → ∞.

Compared to the results of Section 3.2.3, the dominant difference is that a single
robust contract performs reasonably well with a pooling performance of 107%. It is
not arbitrarily bad as is the case for the DMU-n problem. We believe the reason
is twofold. First, when minimising costs, there is a natural lowest cost possible. In
contrast, when maximising utility without budgets, there is no natural limitation.
Second, the EOQ cost functions are known for being relatively insensitive to small
perturbations in the order quantity or the cost parameters.

From the results, we see that the optimised partition performs only marginally
better than the equidistant partition. For example, for K = 2 the absolute difference
in pooling performance is about 0.4%.

We conclude that robust pooling obtains exceptionally good performances for the
EOQ problem. Offering a single robust contract is viable, but it is recommended to
offer a few more contracts for a better performance guarantee.

Figure 3.6: EOQ: pooling performance
ΓK/Γ∞ for the equidistant and optimised
partitions as functions of the instance pa-
rameter α.

Equidistant Optimised
K UB UB

1 1.0667 1.0667
2 1.0259 1.0218
3 1.0147 1.0108
4 1.0098 1.0065
5 1.0071 1.0043
6 1.0055 1.0031
∞ 1 1

Table 3.3: EOQ: upper bounds for
the pooling performance ΓK/Γ∞
for the equidistant and optimised
partitions.
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3.4 Conclusion

We have presented and analysed a new modelling approach for principal-agent con-
tracting models, called robust pooling. This approach considers a buyer whose type
follows a continuous distribution on the interval [

¯
p, p̄] ⊆ R. The seller wants to offer

a menu with a finite number of contracts K ∈ N≥1. In our approach, the seller par-
titions [

¯
p, p̄] into K subintervals and designs a menu with a single contract for each

subinterval. The menu is constructed such that each type will choose its intended
contract, making the menu robust to the buyer’s private information.

With the robust pooling modelling approach we can compare offering different
number of contracts in a natural and consistent way. Furthermore, we can determine
performance guarantees in terms of the number of contracts offered, provided that
the problem can be analysed (analytically or numerically) in sufficient detail. The
existing classical continuous and discrete approaches are not suitable for this analysis.
The continuous approach does not handle offering finitely many contracts. For the
discrete approach such analysis requires changing the distribution of the buyer’s type.
This makes any comparison inconsistent, already from a modelling point of view.

Compared to the limited variety approach from the literature, we restrict the
pooling of types to use a partition of [

¯
p, p̄]. We make this restriction to structure the

buyer’s choice, to obtain simple and intuitive mechanisms, to guarantee the accuracy
of the extracted information on the buyer’s type, and to promote the experimentation
with partition schemes. For example, the seller can use the equidistant or equiquantile
partitions as simple heuristics. After observing the buyer’s chosen contract, the
seller can narrow down the buyer’s type to the corresponding subinterval. Thus, the
accuracy of the extracted information is related to the width of the subintervals and
is straightforwardly controlled by the seller by varying the number of contracts.

In Section 3.2 we have applied robust pooling to utility maximisation problems
and in Section 3.3 to cost minimisation problems. The robust pooling model can
be reformulated and simplified under certain assumptions on the buyer’s utility/cost
function, which are not uncommon in the literature. In particular, we have analysed
two problems in detail: the DMU-n problem, based on a decreasing marginal utility,
and the EOQ problem, based on the economic order quantity setting.

Our application of robust pooling to these two problems leads to new insights
into the performances of partition schemes of [

¯
p, p̄]. A natural choice is to partition

[
¯
p, p̄] equidistantly. For the DMU-1 problem, the equidistant/equiquantile partition is

optimal for a fully specified family of instances, but is suboptimal for other instances.
The optimality seems to be a special property of DMU-1, since it is suboptimal for
the DMU-2 and EOQ problems.

It is difficult to say whether the equidistant partition performs good enough for
a given number of contracts, as this depends on what performance is acceptable.
Naturally, the performance of the equidistant partition reaches that of the optimal
partition as the number of contracts increases. However, the idea for robust pooling
is to offer only a few contracts. For the DMU-1 problem, it is definitely worthwhile to
optimise the partition when using up to five contracts. For example, offering 3 con-
tracts with the optimal partition achieves at least 96% of the best possible expected
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utility (corresponding to infinitely many contracts). For the equidistant partition this
is 88%. For the DMU-2 and EOQ problems the difference in performance is smaller.
In fact, for the EOQ problem the equidistant partition performs exceptionally well.

Overall, we conclude that robust pooling with only a few contracts, say 3 to 5,
leads to high performances and is a viable approach. Offering only a single contract
is not advised, since being able to distinguish between inefficient and efficient types
is needed for good performances. For example, the optimal menu for the DMU-n
problem refuses trade with the most inefficient types in certain cases. Offering a
single contract can lead to arbitrarily bad performance for the DMU-n problem.

A possible extension to our analysis is to consider partition heuristics. Based
on the results of DMU-1 and DMU-2, we can design the following partition heuris-
tic: optimise only the first partition point and partition the remaining subinterval
equidistantly. This is in fact optimal for DMU-1. However, numerically optimising
the entire partition is relatively straightforward. Thus, such heuristics should have a
clear benefit to (numerically) optimising the entire partition. For example, a heuristic
should follow a rule of thumb and not require numerical optimisation.

Appendix

3.A Addendum to Section 3.2

3.A.1 Proofs for Section 3.2.2

Proof of Lemma 3.1. Let x be feasible, i.e., there exists an y such that (x, y) is a
feasible solution. The proof consists of two parts: first we show that (3.7) holds for
contract k = 1, then we focus on the other contracts in the menu (k > 1).

First, realise that for an optimal y at least one IR constraint (3.5) must hold with
equality. If this is not the case, we can increase all yk by adding some ǫ > 0 until
at least one IR constraint is tight. This new solution is still feasible, as (3.6) only
considers the difference yk − yl, which is unaffected. Moreover, the objective value
of the new solution is strictly larger.

Now, suppose that y1 <
¯
p1χ(x1), then for k ∈ K we have for all pk ∈ [

¯
pk, p̄k] that

pkχ(xk) − yk ≥
¯
pkχ(xk) − yk

(3.6)

≥
¯
pkχ(x1) − y1 ≥

¯
p1χ(x1) − y1 > 0.

Here, we use that χ is non-negative. The result implies that no IR constraint is
tight, which is suboptimal as argued above. Hence, for an optimal y it must hold
that y1 =

¯
p1χ(x1).

Second, fix k ∈ K with k > 1 and consider the following IC constraints between
contracts k and k − 1:

p̄k−1(χ(xk) − χ(xk−1)) ≤ yk − yk−1 ≤
¯
pk(χ(xk) − χ(xk−1)).

Since p̄k−1 =
¯
pk, this implies that

yk − yk−1 =
¯
pk(χ(xk) − χ(xk−1)).
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Using our earlier result that y1 =
¯
p1χ(x1), we obtain the following formula:

yk =

k∑

i=2 ¯
pi(χ(xi) − χ(xi−1)) +

¯
p1χ(x1),

which can be rewritten into (3.7).

Proof of Lemma 3.2. First, we show the necessity of x1 ≤ · · · ≤ xK . Let k, k+1 ∈ K
and consider (3.6) for

¯
pk and

¯
pk+1:

¯
pkχ(xk) − yk ≥

¯
pkχ(xk+1) − yk+1,

¯
pk+1χ(xk+1) − yk+1 ≥

¯
pk+1χ(xk) − yk.

Adding both IC constraints leads to (
¯
pk −

¯
pk+1)(χ(xk) − χ(xk+1)) ≥ 0. Since

¯
pk <

¯
pk+1, this implies that χ(xk) ≤ χ(xk+1) and xk ≤ xk+1 since χ is non-decreasing.

Second, we show sufficiency of 0 ≤ x1 ≤ · · · ≤ xK . Let x ≥ 0 be non-decreasing
and set y according to (3.7). Since χ is non-decreasing, we have χ(xk) ≤ χ(xk+1)
for k ∈ K. It remains to check feasibility of (x, y). Fix k ∈ K and pk ∈ [

¯
pk, p̄k]. For

l ∈ K with k < l we have

yk − yl =

l−1∑

i=k

(yi − yi+1)
(3.7)
=

l−1∑

i=k ¯
pi+1(χ(xi) − χ(xi+1))

≤
l−1∑

i=k

p̄k(χ(xi) − χ(xi+1)) = p̄k(χ(xk) − χ(xl)) ≤ pk(χ(xk) − χ(xl)).

Likewise, let l ∈ K with l < k, then

yk − yl =

k∑

i=l+1

(yi − yi−1)
(3.7)
=

k∑

i=l+1¯
pi(χ(xi) − χ(xi−1))

≤
k∑

i=l+1¯
pk(χ(xi) − χ(xi−1)) =

¯
pk(χ(xk) − χ(xl)) ≤ pk(χ(xk) − χ(xl)).

Hence, all IC constraints (3.6) hold. Furthermore,

pkχ(xk) − yk ≥
¯
pkχ(xk) − yk

(3.6)

≥
¯
pkχ(x1) − y1 ≥

¯
p1χ(x1) − y1 = 0.

Thus, all IR constraints (3.5) are satisfied and the solution is feasible.

Proof of Theorem 3.3. By Lemma 3.1 we can substitute the optimal formula (3.7)
for y into the optimisation model. By Lemma 3.2 we conclude that the IR and IC
constraints hold if and only if 0 ≤ x1 ≤ · · · ≤ xK . This leads to the equivalent
optimisation problem

max
0≤x1≤···≤xK

∑

k∈K
ωk

(

φS(xk) + ψ(xk) +
¯
pkχ(xk) −

k−1∑

i=1

(p̄i −
¯
pi)χ(xi)

)

,

which can be rewritten into to formulation of the theorem by collecting the terms of
xk.
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3.A.2 An explicitly solvable class of problems

In this appendix, we make additional assumptions to determine a family of explicitly
solvable robust pooling models. That is, we are able to derive explicit formulas for
the optimal menu of contracts. The following assumptions are a balance between the
generality of the model and the brevity of the analysis, and can be weakened up to
a certain extent to obtain similar results.

Assumption 3.3. The buyer has zero utility for ordering zero units of product:
φB(0|p) = 0 for all p ∈ [

¯
p, p̄], implying ψ(0) = χ(0) = 0.

Assumption 3.4. The function φS +ψ is strictly concave and differentiable on R≥0.
The function χ is given by χ(x) = x.

Assumption 3.5. The distribution on the private parameter p is uniform: ω(p) =
1/(p̄−

¯
p), so ωk = (p̄k −

¯
pk)/(p̄−

¯
p) for all k ∈ K.

Assuming φB(0|p) = 0 (Assumption 3.3) ensures that there is no side payment
if a contract specifies no trade, i.e., xk = 0 implies zk = 0. This is in line with
the default situation, where the absence of trade implies zero utility for the buyer.
Assumption 3.4 is needed to make (3.8) a concave maximisation problem that can
be solved efficiently, for example using interior-point or cutting-plane methods (see
Bertsekas (2015) and Boyd and Vandenberghe (2004)). Finally, the uniformity of
p (Assumption 3.5) is significantly restrictive, but allows for a manageable exact
analysis with closed-form formulas.

With the imposed additional structure, we can solve (3.8) exactly, see Theo-
rem 3.13.

Theorem 3.13. Under Assumptions 3.1-3.5, the robust pooling model is equivalent
to the following concave problem:

max
0≤x1≤···≤xK

∑

k∈K

p̄k −
¯
pk

p̄−
¯
p

(

φS(xk) + ψ(xk) + (p̄k +
¯
pk − p̄)xk

)

.

The optimal order quantities are given by

xk =







0 if k < k∗
(

d
dx (φS + ψ)

)−1
(p̄− p̄k −

¯
pk) if k∗ ≤ k ≤ k̂

∞ if k > k̂

,

and satisfy 0 < xk∗ < · · · < xk̂ < ∞. Here, the index of the first non-zero order
quantity is

k∗ = min

{

K + 1,min

{

k ∈ K : p̄k +
¯
pk − p̄ > − d

dx
(φS + ψ)(0)

}}

,

and the index of last finite order quantity is

k̂ = max

{

0,max

{

k ∈ K : p̄k +
¯
pk − p̄ < − lim

x→∞
d

dx
(φS + ψ)(x)

}}

.
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Proof. The uniform distribution (Assumption 3.5) implies that ωk = (p̄k−
¯
pk)/(p̄−

¯
p).

Therefore, we can simplify the summation in (3.8) as follows:

(p̄k −
¯
pk)

K∑

i=k+1

ωi

ωk
=

K∑

i=k+1

(p̄i −
¯
pi) = p̄− p̄k.

Substituting these expressions in the result of Theorem 3.3 gives the desired formu-
lation of the optimisation problem.

For the optimal solution, we first relax the constraint x1 ≤ · · · ≤ xK to obtain
a separable optimisation problem. Since the objective of the relaxed problem is
strictly concave and differentiable (Assumption 3.4), its optimal solution can easily
be determined. Consider contract k ∈ K. We distinguish three cases.

Case I: if

d

dxk
(φS + ψ)(0) + p̄k +

¯
pk − p̄ ≤ 0,

then it is optimal for the relaxed problem to set xk = 0. Otherwise, the optimal xk

for the relaxed problem satisfies xk > 0.
Case II: if

lim
xk→∞

(
d

dxk
(φS + ψ)(xk) + p̄k +

¯
pk − p̄

)

≥ 0,

then it is optimal to set xk = ∞. Otherwise, a finite x is optimal. Here, we use that
the above limit is zero only if it is an asymptote. This holds since φS + ψ is strictly
concave, implying that its derivative is strictly decreasing. Furthermore, this shows
that Cases I and II are indeed mutually exclusive for (fixed) k.

Case III: if the above cases do not hold the optimal xk is found by setting the
derivative to zero:

d

dxk

(

φS(xk) + ψ(xk) + (p̄k +
¯
pk − p̄)xk

)

= 0

⇐⇒ d

dxk
(φS + ψ)(xk) = −(p̄k +

¯
pk − p̄).

Since φS + ψ is strictly concave and differentiable, its derivative is continuous and
invertible. Furthermore, Cases I and II are excluded, so the following value is well-
defined and strictly positive:

x̂k =

(
d

dxk
(φS + ψ)

)−1

(p̄− p̄k −
¯
pk),

which is the optimum for the relaxed problem. Notice that the definitions of k∗ and
k̂ imply that Case III corresponds to k ∈ K such that k∗ ≤ k ≤ k̂. By strict concavity
of φS +ψ we know that its derivative is strictly decreasing. Furthermore, realise that
p̄k +

¯
pk − p̄ < p̄k+1 +

¯
pk+1 − p̄ for all k ∈ K. Therefore, we have 0 < x̂k∗ < · · · < x̂k̂.

Combining all cases leads to a solution satisfying 0 ≤ x1 ≤ · · · ≤ xK , which
is feasible for the non-relaxed problem. Hence, this is the optimal solution to our
original problem.
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Theorem 3.13 defines two indices k∗ and k̂. Typically, the index k̂ of last finite
order quantity satisfies k̂ = K and can be omitted. If k̂ < K then the optimal
objective value is ∞, which is unrealistic and indicates that the utility functions
should be reconsidered. On the other hand, the index k∗ of the first non-zero order
quantity can play an essential role as seen in Section 3.2.3. If k∗ > 1 then (xk, zk) =
(0, 0) for k < k∗, i.e., there is no trade with types p ∈ [

¯
p,

¯
pk∗).

3.A.3 Equivalences to other models

The structure of the reformulated robust pooling model (3.8) might be recognised by
those familiar with either classical discrete contracting models or the limited variety
model of Bergemann et al. (2011) and Wong (2014). In fact, under Assumption 3.1
there is an equivalence between these three models. We formalise and discuss this
further in this section.

3.A.3.1 Pooling and robustness implies partitioning

In the robust pooling approach we partition [
¯
p, p̄] to obtain pooling of types, i.e., a

menu with finitely many contracts. As mentioned in Section 3.1, the limited variety
model of Bergemann et al. (2011) and Wong (2014) achieves robustness and pooling
without partitioning [

¯
p, p̄] a priori. The limited variety model simply restricts the

menu to include finitely many contracts. Thus, their approach is more general than
our robust pooling. However, in this section we show that under Assumption 3.1
both approaches are equivalent provided that the optimal partition scheme is used.

Consider a menu of K contracts (xk, zk) that satisfies the pooling and robustness
properties. Consequently, each type p ∈ [

¯
p, p̄] chooses a contract from the menu.

Without loss of generality, each contract is chosen by some types. Let p̂k be the
most inefficient type that chooses contract (xk, zk) for k ∈ K. By changing the index
of the contracts, we have

¯
p = p̂1 < . . . < p̂K ≤ p̄ without loss of generality. This

implies that

φB(xk|p̂k) ≥ zk, ∀ k ∈ K,
φB(xk|p̂k) − φB(xl|p̂k) ≥ zk − zl, ∀ k, l ∈ K. (3.25)

We will prove that, in fact, types p ≥ p̂k prefer contract (xk, zk) over contracts (xl, zl)
with l < k by verifying that the respective IR and IC constraints hold. By adding
(3.25) for k, l ∈ K and by Assumption 3.1, we have

0 ≤ φB(xk|p̂k) − φB(xl|p̂k) + φB(xl|p̂l) − φB(xk|p̂l)

= (p̂k − p̂l)(χ(xk) − χ(xl)), ∀ k, l ∈ K.

Therefore, χ(xk) ≥ χ(xl) for l < k, since p̂k > p̂l by definition. Using these results,
we obtain for all k ∈ K that

φB(xk|p) = ψ(xk) + pχ(xk) ≥ ψ(xk) + p̂kχ(xk) = φB(xk|p̂k) ≥ zk, ∀ p ≥ p̂k,
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and

φB(xk|p) − φB(xl|p) = ψ(xk) − ψ(xl) + p(χ(xk) − χ(xl))

≥ ψ(xk) − ψ(xl) + p̂k(χ(xk) − χ(xl))

= φB(xk|p̂k) − φB(xl|p̂k) ≥ zk − zl, ∀ l < k, p ≥ p̂k.

These inequalities correspond to IR and IC constraints. They imply that types p ≥ p̂k

prefer contract (xk, zk) over contracts (xl, zl) with l < k. Using the definition of p̂k,
we conclude that contract (xk, zk) must be chosen by types {p ∈ [

¯
p, p̄] : p̂k ≤ p <

p̂k+1}.
Thus, under Assumption 3.1 any menu that satisfies the pooling and robustness

properties effectively partitions [
¯
p, p̄] and pools the respective types, exactly as our

robust pooling approach.

3.A.3.2 Robustness of the discrete approach

Suppose the buyer’s type p follows a continuous distribution on [
¯
p, p̄] and the seller

wants to offer only finitely many contracts in the menu. Of course, our robust pool-
ing approach is designed for this task, but can we also apply the classical discrete
approach? That is, can the seller select K representatives from [

¯
p, p̄], assign appro-

priate probabilities to the representatives, apply the classical discrete approach, and
achieve the same robust result as our robust pooling approach? In this section we
show that the discrete approach can be robust under Assumption 3.1.

First, if a discrete model satisfies Assumption 3.1 and is robust we conclude that it
must be equivalent to the robust pooling model as shown in Section 3.A.3.1. Second,
we prove that under Assumption 3.1 the robust pooling model is equivalent to a
specifically constructed discrete model. The proofs of Lemmas 3.1 and 3.2 show that
many constraints are redundant. Of all IR constraints (3.5) only

¯
p1χ(x1) − y1 ≥ 0 is

needed. Of all IC constraints (3.6) we need
¯
pkχ(xk) − yk ≥

¯
pkχ(xk−1) − yk−1 for all

k ∈ K and the constraint x1 ≤ · · · ≤ xK . The non-decreasing x can be enforced by
replacing it with the IC constraints

¯
pkχ(xk) − yk ≥

¯
pkχ(xk+1) − yk+1 for all k ∈ K.

Adding a few more redundant IR and IC constraints, gives the following equivalent
optimisation problem:

max
x,y

∑

k∈K
ωk (φS(xk) + ψ(xk) + yk)

s.t.
¯
pkχ(xk) − yk ≥ 0, ∀ k ∈ K,

¯
pkχ(xk) − yk ≥

¯
pkχ(xl) − yl, ∀ k, l ∈ K,

xk ≥ 0, ∀ k ∈ K.

This is the classical discrete variant for the contracting problem, where each subinter-
val [

¯
pk, p̄k] is represented by its most inefficient type

¯
pk and this type has probability

ωk.
To conclude, the discrete model satisfying Assumption 3.1 has a hidden robustness

provided that the representative of each subinterval [
¯
pk, p̄k] is its most inefficient
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type
¯
pk and this type has probability ωk. Consequently, a robust discrete model

using two types to approximate [
¯
p, p̄] should not choose the extreme types

¯
p and p̄

as representatives, since the contract for type p̄ will be chosen with probability zero.
Hence, effectively only a single contract is used.

3.A.4 Proofs for Section 3.2.3

Proof of Theorem 3.4. We apply Theorem 3.13 where

d

dx
(φS + ψ)(x) = P − rxn =⇒ d

dx
(φS + ψ)(0) = P.

Since P − p̄+ p̄K +
¯
pK = P +

¯
pK > 0, we get k∗ = min{k ∈ K : P − p̄+ p̄k +

¯
pk > 0}.

Furthermore, since ψ decreases super-linearly we have k̂ = K. In other words,
all contracts are sensible (xk, zk < ∞) and at least one contract instigates trade
(xK > 0). The results now follow from Theorem 3.13.

Proof of Lemma 3.5. Consider an optimal partition ∆ that does not satisfy the prop-
erties stated in the lemma. First, recall that k∗ = min

{
k ∈ K : δk + δk−1 >

α−1
α

}
.

Suppose k∗(∆) > 2, which requires K > 2. Construct a new partition ∆̂ with

δ̂1 = δk∗−1, δ̂k = δk∗ for 1 < k < k∗ and δ̂k = δk otherwise. By construction,

the partition ∆̂ leads to the same objective value as ∆ and is therefore an optimal
partition. Furthermore, we have

δ̂1 + δ̂0 = δk∗−1 + δ0 ≤ δk∗−1 + δk∗−2 ≤ α−1
α

δ̂k + δ̂k−1 ≥ δk∗ + δk∗−1 >
α−1

α , for k = 2, . . . ,K.

Thus, k∗(∆̂) = 2. Therefore, by applying this transformation, we can assume without
loss of generality that the optimal partition ∆ satisfies k∗(∆) ∈ {1, 2}.

Second, we modify the partition ∆ into a strictly better one, which is a contra-
diction. The details require two cases to be analysed.

Case I: there exists an index i ∈ {1, . . . ,K−1} such that δi−1 = δi < δi+1. Notice
that i + 1 ≥ 2 ≥ k∗(∆) ∈ {1, 2}. Therefore, δi+1 + δi >

α−1
α and there exists an

0 < ǫ < 1 such that

(1 − ǫ)δi+1 + (1 + ǫ)δi >
α−1

α .

Construct a new partition ∆̂ by setting δ̂i = (1 − ǫ)δi+1 + ǫδi and δ̂k = δk otherwise.

By construction, we have δ̂i−1 < δ̂i < δ̂i+1, i ≥ k∗(∆̂), and k∗(∆̂) ≤ k∗(∆). The

normalised objective value corresponding to ∆̂ differs from that of ∆ as follows: the
terms

i+1∑

k=max{i,k∗(∆)}
(δk − δk−1)

(
1
α + δk + δk−1 − 1

)n+1

n

= (δi+1 − δi)
(

1
α + δi+1 + δi − 1

)n+1

n
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are replaced by

(δ̂i − δ̂i−1)
(

1
α + δ̂i + δ̂i−1 − 1

)n+1

n

+ (δ̂i+1 − δ̂i)
(

1
α + δ̂i+1 + δ̂i − 1

)n+1

n

= (1 − ǫ)(δi+1 − δi)
(

1
α + (1 − ǫ)δi+1 + (1 + ǫ)δi − 1

)n+1

n

+ ǫ(δi+1 − δi)
(

1
α + (2 − ǫ)δi+1 + ǫδi − 1

)n+1

n

> (δi+1 − δi)
(

1
α + δi+1 + δi − 1

)n+1

n .

The inequality follows from strict convexity of the function (·) n+1

n on R≥0. This

implies that ∆̂ is strictly better than ∆, which contradicts the optimality of ∆.
Case II: δK−1 = δK = 1. Define i = min{k ∈ {1, . . . ,K} : δk = δK} to be the

first partition point that coincides with δK . Notice that δ0 < δi and δi + δi−1 =
1 + δi−1 ≥ 1 > α−1

α , so i ≥ k∗(∆). Therefore, there exists an 0 < ǫ < 1 such that
(1 − ǫ)δi + (1 + ǫ)δi−1 >

α−1
α .

Construct a new partition ∆̂ by setting δ̂i = (1 − ǫ)δi + ǫδi−1 and δ̂k = δk

otherwise. By construction, we have δ̂i−1 < δ̂i < δ̂i+1 and k∗(∆̂) = k∗(∆). The

normalised objective value corresponding to ∆̂ differs from that of ∆ as follows: the
terms

i+1∑

k=max{i,k∗(∆)}
(δk − δk−1)

(
1
α + δk + δk−1 − 1

)n+1

n

= (δi − δi−1)
(

1
α + δi + δi−1 − 1

)n+1

n

are replaced by

(δ̂i − δ̂i−1)
(

1
α + δ̂i + δ̂i−1 − 1

)n+1

n

+ (δ̂i+1 − δ̂i)
(

1
α + δ̂i+1 + δ̂i − 1

)n+1

n

= (1 − ǫ)(δi − δi−1)
(

1
α + (1 − ǫ)δi + (1 + ǫ)δi−1 − 1

)n+1

n

+ ǫ(δi − δi−1)
(

1
α + (2 − ǫ)δi + ǫδi−1 − 1

)n+1

n

> (δi − δi−1)
(

1
α + δi + δi−1 − 1

)n+1

n .

Hence, ∆̂ is strictly better than ∆, which contradicts the optimality of ∆. This
concludes the proof.

Proof of Corollary 3.6. For K > 3 and for α ≥ K/(K − 3) we have k∗ ≥ 3, which is
suboptimal by Lemma 3.5.

3.A.5 Proofs for Section 3.2.4

Proof of Theorem 3.7. By Lemma 3.5 we know that k∗ ∈ {1, 2} for the optimal
partition. First, we analyse the objective function ΓK when we consider k∗ as a
parameter independent of the chosen partition (which it is not). To simplify notation,
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we use the normalised νΓK , which does not affect the optimality of a partition.
Suppose k∗ = 1, then the normalised objective function is

νΓK |k∗=1 =
(

(δ1 − δ0)( 1
α + δ1 + δ0 − 1)2 + (δ2 − δ1)( 1

α + δ2 + δ1 − 1)2

+ (δ3 − δ2)( 1
α + δ3 + δ2 − 1)2 + (δ4 − δ3)( 1

α + δ4 + δ3 − 1)2 + · · ·
+ (δK−1 − δK−2)( 1

α + δK−1 + δK−2 − 1)2

+ (δK − δK−1)( 1
α + δK + δK−1 − 1)2

)

.

Since terms cancel out, this is a quadratic function for each δk, k = 1, . . . ,K − 1.
Note that δ0 = 0 and δK = 1 are fixed for any partition. Setting the gradient to zero
gives (δk+1 − δk−1)(δk+1 + δk−1 − 2δk) = 0 for all k ∈ {1, . . . ,K − 1}. By Lemma 3.5
we know that δk+1 > δk−1 must hold for the optimal partition, so the only possibility
is δk = 1

2 (δk+1 + δk−1) for all k ∈ {1, . . . ,K − 1}. The solution to this linear system
of equalities is

δk =
k

K
≡ δequi

k ,

which is the equidistant partition ∆equi.
Likewise, suppose k∗ = 2, then we have

νΓK |k∗=2 =
(

(δ2 − δ1)( 1
α + δ2 + δ1 − 1)2

+ (δ3 − δ2)( 1
α + δ3 + δ2 − 1)2 + (δ4 − δ3)( 1

α + δ4 + δ3 − 1)2 + · · ·
+ (δK−1 − δK−2)( 1

α + δK−1 + δK−2 − 1)2

+ (δK − δK−1)( 1
α + δK + δK−1 − 1)2

)

.

This is cubic in δ1 and quadratic in the other δk (k ∈ {2, . . . ,K − 1}). Setting the
gradient to zero gives

(1 − 1
α + δ2 − 3δ1)( 1

α − 1 + δ2 + δ1) = 0

and (δk+1 − δk−1)(δk+1 + δk−1 − 2δk) = 0 for k ∈ {2, . . . ,K − 1}. The roots of the
derivative of the cubic function are

δ1 = 1
3 (1 − 1

α + δ2) and δ1 = 1 − 1
α − δ2.

By closer investigation of the shape of this cubic function, the larger value of these
two corresponds to the maximum. Solving the system of linear equations for both
cases results in:

δ1 = 1
3 (1 − 1

α + δ2) =⇒ δk =
K + k − 1

2K − 1
− K − k

2K − 1

1

α
,

δ1 = 1 − 1
α − δ2 =⇒ δk =

K + k − 3

2K − 3
− K − k

2K − 3

1

α
.
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Since δ1 is larger in the first case, this is the correct solution. Hence,

δk =
K + k − 1

2K − 1
− K − k

2K − 1

1

α
= 1 − K − k

2K − 1

(
1

α
+ 1

)

≡ δcubic
k .

We refer to this partition as ∆cubic.
Finally, we check which of these partitions is feasible. First, we check correctness

with k∗. We have (∆equi ⇒ k∗ = 1) if and only if δequi
1 > α−1

α , which is 1
K > α−1

α or

equivalently α < K
K−1 . Likewise, (∆cubic ⇒ k∗ = 2) if and only if δcubic

1 ≤ α−1
α and

δcubic
2 + δcubic

1 > α−1
α . These conditions require the following:

δcubic
1 ≤ α−1

α ⇐⇒ 1 − K−1
2K−1

(
1
α + 1

)
≤ α−1

α ⇐⇒ α ≥ K
K−1 ,

δcubic
2 + δcubic

1 > α−1
α ⇐⇒ 2 − 2K−3

2K−1

(
1
α + 1

)
> α−1

α ⇐⇒ α > 0.

Moreover, we need to check δcubic
1 > δ0 = 0:

δcubic
1 > 0 ⇐⇒ 1 − K−1

2K−1

(
1
α + 1

)
> 0 ⇐⇒ α > K−1

K .

This condition is trivially satisfied for the range α ≥ K
K−1 corresponding to ∆cubic.

To conclude, for α < K/(K − 1) the optimal partition is ∆equi, whereas for
α ≥ K/(K − 1) the optimal partition is ∆cubic.

Proof of Corollary 3.8. For α < K/(K − 1) this is trivial as the optimal partition is
equidistant. For α ≥ K/(K − 1) we have

δopt
k = K+k−1

2K−1 − K−k
2K−1

1
α ∈

[
k
K ,

K+k−1
2K−1

)

.

Combining these properties gives the desired result.

3.A.6 Proofs for Section 3.2.5

Proof of Theorem 3.9. First, we consider k∗ = 1, for which

νΓ2 = δ1

(
1
α + δ1 − 1

) 3
2 + (1 − δ1)

(
1
α + δ1

) 3
2 .

Setting the derivative with respect to δ1 to zero and solving the equation for δ1 results
in two solutions:

δ+
1 = 1

30

(√

36 1
α2 − 15 + 15 − 6 1

α

)

and δ−
1 = 1

30

(

−
√

36 1
α2 − 15 + 15 − 6 1

α

)

.

The partition point δ+
1 is a local maximum, whereas δ−

1 does not maximise the ob-
jective. Furthermore, δ+

1 is valid for α ∈ (0, 2
5

√
15], i.e., it is feasible and corresponds

to k∗ = 1.
Second, consider k∗ = 2, where the normalised optimal objective is

νΓ2 = (1 − δ1)
(

1
α + δ1

) 3
2 .
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Again, setting its derivative to δ1 to zero, leads to a single feasible solution

δ∗
1 = 1 − 2

5 ( 1
α + 1).

The partition point δ∗
1 is valid for α ∈ [ 3

2 ,∞).
In contrast to the DMU-1 problem, the valid intervals overlap: α ∈ (0, 1.5491] for

k∗ = 1 and α ∈ [1.5,∞) for k∗ = 2. It turns out that the optimal δ1 switches from
δ+

1 to δ∗
1 (a discontinuous jump) as α increases. The partitions δ+

1 and δ∗
1 are both

optimal for αtrans ≈ 1.5371 (the exact expression for αtrans is too verbose). This is
illustrated in Figure 3.7, where the maximum on the left corresponds to δ∗

1 and that
on the right to δ+

1 .
Finally, the lower bound on δopt

1 is attained at the switch to δ∗
1 (at αtrans) and

the upper bound is reached for α → ∞.

Figure 3.7: DMU-2: pooling performance Γ2/Γ∞ at αtrans in terms of the partition
δ1. The shown points are δ∗

1 (left), δ−
1 (middle), and δ+

1 (right).

3.A.7 Numerical solver

We describe the used methodology to numerically optimise the partition for the
DMU-2 problem of Section 3.2.5. For each α, we have to maximise ΓK or equivalently
ΓK/Γ∞, so we can use the formulas of the normalised objective values νΓK and νΓ∞.
However, the formula for ΓK contains index k∗, which depends on the partition. From
Lemma 3.5 we know that k∗ ∈ {1, 2} for the optimal partition. Therefore, we simply
optimise twice: for k∗ = 1 in the formula with the restriction δ1 > α−1

α , and for
k∗ = 2 with the restrictions δ1 ≤ α−1

α and δ1 + δ2 >
α−1

α . The optimal partition is
the best of the resulting partitions. Note that k∗ = 1 is always optimal for 0 < α ≤ 1,
since k∗ = 2 is infeasible for this range.
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For DMU-1 and DMU-2, we have inspected the shape of ΓK as a function of the
used partition for K = 2 and K = 3. From our observations, ΓK with k∗ fixed to 1
or 2 is a smooth function with a clear maximum on the respective domain that can
be found using a gradient-based search. Thus, we apply a gradient-based search to
maximise ΓK with k∗ fixed to either 1 or 2. To be precise, we use Maple’s built-in
solver ‘NLPSolve’ for non-linear programs with only bounds on the variables, which
uses the modified-Newton method, and verify the feasibility of the obtained partition.
That is, we check if 0 = δ1 < δ2 < · · · < δK−1 < δK = 1 and if the partition indeed
results in the used value for k∗.

We have also used Maple’s built-in solver ‘NLPSolve’ for constrained non-linear
programs, which uses sequential quadratic programming. With this solver we can
enforce the required constraints on δk directly. Note that we still separately solve
for k∗ fixed to either 1 or 2. Both solvers give the same results, also when specifying
different starting solutions.

The used methodology only guarantees to find a local maximum. However, the
numerical solver always finds the same local optimum, i.e., it is stable. Furthermore,
the results are consistent with our available theoretical results, such as for DMU-1
with any K and for DMU-2 with K = 2. Therefore, all results indicate that the
numerical solver is able to find the global maximum.

3.B Addendum to Section 3.3

3.B.1 Reformulation and analysis

We follow the approach of Section 3.2 to reformulate the robust pooling model for
cost minimisation, given in Section 3.3.1. First, we make Assumption 3.2, so the
buyer’s cost function is given by φB(x|p) = ψ(x) + pχ(x). Under this assumption,
we perform a change of variables by redefining the side payment as

zk = ψ(xk) + yk − Θ.

Notice that compared to Section 3.2 we include the outside option Θ in this change
of variables. Substitution leads to an equivalent model with simpler constraints:

min
x,y

∑

k∈K
ωk

(
φS(xk) + ψ(xk) + yk

)
− Θ

s.t. pkχ(xk) − yk ≤ 0, ∀ pk ∈ [
¯
pk, p̄k], k ∈ K, (3.26)

pkχ(xk) − yk ≤ pkχ(xl) − yl, ∀ pk ∈ [
¯
pk, p̄k], k, l ∈ K, (3.27)

xk ≥ 0, ∀ k ∈ K.

This formulation clearly shows that Θ has no effect on the optimal order quantities
and is simply a constant to be included in the side payment. We continue with the
structure of the optimal solution.
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Lemma 3.14. Under Assumption 3.2, for any feasible x it is optimal to set

yk = p̄kχ(xk) +
K∑

i=k+1

(p̄i −
¯
pi)χ(xi) ∀ k ∈ K. (3.28)

Proof. The proof is essentially the same as that of Lemma 3.1. The only difference
is that the optimal y must satisfy yK = p̄Kχ(xK). In other words, we have a tight
IR constraint for k = K instead of k = 1.

First, realise that for an optimal y at least one IR constraint (3.26) must hold
with equality. If this is not the case, we can decrease all yk by subtracting some ǫ > 0
until at least one IR constraint is tight. This new solution is still feasible, as (3.27)
only considers the difference yk − yl, which is unaffected. Moreover, the objective
value of the new solution is strictly smaller.

Suppose that yK > p̄Kχ(xK), then for k ∈ K we have for all pk ∈ [
¯
pk, p̄k] that

pkχ(xk) − yk ≤ p̄kχ(xk) − yk

(3.27)

≤ p̄kχ(xK) − yK ≤ p̄Kχ(xK) − yK < 0.

That is, no IR constraint is tight, which is a contradiction. Hence, for an optimal y
we must have yK = p̄Kχ(xK).

Second, fix k ∈ K with k < K and consider the IC constraints between contracts
k and k + 1:

p̄k(χ(xk) − χ(xk+1)) ≤ yk − yk+1 ≤
¯
pk+1(χ(xk) − χ(xk+1)).

Since p̄k =
¯
pk+1, this implies that

yk − yk+1 = p̄k(χ(xk) − χ(xk+1)).

Using our earlier result that yK = p̄Kχ(xK), we obtain the following formula:

yk =

K−1∑

i=k

p̄i(χ(xi) − χ(xi+1)) + p̄Kχ(xK),

which can be rewritten into (3.28).

Lemma 3.14 shows that the side payment zk for contract k ∈ K only depends
on the order quantities of contracts with a higher index (k + 1, . . . ,K). In terms of
indices, this dependency is reversed in Lemma 3.1. However, in terms of efficiency the
result is not reversed. Thus, both lemmas state that the side payment depends on the
order quantities corresponding to less efficient buyers. We observe this phenomenon
also in the feasible region, see Lemma 3.15.

Lemma 3.15. Under Assumption 3.2, any x is feasible if and only if x1 ≥ · · · ≥
xK ≥ 0.
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Proof. The proof is the same as that of Lemma 3.2, except that all inequalities related
to the constraints are reversed.

First, we show the necessity of x1 ≥ · · · ≥ xK . Let k, k + 1 ∈ K and consider
(3.27) for p̄k and p̄k+1:

p̄kχ(xk) − yk ≤ p̄kχ(xk+1) − yk+1,

p̄k+1χ(xk+1) − yk+1 ≤ p̄k+1χ(xk) − yk.

Adding both IC constraints leads to (p̄k − p̄k+1)(χ(xk) − χ(xk+1)) ≤ 0. Since we
have chosen p̄k < p̄k+1, this implies that χ(xk) ≥ χ(xk+1) and thus xk ≥ xk+1.

Second, we show sufficiency of x1 ≥ · · · ≥ xK ≥ 0. Let x ≥ 0 be non-increasing
and set y according to (3.28). It remains to check feasibility of (x, y). Fix k ∈ K and
pk ∈ [

¯
pk, p̄k]. For l ∈ K with k < l we have

yk − yl =

l−1∑

i=k

(yi − yi+1)
(3.28)

=

l−1∑

i=k

p̄i(χ(xi) − χ(xi+1))

≥
l−1∑

i=k

p̄k(χ(xi) − χ(xi+1)) = p̄k(χ(xk) − χ(xl)) ≥ pk(χ(xk) − χ(xl)).

Likewise, let l ∈ K with l < k, then

yk − yl =

k∑

i=l+1

(yi − yi−1)
(3.28)

=

k∑

i=l+1

p̄i−1(χ(xi) − χ(xi−1))

≥
k∑

i=l+1¯
pk(χ(xi) − χ(xi−1)) =

¯
pk(χ(xk) − χ(xl)) ≥ pk(χ(xk) − χ(xl)).

Hence, all IC constraints (3.27) hold. Furthermore,

pkχ(xk) − yk ≤ p̄kχ(xk) − yk

(3.27)

≤ p̄kχ(xK) − yK ≤ p̄Kχ(xK) − yK = 0.

Thus, all IR constraints (3.26) are satisfied and the solution is feasible.

With these Lemmas we reformulate the robust pooling problem in terms of only
the order quantities x, see Theorem 3.16. Again, notice the slight changes compared
to Theorem 3.3.

Theorem 3.16. Under Assumption 3.2, the robust pooling model with infinitely
many constraints is equivalent to the following problem with finitely many and linear
constraints:

min
x1≥···≥xK≥0

∑

k∈K
ωk

(

φS(xk) + ψ(xk) +
(

p̄k + (p̄k −
¯
pk)

k−1∑

i=1

ωi

ωk

)

χ(xk)

)

− Θ.
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Proof. By Lemma 3.14 we can substitute the optimal formula (3.28) for y into the
optimisation model. By Lemma 3.15 we conclude that the IR and IC constraints
hold if and only if x1 ≥ · · · ≥ xK ≥ 0. This leads to the equivalent optimisation
problem

min
x1≥···≥xK≥0

∑

k∈K
ωk

(

φS(xk) + ψ(xk) + p̄kχ(xk) +

K∑

i=k+1

(p̄i −
¯
pi)χ(xi)

)

− Θ,

which can be rewritten into to formulation of the theorem by collecting the terms of
xk.

We make additional assumptions to find a closed form solution, see Assump-
tions 3.6 and 3.7.

Assumption 3.6. The function φS +ψ is strictly convex and differentiable on R≥0.
The function χ is given by χ(x) = x.

Assumption 3.7. The distribution on the private parameter p is uniform: ω(p) =
1/(p̄−

¯
p), so ωk = (p̄k −

¯
pk)/(p̄−

¯
p) for all k ∈ K.

These assumptions allow us to derive Theorem 3.17, which corresponds to Theo-
rem 3.13 for utility maximisation.

Theorem 3.17. Under Assumptions 3.2-3.7, the robust pooling model is equivalent
to the following convex problem:

min
x1≥···≥xK≥0

∑

k∈K

p̄k −
¯
pk

p̄−
¯
p

(

φS(xk) + ψ(xk) + (p̄k +
¯
pk −

¯
p)xk

)

− Θ.

The optimal solution is given by

xk =







∞ if k < k̂
(

d
dx (φS + ψ)

)−1
(
¯
p− p̄k −

¯
pk) if k̂ ≤ k ≤ k∗

0 if k > k∗
.

and satisfy ∞ > xk̂ > · · · > xk∗ > 0. Here, the index of the last non-zero order
quantity is

k∗ = max

{

0,max

{

k ∈ K : p̄k +
¯
pk −

¯
p < − d

dx
(φS + ψ)(0)

}}

,

and the index of the first finite order quantity is

k̂ = min

{

K + 1,min

{

k ∈ K : p̄k +
¯
pk −

¯
p > − lim

x→∞
d

dx
(φS + ψ)(x)

}}

.
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Proof. The proof is similar to that of Theorem 3.13, except that we use the strict
convexity instead of strict concavity of φS + ψ.

The uniform distribution implies that ωk = (p̄k −
¯
pk)/(p̄−

¯
p). Therefore, we can

simplify the summation as follows:

(p̄k −
¯
pk)

k−1∑

i=1

ωi

ωk
=

k−1∑

i=1

(p̄i −
¯
pi) =

¯
pk −

¯
p.

Substituting these expressions in the result of Theorem 3.16 gives the desired formu-
lation.

For the structure of the optimal solution, we first relax the constraint x1 ≥ · · · ≥
xK to obtain a separable optimisation problem. Since the objective of the relaxed
problem is strictly convex and differentiable (Assumption 3.6), its optimal solution
can easily be determined. Consider contract k ∈ K. We distinguish three cases.

Case I: if

d

dxk
(φS + ψ)(0) + p̄k +

¯
pk −

¯
p ≥ 0,

then it is optimal for the relaxed problem to set xk = 0. Otherwise, the optimal xk

for the relaxed problem satisfies xk > 0.
Case II: if

lim
xk→∞

(
d

dxk
(φS + ψ)(xk) + p̄k +

¯
pk −

¯
p

)

≤ 0,

then it is optimal to set xk = ∞. Otherwise, a finite x is optimal. Here, we use that
the above limit is zero only if it is an asymptote. This holds since φS + ψ is strictly
convex, implying that its derivative is strictly increasing. Furthermore, this shows
that Cases I and II are indeed mutually exclusive for (fixed) k.

Case III: if the above cases do not hold the optimal xk is found by setting the
derivative to zero:

d

dxk

(

φS(xk) + ψ(xk) + (p̄k +
¯
pk −

¯
p)xk

)

= 0

⇐⇒ d

dxk
(φS + ψ)(xk) = −(p̄k +

¯
pk −

¯
p).

Since φS + ψ is strictly convex and differentiable, its derivative is continuous and
invertible. Furthermore, Cases I and II are excluded, so the following value is well-
defined and strictly positive:

x̂k =
( d

dxk
(φS + ψ)

)−1

(
¯
p− p̄k −

¯
pk),

which is the optimum for the relaxed problem. Notice that the definitions of k∗ and
k̂ imply that Case III corresponds to k ∈ K such that k̂ ≤ k ≤ k∗. By strict convexity
of φS +ψ we know that its derivative is strictly increasing. Furthermore, realise that
p̄k +

¯
pk −

¯
p < p̄k+1 +

¯
pk+1 −

¯
p for all k ∈ K. Therefore, we have x̂k̂ > · · · > x̂k∗ > 0.

Combining all cases leads to a solution satisfying x1 ≥ · · · ≥ xK ≥ 0, which
is feasible for the non-relaxed problem. Hence, this is the optimal solution to our
original problem.
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3.B.2 Proofs for Section 3.3.2

Proof of Theorem 3.10. We apply Theorem 3.17 stated in Appendix 3.B.1 to the
EOQ problem. Since φS(x)+ψ(x) = (R+r) 1

x +Px it is straightforward to determine

that k∗ = K and k̂ = 1 (note that the definitions of k∗ and k̂ differ from Section 3.2).
The results now follow directly from the theorem after simplifying the expressions.

Proof of Lemma 3.11. Consider an optimal partition that does not satisfy the prop-
erties stated in the lemma. We modify this partition into a strictly better one, which
is a contradiction. The details require two cases to be analysed.

Case I: there exists a partition point i ∈ {1, . . . ,K−1} such that δi−1 = δi < δi+1.

Construct a new partition ∆̂ by setting δ̂i = 1
2δi+1 + 1

2δi and δ̂k = δk otherwise. By

construction, we have δ̂i−1 < δ̂i < δ̂i+1. The normalised objective value correspond-

ing to ∆̂ differs from that of ∆ as follows: the terms

i+1∑

k=i

(δk − δk−1)
√

1
α + δk + δk−1 = (δi+1 − δi)

√
1
α + δi+1 + δi

are replaced by

(δ̂i − δ̂i−1)

√

1
α + δ̂i + δ̂i−1 + (δ̂i+1 − δ̂i)

√

1
α + δ̂i+1 + δ̂i

= 1
2 (δi+1 − δi)

√
1
α + 1

2δi+1 + 3
2δi + 1

2 (δi+1 − δi)
√

1
α + 3

2δi+1 + 1
2δi

< (δi+1 − δi)
√

1
α + δi+1 + δi.

The inequality follows from strict concavity of the square-root function on R≥0. This

implies that ∆̂ is strictly better than ∆, which contradicts the optimality of ∆.
Case II: δK−1 = δK = 1. Define i = min{k ∈ {1, . . . ,K} : δk = δK} to be the

first partition point that coincides with δK . Notice that δ0 < δi. Construct a new
partition ∆̂ by setting δ̂i = 1

2δi + 1
2δi−1 and δ̂k = δk otherwise. By construction, we

have δ̂i−1 < δ̂i < δ̂i+1. The normalised objective value corresponding to ∆̂ differs
from that of ∆ as follows: the terms

i+1∑

k=i

(δk − δk−1)
√

1
α + δk + δk−1 = (δi − δi−1)

√
1
α + δi + δi−1

are replaced by

(δ̂i − δ̂i−1)

√

1
α + δ̂i + δ̂i−1 + (δ̂i+1 − δ̂i)

√

1
α + δ̂i+1 + δ̂i

= 1
2 (δi − δi−1)

√
1
α + 1

2δi + 3
2δi−1 + 1

2 (δi − δi−1)
√

1
α + 3

2δi + 1
2δi−1

< (δi − δi−1)
√

1
α + δi + δi−1.

Hence, ∆̂ is strictly better than ∆, which contradicts the optimality of ∆. This
concludes the proof.
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Proof of Theorem 3.12. For K = 2 the normalised optimal objective value is given
by

νΓ2 = δ1

√
1
α + δ1 + (1 − δ1)

√
1
α + 1 + δ1 − νΘ∗.

The derivative with respect to δ1 is

1 − δ1

2
√

1
α + δ1 + 1

+
√

1
α + δ1 −

√
1
α + δ1 + 1 +

δ

2
√

1
α + δ1

and has a single root for α > 0, namely δopt
1 = 1

6α (
√
α2 + 8α+ 4 + α − 2). Further-

more, for δ1 = 0 the derivative is

−
√

1
α + 1 +

√
1
α + 1

2

(
1
α + 1

)−1/2
< 0.

The inequality follows from the strict concavity of the square-root function. Likewise,
for δ1 = 1 the derivative is

−
√

1
α + 2 +

√
1
α + 1 + 1

2

(
1
α + 1

)−1/2
> 0.

Hence, the root of the derivative is indeed the minimiser of the optimal objective
value. The bounds follow from the following estimates:

δopt
1 <

1

6α
(
√

(2α+ 2)2 + α− 2) = 1
2 ,

δopt
1 >

1

6α
(
√

(α+ 2)2 + α− 2) = 1
3 .

The bounds correspond to the limits limα→0 δ1(α) = 1
2 and limα→∞ δ1(α) = 1

3 .
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Balancing expected and

worst-case utility in

contracting models with

asymmetric information and

pooling

Abstract

In this chapter, we consider a principal-agent contracting problem be-
tween a seller and a buyer, where the buyer has single-dimensional private
information. The buyer’s type is assumed to be continuously distributed
on a closed interval. The seller designs a menu of finitely many con-
tracts by pooling the buyer types a priori using a partition scheme. He
maximises either his minimum utility or his expected utility, or uses a
multi-objective approach. For each variation, we determine tractable re-
formulations and the optimal menu of contracts under certain conditions.

These results are applied to a contracting problem with quadratic util-
ities. We show that the optimal objective value is completely determined
by the partition scheme, a single aggregate instance parameter, and a pa-
rameter encoding the seller’s guaranteed obtained utility. This enables us
to derive the optimal partition and exact performance guarantees. Our
analysis shows that the seller should always offer at least two contracts
in order to have reasonable performance guarantees, resulting in at least
88% of the expected utility compared to offering infinitely many con-
tracts. By also optimising obtained worst-case utility, he can potentially
achieve only 64% of the maximum expected utility.

This chapter is based on Kerkkamp et al. (2018a).
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4.1 Introduction

We consider a principal-agent problem where the principal is a seller of products and
where the agent is a potential buyer. The seller has the initiative and market power
to make a one-time offer to the buyer in which he presents a menu of contracts.
We assume that this is a take-it-or-leave-it offer, i.e., we do not consider repeated
offers or renegotiations. Each contract specifies an order quantity x ∈ R≥0 and a
side payment z ∈ R from the buyer to the seller. The buyer has the market power
to accept or reject any contract from the menu. Furthermore, we assume that both
the seller and the buyer act individually rationally and want to maximise their own
utility. Thus, the buyer will accept an offered contract if this is most beneficial to
himself.

The buyer has private information that he does not share with the seller. We
consider the case where the buyer’s private information can be encoded into a single-
dimensional parameter p, referred to as the buyer’s type. We assume that the buyer’s
type can take on values in [

¯
p, p̄] ⊆ R with p̄ >

¯
p and follows a continuous distribution

with strictly positive density function ω : [
¯
p, p̄] → R>0. Although the buyer’s type is

private, this distribution is known to the seller.
The seller has utility function φS : R≥0 → R for an order quantity and his net

utility also includes the side payment. Thus, if the buyer accepts a contract (x, z),
the resulting seller’s net utility is φS(x)+z. Likewise, a buyer with type p has utility
function φB(·|p) : R≥0 → R. His net utility for contract (x, z) is φB(x|p) − z. If the
buyer rejects all contracts, we assume that his net utility is zero, which is also known
as the buyer’s reservation level.

Due to the buyer’s private information, the seller can and will use mechanism
design to construct a menu of contracts for the buyer to choose from. For a general
reference on mechanism design for contracting problems, see for example Laffont
and Martimort (2002). We consider the case where the seller only offers a limited
number of contracts, similar to the robust pooling approach in Chapter 3. That is,
the seller first decides how many contracts are offered, indicated by K ∈ N≥1. For
notational convenience, let K = {1, . . . ,K}. Second, the seller partitions [

¯
p, p̄] into

K subintervals [
¯
pk, p̄k] with p̄k >

¯
pk for k ∈ K. Such a partition is called a proper

K-partition. Third, the seller constructs a menu of K contracts by solving a specific
optimisation model, given below, which depends on the chosen partition. Finally,
this menu is offered to the buyer.

From this point onwards, we refer to a contract by (xk, zk) with k ∈ K and to a
menu of contracts by (x, z), where x = (x1, . . . , xK) and z = (z1, . . . , zK). The menu
is designed such that for each k ∈ K it is for all types in [

¯
pk, p̄k] most beneficial to

choose contract (xk, zk). We have the following constraints for the menu:

φB(xk|pk) − zk ≥ 0, ∀ pk ∈ [
¯
pk, p̄k], k ∈ K, (4.1)

φB(xk|pk) − zk ≥ φB(xl|pk) − zl, ∀ pk ∈ [
¯
pk, p̄k], k, l ∈ K, (4.2)

xk ≥ 0, ∀ k ∈ K. (4.3)

Constraints (4.3) simply enforce non-negative order quantities. The other con-
straints (4.1) and (4.2) affect which contract the buyer will choose. Constraints (4.1)
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ensure Individual Rationality (IR) for the buyer: for k ∈ K and pk ∈ [
¯
pk, p̄k] con-

tract (xk, zk) must not give a lower net utility than the buyer’s reservation level. If
(4.1) does not hold, then type pk will never accept contract (xk, zk). We make the
conventional assumption that if the buyer has multiple options which all maximise
his net utility, then the seller can convince the buyer to choose from these the most
beneficial option to the seller. Consequently, (4.1) guarantees that all types will
choose a contract from the menu. Constraints (4.2) ensure for k ∈ K that contract
(xk, zk) has the highest net utility for all types in [

¯
pk, p̄k]. This is known as Incentive

Compatibility (IC).
Thus, for a menu satisfying constraints (4.1)-(4.3) contract (xk, zk) is chosen by

all types [
¯
pk, p̄k]. In other words, contract (xk, zk) is chosen by the buyer with

probability

ωk ≡
∫ p̄k

¯
pk

ω(p)dp ∀ k ∈ K. (4.4)

We consider two objective functions for the seller subject to constraints (4.1)-
(4.3): he maximises either his expected net utility or his minimum net utility. With
the above insight, the seller’s expected net utility is given by

∑

k∈K
ωk (φS(xk) + zk) . (4.5)

This leads to the Maximise Expected net utility (ME) model: max{(4.5) : (4.1)-(4.3)}.
Similarly, the seller’s minimum net utility is

min
k∈K

(φS(xk) + zk) , (4.6)

resulting in the Maximise Minimum net utility (MM) model: max{(4.6) : (4.1)-(4.3)}.
It turns out that for a broad class of problems the MM model has multiple op-

timal solutions, as we will show. The seller can therefore choose from these optimal
solutions based on a second criterion. In light of the seller’s desire to maximise his
utility, we consider the case that the seller selects the optimal MM solution with
maximum expected net utility. This can be interpreted as a two-stage optimisation
approach based on the MM and ME models.

In fact, we generalise this two-stage approach to a multi-objective approach by
adding the constraint mink∈K(φS(xk) + zk) ≥ M , or equivalently

φS(xk) + zk ≥ M, ∀ k ∈ K, (4.7)

to the ME model for some parameter M ∈ R. We note that (4.7) is also known
as the seller ’s individual rationality constraint, where M is the seller’s reservation
level. We call the resulting model the Multi-Objective (MO) model: max{(4.5) :
(4.7), (4.1)-(4.3)}. Notice that by choosing M sufficiently small/negative (4.7) is
non-restrictive and the MO model becomes the ME model. Likewise, by setting M
to the optimal MM objective value, the MO model has the above described two-
stage interpretation and finds the optimal MM solution with maximum expected net
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utility. Hence, the parameter M allows the seller to analyse the trade-off between
maximising expected or worst-case net utility in a multi-objective perspective.

We shall refer to the MM, ME, and MO models as pooling models in general. Our
goal is to analyse these pooling models, determine the optimal solutions analytically,
and apply the results to a concrete contracting problem. In particular, we want
to analytically quantify the effect of pooling the buyer types, the chosen partition
scheme, and the buyer’s reservation level M .

4.1.1 Literature

In the MM model the seller maximises his minimum net utility, which is often called
having a ‘maximin’ objective or being ambiguity averse in the literature. Here, the
minimum is taken over all offered contracts or, equivalently, over all possible realisa-
tions of the buyer’s type. Only the support [

¯
p, p̄] of the distribution ω is needed. This

is an extreme case of recent robust optimisation approaches to mechanism design,
see for example Bergemann and Schlag (2011) and Pinar and Kizilkale (2017). In
these models the minimum is taken over an uncertainty set for ω, e.g., the distri-
bution ω cannot differ too much from a reference distribution. The resulting robust
model is typically less conservative than the classical maximim model. For further
references on using robust optimisation, see Aghassi and Bertsimas (2006), Ben-Tal
et al. (2009), and Bergemann and Morris (2005).

Our pooling approach can be viewed as a different application of robust opti-
misation. Consider the classical discrete variant of the contracting problem (see
for example Laffont and Martimort (2002)). Here, the buyer’s type lies in the set
{p1, . . . , pK} and follows a discrete distribution. If we associate an uncertainty set
[
¯
pk, p̄k] to type pk, then our pooling model is the robust optimisation variant for

the discrete model. By considering a continuum of types [
¯
p, p̄] and using a partition

scheme, we are restricting the uncertainty sets [
¯
pk, p̄k] to form a partition of [

¯
p, p̄].

A property of the pooling approach is to offer finitely many contracts to a con-
tinuum of buyer types. There are to our knowledge two papers in the literature that
are strongly connected to this approach: Bergemann et al. (2011) and Wong (2014).

Bergemann et al. (2011) consider a linear-quadratic model with limited communi-
cation between the seller and the buyer based on Mussa and Rosen (1978). The seller
wants to maximise his expected net utility. The limited communication restricts the
seller to using a menu with finitely many contracts. In contrast to our pooling ap-
proach, they do not partition the types a priori. Instead, their menu maps each
buyer type to one of the K contracts without any restrictions. By reformulating the
problem into a mean square minimisation problem and applying quantisation theory,
they are able to determine the optimal menu of contracts and the corresponding
optimal mapping of buyer types to contracts. In particular, their results show that
the restriction to K contracts leads to a loss in performance of the order Θ(1/K2)
compared to offering infinitely many contracts.

Wong (2014) uses the same modelling approach as Bergemann et al. (2011), but
analyses a more general non-linear pricing problem (again maximising the seller’s
expected net utility). His analysis focuses on the loss in performance when restricting
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to K contracts instead of infinitely many contracts. In particular, he derives the same
Θ(1/K2) loss in performance as Bergemann et al. (2011), but under a more general
setting.

For the ME model we have shown in Chapter 3 that the pooling approach and
those of Bergemann et al. (2011) and Wong (2014) are equivalent provided that we
use the K-partition of [

¯
p, p̄] that maximises the seller’s expected net utility. That is,

both approaches lead to partitioning the buyer types. However, as argued in Wong
(2014) and Chapter 3 determining the optimal K-partition is difficult in general. In
case the optimal partition cannot be derived, the benefit of our pooling approach is
that it allows for heuristic partition schemes in a simple and controlled way. As we
will show, the complexity of the pooling models for a given partition is similar to
classical discrete contracting models.

The previously discussed papers do not consider multi-objective optimisation. In
terms of using a multi-objective approach, Zheng et al. (2015) has to our knowledge
the strongest connection to our work. Zheng et al. (2015) consider a continuum of
types [

¯
p, p̄] and the seller offers a menu with infinitely many contracts, i.e., there is

no a priori pooling. They suppose that the seller is not confident about the proba-
bility distribution ω and model this by a so-called ǫ-contamination: with probability
0 ≤ ǫ ≤ 1 the distribution ω is incorrect and the worst-case outcome of ω occurs.
Consequently, the objective function is the weighted sum of the seller’s expected
net utility and the seller’s minimum net utility. The assumed utility functions are
φS(x) = −cx and φB(x|p) = pχ(x), where χ is a strictly increasing, positive, and
continuously differentiable concave function. Furthermore, the distribution ω has a
non-decreasing hazard rate. They show that for 0 < ǫ < 1 the optimal menu effec-
tively pools the types [

¯
p, p∗(ǫ)] for some

¯
p < p∗(ǫ) < p̄ and offers those types the

same contract. For the types (p∗(ǫ), p̄] infinitely many contracts are offered.
To compare their multi-objective approach to ours, we translate the model of

Zheng et al. (2015) to our pooling setting. For given 0 ≤ ǫ ≤ 1 the resulting model
is to maximise

(1 − ǫ)
∑

k∈K
ωk (φS(xk) + zk) + ǫmin

k∈K
(φS(xk) + zk)

subject to (4.1)-(4.3) with variables x and z. This is equivalent to maximising

(1 − ǫ)
∑

k∈K
ωk (φS(xk) + zk) + ǫM

subject to (4.7) and (4.1)-(4.3) with variables x, z, and M . We refer to this model as
the weighted objective model. Although this model is very similar to our MO model,
there are differences. The most obvious difference is that for ǫ = 1 the weighted
objective model is our MM model, not our MO model (with correctly corresponding
M). In this case, our MO model is a two-stage optimisation model which determines
the optimal MM solution that maximises the seller’s expected net utility. Typically,
the MM model has multiple optimal solutions, whereas the MO model has just one
(as we will show later). Furthermore, the parameter M in the MO model has a
natural interpretation, namely the seller’s reservation level. A similar interpretation
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of ǫ only follows indirectly after solving the weighted objective model and observing
the corresponding optimal M . We will discuss further similarities and differences in
more detail during our analysis.

Besides solving the pooling models for given number of contracts K, partition
scheme, and seller’s reservation level M , we want to quantify the effect of these
choices on the corresponding optimal objective values. Due to the complexity we
focus on a concrete contracting problem for such an analysis: the Linear-Quadratic-
Uniform (LQU) problem adapted from Wong (2014). For the ME model variant of
the LQU problem we also refer to Chapter 3, where we completed the analysis of
Wong (2014). Since the MO model generalises the ME model, our results in this
chapter supersede the mentioned analyses of the LQU problem. Furthermore, we are
able to relate results for the LQU problem to Zheng et al. (2015).

4.1.2 Contribution

We analyse a contracting problem where the seller offers a menu of finitely many
contracts to a buyer with a continuum [

¯
p, p̄] of types. Here, the seller uses a partition

scheme to pool the types a priori. Moreover, we consider a multi-objective approach
for the seller’s objective function which balances expected and worst-case (minimum)
net utility. Compared to the literature, we extend related work by either considering
a multi-objective approach (Bergemann et al. (2011) and Wong (2014)) or by pooling
the buyer types with a partition scheme (Zheng et al. (2015)). Furthermore, there
are differences in the modelling approaches as discussed in Section 4.1.1.

Under commonly used assumptions, we derive tractable reformulations for the
pooling models and determine the optimal menu of contracts. The optimal menus
all turn out to be the maxima of certain modified joint net utility functions. We
apply and extend these results to a concrete contracting problem, namely the LQU
problem. In particular, we derive the optimal partition scheme for the LQU problem
and the corresponding optimal objective values. Consequently, we can analyse various
performance measures that quantify the effect of the number of contracts K offered
and of the seller’s reservation level M . This leads to performance guarantees that
give insight into the trade-off between maximising expected or worst-case net utility.
All results are analytical and expressed in closed-form formulas.

The remainder of this chapter starts with the general analysis of the pooling
models in Section 4.2, followed by the application to the LQU problem in Section 4.3.
We conclude our findings in Section 4.4.

4.2 General analysis

In this section we analyse the three pooling models in detail. First, we present the
essential details of the setting and the three models in Section 4.2.1. In Section 4.2.2
we derive tractable reformulations for the models under a common assumption on
the buyer’s utility function. Finally, we determine the optimal solution of the models
for a broad class of problems in Section 4.2.3. All corresponding proofs are given in
Appendix 4.A.
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4.2.1 The models

As introduced in Section 4.1, we consider a seller with utility function φS : R≥0 → R

and a buyer with utility function φB(·|p) : R≥0 → R for type p ∈ [
¯
p, p̄] ⊆ R. The joint

utility function is denoted by φJ(·|p) ≡ φS(·) + φB(·|p). The buyer’s type follows a
continuous distribution with strictly positive density function ω : [

¯
p, p̄] → R>0. The

seller offers the buyer a menu with a limited number of contracts by pooling the buyer
types a priori. In this menu, the k-th contract (xk, zk) specifies the order quantity
xk ∈ R≥0 and the side payment zk ∈ R from the buyer to the seller. First, the seller
chooses the number of contracts K ∈ N≥1 to offer. Second, the seller partitions [

¯
p, p̄]

into K subintervals [
¯
pk, p̄k] with p̄k >

¯
pk for k ∈ K = {1, . . . ,K}, leading to aggregate

probabilities ωk for k ∈ K given by (4.4). Given this partition/pooling scheme, the
seller constructs a menu of K contracts by solving one of our pooling models: the
MM model max{(4.6) : (4.1)-(4.3)}, the ME model max{(4.5) : (4.1)-(4.3)}, or the
MO model max{(4.5) : (4.7), (4.1)-(4.3)}.

We focus on the MO model:

max
x,z

∑

k∈K
ωk (φS(xk) + zk)

s.t. φS(xk) + zk ≥ M, ∀ k ∈ K, (4.7)

φB(xk|pk) − zk ≥ 0, ∀ pk ∈ [
¯
pk, p̄k], k ∈ K, (4.1)

φB(xk|pk) − zk ≥ φB(xl|pk) − zl, ∀ pk ∈ [
¯
pk, p̄k], k, l ∈ K, (4.2)

xk ≥ 0, ∀ k ∈ K. (4.3)

The MO model maximises the seller’s expected net utility under individual rationality
constraints for the seller (4.7) and the buyer (4.1), and under incentive compatibility
constraints (4.2). Note that the buyer’s reservation level in (4.1) is assumed to be
zero, whereas the seller’s reservation level M ∈ R in (4.7) is set by the seller. With
the parameter M the seller can balance his expected net utility with his minimum
net utility. In particular, by an appropriate choice of M we can solve the ME or
MM model with the MO model. That is, if we increase M then the optimal solution
transitions from an optimal ME solution to an optimal MM solution. As a final note,
if M is too large, then the MO model is infeasible. These insights will be made more
concrete in the following analysis.

4.2.2 Tractable reformulation

In order to obtain tractable reformulations of our models and the results to come, we
need to assume additional structure on the buyer’s utility function. Assumption 4.1
states that φB is non-decreasing in the buyer’s type and satisfies the strictly increasing
differences property.

Assumption 4.1. The buyer’s utility function φB satisfies the following properties:

φB(x|λ) ≤ φB(x|µ) ∀λ ≤ µ ∈ R, x ≥ 0, (4.8)

φB(x′|λ) − φB(x|λ) < φB(x′|µ) − φB(x|µ) ∀λ < µ ∈ R, 0 ≤ x < x′. (4.9)
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Note that we implicitly assume that φB(·|λ) is defined for all λ ∈ R, not just for
[
¯
p, p̄]. However, it follows from the proofs that we only need to consider 2K instance-

dependent values for λ. Assumption 4.1, or the stronger single-crossing condition, is
common in the mechanism design literature and leads to non-decreasingness in the
order quantities with respect to the buyer’s type (see also Edlin and Shannon (1998),
Laffont and Martimort (2002), and Schottmüller (2015)). This is also the case for
the pooling models, as shown in Lemma 4.1.

Lemma 4.1. Under Assumption 4.1, any x satisfies (4.1)-(4.3) if and only if 0 ≤
x1 ≤ · · · ≤ xK .

Furthermore, for fixed order quantities x, the IR and IC constraints (4.1) and
(4.2) imply a dual shortest path problem structure on the side payments z. For
non-pooling models this has been identified before, see for example Rochet and Stole
(2003) and Vohra (2012). For our pooling models, the side payments are even more
restricted, leading to the optimal formulas for z given in Lemma 4.2. In fact, we only
need to assume (4.8) for this result, but we have chosen to merge certain assumptions
for readability.

Lemma 4.2. Consider the ME, MM, or MO model under Assumption 4.1. It is
necessary and sufficient for optimality to set

zk = φB(xk|
¯
pk) −

k−1∑

i=1

(
φB(xi|p̄i) − φB(xi|

¯
pi)
)

∀ k ∈ K. (4.10)

With Lemma 4.2 we can eliminate the side payments from our models. Using
Lemma 4.1 we can then simplify the constraints from infinitely many to K linear
constraints. This results in the tractable reformulations as shown in Theorem 4.3.
Recall that φJ(·|p) is the joint utility function with respect to type p.

Theorem 4.3. Under Assumption 4.1, the ME model is equivalent to

max
0≤x1≤···≤xK

∑

k∈K
ωk

(

φJ(xk|
¯
pk) −

(
φB(xk|p̄k) − φB(xk|

¯
pk)
)

K∑

i=k+1

ωi

ωk

)

, (4.11)

the MM model to

max
0≤x1≤···≤xK

min
k∈K

(

φJ(xk|
¯
pk) −

k−1∑

i=1

(
φB(xi|p̄i) − φB(xi|

¯
pi)
)

)

, (4.12)

and the MO model to

max
x

∑

k∈K
ωk

(

φJ(xk|
¯
pk) −

(
φB(xk|p̄k) − φB(xk|

¯
pk)
)

K∑

i=k+1

ωi

ωk

)

(4.13)

s.t. φJ(xk|
¯
pk) −

k−1∑

i=1

(
φB(xi|p̄i) − φB(xi|

¯
pi)
)

≥ M, ∀ k ∈ K, (4.14)

xK ≥ · · · ≥ x1 ≥ 0. (4.15)
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From the reformulations it is clear that the complexity of solving our pooling
models depends on the shape of φJ(·|

¯
pk) and of φB(·|p̄k) − φB(·|

¯
pk) for k ∈ K. For

example, if φJ(·|
¯
pk) is differentiable and concave, and if φB(·|p̄k) −φB(·|

¯
pk) is linear,

then all three models are concave optimisation problems with differential functions,
which can be solved numerically in an efficient way. We focus on classifying problems
for which the optimal solutions can be described in a unified way.

4.2.3 Optimal solutions

The next assumption excludes situations where the seller could potentially achieve
infinite utility from the menu of contracts, see Assumption 4.2.

Assumption 4.2. For any λ ∈ R the joint utility function φJ(·|λ) has a maximum
on R≥0 and on any closed subinterval of R≥0.

In Assumption 4.2, the existence of a maximum on any closed subinterval of
R≥0 is needed because of a technicality (see the proof of Lemma 4.4 to come). In
particular, Assumption 4.2 is satisfied if φS and φB are continuous functions in the
order quantity.

The maximum of φJ(·|λ) for specific values of λ has a central role in the optimal
solutions for our models. Therefore, we have an intermediate result on the maximisers
of φJ(·|λ), see Lemma 4.4.

Lemma 4.4. Under Assumptions 4.1-4.2, there exists a non-decreasing function
M∗ : R → R such that

M∗(λ) ≡ max
x≥0

{φJ(x|λ)}.

For M ≤ M∗(
¯
p), there exists a non-decreasing function x∗(·|M) : R → R≥0 such

that

x∗(λ|M) ≡ min argmax
x≥xM

{φJ(x|λ)},

where xM ∈ R≥0 is given by xM ≡ min
{
x ≥ 0 : φJ(x|

¯
p) ≥ M

}
.

Recall that the seller’s reservation level M only affects the MO model. For the
MM and ME models, we can implicitly use an non-restrictive value for M , namely
M = −∞. For M = −∞ we have xM = 0, hence x∗(λ|M) optimises over the
entire domain x ≥ 0. In this case we simplify our notation and use x∗(λ) instead
of x∗(λ| − ∞). We can now express the optimal solution for the MM model, see
Theorem 4.5.

Theorem 4.5. Under Assumptions 4.1-4.2, the optimal objective value for the MM
model is M∗(

¯
p), which can be attained by offering a menu with a single contract with

order quantity x∗(
¯
p). Note that this does not depend on the partition of [

¯
p, p̄]. Another

optimal solution is xk = x∗(
¯
pk) for k ∈ K, which does depend on the partition.
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A consequence of Theorem 4.5 is that the complexity of solving the MM model
is completely determined by the complexity of maximising φJ(x|

¯
p) over x ≥ 0. For

a similar result for the ME and MO models, we need the assumption that each k-th
term in the objective function can be written as φJ(xk|λk) for some λk non-decreasing
in k. This assumption is formalised in Assumption 4.3.

Assumption 4.3. The density function ω and the buyer’s utility function φB are
such that there exist parameters πk ∈ R for k ∈ K satisfying π1 ≤ · · · ≤ πK and

φB(x|πk) = φB(x|
¯
pk) −

(
φB(x|p̄k) − φB(x|

¯
pk)
)

K∑

i=k+1

ωi

ωk
∀x ≥ 0, k ∈ K. (4.16)

The parameters πk are strongly related to the virtual valuation of the buyer types
(see e.g. Laffont and Martimort (2002)). Under Assumptions 4.1 and 4.3 it is trivial
to show that πk <

¯
pk for all k ∈ K \{K} and πK ≤

¯
pK (see the proof of Theorem 4.7

to come). In Appendix 4.B we present an example problem class for which we prove
that it satisfies Assumption 4.3 and provide a closed-form expression for πk. In the
example, the buyer’s utility function is φB(x|p) = ψ(x) + pχ(x) for some functions ψ
and χ, where χ is strictly increasing and non-negative. Furthermore, ω is a continuous
distribution with a non-decreasing hazard rate, e.g., the uniform distribution.

Under the additional assumption, we can derive the optimal solution for the ME
model as shown in Theorem 4.6.

Theorem 4.6. Under Assumptions 4.1-4.3, an optimal solution for the ME model
is xk = x∗(πk) for k ∈ K.

Compared to the MM model, where an optimal solution is given by the maximisers
of φJ(·|

¯
pk) for k ∈ K, an optimal ME solution is specified by the maximisers of

φJ(·|πk). In other words, we need to shift the buyer types downwards from
¯
pk to πk.

Last but not least, we have the optimal solution for the MO model. The MO
model maximises the seller’s expected net utility under the constraint that the seller’s
minimum net utility is at least his reservation level M . From Theorem 4.5 we know
that the minimum net utility is at most M∗(

¯
p), being the optimal objective value of

the MM model. Therefore, any seller’s reservation level M ≤ M∗(
¯
p) can be satisfied

and any M > M∗(
¯
p) is infeasible. Theorem 4.7 states the optimal MO solution.

Theorem 4.7. Under Assumptions 4.1-4.3, the MO model is feasible if and only if
M ≤ M∗(

¯
p), and an optimal solution for the MO model is xk = x∗(πk|M) for k ∈ K.

In particular, if the seller sets M = M∗(
¯
p), then the MO model is a two-stage

optimisation which maximises first the seller’s minimum net utility and second the
seller’s expected net utility. Hence, under Assumptions 4.1-4.3 we have identified a
third optimal MM solution. This leads to the next straightforward corollary.

Corollary 4.8. Under Assumptions 4.1-4.3, if for each k ∈ K the function

φJ(xk|
¯
pk) −

k−1∑

i=1

(
φB(xi|p̄i) − φB(xi|

¯
pi)
)
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is concave on xK ≥ · · · ≥ x1 ≥ 0, then any convex combination of

xk = x∗(
¯
p) ∀ k ∈ K,

xk = x∗(
¯
pk) ∀ k ∈ K,

xk = x∗(πk|M∗(
¯
p)) ∀ k ∈ K,

is an optimal solution for the MM model.

Returning to Theorem 4.7, if φJ(·|λ) is concave, then the optimal MO solution
can be found in two steps as follows. First, determine the optimal ME solution
by using the shifted buyer types πk, resulting in xk = x∗(πk) for k ∈ K. Second,
set any xk < xM to the threshold order quantity xM in order to guarantee the
seller’s reservation level M . Zheng et al. (2015) derive a similar solution structure
for their concave setting with infinitely many contracts, where the types [

¯
p, p∗] for

some
¯
p < p∗ < p̄ are offered the same contract (like xM in our case). Returning to

our result, the threshold xM could lead to additional pooling of types as multiple
contracts can specify the order quantity xM . This implies that the original partition
of [

¯
p, p̄] can be improved to increase the seller’s expected net utility.
This brings us to one of the decisions the seller has to make: the partition of

[
¯
p, p̄]. Based on our results, we have the following strategy for the seller. First, the

seller must determine the optimal MM objective value M∗(
¯
p), which is independent

of the partition. Second, he must decide on his reservation level M ≤ M∗(
¯
p). Third,

he chooses the number of contracts K offered. Finally, the seller selects a partition
and uses the above results to determine an optimal menu of contracts for the MO
model.

Ideally, the seller optimises the partition such that his expected net utility is
maximised. Unfortunately, such optimisation appears to be difficult in general. Given
the complexity of the analysis, we focus on the so-called linear-quadratic-uniform
problem adapted from Wong (2014). In Section 4.3 we derive the optimal partition
and analyse performance guarantees for this specific problem.

4.3 Application to the LQU problem

In this section, we apply the results of Section 4.2 to a concrete contracting problem,
called the Linear-Quadratic-Uniform (LQU) problem. We formalise the LQU prob-
lem in Section 4.3.1 and translate our general results from Section 4.2 to this setting
in Section 4.3.2. In Sections 4.3.3-4.3.5 we continue the analysis, derive the optimal
partition, and determine performance guarantees when using the optimal partition.
All corresponding proofs are given in Appendix 4.C.

4.3.1 The linear-quadratic-uniform problem

In the Linear-Quadratic-Uniform (LQU) problem, the seller’s utility function is linear
in the order quantity: φS(x) = Px, where P ∈ R>0 is the seller’s utility per unit of
sold product. The buyer’s utility function is characterised by a saturation effect: the
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marginal utility of buying an additional product decreases linearly. That is, for order
quantity x ∈ R≥0 the buyer’s marginal utility of an additional product is p − rx.
Here, p ∈ [

¯
p, p̄] ⊆ R>0 with p̄ >

¯
p is the buyer’s (private) type and r ∈ R>0 is

a saturation rate parameter. Note that p is strictly positive. The buyer’s type is
assumed to have a uniform distribution, i.e., ω(p) = 1/(p̄ −

¯
p). Consequently, the

buyer’s utility function is

φB(x|p) =

∫ x

0

(p− ru)du = px− 1
2rx

2.

Notice that for large order quantities the buyer’s utility is negative, which models for
example that excess products must be disposed of at a cost. Furthermore, ordering
no products leads to zero utility for the buyer, which is his reservation level.

The pooling of contracts for the LQU problem has been analysed in Wong (2014)
and under the name DMU-1 in Chapter 3, both with the goal to maximise the seller’s
expected net utility (the ME model). As mentioned in Section 4.1, we extend the
analysis to the MO model, with which we can balance the maximisation of the seller’s
worst-case and expected net utility.

4.3.2 Optimal solutions

It is straightforward to verify that the LQU problem satisfies Assumptions 4.1-4.3 of
Section 4.2. In particular, since ω is the uniform density function we have

ωk =
p̄k −

¯
pk

p̄−
¯
p
,

and therefore (4.16) of Assumption 4.3 simplifies to

πkx− 1
2rx

2 =
¯
pkx− 1

2rx
2 − (p̄k −

¯
pk)x

K∑

i=k+1

p̄i −
¯
pi

p̄k −
¯
pk

= (p̄k +
¯
pk − p̄)x− 1

2rx
2.

Hence, the parameters πk are

πk = p̄k +
¯
pk − p̄ ∀ k ∈ K,

which satisfy π1 ≤ · · · ≤ πK and πk ≤
¯
pk for all k ∈ K. In contrast to the buyer’s

type p the parameter πk can be negative for some k ∈ K, depending on the instance
parameters and the partition.

Since φJ(x|λ) = (P + λ)x− 1
2rx

2, the function M∗ stated in Lemma 4.4 is

M∗(λ) =

{
1

2r (P + λ)2 if P + λ ≥ 0

0 otherwise
.

For the MO model, we need to realise that for a non-negative seller’s reservation
level (M ≤ 0) the seller’s IR constraints (4.14) are non-restrictive. This follows
from Theorem 4.7 and the definition of x∗(·|M) in Lemma 4.4. More precisely, since



124 Chapter 4

φJ(0|
¯
p) = 0 we have xM = 0 for M ≤ 0 and hence the optimal MO solution is the

optimal ME solution. To conclude, the only proper values for M for the MO model
are 0 ≤ M ≤ M∗(

¯
p).

Therefore, we only consider M = βM∗(
¯
p) for some β ∈ [0, 1]. For notational

convenience, we often switch from M to β. We define xβ ≡ xβM∗(
¯
p) and x∗(·|β) ≡

x∗(·|βM∗(
¯
p)), resulting in

xβ = min
{
x ≥ 0 : φJ(x|

¯
p) ≥ βM∗(

¯
p)
}

= min
{
x ≥ 0 : (P +

¯
p)x− 1

2rx
2 ≥ β 1

2r (P +
¯
p)2
}

= 1
r (1 −

√

1 − β)(P +
¯
p) ∈ [0, 1

r (P +
¯
p)].

Thus, the function x∗ stated in Lemma 4.4 is

x∗(λ|β) = 1
r max

{

(1 −
√

1 − β)(P +
¯
p), P + λ

}

. (4.17)

In Corollary 4.9 we collect and translate the results of Theorems 4.5, 4.6, and 4.7
for the LQU problem.

Corollary 4.9. For the MM-LQU model, any convex combination of

xk = 1
r (P +

¯
p) ∀ k ∈ K,

xk = 1
r (P +

¯
pk) ∀ k ∈ K,

xk = 1
r max

{
P +

¯
p, P − p̄+ p̄k +

¯
pk

}
∀ k ∈ K,

is an optimal solution. For the ME-LQU model, the only optimal solution is

xk = 1
r max

{
0, P − p̄+ p̄k +

¯
pk

}
∀ k ∈ K. (4.18)

For the MO-LQU model and M = βM∗(
¯
p) for some β ∈ [0, 1], the only optimal

solution is

xk = 1
r max

{

(1 −
√

1 − β)(P +
¯
p), P − p̄+ p̄k +

¯
pk

}

∀ k ∈ K. (4.19)

Note that the optimal solutions for the ME and MO models are unique due to
the strict concavity of φJ(·|λ) (the details are given in the proof of Corollary 4.9).
Furthermore, for certain instances the optimal ME solution (4.18) results in no trade
with a range of buyer types (those for which P − p̄ + p̄k +

¯
pk ≤ 0). Consequently,

the seller’s worst-case net utility is zero for such instances. It might be preferable
to always trade with a potential buyer to at least make some revenue, even if this
results in a potentially lower expected net utility. This is exactly what happens with
the optimal MO solution (4.19) for β > 0: the optimal MO menu always instigates
trade with the buyer if β > 0. A similar result is observed in Zheng et al. (2015) for
their concave setting with infinitely many contracts.

We can use Corollary 4.9 to illustrate a difference between the approach of Zheng
et al. (2015) and our MO model. If we translate the results of Zheng et al. (2015)
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to our pooling setting, their multi-objective approach could lead to a discontinuity
at β = 1 (the equivalent to their ǫ = 1) in xk as function of β. This is due to the
fact that their approach leads to the MM model if β = 1, which has multiple optimal
solutions, as seen in Corollary 4.9. In contrast, the MO solution is always unique
and continuous in β.

Finally, for β = 0 the optimal MO solution is the optimal ME solution. Similarly,
for β = 1 the optimal MO solution is the (unique) optimal MM solution that also
maximises the seller’s expected net utility as a two-stage optimisation process. For
this reason, we focus completely on the MO model in the results to come.

4.3.3 Normalising the objective function

To construct an optimal menu of contracts, the seller has to decide on his reservation
level M (or equivalently β), the number of contracts K offered, and the partition of
the buyer types. To quantify the effect of these decisions, we need to express the
optimal objective function value in terms of the stated decisions. We can simply
substitute (4.19) in the objective function (4.13), but it turns out to be useful to
normalise various parameters as follows. First, we redefine the partition as

¯
pk =

¯
p+ δk−1(p̄−

¯
p) and p̄k =

¯
p+ δk(p̄−

¯
p),

where δ0 = 0, δk ∈ [0, 1] for k = 1, . . . ,K − 1, and δK = 1. For a proper K-partition,
we have 0 = δ0 < · · · < δK = 1. Consequently, ωk = δk − δk−1. Second, we introduce
the normalisation factor ν and the aggregate instance parameter α:

ν =
2r

(p̄−
¯
p)2

> 0 and α =
p̄−

¯
p

P +
¯
p
> 0.

As we will show, the (relative) performance measures of interest can be expressed
completely in terms of α, β, and δk (k ∈ K). The normalisation factor ν is used to
simplify the expressions and cancels out in relative measures.

Let ΓK be the optimal MO objective value when using a proper K-partition, i.e.,
using (4.19). We can express the normalised optimal MO objective value νΓK in
terms of the introduced normalised/aggregate parameters, see Lemma 4.10.

Lemma 4.10. For any proper K-partition the normalised optimal MO-LQU objec-
tive value is given by

νΓK =

kβ

∑

k=1

(δk − δk−1)
(

β
α2 + 2(δk + δk−1 − 1)(1 −

√

1 − β) 1
α

)

+

K∑

k=kβ+1

(δk − δk−1)
(

1
α + δk + δk−1 − 1

)2
, (4.20)

where kβ is the largest index affected by the seller’s reservation level:

kβ = max
{

0,max
{

k ∈ K : δk + δk−1 < 1 − 1
α

√

1 − β
}}

.
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Notice that kβ < K, since δK = 1. Furthermore, for instances with α ∈
(0,

√
1 − β] ⊆ (0, 1] we have kβ = 0, implying that the seller’s reservation level is

non-restrictive for all contracts.
Two extreme cases are νΓ1 = α−2 and the limit of νΓK for K → ∞ using any

sensible partition (such as δk = k/K):

νΓ∞ =

∫ δβ

0

(
β

α2 + (4δ − 2)(1 −
√

1 − β) 1
α

)

dδ +

∫ 1

δβ

(
1
α + 2δ − 1

)2
dδ,

where δβ corresponds to the limit of kβ :

δβ = max
{

0, 1
2 (1 − 1

α

√

1 − β)
}

.

Hence, we get

νΓ∞ =

{
1

α2 + 1
3 if α ≤

√
1 − β

β
α2 + 1

6 (1 + 1
α

√
1 − β)3 if α >

√
1 − β

. (4.21)

Notice that Γ∞ is independent of the partition, as should be the case since we
are effectively offering infinitely many contracts. Trivially, we have ΓK ≤ Γ∞ for
any α, β, K, and partition. Hence, we can use Γ∞ as a benchmark to evaluate
the performance of the chosen partition scheme. Recalling the objective of the MO
model, a natural choice for the partition is the one which maximises the seller’s
expected net utility ΓK . For the LQU problem we are able to determine this optimal
partition, as we will show in the next section.

4.3.4 Optimal partition

The goal of this section is to determine closed-form formulas for the partition that
maximises ΓK (or equivalently νΓK) for a given α, β, and K. As mentioned in Wong
(2014) and Chapter 3, it seems to be difficult to determine such closed-form formulas
in general, either due to complex system of equations needed to be solved or due to
the existence of multiple local optima. However, the structure of the LQU problem
allows us to determine closed-form formulas for the optimal partition.

First, we prove that offering the same contract multiple times is suboptimal and
that we should use all available contracts. This is intuitively clear, but formalised in
Lemma 4.11.

Lemma 4.11. The optimal MO-LQU partition satisfies kβ ∈ {0, 1} and 0 = δ0 <
δ1 < · · · < δK−1 < δK = 1.

Lemma 4.11 greatly restricts the value of kβ when determining the optimal parti-
tion, making the analysis manageable. We can now derive the optimal MO partition,
see Theorem 4.12.
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Theorem 4.12. For 0 < α ≤ K
K−1

√
1 − β the optimal MO-LQU partition satisfies

kβ = 0 and is the equidistant partition:

δopt
k = k

K ∀ k ∈ K.

For α > K
K−1

√
1 − β the optimal MO-LQU partition satisfies kβ = 1 and is

δopt
k = 1 − K−k

2K−1 (1 + 1
α

√

1 − β) ∀ k ∈ K.

In particular, for β = 1 the equidistant partition is suboptimal for all α > 0.

Sketch of the proof. Since kβ ∈ {0, 1} by Lemma 4.11 we only need to consider two
variants for the formula of νΓK . For each variant we set the gradient to zero, leading
to systems of linear equations after simplification, and determine the corresponding
maximiser. The maximiser must be in line with the considered value of kβ , resulting
in a specification of a valid range of instances: either 0 < α ≤ K

K−1

√
1 − β or

α > K
K−1

√
1 − β. These ranges are disjoint and capture all instances α > 0, which

completes the proof.

The result in Theorem 4.12 (and its proof) is a generalisation of the derived opti-
mal partition in Chapter 3. A remarkable property is that the equidistant partition
is optimal for a range of instances, as specified by the relation between α, β, and K.
This range of instances increases if β decreases (by lowering the seller’s reservation
level) or if K decreases (by offering less contracts). Moreover, if the equidistant par-
tition is not optimal, then the optimal partition can be found by increasing δ1 and
partitioning the remaining subinterval [δ1, 1] equidistantly for δ2, . . . , δK−1.

When using the optimal partition the expression for νΓK (4.20) can be simplified
to a similar expression as (4.21). This is shown in Corollary 4.13.

Corollary 4.13. For the optimal partition the normalised optimal MO-LQU objec-
tive value (4.20) is

νΓopt
K =

{
1

α2 + 1
3

(
1 − 1

K2

)
if α ≤ K

K−1

√
1 − β

β
α2 + 2

3
K(K−1)
(2K−1)2 (1 + 1

α

√
1 − β)3 if α > K

K−1

√
1 − β

. (4.22)

Notice that (4.22) clearly converges to (4.21) if K → ∞, as should be the case.
Also, on certain intervals νΓopt

K and νΓ∞ either differ by a constant −1/(3K2) or by
a factor 4K(K − 1)/(2K − 1)2 in the cubic term. In the next section, we analyse
the relative difference between Γopt

K and Γ∞ in more detail to obtain performance
guarantees.

4.3.5 Performance guarantees

In this section we analyse the performance of the optimal menu of contracts when
using the optimal partition. We consider two performance measures: the pooling
performance (Section 4.3.5.1) and the reservation level performance (Section 4.3.5.2).
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Both measure the effectiveness of pooling the buyer types compared to offering in-
finitely many contracts in their own way. In particular, the first measure is useful
when the seller’s reservation level cannot be adjusted, whereas the second is insightful
when the seller’s reservation level is a decision variable.

4.3.5.1 Pooling performance

The pooling performance Γopt
K /Γ∞ is the fraction of the seller’s expected net util-

ity attained by offering K contracts instead of infinitely many contracts. Here, the
seller uses the optimal menu of contracts and the optimal partition, as derived in Sec-
tions 4.3.2 and 4.3.4. In other words, it measures how much is lost due to the pooling
of the buyer types by offering a limited number of contracts. Note that the seller’s
reservation level M (or β) must always be satisfied by both menus corresponding to
Γopt

K and Γ∞.
In Figure 4.1 we illustrate the attained pooling performance for two example

instances in terms of β and K. Here, we use α = 2 and α = 9
4 + 3

4

√
5 ≈ 3.927. We

have chosen for α = 2 because this is the threshold value in (4.22) for K = 2 and
β = 0. The reason for the other chosen instance will be given in the next section. We
observe in Figure 4.1 that for β = 0 the pooling performances are 88% (K = 2) and
96% (K = 3) for both instances. As β increases the pooling performance increases.
However, the rate of increase differs significantly between K = 2 and K = 3, and
between the two instances. Finally, notice that for fixed K ∈ {2, 3} and for any
0 < β ≤ 1 the pooling performance is higher for α = 2 than for the other instance.

Figure 4.1: Pooling performance for the MO-LQU model with the optimal partition,
where α is fixed to α1 = 2 or α2 = 9

4 + 3
4

√
5.

By analysing expressions (4.21) and (4.22) for Γ∞ and Γopt
K , respectively, we can

generalise the above observations. Furthermore, we are able to derive guarantees for
the pooling performance, see Theorem 4.14.
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Theorem 4.14. For the optimal partition the MO-LQU pooling performance Γopt
K /Γ∞

is continuous and non-increasing in α, and continuous and non-decreasing in β. In
particular, we have the tight pooling performance guarantee

Γopt
K

Γ∞
≥ 4K(K − 1)

(2K − 1)2
∀α > 0, 0 ≤ β ≤ 1. (4.23)

Sketch of the proof. The idea is to consider all cases that occur based on (4.21) and
(4.22). Analysing the closed-form and manageable formula for each case leads to the
following insights.

• For K = 1 we have d
dα

Γ1

Γ∞

< 0 for all α > 0.

• For K > 1 we have

– if β = 0: d
dα

Γopt

K

Γ∞

< 0 for 0 < α < K
K−1 and d

dα

Γopt

K

Γ∞

= 0 for α ≥ K
K−1 ,

– if 0 < β ≤ 1: d
dα

Γopt

K

Γ∞

< 0 for all α > 0.

• We have d
dβ

Γopt

K

Γ∞

= 0 for 0 < α ≤
√

1 − β and d
dβ

Γopt

K

Γ∞

> 0 for α >
√

1 − β.

Hence, for any 0 ≤ β ≤ 1 we obtain a tight pooling performance guarantee by taking
the limit α → ∞, resulting in (4.23). The full proof is given in Appendix 4.C.

In Figure 4.2 we show the attained pooling performance for various choices of α,
β, and K. The aggregate instance parameter α increases when the seller’s utility
per unit of sold product P decreases or when the buyer’s type interval [

¯
p, p̄] widens

(under certain conditions). We can interpret the first case (decreasing P ) as a higher
investment risk in products, since a product provides less utility. The second case
(widening [

¯
p, p̄]) can be interpreted as an increase in uncertainty on the buyer’s

identity. Hence, Theorem 4.14 implies that an increase in investment risk or in the
uncertainty on the buyer’s identity has a negative effect on the pooling performance.

In contrast, increasing the seller’s reservation level (encoded in β) has a positive
effect on the pooling performance, provided that the seller’s reservation level is re-
strictive (α >

√
1 − β). However, if we want to give a guarantee for the pooling

performance that holds for any instance, then this positive effect has no influence.
In fact, the seller’s reservation level does not affect the pooling performance guaran-
tee. This follows from the proof of Theorem 4.14, where we show that the guarantee
(4.23) is tight for any 0 ≤ β ≤ 1. Table 4.1 shows the values of this guarantee for
K = 1, . . . , 5.

From Figure 4.2 and Table 4.1 we can conclude that the seller should not offer
a single contract due to poor pooling performance in general. In contrast, offering
two contracts already leads to a pooling performance guarantee of 88% and offering
three contracts results in 96%. Recall that for β = 0 the MO model is equivalent to
the ME model. Therefore, the bounds for β = 0 correspond to the results in Wong
(2014) and Chapter 3. Our analysis shows that the same bounds hold for the MO
model for any 0 ≤ β ≤ 1. Thus, the pooling of buyer types leads to a simpler menu of
contracts and can be done with a controllable loss in the seller’s expected net utility.
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Figure 4.2: Attained pooling performance
Γopt

K /Γ∞ for the MO-LQU model with the
optimal partition.

K Tight lower bound

for Γopt
K /Γ∞

1 0
2 0.888
3 0.960
4 0.979
5 0.987
∞ 1

Table 4.1: Pooling performance
guarantees for the MO-LQU
model with the optimal partition.

4.3.5.2 Reservation level performance

The reservation level performance Γopt
K /Γβ=0

∞ is similar to the pooling performance,
except that the used benchmark Γβ=0

∞ disregards the seller’s reservation level. That
is, the numerator Γopt

K depends on β as before, but the denominator Γβ=0
∞ always

uses β = 0. In particular, Γβ=0
∞ is the seller’s maximum attainable expected net

utility over all β and K. We can use the reservation level performance to quantify
how much expected net utility is lost by the seller’s reservation level, again in terms
of the number of contracts offered.

We first consider the attained reservation level performance for two example in-
stances, see Figure 4.3. As before, we use α = 2 and α = 9

4 + 3
4

√
5 ≈ 3.927. Realise

that for β = 0 the reservation level performance and the pooling performance are
the same. In contrast to the pooling performance, the reservation level performance
decreases when β increases, as seen in Figure 4.3. We observe that for α = 2 the
performance is less sensitive to changes in β for low values of β compared to the
other instance. For both instances there is a steep decrease in performance when β
approaches 1, i.e., when the seller fully considers his worst-case utility.

Similar to Theorem 4.14, we are able to generalise the above observations and
determine guarantees for the reservation level performance. These results are shown
in Theorem 4.15, where the term ‘unimodal’ refers to being non-increasing at first
and then non-decreasing.
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Figure 4.3: Reservation level performance for the MO-LQU model with the optimal
partition, where α is fixed to α1 = 2 or α2 = 9

4 + 3
4

√
5.

Theorem 4.15. For the optimal partition the MO-LQU reservation level perfor-
mance Γopt

K /Γβ=0
∞ is continuous and unimodal in α, and continuous and non-increasing

in β. In particular, we have the tight reservation level performance guarantee

Γopt
K

Γβ=0
∞

≥ 8K(K − 1)
(
4K(K − 1) + (2K − 1)

√
2K2 − 2K + 1 + 1

)

(
6K(K − 1) + (2K − 1)

√
2K2 − 2K + 1 + 1

)2 (4.24)

for all α > 0 and 0 ≤ β ≤ 1.

Sketch of the proof. We need to consider all cases that occur based on (4.21) and
(4.22). By analysing each case, we obtain the following results.

• For K = 1 we have d
dα

Γ1

Γβ=0
∞

< 0 and d
dβ

Γ1

Γβ=0
∞

= 0 for all α > 0.

• For K > 1 we have

– if β = 0: d
dα

Γopt

K

Γβ=0
∞

< 0 for 0 < α < K
K−1 and d

dα

Γopt

K

Γβ=0
∞

= 0 for α ≥ K
K−1 ,

– if 0 < β ≤ 1: d
dα

Γopt

K

Γβ=0
∞

< 0 for 0 < α < α∗, d
dα

Γopt

K

Γβ=0
∞

= 0 for α = α∗, and

d
dα

Γopt

K

Γβ=0
∞

> 0 for α > α∗,

– d
dβ

Γopt

K

Γβ=0
∞

= 0 for 0 < α ≤ K
K−1

√
1 − β and d

dβ

Γopt

K

Γβ=0
∞

< 0 for α > K
K−1

√
1 − β.

Here, the minimiser α∗ is defined for K > 1 and 0 < β ≤ 1 by

α∗ = 1 +
(2K(K − 1) + 1)β + (2K − 1)

√

β
(
2K(K − 1)(1 −

√
1 − β) + β

)

2K(K − 1)(1 −
√

1 − β)
, (4.25)
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which satisfies α∗ > 1 and α∗ > K
K−1

√
1 − β if it exists.

Therefore, the reservation level performance guarantee is zero for K = 1 and for
K > 1 it follows by taking β = 1 and evaluating the performance for α = α∗. The
full proof is given in Appendix 4.C.

Note that in Figures 4.1 and 4.3 the example instance with α = 9
4 + 3

4

√
5 cor-

responds to the minimiser (4.25) for K = 2 and β = 1. The attained reservation
level performance for various choices of α, β, and K is depicted in Figure 4.4. For
β = 0 the reservation level performance and the pooling performance are equivalent
(see also Figure 4.2). For 0 < β ≤ 1 there is a unique minimiser for the reservation
level performance, namely α∗ stated in (4.25). Hence, for any given β we can easily
determine the minimum reservation level performance. We omit the verbose exact
expressions, simply use (4.21), (4.22), and (4.25). Instead, we depict the resulting
minima in Figure 4.5, which are tight reservation level performance guarantees for
each 0 ≤ β ≤ 1.

In Figure 4.5 the values for β = 0 correspond to (4.23) and the values for β = 1 to
(4.24). As seen in Figure 4.5, the reservation level performance guarantee decreases
more rapidly for larger values of β. These guarantees are also given in Table 4.2
for certain choices of K and β. For example, increasing β from 0 to 3

4 leads to
approximately the same percentage point decrease in the guarantee as increasing β
from 9

10 to 1. Furthermore, notice that even with infinitely many contracts (K = ∞)
it is not always possible to obtain full reservation level performance. If we let K → ∞,
then the bound in (4.24) is

8+4
√

2
11+6

√
2

≈ 0.7009.

In other words, with infinitely many contracts the seller obtains at least 70% of the
maximum expected net utility if he first maximises his worst-case net utility (β = 1)
and this bound can be attained depending on the instance. Similarly, when using
two (three) contracts, the seller achieves at least 64% (68%) when first maximising
his worst-case net utility, and these bounds can be attained (see Table 4.2). Lowering
the seller’s reservation level raises these guarantees. For example, for β = 1

2 these
are 83%, 89%, and 92% for K equal to 2, 3, and ∞, respectively.

Overall, we conclude that the seller’s reservation level has a significant impact on
the seller’s expected net utility, irrespective of the number of contracts offered. In
terms of pooling performance, increasing the seller’s reservation level has a positive
effect, whereas it has a negative effect in terms of the reservation level performance.
In any case, the seller should always offer at least two contracts in order to have a
reasonable reservation level performance guarantee.
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Figure 4.4: Attained reservation level
performance Γopt

K /Γβ=0
∞ for the MO-

LQU model with the optimal partition.

Figure 4.5: Tight reservation level per-
formance guarantees in terms of β for
the MO-LQU model with the optimal
partition.

K Tight lower bound for Γopt
K /Γβ=0

∞
β = 0 β = 1

2 β = 3
4 β = 9

10 β = 1

1 0 0 0 0 0
2 0.888 0.834 0.788 0.742 0.647
3 0.960 0.895 0.842 0.790 0.682
4 0.979 0.912 0.857 0.802 0.691
5 0.987 0.919 0.863 0.808 0.695
∞ 1 0.929 0.872 0.816 0.700

Table 4.2: Reservation level performance guarantees for the MO-LQU model with
the optimal partition.

4.4 Concluding remarks

When faced with a continuum [
¯
p, p̄] of buyer types, the seller can pool the buyer types

to obtain a simpler menu of finitely many contracts. We analysed a pooling approach
where the seller partitions the set of types [

¯
p, p̄] a priori into K ∈ N≥1 subintervals

[
¯
pk, p̄k] for k ∈ {1, . . . ,K}. The resulting menu consists ofK contracts and is designed

such that the types in the k-th subinterval [
¯
pk, p̄k] choose the k-th contract in the

menu. In addition to pooling, we considered multiple objective functions for the
seller: he maximises either his minimum net utility, his expected net utility, or a
combination of both (resulting in a multi-objective approach). We modelled the
multi-objective approach by maximising the seller’s expected net utility under the
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additional constraint that his minimum net utility must be at least his reservation
level. Here, the seller’s reservation level is an additional model parameter decided by
the seller.

Our analysis shows that under commonly used assumptions the three considered
pooling models have tractable reformulations and that the optimal menus are maxima
of certain modified joint net utility functions. In particular, the maximum obtainable
minimum net utility is the maximum joint net utility with respect to the lowest
buyer type

¯
p. Using this property, the seller can fine-tune his reservation level in

the multi-objective pooling model to balance his expected and worst-case net utility.
Effectively, the multi-objective model encompasses the other models. With this model
the seller can, for example, first maximise his minimum net utility, followed by his
expected net utility (as a two-stage approach).

The considered pooling models depend on the chosen partition scheme and the
seller’s reservation level. We considered a contracting problem with quadratic util-
ities to quantify the effect of these decisions made by the seller. For this problem
we first derived the optimal partition scheme, which then led to manageable formu-
las for the corresponding optimal objective value. In turn, these formulas can be
used to determine various performance measures. We note that these results are
analytical/exact and hold for any number of contracts.

We focused on two performance measures. The first is the pooling performance,
which is the obtained expected net utility by offering K menus compared to in-
finitely many contracts. It quantifies purely the effect of pooling the buyer types.
The second is the reservation level performance, which is the obtained expected net
utility compared to ignoring the seller’s reservation level and using infinitely many
contracts. Here, the benchmark is the highest attainable expected net utility over
all seller’s reservation levels and all number of contracts. Both measures have been
fully analysed, which resulted in performance guarantees (lower bounds) in terms of
the number of contracts K offered. For example, offering a single contract has poor
performance (in both measures) and is ill-advised. In contrast, offering two, three, or
infinitely many contracts leads to a pooling performance guarantee of 88%, 96%, and
100%, respectively. The corresponding reservation level performance guarantees are
64%, 68%, and 70%, respectively. Note that the latter guarantees are overall bounds
and can be made more specific for a fixed seller’s reservation level. In particular,
a reservation level near the maximum feasible value is costly in performance. All
mentioned bounds can be attained for certain instances and are therefore tight.

From our analysis, we conclude that pooling of buyer types results in a simpler
menu of contracts and any loss in performance can be controlled by the number of
contracts offered. High performance can already be achieved with up to five contracts.
Furthermore, a multi-objective optimisation approach can be performed by including
the seller’s reservation level as a decision parameter. The seller’s reservation level has
a significant impact on the seller’s expected net utility, irrespective of the number of
contracts offered. Increasing the reservation level has a positive effect on the pooling
performance, but a negative effect on the reservation level performance. Therefore,
the seller has to balance his expected and worst-case net utility and can use the
stated performance measures to justify his choices.



Chapter 4 135

Appendix

4.A Proofs of Section 4.2

This appendix contains the proofs of the results in Section 4.2. We note that certain
proofs are similar to or generalisations of those found in Chapter 3.

Proof of Lemma 4.1. First, we show the necessity of x1 ≤ · · · ≤ xK . Suppose xk >
xk+1 for some k, k+ 1 ∈ K and consider (4.2) between contracts k with

¯
pk and k+ 1

with
¯
pk+1. Adding both IC constraints leads to

φB(xk|
¯
pk) − φB(xk+1|

¯
pk) ≥ φB(xk|

¯
pk+1) − φB(xk+1|

¯
pk+1).

Since
¯
pk <

¯
pk+1, this contradicts (4.9) of Assumption 4.1. Hence, x1 ≤ · · · ≤ xK

must hold.
Second, we show sufficiency of 0 ≤ x1 ≤ · · · ≤ xK . Let x ∈ R

K
≥0 be non-decreasing

and set z ∈ R
K to

zk = φB(xk|
¯
pk) −

k−1∑

i=1

(
φB(xi|p̄i) − φB(xi|

¯
pi)
)

∀ k ∈ K. (4.26)

It remains to check feasibility of (x, z). Fix k ∈ K and pk ∈ [
¯
pk, p̄k]. For l ∈ K with

k < l we have

zk − zl
(4.26)

= φB(xk|
¯
pk) − φB(xl|

¯
pl) +

l−1∑

i=k

(
φB(xi|p̄i) − φB(xi|

¯
pi)
)

=

l∑

i=k+1

(
φB(xi−1|

¯
pi) − φB(xi|

¯
pi)
)

(4.9)

≤
l∑

i=k+1

(φB(xi−1|pk) − φB(xi|pk)) = φB(xk|pk) − φB(xl|pk).

Likewise, let l ∈ K with l < k, then

zk − zl
(4.26)

= φB(xk|
¯
pk) − φB(xl|

¯
pl) −

k−1∑

i=l

(
φB(xi|p̄i) − φB(xi|

¯
pi)
)

=

k∑

i=l+1

(
φB(xi|

¯
pi) − φB(xi−1|

¯
pi)
)

(4.9)

≤
k∑

i=l+1

(φB(xi|pk) − φB(xi−1|pk)) = φB(xk|pk) − φB(xl|pk).

Hence, all IC constraints (4.2) hold. Furthermore, we have

φB(xk|pk) − zk

(4.2)

≥ φB(x1|pk) − z1

(4.8)

≥ φB(x1|
¯
p1) − z1

(4.26)
= 0.

Thus, all IR constraints (4.1) are satisfied and the solution is feasible.



136 Chapter 4

Proof of Lemma 4.2. Let x ∈ R
K
≥0 be feasible, i.e., there exists a z ∈ R

K such that
(x, z) satisfies (4.1)-(4.3) and for the MO model also (4.7). The proof consists of
two parts: first we show that (4.10) holds for contract k = 1 and then for the other
contracts in the menu (k > 1).

First, realise that for an optimal z at least one IR constraint (4.1) must hold with
equality. If this is not the case, we can increase all zk by adding some ǫ > 0 until
at least one IR constraint is tight. This new solution is still feasible, as (4.2) only
considers the difference zk − zl, which is unaffected. For the MO model (4.7) would
trivially still hold. Moreover, the objective value of the new solution is strictly larger
for the ME, MM, and MO models. Hence, if no IR constraint is tight we have a
contradiction.

Now, suppose that z1 < φB(x1|
¯
p1), then for k ∈ K we have for all pk ∈ [

¯
pk, p̄k]

that

φB(xk|pk) − zk

(4.2)

≥ φB(x1|pk) − z1

(4.8)

≥ φB(x1|
¯
p1) − z1 > 0.

The result implies that no IR constraint is tight, which is suboptimal as argued above.
Hence, for an optimal z it must hold that z1 = φB(x1|

¯
p1).

Second, fix k ∈ K with k > 1 and consider the following IC constraints (4.2)
between contracts k and k − 1:

φB(xk|p̄k−1) − φB(xk−1|p̄k−1) ≤ zk − zk−1 ≤ φB(xk|
¯
pk) − φB(xk−1|

¯
pk).

Since p̄k−1 =
¯
pk, this implies that

zk − zk−1 = φB(xk|
¯
pk) − φB(xk−1|

¯
pk).

Using our earlier result that z1 = φB(x1|
¯
p1), we obtain the following formula:

zk =

k∑

i=2

(
φB(xi|

¯
pi) − φB(xi−1|

¯
pi)
)

+ φB(x1|
¯
p1),

which can be rewritten into (4.10).

Proof of Theorem 4.3. We use Lemmas 4.1 and 4.2 to eliminate the variable z. The
equivalent MM model follows immediately. The ME model becomes

max
0≤x1≤···≤xK

∑

k∈K
ωk

(

φJ(xk|
¯
pk) −

k−1∑

i=1

(
φB(xi|p̄i) − φB(xi|

¯
pi)
) )

.

Collecting all xk terms results in the stated formulation, where we use that ωk > 0
for all k ∈ K. Finally, the MO model follows by combining these insights.

Proof of Lemma 4.4. By Assumption 4.2 the maximum of x 7→ φJ(x|λ) is attainable
for any λ ∈ R. Thus, M∗ is well-defined and non-decreasing since (4.8) holds by
Assumption 4.1. Next, for M ≤ M∗(

¯
p) the threshold xM is well-defined. By As-

sumptions 4.1 and 4.2, we can construct the stated function x∗(·|M) by selecting the
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smallest maximiser (if there are multiple). There is a technicality in this argument,
which we discuss at the end of this proof. We continue with the proof of the non-
decreasingness of x∗(·|M). Suppose the constructed x∗(·|M) is not non-decreasing,
then there exist λ < µ with x∗(λ|M) > x∗(µ|M). By definition of the smallest
maximiser, we have

φJ(x∗(λ|M)|λ) > φJ(x∗(µ|M)|λ),

φJ(x∗(µ|M)|µ) ≥ φJ(x∗(λ|M)|µ).

Adding both inequalities and cancelling common terms leads to

φB(x∗(λ|M)|λ) − φB(x∗(µ|M)|λ) > φB(x∗(λ|M)|µ) − φB(x∗(µ|M)|µ),

which contradicts (4.9) of Assumption 4.1.
The technicality regarding the existence of x∗(·|M) is as follows. We have to show

that φJ(·|λ) always has a maximum on [xM ,∞) for any M ≤ M∗(
¯
p) and any λ ∈ R.

First, for M = −∞ we have xM = 0 and Assumption 4.2 guarantees the existence of
the maximum. Hence, the non-decreasing function x∗(·| − ∞) exists. For notational
convenience, let x∗(λ) = x∗(λ| − ∞). Second, xM ≤ x∗(

¯
p) for any M ≤ M∗(

¯
p)

by definition. This implies that x∗(λ|M) = x∗(λ) for λ ≥
¯
p, i.e., the restriction to

x ≥ xM has no effect for λ ≥
¯
p. For λ <

¯
p we have that for x ≥ x∗(

¯
p)

φJ(x|λ) − φJ(x∗(
¯
p)|λ)

(4.9)

≤ φJ(x|
¯
p) − φJ(x∗(

¯
p)|

¯
p) ≤ 0.

Here, the last inequality follows from the fact that x∗(
¯
p) maximises φJ(·|

¯
p) by defi-

nition. Thus, the maximum of φJ(·|λ) on [xM ,∞) (if it exists) must be attained in
the closed interval [xM , x∗(

¯
p)]. By Assumption 4.2 this maximum exists.

Proof of Theorem 4.5. First, we use induction to prove that the solution xk = x∗(
¯
pk)

for k ∈ K is optimal. Then, we show that the resulting optimal objective value can
also be attained using a menu with only a single contract.

In order to do so, we need the following insight. Suppose xk+1 = x∗(
¯
pk+1) and

compare the k-th and (k + 1)-th terms of (4.12). We claim that these two terms
satisfy

φJ(xk|
¯
pk) −

k−1∑

i=1

(
φB(xi|p̄i) − φB(xi|

¯
pi)
)

≤ M∗(
¯
pk+1) −

k∑

i=1

(
φB(xi|p̄i) − φB(xi|

¯
pi)
)
,

where we have substituted xk+1 = x∗(
¯
pk+1), resulting in the term M∗(

¯
pk+1). The

common terms cancel out in this expression, leading to

φJ(xk|p̄k) ≤ M∗(
¯
pk+1).

Since p̄k =
¯
pk+1, this inequality holds by definition of M∗(

¯
pk+1), which proves our

claim. This implies that if xk+1 = x∗(
¯
pk+1) the (k + 1)-th term does not affect the

objective value and can be omitted in (4.12). Hence, if xl = x∗(
¯
pl) for all l > k for
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some k ∈ K, we only need to consider the first k terms of (4.12) for the remaining
optimisation problem.

We continue with the induction proof that x∗(
¯
pk) is optimal. First, we relax the

feasibility constraint x1 ≤ · · · ≤ xK . Second, notice that xK only appears in the
K-th term in (4.12). Therefore, we can optimise xK independently for this term
and optimally set xK = x∗(

¯
pK). Third, suppose that for some k ∈ K we have

xl = x∗(
¯
pl) for all l > k. The remaining optimisation problem has decision variables

x1, . . . , xk. By the above mentioned insight, we only need to consider the first k
terms of (4.12). As such, xk only appears in the k-th term of (4.12) and we can
optimise xk independently as seen before. This results in xk = x∗(

¯
pk). By induction,

we end up with xk = x∗(
¯
pk) for all k ∈ K, which is optimal for the relaxed problem

as the induction proof shows. Since x∗ is non-decreasing by definition, xk = x∗(
¯
pk)

is also feasible and optimal for the MM model.
Finally, by using the above mentioned insight it follows that for this optimum

only the first term (k = 1) of (4.12) affects the objective value. Hence, the resulting
optimal objective value is M∗(

¯
p). The same objective value is attained by offering a

single contract with order quantity x = x∗(
¯
p), which does not depend on K or the

partition of [
¯
p, p̄].

Proof of Theorem 4.6. Relax the feasibility constraint x1 ≤ · · · ≤ xK in (4.11) to
obtain a separable optimisation problem for each k ∈ K. By Assumption 4.3, the
solution xk = x∗(πk) for k ∈ K is optimal for this relaxed problem. Since πk ≤ πk+1

and x∗ is non-decreasing by definition, we have that xk ≤ xk+1 for all k ∈ K.
Therefore, the relaxed optimum is feasible for the ME model and thus optimal.

Proof of Theorem 4.7. Since
¯
p1 =

¯
p and xM is the smallest value such that φJ(x|

¯
p) ≥

M , constraint (4.14) for k = 1 implies x1 ≥ xM . Now relax all feasibility constraints
(4.14)-(4.15), but add the implied constraints xk ≥ xM for k ∈ K. By definition, xk =
x∗(πk|M) for k ∈ K is an optimal solution for the resulting separable optimisation
problem.

It remains to verify that the proposed solution is also feasible for the MO model.
Notice that 0 ≤ xM ≤ x∗(π1|M) ≤ · · · ≤ x∗(πK |M) by definition of x∗(·|M) and
since πk ≤ πk+1 for all k ∈ K. Thus, we need to check if (4.14) holds for all k ∈ K.

First, notice that πk ≤
¯
pk must hold for all k ∈ K by the assumptions. The proof

is as follows. By (4.8) and (4.16) we have φB(·|πk) ≤ φB(·|
¯
pk). If πk >

¯
pk, then the

previous result and (4.8) imply φB(·|πk) = φB(·|
¯
pk), which trivially violates (4.9). In

fact, πk <
¯
pk must hold for all k ∈ K \ {K}: if πk =

¯
pk for some k < K then (4.16)

implies φB(·|p̄k) = φB(·|
¯
pk), which again trivially violates (4.9).

Second, we show a useful implication of the definition of x∗(·|M). For some
k ∈ K, consider any order quantity x̄ with xM ≤ x̄ ≤ xk = x∗(πk|M). By definition
of xk = x∗(πk|M), we have

φJ(xk|πk) ≥ φJ(x̄|πk). (4.27)
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Since πk ≤
¯
pk and x̄ ≤ xk, we have

φJ(xk|
¯
pk) = φS(xk) + φB(xk|πk) +

(
φB(xk|

¯
pk) − φB(xk|πk)

)

(4.27)

≥ φS(x̄) + φB(x̄|πk) +
(
φB(xk|

¯
pk) − φB(xk|πk)

)

(4.9)

≥ φS(x̄) + φB(x̄|πk) +
(
φB(x̄|

¯
pk) − φB(x̄|πk)

)

= φJ(x̄|
¯
pk).

Finally, the above result with k = 1 and x̄ = xM shows that (4.14) holds for
k = 1:

φJ(x1|
¯
p1) ≥ φJ(xM |

¯
p1) ≥ M.

Likewise, using the above result for k ∈ K and x̄ = xk−1 gives

φJ(xk|
¯
pk) ≥ φJ(xk−1|

¯
pk).

Subtracting (φB(xi|p̄i) − φB(xi|
¯
pi)) for i = 1, . . . , k − 1 from both sides leads to

φJ(xk|
¯
pk) −

k−1∑

i=1

(
φB(xi|p̄i) − φB(xi|

¯
pi)
)

≥ φJ(xk−1|
¯
pk−1) −

k−2∑

i=1

(
φB(xi|p̄i) − φB(xi|

¯
pi)
)
.

These are the left-hand sides of (4.14) for k and k − 1. Repeatedly applying this
result for k, k − 1, . . . , 1 gives

φJ(xk|
¯
pk) −

k−1∑

i=1

(
φB(xi|p̄i) − φB(xi|

¯
pi)
)

≥ φJ(x1|
¯
p1) ≥ M,

where we have derived the last inequality earlier. Hence, (4.14) holds for all k ∈ K.
We conclude that that xk = x∗(πk|M) is feasible for the MO model and therefore
optimal.

Proof of Corollary 4.8. We can rewrite the MM model into

max
x,u

u

s.t. φJ(xk|
¯
pk) −

k−1∑

i=1

(
φB(xi|p̄i) − φB(xi|

¯
pi)
)

≥ u, ∀ k ∈ K,

xK ≥ · · · ≥ x1 ≥ 0.

This is a concave optimisation problem by the additional assumption of this corol-
lary, hence any convex combination of optimal solutions is also optimal. It remains
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to verify that all stated solutions are optimal for the MM model. The first two stated
menus are optimal for the MM model as shown in Theorem 4.5. The third stated
menu is also feasible and optimal for the MM model by construction, due to Assump-
tion 4.3 and the choice of M = M∗(

¯
p). See the proof of Theorem 4.7 for additional

details regarding feasibility.

4.B Examples that satisfy Assumption 4.3

In this appendix, we give an example problem class that satisfies Assumptions 4.1
and 4.3. Consider a buyer with utility function given by φB(x|p) ≡ ψ(x) + pχ(x),
where the functions ψ : R≥0 → R and χ : R≥0 → R≥0 do not depend on the type
p. Furthermore, χ is strictly increasing and non-negative. Finally, ω is a (strictly
positive) continuous distribution with a non-decreasing hazard rate. We show that
the stated assumptions hold for this problem class.

We first verify that Assumption 4.1 holds, i.e., (4.8) and (4.9). For λ ≤ µ ∈ R

and x ≥ 0 we have

φB(x|λ) − φB(x|µ) = (λ− µ)χ(x) ≤ 0,

since χ is non-negative. For λ < µ ∈ R and 0 ≤ x < x′ we get

φB(x′|λ) − φB(x|λ) − φB(x′|µ) + φB(x|µ) = (λ− µ)(χ(x′) − χ(x)) < 0,

as χ is strictly increasing. Thus, Assumptions 4.1 is satisfied.
Next, we show that Assumption 4.3 holds. In order to define πk, we need to

consider (4.16):

φB(x|πk) = φB(x|
¯
pk) −

(
φB(x|p̄k) − φB(x|

¯
pk)
)

K∑

i=k+1

ωi

ωk

= ψ(x) +
(

¯
pk − (p̄k −

¯
pk)

K∑

i=k+1

ωi

ωk

)

χ(x).

Hence, πk is the coefficient of χ(x) in the above expression:

πk ≡
¯
pk − (p̄k −

¯
pk)

K∑

i=k+1

ωi

ωk
∀ k ∈ K.

Notice that πk <
¯
pk for k ∈ K \ {K} and πK =

¯
pK . In order to have π1 ≤ · · · ≤ πK

and thus Assumption 4.3 to hold, we need conditions on the probability distribution
ω. As stated, we assume that ω has a non-decreasing hazard rate, which implies that

ω(v)

1 −
∫ v

¯
p
ω(p)dp

≥ ω(u)

1 −
∫ u

¯
p
ω(p)dp

∀u, v ∈ [
¯
p, p̄], u ≤ v,
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or equivalently

1

ω(u)

∫ p̄

u

ω(p)dp ≥ 1

ω(v)

∫ p̄

v

ω(p)dp ∀u, v ∈ [
¯
p, p̄], u ≤ v.

Since ω is assumed to be continuous, by the Mean Value Theorem there exist p̂k ∈
(
¯
pk, p̄k) for k ∈ K such that

ω(p̂k) =
1

p̄k −
¯
pk

∫ p̄k

¯
pk

ω(p)dp =
ωk

p̄k −
¯
pk
.

We now have for k ∈ K that

πk − πk+1 =
¯
pk − (p̄k −

¯
pk)

K∑

i=k+1

ωi

ωk
−

¯
pk+1 + (p̄k+1 −

¯
pk+1)

K∑

i=k+2

ωi

ωk+1

=
p̄k+1 −

¯
pk+1

ωk+1

K∑

i=k+2

ωi −
p̄k −

¯
pk

ωk

K∑

i=k

ωi

=
1

ω(p̂k+1)

∫ p̄

p̄k+1

ω(p)dp− 1

ω(p̂k)

∫ p̄

¯
pk

ω(p)dp

<
1

ω(p̂k+1)

∫ p̄

p̂k+1

ω(p)dp− 1

ω(p̂k)

∫ p̄

p̂k

ω(p)dp ≤ 0.

Here, the first inequality follows from ω(p) > 0 for all p ∈ [
¯
p, p̄] and the last in-

equality from the non-decreasing hazard rate. Hence, πk < πk+1 for all k ∈ K and
Assumption 4.3 is satisfied.

4.C Proofs of Section 4.3

In this appendix we give all proofs of the results in Section 4.3. We note that certain
proofs are similar to or generalisations of those found in Chapter 3.

Proof of Corollary 4.9. First, the optimal ME and MO solutions follow from Theo-
rems 4.6 and 4.7, and the optimal MM solutions from Corollary 4.8. Second, since
the function x 7→ φJ(x|λ) for the LQU problem is strictly concave and differentiable
for any λ ∈ R, it has a unique maximiser. From the relaxations used in the proofs of
Theorems 4.6 and 4.7 it follows that the stated optima are the only optima.

Proof of Lemma 4.10. Consider the optimal MO solution (4.19). The first term in
the maximisation corresponds to the case where the seller’s reservation level is re-
strictive for contract k ∈ K. This is the case if

(1 −
√

1 − β)(P +
¯
p) > P − p̄+ p̄k +

¯
pk

⇐⇒ (1 −
√

1 − β)(P +
¯
p) > P +

¯
p+ (δk + δk−1 − 1)(p̄−

¯
p)

⇐⇒ (1 −
√

1 − β) 1
α > 1

α + (δk + δk−1 − 1)

⇐⇒ 1 − 1
α

√

1 − β > δk + δk−1.
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Since δk +δk−1 < δk+1 +δk for all k ∈ K, we can determine the largest index affected
by the seller’s reservation level:

kβ = max
{

0,max
{

k ∈ K : δk + δk−1 < 1 − 1
α

√

1 − β
}}

.

Combining our results, the optimal MO objective value is (by recalling Assump-
tion 4.3)

ΓK =
∑

k∈K
ωkφJ(xk|πk) =

∑

k∈K
ωk

(
(P + πk)xk − 1

2rx
2
k

)

= 1
r

kβ

∑

k=1

ωk

(

(P + πk)(1 −
√

1 − β)(P +
¯
p) − 1

2 (1 −
√

1 − β)2(P +
¯
p)2
)

+ 1
2r

K∑

k=kβ+1

ωk(P + πk)2.

Since (1 −
√

1 − β)2 = −β + 2(1 −
√

1 − β), (πk −
¯
p)/(p̄−

¯
p) = δk + δk−1 − 1, and

P + πk

p̄−
¯
p

=
P + p̄k +

¯
pk − p̄

p̄−
¯
p

=
P + 2

¯
p− p̄

p̄−
¯
p

+ δk + δk−1 =
1

α
+ δk + δk−1 − 1,

the normalised optimal MO objective value is

νΓK =
kβ

∑

k=1

(δk − δk−1)
(

β
α2 + 2(δk + δk−1 − 1)(1 −

√

1 − β) 1
α

)

+

K∑

k=kβ+1

(δk − δk−1)
(

1
α + δk + δk−1 − 1

)2
.

This completes the proof.

Proof of Lemma 4.11. Let ∆ be an optimal partition. First, suppose that kβ(∆) ≥ 2.

Construct a new partition ∆̂ with δ̂1 = δkβ , δ̂k = δkβ+1 for 1 < k ≤ kβ , and δ̂k = δk

otherwise. By construction, we have kβ(∆̂) = 1, since

δ̂1 + δ̂0 = δkβ ≤ δkβ + δkβ−1 < 1 − 1
α

√

1 − β,

δ̂k + δ̂k−1 ≥ δkβ+1 + δkβ ≥ 1 − 1
α

√

1 − β, for k = 2, . . . ,K.

Here we use the definition of kβ . Since we have

kβ

∑

k=1

(δk − δk−1)(δk + δk−1) − (δkβ − δ0)(δkβ + δ0) =

kβ

∑

k=1

(δ2
k − δ2

k−1) − δ2
kβ = 0,
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it is straightforward to verify that

νΓK(∆) − νΓK(∆̂) =

kβ

∑

k=1

(δk − δk−1)
(

β
α2 + 2(δk + δk−1 − 1)(1 −

√

1 − β) 1
α

)

− (δkβ − δ0)
(

β
α2 + 2(δkβ + δ0 − 1)(1 −

√

1 − β) 1
α

)

= 0.

Hence, the new partition ∆̂ is also optimal and we can assume without loss of gen-
erality that kβ(∆) ∈ {0, 1}.

Second, suppose that δi−1 = δi < δi+1 for some i ∈ {1, . . . ,K − 1}. By the first
part of this proof, we know that i+ 1 ≥ 2 > kβ(∆) ∈ {0, 1}. Case I: if kβ < i, then
there exists an 0 < ǫ < 1 such that

(1 − ǫ)δi+1 + (1 + ǫ)δi ≥ 1 − 1
α

√

1 − β.

We construct a new partition ∆̂ with δ̂i = (1 − ǫ)δi+1 + ǫδi and δ̂k = δk otherwise.

By construction, we have δ̂i−1 < δ̂i < δ̂i+1 and kβ(∆̂) ≤ kβ(∆) < i. The difference
in the resulting normalised optimal objective value is

νΓK(∆) − νΓK(∆̂) = 0 + (δi+1 − δi)(
1
α + δi+1 + δi − 1)2

− (δ̂i − δ̂i−1)( 1
α + δ̂i + δ̂i−1 − 1)2

− (δ̂i+1 − δ̂i)(
1
α + δ̂i+1 + δ̂i − 1)2

= (δi+1 − δi)(
1
α + δi+1 + δi − 1)2

− (1 − ǫ)(δi+1 − δi)(
1
α + (1 − ǫ)δi+1 + (1 + ǫ)δi − 1)2

− ǫ(δi+1 − δi)(
1
α + (2 − ǫ)δi+1 + ǫδi − 1)2

< 0.

Here, the inequality follows from the strict convexity of the quadratic function and
contradicts the optimality of ∆. Case II: if kβ = 1 = i, then δ1 = δ0 = 0. Construct
a new partition ∆̂ with δ̂1 = δ2 and δ̂k = δk otherwise. This leads to kβ(∆̂) = 0 <
kβ(∆) and the same (optimal) objective value. We can now apply either the previous
case or the following cases.

Finally, suppose 0 = δ0 < · · · < δi−1 < δi = · · · = δK = 1 for some i ∈
{1, . . . ,K − 1}. Notice that kβ(∆) < i. Case I: if i = 1 and β = 1, then kβ(∆) = 0

and νΓK(∆) = 1/α2. Construct a new partition with 0 < δ̂1 < 1 and δ̂k = δk = 1

otherwise. This leads to kβ(∆̂) = 1 and the following contradiction:

νΓK(∆̂) = δ̂1( 1
α2 + 2(δ̂1 − 1) 1

α ) + (1 − δ̂1)( 1
α + δ̂1)2

= 1
α2 + (1 − δ̂1)δ̂2

1 >
1

α2 = νΓK(∆).

Case II: if i > 1 or β < 1, then there exists an 0 < ǫ < 1 such that

(1 − ǫ)δi + (1 + ǫ)δi−1 ≥ 1 − 1
α

√

1 − β.
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Construct a new partition with δ̂i = (1 − ǫ)δi + ǫδi−1 and δ̂k = δk otherwise. We

have δ̂i−1 < δ̂i < δ̂i+1 and kβ(∆̂) = kβ(∆). Consequently, we get the contradiction

νΓK(∆) − νΓK(∆̂) = (δi − δi−1)( 1
α + δi + δi−1 − 1)2 + 0

− (δ̂i − δ̂i−1)( 1
α + δ̂i + δ̂i−1 − 1)2

− (δ̂i+1 − δ̂i)(
1
α + δ̂i+1 + δ̂i − 1)2

= (δi − δi−1)( 1
α + δi + δi−1 − 1)2

− (1 − ǫ)(δi − δi−1)( 1
α + (1 − ǫ)δi + (1 + ǫ)δi−1 − 1)2

− ǫ(δi − δi−1)( 1
α + (2 − ǫ)δi + ǫδi−1 − 1)2

< 0.

To conclude, an optimal partition ∆ must satisfy kβ(∆) ∈ {0, 1} and 0 < δ1 < · · · <
δK−1 < 1.

Proof of Theorem 4.12. By Lemma 4.11 we only need to consider the cases kβ = 0
and kβ = 1. Case I: suppose kβ = 0, then

νΓK =

K∑

k=1

(δk − δk−1)( 1
α + δk + δk−1 − 1)2.

This expression is quadratic in δk for k ∈ {1, . . . ,K−1}, since the cubic terms cancel
out. Setting the gradient to zero, leads to

(δk+1 − δk−1)(δk+1 + δk−1 − 2δk) = 0, ∀ k ∈ {1, . . . ,K − 1}.

Since δk+1 > δk−1 by Lemma 4.11, δk = 1
2 (δk+1 + δk−1) must hold. Solving this

system of linear equalities, results in the equidistant partition:

δk = k
K .

Since kβ = 0, it must hold that

1
K = δ1 = δ1 + δ0 ≥ 1 − 1

α

√

1 − β ⇐⇒ α ≤ K
K−1

√

1 − β.

Case II: suppose kβ = 1, then

νΓK = δ1

(

β 1
α2 + 2(δ1 − 1)(1 −

√

1 − β) 1
α

)

+

K∑

k=2

(δk − δk−1)( 1
α + δk + δk−1 − 1)2.

(4.28)

This expression is cubic in δ1 and quadratic in δk for k ∈ {2, . . . ,K − 1}. Setting the
gradient to zero leads to

−3δ2
1 − 2(δ2 + 2 1

α

√

1 − β − 2)δ1 + δ2
2 − 1 + 2 1

α

√

1 − β − 1−β
α2 = 0
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and

(δk+1 − δk−1)(δk+1 + δk−1 − 2δk) = 0, ∀ k ∈ {2, . . . ,K − 1}.

The roots for the first equation are δ1 = 1
3 (δ2 + 1 − 1

α

√
1 − β) and δ1 = 1 − δ2 −

1
α

√
1 − β, where the first root is the largest. The second set of equations are as before,

implying δk = 1
2 (δk+1 +δk−1) for k > 1. By substituting δK = 1 we can express δk as

an affine function of δk−1 for k > 1. Consequently, δk is an affine function of δ1 for
k > 1. Hence, after substitution of δk, (4.28) remains a cubic function in δ1, whose
leading term is −δ3

1 . We conclude that the optimal value for δ1 is the larger root of
the corresponding derivative.

The resulting system of linear equations, δ1 = 1
3 (δ2 + 1 − 1

α

√
1 − β) and δk =

1
2 (δk+1 + δk−1) for k ∈ {2, . . . ,K − 1}, has the following solution:

δk = 1 − K−k
2K−1 (1 + 1

α

√

1 − β), ∀ k ∈ {1, . . . ,K − 1}.

For this partition to be valid with kβ = 1, we must have

1 − K−1
2K−1 (1 + 1

α

√

1 − β) = δ1 = δ1 + δ0 < 1 − 1
α

√

1 − β ⇐⇒ α > K
K−1

√

1 − β.

Likewise, we have for k ∈ {2, . . . ,K − 1} that

α > 0 =⇒ 2 − 2K−2k+1
2K−1 (1 + 1

α

√

1 − β) = δk + δk−1 ≥ 1 − 1
α

√

1 − β.

This implies that for the partition indeed kβ = 1. Finally, clearly δK−1 < 1, so we
only need to verify that δ1 > 0:

1 − K−1
2K−1 (1 + 1

α

√

1 − β) > 0 ⇐⇒ α > K−1
K

√

1 − β.

Thus, the partition is valid for α > K
K−1

√
1 − β.

Notice that both cases for kβ are disjoint and cover all possible values of α > 0.
This completes the proof.

Proof of Corollary 4.13. By Theorem 4.12, for α ≤ K
K−1

√
1 − β we have kβ = 0 and

δk = k/K. The expressions (4.20) simplifies to

νΓopt
K =

K∑

k=1

1
K

(
1
α + 2k−1

K − 1
)2

= 1
α2 + 1

3

(
1 − 1

K2

)
.

For α > K
K−1

√
1 − β we have kβ = 1 and (4.20) becomes

νΓopt
K =

(

1 − K−1
2K−1 (1 + 1

α

√

1 − β)
)(

β
α2 − 2K−2

2K−1 (1 + 1
α

√

1 − β)(1 −
√

1 − β) 1
α

)

+
K∑

k=2

1
2K−1 (1 + 1

α

√

1 − β)
(

1
α + 1 − 2K−2k+1

2K−1 (1 + 1
α

√

1 − β)
)2

= β
α2 + 2

3
K(K−1)
(2K−1)2 (1 + 1

α

√

1 − β)3.

In particular, these expressions converge to (4.21) as K → ∞, as should be the
case.
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Proof of Theorem 4.14. Continuity of Γopt
K /Γ∞ is trivially verified by (4.21) and

(4.22). For readability, we state the properties that will be proved in the end:

• For K = 1 we have d
dα

Γ1

Γ∞

< 0 for all α > 0.

• For K > 1 we have

– if β = 0: d
dα

Γopt

K

Γ∞

< 0 for 0 < α < K
K−1 and d

dα

Γopt

K

Γ∞

= 0 for α ≥ K
K−1 ,

– if 0 < β ≤ 1: d
dα

Γopt

K

Γ∞

< 0 for all α > 0.

• We have d
dβ

Γopt

K

Γ∞

= 0 for 0 < α ≤
√

1 − β and d
dβ

Γopt

K

Γ∞

> 0 for α >
√

1 − β.

We start with the proof for K = 1, which is considered separately to prevent
issues with division by zero. Note that νΓ1 = α−2 and that there is no partition to
optimise in this case. Therefore, for 0 < α ≤

√
1 − β it is trivial to show that

Γ1

Γ∞
=

3

α2 + 3
,

d

dα

Γ1

Γ∞
= − 6α

(α2 + 3)
2 < 0,

d

dβ

Γ1

Γ∞
= 0.

For α >
√

1 − β, we have

Γ1

Γ∞
=

6α

6αβ + (α+
√

1 − β)3
.

The corresponding derivatives are

d

dα

Γ1

Γ∞
= −6(2α−

√
1 − β)(α+

√
1 − β)2

(
6αβ + (α+

√
1 − β)3

)2 < 0,

d

dβ

Γ1

Γ∞
=

9α(α−
√

1 − β)2

√
1 − β

(
6αβ + (α+

√
1 − β)3

)2 > 0,

since α >
√

1 − β. Hence, for any 0 ≤ β ≤ 1 the infimum for the pooling performance
is

inf
α>0

Γ1

Γ∞
= lim

α→∞
Γ1

Γ∞
= 0.

We continue with the proof for K > 1. Based on (4.21) and (4.22) we need to
differentiate three cases.

Case I: for 0 < α ≤
√

1 − β we have

d

dα

Γopt
K

Γ∞
= − 6α

K2(α2 + 3)2
< 0,

d

dβ

Γopt
K

Γ∞
= 0.

Case II: for
√

1 − β < α ≤ K
K−1

√
1 − β, which can only occur for 0 ≤ β < 1, we

get

d

dα

Γopt
K

Γ∞
= 6

(K2 − 1)
√

1 − βα4 + 2
(
(K2 − 1)β − 1

)
α3

K2
(
6αβ + (α+

√
1 − β)3

)2

+ 6
−
(
K2(β + 2) + 1 − β

)√
1 − βα2 +K2(1 − β)3/2

K2
(
6αβ + (α+

√
1 − β)3

)2 . (4.29)
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We claim that (4.29) is strictly negative on
√

1 − β < α < K
K−1

√
1 − β and that

(4.29) at α = K
K−1

√
1 − β is either zero (if β = 0) or strictly negative (if 0 < β < 1).

Clearly, the denominator is always strictly positive. Hence, it is sufficient to focus
on the numerator. Let f(α) = c4α

4 + c3α
3 + c2α

2 + c0 denote the numerator. Recall
that K > 1. Since this case cannot occur for β = 1, we have c4 > 0, c3 ∈ R, c2 < 0,
and c0 > 0.

First, by Descartes’ Sign Rule the number of positive real roots of f is bounded
by 2, namely by the number of sign changes in the sequence c4, c3, c2, and c0.

Second, we evaluate the numerator f for certain values for α:

lim
α↓0

f(α) = 6K2(1 − β)3/2 > 0, lim
α→∞

f(α) = ∞ > 0,

f(
√

1 − β) = −24(1 − β)3/2 < 0,

f
(

K
K−1

√

1 − β
)

= −6
K2(K + 1)β(1 − β)3/2

(K − 1)3
≤ 0,

where we use that K > 1 and that this case cannot occur for β = 1. By continuity of f
we conclude that there is a positive real root on (0,

√
1 − β) and on [ K

K−1

√
1 − β,∞).

Thus, f has exactly two positive real roots. If 0 < β < 1 both fall outside of
(
√

1 − β, K
K−1

√
1 − β]. Furthermore, since f is strictly negative on the borders of

this interval, it is strictly negative on the entire interval. If β = 0, one of the roots is
the border point K

K−1 . The same conclusions hold for (4.29).

Furthermore, using α >
√

1 − β we have that the derivative to β is

d

dβ

Γopt
K

Γ∞
=

3α(α−
√

1 − β)2((K2 − 1)α2 + 3K2)

K2
√

1 − β
(
6αβ + (α+

√
1 − β)3

)2 > 0.

Case III: for α > K
K−1

√
1 − β it holds that

d

dα

Γopt
K

Γ∞
= −6β

(
2α3 + 3

√
1 − βα2 − (1 − β)3/2

)

(2K − 1)2
(
6αβ + (α+

√
1 − β)3

)2 ≤ 0, (4.30)

d

dβ

Γopt
K

Γ∞
=

3α(2
√

1 − βα3 + 3(2 − β)α2 + 6
√

1 − βα+ 2 − β2 − β)

(2K − 1)2
√

1 − β
(
6αβ + (α+

√
1 − β)3

)2 > 0,

where we use that α > K
K−1

√
1 − β >

√
1 − β. Note that (4.30) is zero if β = 0 and

strictly negative if 0 < β ≤ 1.
We conclude that the derivative of the pooling performance is non-negative (if

β = 0) or strictly negative (if 0 < β ≤ 1) with respect to α in all cases. Hence, the
infimum is reached for α → ∞:

inf
α>0

Γopt
K

Γ∞
= lim

α→∞
Γopt

K

Γ∞
=

4K(K − 1)

(2K − 1)2
.

Here, the limit trivially follows from (4.21) and (4.22). Furthermore, notice that
this infimum holds for any 0 ≤ β ≤ 1, implying that this bound is tight for any
0 ≤ β ≤ 1.
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Proof of Theorem 4.15. Continuity of Γopt
K /Γβ=0

∞ is trivially verified by (4.21) and
(4.22). For readability, we make the following claims, which are all proved in the
end:

• For K = 1 we have d
dα

Γ1

Γβ=0
∞

< 0 and d
dβ

Γ1

Γβ=0
∞

= 0 for all α > 0.

• For K > 1 we have

– if β = 0: d
dα

Γopt

K

Γβ=0
∞

< 0 for 0 < α < K
K−1 and d

dα

Γopt

K

Γβ=0
∞

= 0 for α ≥ K
K−1 ,

– if 0 < β ≤ 1: d
dα

Γopt

K

Γβ=0
∞

< 0 for 0 < α < α∗, d
dα

Γopt

K

Γβ=0
∞

= 0 for α = α∗, and

d
dα

Γopt

K

Γβ=0
∞

> 0 for α > α∗,

– d
dβ

Γopt

K

Γβ=0
∞

= 0 for 0 < α ≤ K
K−1

√
1 − β and d

dβ

Γopt

K

Γβ=0
∞

< 0 for α > K
K−1

√
1 − β.

Here, the minimiser α∗ is defined for K > 1 and 0 < β ≤ 1 by

α∗ = 1 +
(2K(K − 1) + 1)β + (2K − 1)

√

β
(
2K(K − 1)(1 −

√
1 − β) + β

)

2K(K − 1)(1 −
√

1 − β)

and we claim that α∗ > 1 and α∗ > K
K−1

√
1 − β if it exists.

We first focus on the tight reservation level performance guarantee. Using the
above claims, in particular on the derivative to β, we conclude that it is sufficient to
consider β = 1 to derive the tight guarantee for the reservation level performance.
Therefore, we have to consider two cases: K = 1 and K > 1 with β = 1.

First, consider the case K = 1. We have for 0 < α ≤ 1 that

Γ1

Γβ=0
∞

=
3

α2 + 3
,

d

dα

Γ1

Γβ=0
∞

= − 6α

(α2 + 3)
2 < 0,

d

dβ

Γ1

Γβ=0
∞

= 0.

Likewise, for α > 1

Γ1

Γβ=0
∞

=
6α

(α+ 1)3
,

d

dα

Γ1

Γβ=0
∞

= −6(2α− 1)

(α+ 1)4
< 0,

d

dβ

Γ1

Γβ=0
∞

= 0.

Thus, for any 0 ≤ β ≤ 1 the reservation level performance guarantee is

inf
α>0

Γ1

Γβ=0
∞

= lim
α→∞

Γ1

Γβ=0
∞

= 0. (4.31)

Second, consider K > 1 and β = 1. We need to discern two cases based on α.
Case I: for 0 < α ≤ 1 we have

Γopt
K

Γβ=0
∞

=
2K(K − 1)α2 + 3(2K − 1)2

(2K − 1)2(α2 + 3)
,

d

dα

Γopt
K

Γβ=0
∞

= − 6(2K2 − 2K + 1)α

(2K − 1)2 (α2 + 3)
2 < 0.
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Case II: for α > 1 we get

Γopt
K

Γβ=0
∞

=
4K(K − 1)α3 + 6(2K − 1)2α

(2K − 1)2(α+ 1)3
,

d

dα

Γopt
K

Γβ=0
∞

= 6
2K(K − 1)α2 − (8K2 − 8K + 2)α+ 4K2 − 4K + 1

(2K − 1)2(α+ 1)4
. (4.32)

The derivative (4.32) has roots

α± = 2 +
1 ± (2K − 1)

√
2K2 − 2K + 1

2K(K − 1)
.

Note that α+ corresponds to α∗ for this case. Evaluating the formula in (4.32) for
α = 1 gives

−3

8

2K(K − 1) + 1

(2K − 1)2
< 0.

Since (4.32) is a parabola that opens upward, we have α− < 1 < α+. Hence, the
reservation level performance has a minimum at α+. By combining Case I and Case
II, we conclude that α+ is the global minimum for K > 1 and β = 1.

As argued above, for K > 1 the tight reservation level performance guarantee
follows from evaluating Γopt

K /Γβ=0
∞ at α = α+ and β = 1, resulting in

inf
0≤β≤1

inf
α>0

Γopt
K

Γβ=0
∞

=
8K(K − 1)

(
4K(K − 1) + (2K − 1)

√
2K2 − 2K + 1 + 1

)

(
6K(K − 1) + (2K − 1)

√
2K2 − 2K + 1 + 1

)2 .

This formula also works for K = 1 (resulting in a value of 0, see also (4.31)).
It remains to prove all our claims. The proofs for K = 1 have already been given.

Therefore, consider the case K > 1. Unfortunately, the proofs are somewhat tedious
work. We have to distinguish four cases.

Case I: for 0 < α ≤ 1 and α ≤ K
K−1

√
1 − β we have

d

dα

Γopt
K

Γβ=0
∞

= − 6α

K2 (α2 + 3)
2 < 0,

d

dβ

Γopt
K

Γβ=0
∞

= 0.

Case II: for 1 < α ≤ K
K−1

√
1 − β the derivatives are

d

dα

Γopt
K

Γβ=0
∞

= 6
(K2 − 1)α2 −K2(2α− 1)

K2(α+ 1)4
,

d

dβ

Γopt
K

Γβ=0
∞

= 0.

The roots of the derivative to α are K
K+1 < 1 and K

K−1 ≥ K
K−1

√
1 − β. Notice that

the numerator is a parabola that opens upward. For β = 0 the derivative to α is
strictly negative on 1 < α < K

K−1 and zero at α = K
K−1 . For 0 < β ≤ 1 it is strictly

negative on the entire interval 1 < α ≤ K
K−1

√
1 − β.
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Case III: for K
K−1

√
1 − β < α ≤ 1 we get

d

dα

Γopt
K

Γβ=0
∞

= −6
K(K − 1)

√
1 − β

(
α4 − (β + 2)α2 + (1 − β)

)
+ (2K2 − 2K + 1)βα3

(2K − 1)2α2 (α2 + 3)
2 .

(4.33)

Let f be the numerator of (4.33). For β = 0 this case cannot occur. For β = 1 the
function f simplifies to a cubic function with roots α = 0. Hence, it follows trivially
that (4.33) is strictly negative for α > 0. For 0 < β < 1 it holds that f(α) < 0 on
α > 0 if and only if

g(α) = −6α4 − 6
2K2 − 2K + 1

K(K − 1)

β√
1 − β

α3 + 6(β + 2)α2 − 6(1 − β) < 0 ∀α > 0,

where the quartic function g differs from f by a positive factor. Let the quartic
function h be defined by

h(α) = −6α4 − 12 β√
1−β

α3 + 6(β + 2)α2 − 6(1 − β).

Since (2K2 − 2K+ 1)/(K(K− 1)) > 2 for K > 1, we have g(α) < h(α) for all α > 0.
The discriminant of h is zero. By using well-known properties of quartic formulas we
conclude that h has two distinct real roots and one double real root. The shape of h
now follows from evaluating it for certain points:

lim
α→−∞

h(α) = −∞ < 0, h(−1) = 12β

(

1 + 1√
1−β

)

> 0, h(0) = −6(1 − β) < 0.

This trivially implies that h(α) ≤ 0 for all α > 0 by evaluating all possible shapes of
h. Thus, g(α) < 0, f(α) < 0, and (4.33) is strictly negative for all α > 0.

The derivative to β is given by

d

dβ

Γopt
K

Γβ=0
∞

= −3
K(K − 1)α2 − (2K2 − 2K + 1)

√
1 − βα+K(K − 1)(1 − β)

(2K − 1)2
√

1 − βα(α2 + 3)
, (4.34)

which has roots K−1
K

√
1 − β and K

K−1

√
1 − β (both smaller than the considered α).

Note that the numerator of (4.34) is a parabola that opens downward. Hence, (4.34)
is strictly negative.

Case IV: for α > K
K−1

√
1 − β and α > 1 it holds that

d

dα

Γopt
K

Γβ=0
∞

= 6
2K(K − 1)(1 −

√
1 − β)α2

(2K − 1)2(α+ 1)4

− 6

(
(4K2 − 4K + 2)β + 4K(K − 1)(1 −

√
1 − β)

)
α

(2K − 1)2(α+ 1)4

+ 6
−2K(K − 1)(1 − β)3/2 + 2K(K − 1)(1 + β) + β

(2K − 1)2(α+ 1)4
. (4.35)
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If β = 0, then (4.35) is always equal to zero. For β > 0 the numerator of (4.35) is a
parabola that opens upward with roots

α± = 1 +

(
2K(K − 1) + 1

)
β ± (2K − 1)

√

β
(
2K(K − 1)(1 −

√
1 − β) + β

)

2K(K − 1)(1 −
√

1 − β)
.

We claim that α+ is a local minimiser for the reservation level performance, which
turns out to be the global minimiser by checking all other cases. This claim is proved
by showing that α− < 1 < α+ and, if needed, that α− < K

K−1

√
1 − β < α+. This

implies that (4.35), with a parabola that opens upward as numerator, is strictly
negative for α < α+, zero at α = α+, and strictly positive for α > α+. Hence, α+ is
a local minimiser.

We continue to prove our claim. Evaluating (4.35) for α = 1 results in the value

−3

8
β

2K(K − 1)(1 −
√

1 − β) + 1

(2K − 1)2
< 0.

This implies that α− < 1 < α+. If K
K−1

√
1 − β ≤ 1 the proof for this case if complete.

Otherwise, K
K−1

√
1 − β > 1 or equivalently

β <
2K − 1

K2
.

Evaluating (4.35) for α = K
K−1

√
1 − β gives

−6
(K − 1)3((K + 1)β − 2K(1 −

√
1 − β))

(K(1 +
√

1 − β) − 1)4
, (4.36)

which is zero only if β = 0 or if β = 4K
(K+1)2 and strictly negative in between these

values. Since 2K−1
K2 = 4K

(K+1)2 only if K = 1 (excluding negative values), we conclude

that we are considering β satisfying

0 < β <
2K − 1

K2
<

4K

(K + 1)2
.

For such β the value (4.36) is strictly negative. This implies that α− < K
K−1

√
1 − β <

α+, completing the proof for this case.
The derivative to β is

d

dβ

Γopt
K

Γβ=0
∞

= −6
K(K − 1)α2 − (2K2 − 2K + 1)

√
1 − βα+K(K − 1)(1 − β)

(2K − 1)2
√

1 − β(α+ 1)3
, (4.37)

with roots K−1
K

√
1 − β and K

K−1

√
1 − β (both smaller than the considered α). As

seen before, the numerator is a parabola that opens downward, which implies that
(4.37) is strictly negative.
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Two-echelon lot-sizing with

asymmetric information and

continuous type space

Abstract

In this chapter, we analyse a two-echelon discrete lot-sizing problem with
a supplier and a retailer under information asymmetry. We assume that
all cost parameters are time independent and that the retailer has single-
dimensional continuous private information, namely either his setup cost
or his holding cost. The supplier uses mechanism design to determine
a menu of contracts that minimises his expected costs, where each con-
tract specifies the retailer’s procurement plan and a side payment to the
retailer. There is no restriction on the number of contracts in the menu.

To optimally solve this contracting problem we present a two-stage
approach, based on a theoretical analysis. The first stage generates a list
of procurement plans that is sufficient to solve the contracting problem to
optimality. The second stage optimally assigns these plans to the retailer
types and determines all side payments. The result is an optimal menu
with finitely many contracts that pools retailer types. We identify cases
for which the contracting problem can be solved in polynomial time and
provide the corresponding algorithms. Furthermore, our analysis reveals
that information asymmetry leads to atypical structures in the plans of
the optimal menu, e.g., plans violating the zero-inventory property. Our
solution approach and several results are directly applicable to more gen-
eral problems as well.

This chapter is based on Kerkkamp et al. (2018b).
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5.1 Introduction

We consider a two-echelon supply chain consisting of a supplier and a retailer under a
discrete lot-sizing setting with asymmetric information. The supply chain must come
to an agreement for a joint procurement plan to satisfy market demand for a single
indivisible product for a given time horizon. We assume that the market demand
can be modelled as demand in discrete time periods and is known up front, leading
to a discrete lot-sizing problem for the supply chain. That is, the joint procurement
plan specifies the following for each time period up to the planning horizon. For the
supplier, the options are to produce new products, to keep products in inventory for
later time periods, and to transfer products to the retailer. For the retailer, these are
to receive products from the supplier, to keep products in inventory, and to satisfy
market demand. We assume all market demand must be satisfied and back-ordering
is not allowed.

If all information is shared among the two parties in the supply chain, we have
the traditional joint lot-sizing problem, which is well known and analysed thoroughly
in the literature, e.g., in Zangwill (1969). We consider the case where there is only
partial cooperation between the supplier and the retailer. Namely, the retailer has
private information on his cost structure that he does not share with the supplier.
Furthermore, we assume that the supplier and the retailer both act individually
rationally and want to minimise their own costs. This partial cooperation typically
leads to inefficiencies for the supply chain, see for example Inderfurth et al. (2013)
and Perakis and Roels (2007). However, we consider the problem from the supplier’s
point of view, who wants to minimise his own costs, and thus perfect supply chain
coordination is not a goal.

We assume that the supply chain uses a pull ordering strategy, i.e., the retailer
has the initiative and the market power to place orders at the supplier. The supplier
must satisfy these orders. Hence, by default the retailer will order according to
his own individually optimal procurement plan, which is typically suboptimal for
the supplier. The supplier has a single opportunity to offer the retailer a menu
of contracts to persuade him to change his procurement plan. A single contract
specifies the retailer’s orders at the supplier and a side payment from the supplier
to the retailer. By using a large enough side payment the supplier can convince the
retailer to accept a different procurement plan. The menu can contain any number of
contracts. However, since the retailer can reject any offered contract and has private
information on his cost structure, it is not trivial to design a menu of contracts that
minimises the supplier’s costs.

We consider the case where all cost parameters are time independent. Conse-
quently, as we will show in Section 5.2, the only relevant costs are the supplier’s
setup cost of production, the retailer’s setup cost for an order, and the holding costs
for the inventory of both parties. We assume that the retailer’s private information
is either his setup cost or his holding cost, and lies in a certain interval. Thus, the
private information is single dimensional, bounded, and continuous. We also assume
that the supplier has a probability distribution for the retailer’s private information.

The supplier uses mechanism design (see Laffont and Martimort (2002)) to con-
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struct a menu of contracts that minimises his expected costs, which requires solving
a specific optimisation problem. We call this optimisation problem the contracting
problem, which can be formulated as a mixed integer linear program with infinitely
many variables and constraints. All details of the setting and the model will be given
in Section 5.2.

Our goals are to analyse the contracting problem to obtain a tractable formulation
and to determine efficiently solvable cases. Of particular interest is whether the
information asymmetry changes the complexity class of the underlying optimisation
problem. That is, if all information is shared the corresponding contracting problem
turns out to be a traditional joint lot-sizing problem, which is solvable in polynomial
time (see Zangwill (1969)). With information asymmetry the contracting problem
is non-trivial, but can it still be solved in polynomial time? Before we state our
main results for these questions, we first discuss the related literature to position our
contribution.

5.1.1 Related literature

At its core, the described lot-sizing contracting problem is strongly related to the
two-echelon lot-sizing problem. Also notice that the retailer’s default plan, being
individually optimal, follows from solving a single-level lot-sizing problem. Both
these traditional lot-sizing problems have been analysed in detail in the literature.
We refer to Wagner and Whitin (1958) and Zangwill (1969) for solution methods. As
we will show, we need to solve several joint lot-sizing subproblems where either the
number of retailer setups or the amount of retailer inventory is fixed. In a way, this
relates to a parametric analysis (see Van Hoesel and Wagelmans (2000)) and stability
regions of solutions (see Richter and Vörös (1989)). However, certain properties used
in the previous references do not hold in general for our subproblems. For example,
in specific cases the optimal menu of contracts contains procurement plans that
do not satisfy the so-called zero-inventory property, implying that the retailer has
unnecessary inventory when considered in isolation (see also Section 5.3).

The lot-sizing contracting problem fits in the broader research field of the ap-
plication of mechanism design to traditional optimisation problems. We focus on
literature that considers related supply chain procurement problems with asymmet-
ric information. See also Laffont and Martimort (2002) and Leng and Parlar (2005)
for more general references on this topic.

Perhaps one of the most fundamental researched problems is the economic or-
der quantity (EOQ) problem under information asymmetry. Compared to our lot-
sizing setting, the EOQ problem considers a constant demand rate over time, an in-
finite time horizon, and divisible products. Several variations have been researched,
such as the private information being continuous or discrete, and single- or two-
dimensional (see for example Corbett and de Groote (2000), Inderfurth et al. (2013),
and Pishchulov and Richter (2016) and Chapter 2). Another setting is the newsven-
dor problem under information asymmetry, which considers a single period but with
uncertain demand. This problem has been analysed in Burnetas et al. (2007), Cachon
(2003), and Cakanyildirim et al. (2012) among others.
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In these models a (single) order quantity describes the entire procurement plan
and the total costs of each party have closed-form expressions in terms of this or-
der quantity. In contrast, for the lot-sizing problem the total costs of each party
cannot be expressed as (manageable) closed-form formulas. Instead, the costs follow
from solving a combinatorial optimisation problem. This requires a different solution
approach.

In Albrecht (2017) a coordination problem based on lot-sizing between a supplier
and retailer is considered. Both parties only communicate the desired or supplied
order quantities, no other information is shared. The focus lies on a heuristic co-
ordination scheme which might lead to an optimal procurement plan for the entire
supply chain. Certain conditions are identified for which this is indeed the case. In
the proposed scheme, the retailer determines a list of individually optimal retailer
plans, where each plan has a fixed number of retailer setups. The list is then of-
fered to the supplier, who determines his optimal response (a supplier plan) for each
retailer plan. Finally, both parties jointly decide which of the resulting joint pro-
curement plans is executed. These final negotiations should also include a way to
divide the resulting profit gained from the coordination, for which several strategies
are suggested but not analysed. Similar coordination and negotiation settings are
analysed in for example Buer et al. (2013), Dudek and Stadtler (2005), and Dudek
and Stadtler (2007).

The setting in Albrecht (2017) differs significantly from ours: our goal is to min-
imise the supplier’s costs, not to achieve perfect supply chain coordination, and more
information is available to the supplier. However, the coordination scheme has the
following similarity to our case. As we will show in Section 5.3, with private setup
cost it is sufficient for optimality to design a list of T plans, namely one plan for
each possible number of retailer setups. In contrast, these plans follow from joint
lot-sizing problems and are not individually optimal plans.

To our knowledge, only the works of Mobini et al. (2014) and Phouratsamay
(2017) consider similar discrete lot-sizing problems under information asymmetry.
In the setting of Mobini et al. (2014) the costs are time dependent and the retailer’s
private information is discrete and multi-dimensional. Several conditions are iden-
tified under which the retailer’s behaviour, regarding the selection of contracts, is
more structured. Furthermore, the case with private demand information is anal-
ysed. Phouratsamay (2017) also considers the lot-sizing contracting problem with
time-dependent costs and discrete private information. Three contract variations are
analysed: contracts without side payments, contracts where the side payments can
only compensate the retailer’s holding costs, and contracts with unrestricted side
payments. If all information is shared among the supplier and retailer, the variant
with restricted side payments is NP-hard and the other two are solvable in polyno-
mial time. For the private information case, the variant without side payments is
polynomially solvable, but the complexity for the others remain open. For all these
cases a numerical study is performed, showing that using restricted side payments
performs only slightly worse than using unrestricted side payments. We complement
the work of Mobini et al. (2014) and Phouratsamay (2017) by considering continuous
private information, which requires a different solution approach.
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5.1.2 Contribution

We present and analyse a two-echelon discrete lot-sizing problem where the retailer
has single-dimensional continuous private information. In this principal-agent con-
tracting problem either the retailer’s setup cost or his holding cost is private. To
our knowledge, this type of problem has not been researched in the literature, and
we are the first to analyse a principal-agent contracting problem with an underlying
combinatorial structure and continuous private information. Based on a theoretical
analysis, we propose a two-stage solution approach consisting of a plan-generation
stage and a plan-assignment stage. We identify cases where these stages can be solved
in polynomial time and give the corresponding algorithms. This provides further in-
sights into the complexity of lot-sizing models with asymmetric information.

Moreover, we observe structural differences compared to traditional lot-sizing
problems due to the information asymmetry, such as optimal menus with plans that
violate the zero-inventory property. Furthermore, the contracting problem and sev-
eral of our results have an intuitive graphical interpretation, which is also applicable
to other problem settings. Therefore, we also describe a more general setting for
which the (conceptual) model, the solution approach, and certain results are appli-
cable as well.

The remainder is organised as follows. In Section 5.2 we formally introduce the
setting of our problem and the associated optimisation model. In Section 5.3 we
analyse this model, derive a solution approach, and prove complexity results. The
generalisability of our results is the central topic of the discussion in Section 5.4, in
which we also conclude our results.

5.2 The contracting problem

In this section we formalise the contracting problem described in the introduction.
In Section 5.2.1 we specify the lot-sizing setting, the two players involved in the
problem, and their possible actions. The corresponding optimisation model is given
in Section 5.2.2.

5.2.1 The setting

Our setting considers a discrete lot-sizing problem between a supplier and a retailer
for a finite planning horizon T ∈ N≥1. The retailer needs to satisfy market demand
dt ∈ N>0 in each time period t ∈ T = {1, . . . , T} in the planning horizon. We assume
that the products are indivisible, leading to discrete demand, and that this demand
is strictly positive and deterministic in each period. The strict positivity of the
demand streamlines certain results and proofs, and will be discussed in Section 5.4.1.
The market demand can be satisfied either from the retailer’s inventory, i.e., surplus
available from the previous time period, or directly from a retailer’s order at the
supplier. In turn, the supplier satisfies the retailer’s orders either from available
inventory or by setting up a new production.
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In the entire supply chain lead-times are zero, all demand or orders must be met,
and back-ordering is not allowed. Furthermore, in the first time period the starting
inventory of the supplier and retailer are assumed to be zero and the retailer must
end with zero inventory after the final time period T . Thus, to satisfy the market
demand a procurement plan for the supply chain must be made. This plan specifies
for each period t ∈ T the supplier’s production quantity xS

t ∈ N and the retailer’s
order quantity xR

t ∈ N at the supplier. Since the demand is deterministic and there
are no back-orders, these order quantities completely determine the flow of products
in the supply chain. Hence, a procurement plan prescribes the setups, the order
quantities, and the resulting inventory for the entire planning horizon.

In our setting all costs and revenues are time independent. Consequently, we
can assume without loss of generality that the variable procurement costs and the
revenue from sold products are zero in the supply chain. We will elaborate on this
after giving the optimisation model. Therefore, there are two relevant types of costs
involved for the supplier and retailer, namely setup cost and holding cost. If the
retailer places an order he incurs a setup cost of f ∈ R>0 and keeping a unit of
products in inventory costs h ∈ R>0 per time period. Similarly, for the supplier we
have setup cost F ∈ R>0 and holding cost H ∈ R>0.

As mentioned in the introduction, the retailer has single-dimensional private in-
formation, i.e, either his setup cost f or his holding cost h is private. To handle
both cases, we use θ for his private cost and call θ the retailer’s type. To be precise,
if the setup cost f is private we define f(θ) = θ and h(θ) = h. In the other case,
with private holding cost h, we define f(θ) = f and h(θ) = θ. We assume that the
supplier has estimated the retailer’s private information θ to follow a strictly positive
continuous distribution ω : Θ → R>0 on a closed interval Θ = [

¯
θ, θ̄] ⊂ R>0.

By assumption, the retailer has the market power to enforce any retailer’s procure-
ment plan onto the supplier. Consequently, by default the retailer orders according
to his individually optimal plan, which depends on his type. The corresponding re-
tailer’s default costs are denoted by φ∗(θ) for type θ ∈ Θ and follow from solving
a traditional single-level lot-sizing problem. We refer to φ∗ as the retailer’s default
option, also known as his reservation level. The supplier uses mechanism-design
techniques by offering the retailer a menu of contracts to incentivise the retailer to
alter his procurement plan. The menu effectively assigns a contract to each type
θ ∈ Θ, where a contract prescribes the retailer’s order quantities xR

t (θ), t ∈ T , and
a side payment z(θ) ∈ R from the supplier to the retailer. However, the retailer
has the power to choose any of the offered contracts or his default option, whichever
minimises his own costs. Therefore, this menu of contracts has to be specifically
designed by the supplier, as will be made clear in the next section when discussing
the optimisation model.

The overall goal of the supplier is to design a menu of contracts that minimises
the supplier’s expected net costs whilst ensuring that the retailer can satisfy the
market demand. There is no restriction on the number of contracts in the menu, but
an optimal menu with fewer contracts is preferred. Finally, the menu can be offered
only once and there are no renegotiations.
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5.2.2 The contracting model

We formulate an optimisation model to determine an optimal menu of contracts that
minimises the supplier’s expected net costs, as described in the previous section. To
this end, let yR

t ∈ B denote whether the retailer has a setup (places an order) at time
t ∈ T and let IR

t ∈ N be the retailer’s ending inventory at time t ∈ T . Similarly, we
have the setup indicator yS

t ∈ B and the ending inventory IS
t ∈ N for the supplier.

Recall that xS
t , x

R
t ∈ N are the order quantities and z ∈ R is the side payment. The

contracting model is defined as follows:

min

∫ θ̄

¯
θ

ω(θ)
(

F
∑

t∈T
yS

t (θ) +H
∑

t∈T
IS

t (θ) + z(θ)
)

dθ (5.1)

subject to

IS
0 (θ) = 0, ∀ θ ∈ Θ, (5.2)

IS
t−1(θ) + xS

t (θ) = IS
t (θ) + xR

t (θ), ∀ θ ∈ Θ, t ∈ T , (5.3)

xS
t (θ) ≤ MyS

t (θ), ∀ θ ∈ Θ, t ∈ T , (5.4)

IR
0 (θ) = IR

T (θ) = 0, ∀ θ ∈ Θ, (5.5)

IR
t−1(θ) + xR

t (θ) = IR
t (θ) + dt, ∀ θ ∈ Θ, t ∈ T , (5.6)

yR
t (θ) ≤ xR

t (θ) ≤ MyR
t (θ), ∀ θ ∈ Θ, t ∈ T , (5.7)

yS
t (θ), yR

t (θ) ∈ B, ∀ θ ∈ Θ, t ∈ T , (5.8)

xS
t (θ), xR

t (θ), IS
t (θ), IR

t (θ) ∈ N, ∀ θ ∈ Θ, t ∈ T , (5.9)

f(θ)
∑

t∈T
yR

t (θ̂) + h(θ)
∑

t∈T
IR

t (θ̂) ≡ φ(x(θ̂)|θ), ∀ θ, θ̂ ∈ Θ, (5.10)

φ(x(θ)|θ) − z(θ) ≤ φ∗(θ), ∀ θ ∈ Θ, (5.11)

φ(x(θ)|θ) − z(θ) ≤ φ(x(θ̂)|θ) − z(θ̂), ∀ θ, θ̂ ∈ Θ. (5.12)

Here, the objective (5.1) is to minimise the supplier’s expected net costs, which
consists of setup and holding costs and the side payment paid to the retailer. Con-
straints (5.2)-(5.9) are the lot-sizing constraints for the procurement plan of each
contract, constraints (5.10) are for notational convenience, and constraints (5.11)-
(5.12) are the mechanism-design constraints.

In particular, constraints (5.2) make sure that the supplier’s inventory at the start
of the planning horizon is zero. Constraints (5.3) model the supplier’s inventory
balance, i.e., the flow of products on the supplier’s level. Next, constraints (5.4)
enforce that a setup takes place if at least one unit of products is produced. Here,
M is a suitably large number, e.g., M =

∑

t∈T dt.
Constraints (5.5)-(5.7) are similar and correspond to the retailer. Note that by

assumption the supplier can only prescribe the retailer’s order quantities xR
t (θ), so

he cannot force the retailer to incur the setup cost f by using a dummy order of zero
products. This is reflected in the model by yR

t (θ) ≤ xR
t (θ) in (5.7), which is explicitly
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needed for correctness. We also enforce our assumption that IR
T (θ) = 0 in (5.5). This

is in contrast to traditional lot-sizing models without information asymmetry.
Moreover, for given order quantities (xR

t , t ∈ T ) the rest of the retailer’s procure-
ment plan (yR

t , IR
t , t ∈ T ) is fixed. In other words, there is a bijection between the

retailer’s order quantities and his procurement plan. Therefore, we denote a contract
by (x(θ), z(θ)), where x(θ) encodes the retailer’s procurement plan. We omit the
superscript for the retailer in x(θ) to simplify our notation.

In constraints (5.10) we define φ(x(θ̂)|θ) as the retailer’s lot-sizing costs when us-

ing plan x(θ̂) and being type θ ∈ Θ. Next, constraints (5.11) are the Individual Ratio-
nality (IR) constraints, which imply that for retailer type θ the contract (x(θ), z(θ))
leads to net costs that do not exceed his default costs φ∗(θ). Constraints (5.12) are
the Incentive Compatibility (IC) constraints and require for retailer type θ that con-
tract (x(θ), z(θ)) has the lowest net costs of all contracts. Thus, (5.11) and (5.12)
ensure that the retailer of type θ will accept his intended contract (x(θ), z(θ)).

We conclude this section with several remarks on the model related to informa-
tion asymmetry. First, notice that the supplier in fact faces a bi-level optimisation
problem. In our case, the retailer’s response to a contract can be easily incorpo-
rated by (5.5)-(5.7), leading to a single-level optimisation model. However, care
has to be taken to enforce the proper behaviour, i.e., no dummy setups and no
excess supply of products, as explained above. Second, as φ∗(θ) ≤ φ(x|θ) by defini-
tion for any feasible plan x, any feasible contract has a non-negative side payment
by (5.11). Finally, in the previous section we claimed that any time-independent
variable cost or revenue can be assumed to be zero. It is trivial to verify that
∑

t∈T x
S
t (θ) =

∑

t∈T x
R
t (θ) =

∑

t∈T dt for all θ ∈ Θ in any optimal solution. There-
fore, a non-zero time-independent variable cost/revenue either leads to a constant
term in the objective or cancels out in (5.11) and (5.12). This is also the case if
that cost/revenue is private information. Hence, we only need to include setup and
holding costs.

Clearly, complicating factors in solving the contracting model are the infinitely
many variables and constraints. In the next section, we describe a solution approach
which leads to polynomial-time algorithms in certain cases.

5.3 Solution approach

To solve the contracting model introduced in Section 5.2.2 we propose a two-stage
approach. In the first stage, a list of procurement plans for the supply chain is
constructed such that the list is sufficient for solving the contracting problem in the
second stage. Next, in the second stage, the plans are assigned to retailer types and
appropriate side payments are determined. To justify this approach, we start by
analysing the contracting model in Section 5.3.1. The plan assignment is discussed
in Section 5.3.2 and the plan generation in Section 5.3.3. All corresponding proofs
are given in Appendix 5.A.
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5.3.1 Analysis

First of all, let us state some well-known properties of the retailer’s default option
φ∗, i.e., it being the lower envelope of at most T linear functions in θ ∈ Θ, see
Lemma 5.1. The stated zero-inventory property means that a setup only occurs if
there is no inventory from the previous time period. In this case, it only refers to the
retailer’s level, i.e., yR

t I
R
t−1 = 0 for all t ∈ T .

Lemma 5.1 (Van Hoesel and Wagelmans (2000)). The retailer’s default option
φ∗(θ) is piecewise linear, non-decreasing, concave, and continuous in the retailer
type θ ∈ Θ. It consists of at most T linear segments and the corresponding retailer’s
default plans satisfy the zero-inventory property. A complete specification of φ∗ can
be determined in O(T 2) time.

We have a graphical interpretation of Lemma 5.1 which is also useful for the
contracting model. For any retailer plan we can plot its costs as a function of θ, see
Figure 5.1a for a conceptual example. In this example, we assume that only the 5
shown retailer plans exist to keep the figure legible. In a real example, there could
be excessively, but still finitely, many feasible plans. The horizontal axis is the type
space which contains Θ. The vertical axis is the retailer’s total costs φ(x|θ). Each
line is a retailer plan x with the following properties. In case of private setup cost,
the slope is equal to the number of retailer setups

∑

t∈T y
R
t and the intersection with

the vertical axis is the retailer’s total holding costs h
∑

t∈T I
R
t . In case of private

holding cost, the slope is the total amount of retailer inventory
∑

t∈T I
R
t and the

intersection with the vertical axis is the retailer’s total setup costs f
∑

t∈T y
R
t . In

either case, the slope implies the retailer’s total private costs and the intersection
with the vertical axis is equal to the retailer’s total public costs.

In Figure 5.1a plans I, II, and IV form the retailer’s default option φ∗ (shown in
red). Plans III and V are never optimal for the retailer. For the contracting model
the optimal supplier plans are determined for these retailer plans. If, for example,
plans III and V result in very low costs for the supplier, he can use side payments
to incentivise the retailer to accept these plans instead of I, II, and IV, as shown in
blue in Figure 5.1b. Side payments shift the lines vertically, leading to a new lower
envelope, which must lie under φ∗ for θ ∈ Θ by constraints (5.11).

From the graphical interpretation it follows intuitively that the optimal menu
leads to a piecewise linear, non-decreasing, concave, and continuous function (a lower
envelope) in terms of θ ∈ Θ, which lies below φ∗ in Θ. Hence, the slopes of the
segments must be non-increasing. Furthermore, if multiple segments have the same
slope, only one with the lowest supplier’s net costs is required. This implies a strong
ordering in the slopes, i.e., either the number of retailer setups (private setup cost)
or the retailer inventory (private holding cost) is strictly decreasing. This result is
formalised in Lemma 5.2.
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¯
θ θ̄
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θ

φ(x|θ)

(a) Without side payments the retailer
accepts contracts II or IV.

¯
θ θ̄

I

II

III

IV

V

III V

zIII

zV

θ

φ(x|θ)− z

(b) Using side payments to incentivise the
retailer to accept contracts III or V.

Figure 5.1: Conceptual graphical interpretation of the contracting model.

Lemma 5.2. Without loss of optimality, any two distinct contracts (x(θ), z(θ)) and

(x(θ̂), z(θ̂)) for some θ < θ̂ ∈ Θ in an optimal menu satisfy






∑

t∈T
yR

t (θ) >
∑

t∈T
yR

t (θ̂) if setup cost f is private

∑

t∈T
IR

t (θ) >
∑

t∈T
IR

t (θ̂) if holding cost h is private
. (5.13)

A direct consequence of the strict ordering in Lemma 5.2 and the discrete nature of
the involved quantities is that offering only a limited number of contracts is sufficient
for optimality for the contracting problem. By doing so, multiple retailer types will
be assigned the same contract, which is called pooling. Moreover, it follows that this
pooling occurs in a structured way: the interval [

¯
θ, θ̄] is partitioned into subintervals

and each subinterval is assigned a unique contract. This effect is again intuitively
clear from the graphical interpretation in Figure 5.1b. More details are provided in
Corollary 5.3.

Corollary 5.3. Without loss of optimality, an optimal menu partitions (pools) the
retailer types into subintervals and consists of at most







T contracts if setup cost f is private

1 +
∑

t∈T
(t− 1)dt contracts if holding cost h is private .

In particular, for such an optimal menu consisting of K ∈ N≥1 distinct contracts the
types [

¯
θ, θ̄] are partitioned into K closed subintervals [

¯
θk, θ̄k], k ∈ {1, . . . ,K}, where

the k-th contract is the most preferred contract for all types in the k-th subinterval
[
¯
θk, θ̄k].

The maximum number of contracts stated in Corollary 5.3 is the number of fea-
sible slopes that can be achieved. By Lemma 5.2, it is sufficient for optimality to
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design a single plan for each feasible slope, i.e., for each feasible number of retailer
setups

∑

t∈T y
R
t (private setup cost) or retailer inventory

∑

t∈T I
R
t (private holding

cost). It turns out that the procurement plans in an optimal menu can be deter-
mined independently from each other, each following from a modified joint lot-sizing
problem, see Theorem 5.4.

Theorem 5.4. Without loss of optimality, the lot-sizing variables of a contract
(x(θ), z(θ)) in an optimal menu satisfying







∑

t∈T
yR

t (θ) = n if setup cost f is private

∑

t∈T
IR

t (θ) = n if holding cost h is private
(5.14)

are determined by solving a corresponding joint lot-sizing problem, namely minimising






∑

t∈T

(

FyS
t (θ) +HIS

t (θ) + hIR
t (θ)

)

if setup cost f is private

∑

t∈T

(

FyS
t (θ) +HIS

t (θ) + fyR
t (θ)

)

if holding cost h is private
(5.15)

under the constraints (5.2)-(5.9) and (5.14).

We call the joint lot-sizing problem of Theorem 5.4 the n-plan generation problem.
Notice that the n-plan generation problem only includes the supplier’s setup and
holding costs and the retailer’s public costs. The retailer’s private costs are fixed by
(5.14). We can obtain this result in the graphical interpretation as well. Consider the
situation in Figure 5.1a. We can ‘normalise’ all plans by shifting them downwards
so they intersect with the origin, by setting the side payment equal to the retailer’s
public costs of the plan. All plans with the same slope (see (5.14)) are now essentially
equivalent and it is optimal to only use the plan with the lowest supplier’s ‘normalised’
costs. That is, the plan for which (5.15) is minimal, as the normalisation incorporates
the retailer’s public costs into the supplier’s costs.

From the above theoretical results, we conclude that it is sufficient for optimality
to solve the n-plan generation problem for each feasible slope n and use these plans
to design a menu of contracts. The described plan generation is the first stage of
our solution approach. We postpone the analysis of the n-plan generation problem
to Section 5.3.3. First, we continue in Section 5.3.2 with the second stage of the
solution approach: the plan assignment problem, where we need to assign the plans
to the retailer types by using side payments, leading to a menu of contracts.

5.3.2 Plan assignment

From Section 5.3.1 we can assume without loss of optimality that we have a finite
list of procurement plans, obtained from the plan-generation stage. The next step
is the plan assignment stage where we need to decide which plans of the list will be
incorporated into contracts and how these plans/contracts are assigned to the retailer
types. Before we state the plan assignment model in Section 5.3.2.2, we derive two
properties in Section 5.3.2.1 that will simplify the model.
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5.3.2.1 Properties

We first introduce additional notation. Let K ∈ N≥1 be the number of plans in the
considered list. For now, assume that each plan is included into a contract. We
can index and sort the contracts by decreasing slope of the retailer plan, resulting
in (xk, zk) for k ∈ K = {1, . . . ,K}. By Lemma 5.2 and Corollary 5.3, an optimal
menu will partition [

¯
θ, θ̄] into K subintervals [

¯
θk, θ̄k], where the k-th contract will be

assigned to types in [
¯
θk, θ̄k].

For the plan assignment, we need to take the IR and IC constraints (5.11)-(5.12)
into account. These infinitely many constraints can be made tractable by using the
partition structure described above. See Lemma 5.5 for the result.

Lemma 5.5. When determining an optimal menu with K distinct contracts (xk, zk),
k ∈ K = {1, . . . ,K}, and corresponding partition subintervals [

¯
θk, θ̄k], the IR and IC

constraints (5.11)-(5.12) are equivalent to:

φ(x1 |̄θ) − z1 ≤ φ∗(
¯
θ),

φ(xk |̄θk) − zk ≤ φ∗(
¯
θk), ∀ k ∈ K \ {1},

φ(xK |θ̄) − zK ≤ φ∗(θ̄),

φ(xk |̄θk) − zk = φ(xk−1 |̄θk) − zk−1, ∀ k ∈ K \ {1}. (5.16)

Consider Lemma 5.5 in the graphical interpretation. The plan assignment prob-
lem essentially consists of shifting the lines in Figure 5.1a vertically to construct an
optimal lower envelope for domain Θ (seen in blue in Figure 5.1b). From the piece-
wise linearity, concavity, and continuity of φ∗ and the new lower envelope, it follows
immediately that we only need to consider the IR constraints at the breakpoints.
Furthermore, (5.16) relates to the continuity of the constructed lower envelope.

The second property concerns redundant plans included in the list. In an optimal
menu it might be the case that not all provided plans are assigned to retailer types.
Ideally, having these redundant plans included in the list should not interfere with
the optimisation process. Lemma 5.6 shows that this is indeed the case: redundant
plans can safely be added without affecting the optimum.

Lemma 5.6. Having redundant plans/contracts does not affect the plan assignment
problem.

Graphically, the lines of redundant plans can/are placed tangent to the con-
structed lower envelope. This does not affect the lower envelope (the optimum),
but ensures feasibility according to the equivalent IR and IC constraints stated in
Lemma 5.5. From this point onwards, given a menu of contracts, a plan k in the
menu is called assigned if θ̄k >

¯
θk and redundant if θ̄k =

¯
θk.

5.3.2.2 The plan assignment model

We can now formulate the plan assignment model. To do so in a unified way for both
cases of private information, we introduce new notation for the supplier’s lot-sizing
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costs, the retailer’s public lot-sizing costs, and the slope corresponding to the private
information. For a procurement plan x the corresponding supplier’s costs are

C =
∑

t∈T

(

FyS
t +HIS

t

)

.

If setup cost f is private, we define the retailer’s public costs cpub and the slope n by

cpub = h
∑

t∈T
IR

t , n =
∑

t∈T
yR

t .

Otherwise, if holding cost h is private, we have

cpub = f
∑

t∈T
yR

t , n =
∑

t∈T
IR

t .

Hence, by definition, we have φ(xk|θ) = cpub
k + nkθ for k ∈ K and θ ∈ Θ. Note that

in the plan-assignment stage Ck, cpub
k , and nk are all known parameters and follow

from the provided list of plans. It is essential that the plans are sorted such that
nk > nk+1 for all k ∈ K to ensure that the model is in line with Lemma 5.2.

The plan assignment model is given by:

min
∑

k∈K

(∫ θ̄k

¯
θk

ω(θ)dθ
)

(Ck + zk) (5.17)

subject to

cpub
1 + n1

¯
θ − z1 ≤ φ∗(

¯
θ), (5.18)

cpub
k + nk

¯
θk − zk ≤ φ∗(

¯
θk), ∀ k ∈ K \ {1}, (5.19)

cpub
K + nK θ̄ − zK ≤ φ∗(θ̄), (5.20)

cpub
k−1 − cpub

k + (nk−1 − nk)
¯
θk = zk−1 − zk, ∀ k ∈ K \ {1} (5.21)

¯
θ1 =

¯
θ, (5.22)

¯
θk ≤ θ̄k, ∀ k ∈ K, (5.23)

θ̄k =
¯
θk+1, ∀ k ∈ K \ {K}, (5.24)

θ̄K = θ̄. (5.25)

Here, (5.18)-(5.20) are the IR constraints and (5.21) the IC constraints as described
in Lemma 5.5. The constraints (5.22)-(5.25) model the partition of [

¯
θ, θ̄] and the

corresponding assignment of contracts to subintervals as stated in Corollary 5.3.
Consequently, the integral in the objective (5.17) is the probability that the retailer
accepts contract (xk, zk).

We emphasise again that the model is only correct if nk > nk+1 for all k ∈ K (by
Lemma 5.2). Also, by Lemma 5.6 redundant plans/contracts can be added without
affecting the optimum, provided that the ordering in nk is maintained. Moreover,
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note that φ∗(
¯
θk) in (5.19) can be modelled with at most T linear constraints for each

k ∈ K (see Lemma 5.1). Namely, replace (5.19) by

cpub
k + nk

¯
θk − zk ≤ c∗

l + n∗
l ¯
θk, ∀ l ∈ L, k ∈ K \ {1},

where the functions θ 7→ c∗
l + n∗

l θ for l ∈ L (|L| ≤ T ) correspond to the retailer’s
default plans and whose lower envelope is φ∗. Finally, by combining (5.21) the IC
constraints imply for k ∈ K that

zk = z1 + cpub
k − cpub

1 −
k∑

i=2

(ni−1 − ni)
¯
θi.

Substituting this expression in the objective function, results in a separable non-linear
objective:

z1 − cpub
1 +

∑

k∈K

(∫ θ̄k

¯
θk

ω(θ)dθ
)(

Ck + cpub
k −

k∑

i=2

(ni−1 − ni)
¯
θi

)

= z1 − cpub
1 +

∑

k∈K

(∫ θ̄k

¯
θk

ω(θ)dθ
)(

Ck + cpub
k

)

−
K∑

k=2

(∫ θ̄

¯
θk

ω(θ)dθ
)

(nk−1 − nk)
¯
θk.

(5.26)

Thus, the plan assignment model has a formulation with linear constraints and a
non-linear separable objective function. In general, such optimisation models are
difficult to solve to optimality, but several (heuristic) solution approaches have been
designed (see for example Bradley et al. (1977), Byrd et al. (2003), and Kolda et al.
(2007)).

If the retailer type distribution ω is uniform, the plan assignment model has a hid-
den convexity. The standard formulation is still non-convex, but by using the refor-
mulated objective function (5.26) we obtain a linearly-constrained convex-quadratic
model. It is well known that these models can be solved efficiently (see Ye and Tse
(1989)). This result is captured in Theorem 5.7 and its proof contains the details of
the convex formulation.

Theorem 5.7. If ω is a uniform distribution, then the plan assignment model can
be formulated as a linearly-constrained convex-quadratic model. It can be solved in
polynomial time in the number of contracts K by interior-point methods.

5.3.3 Plan generation

In the plan-generation stage we need to solve several joint lot-sizing problems as
described in Theorem 5.4. In Section 5.3.3.1 we first give properties of this problem
that are common for the two private information cases. Then we focus on each
case separately: private setup cost in Section 5.3.3.2 and private holding cost in
Section 5.3.3.3.
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5.3.3.1 Common properties

In a standard joint lot-sizing problem, i.e., without constraint (5.14), it is well known
that there exists an optimal solution that satisfies the zero-inventory property. Such
an optimal solution can be found in polynomial time using dynamic programming by
its decomposition into independent subplans. In contrast, for the n-plan generation
problem the optimal solution might not satisfy the zero-inventory property, as we
will show later. However, the zero-inventory property always holds for the supplier’s
lot-sizing plan, see Lemma 5.8.

Lemma 5.8. For an optimal solution for the n-plan generation problem, the sup-
plier’s lot-sizing plan must satisfy the zero-inventory property.

Another property in certain joint lot-sizing problems is that the joint plan is
nested. This means that a supplier setup implies a retailer setup in the same time
period: yS

t = 1 implies yR
t = 1 for t ∈ T . This property holds for the n-plan

generation problem, as shown in Lemma 5.9.

Lemma 5.9. For an optimal solution for the n-plan generation problem, the joint
lot-sizing plan must be nested.

The properties in Lemmas 5.8 and 5.9 imply that the main focus of the remaining
analysis is the retailer’s plan. In particular, how does the constraint on either the re-
tailer setups or the retailer inventory affect the solution structure? We continue with
analysing the n-plan generation problem separately for the two private information
cases.

5.3.3.2 Private setup cost

In this section we prove that for private setup cost the plan generation problem can
be solved in polynomial time by a dynamic-programming algorithm. An essential
part of this algorithm is that we can decompose an optimal solution of the n-plan
generation into independent subplans. An independent subplan, denoted by (

¯
t, t̄, n),

only considers the subproblem with time periods {̄t, . . . , t̄} ⊆ T . It has a single

supplier setup, in the initial time period
¯
t, from which exactly all demand

∑t̄
t=

¯
t dt is

satisfied. Also, there is no inventory transferred to/from time periods not belonging
to the subproblem. Finally, the subplan must have exactly n retailer setups. The
decomposable structure into independent subplans is proven in Lemma 5.10.

Lemma 5.10. Any optimal solution of the n-plan generation problem can be decom-
posed into independent subplans.

The result of Lemma 5.10 implies that the optimal solution of the n-plan gen-
eration problem can be found by solving several appropriately chosen subproblems
independently. In order to solve such a subproblem we need to determine the struc-
ture of its optimal solutions. The next result, Lemma 5.11, shows that the structure
depends on whether H ≤ h or H > h.
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Lemma 5.11. Consider an optimal independent subplan prescribing exactly n re-
tailer setups. If H ≤ h then this subplan satisfies the zero-inventory property (without
loss of optimality if H = h). If H > h then this subplan is unique: the retailer has
setups only in the first n periods, where the post-initial orders are 1 unit of supply.
In this case, the retailer’s plan might not satisfy the zero-inventory property.

Lemma 5.11 states that if H ≤ h the optimal solution satisfies the zero-inventory
property. Hence, this case is similar to traditional joint lot-sizing problems and
can be solved by dynamic programming. However, if H > h there is a unique and
straightforward optimal solution, which might violate the zero-inventory property.
See Figure 5.2 for an example with T = 5 and n = 3. This figure is a network
flow graph, where the arrows indicate strictly positive flow of products through the
supply chain. That is, a vertical arrow is a setup and a horizontal arrow implies
having inventory at that time period. The upper layer is the supplier’s lot-sizing
plan and the lower layer the retailer’s plan. At the bottom the time periods are
displayed. In Appendix 5.B we give an example where the (unique) optimal menu
contains such a contract that violates the zero-inventory property.

Supplier

Retailer
(1) (2) (3) (4) (5)

2

1

1

1

Figure 5.2: The unique optimal subplan in the case of private setup cost, H > h,
T = 5, and n = 3.

From Lemmas 5.10 and 5.11 the dynamic-programming approach should be clear.
First, solve all related independent subproblems and then use these optimal subplans
to construct an optimal solution for the n-plan generation problem by dynamic pro-
gramming. Since we need to solve all n-plan generation problems (n ∈ {1, . . . , T}) we
can reuse many computations. The approach is similar to the dynamic-programming
algorithm in Zangwill (1969), but we need to fix the number of retailer setups and
take the two cases H ≤ h and H > h into account. Theorem 5.12 concludes these
insights and its proof contains the specification of the dynamic-programming algo-
rithm.

Theorem 5.12. Solving all n-plan generation problems can be done in O(T 4) time
by dynamic programming.

To conclude the private setup cost case, we can use the dynamic-programming
algorithm stated in the proof of Theorem 5.12 to construct a list of procurement plans
that is sufficient for optimality for the contracting problem. This list can then be
used in the plan-assignment stage to determine the optimal allocation of contracts to
the retailer types and solve the contracting problem. In particular, if ω is a uniform
distribution, the entire contracting problem can be solved to optimality in polynomial
time by Theorems 5.7 and 5.12. We state this result in the next theorem.
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Theorem 5.13. If ω is a uniform distribution, then the contracting problem can be
solved in polynomial time.

5.3.3.3 Private holding cost

The case that the holding cost is private information appears to be more complicated
than having private setup cost. In particular, a similar result as Lemma 5.10 does
not hold for the n-plan generation problem in general. For example, certain amounts
of retailer inventory (n values) cannot be achieved with plans that satisfy the zero-
inventory property. Furthermore, if the supplier’s setup cost F is appropriately
chosen, then it would be optimal to have several supplier setups in such a (sub)plan,
disproving that the decomposition structure holds in general. The smallest example
is T = 2, d1 = 1, d2 = 2, F < H, and the optimal plan for n = 1, see Figure 5.3c.

(1) (2)

3

3
2

(a) n = 2.

(1) (2)

3

2

1

1
1

(b) n = 1,
F ≥ H.

(1) (2)

2

2

1

1
1

(c) n = 1,
F < H.

(1) (2)

3

1

2

2

(d) n = 0,
F ≥ 2H.

(1) (2)

1

1

2

2

(e) n = 0,
F < 2H.

Figure 5.3: The optimal solutions for the n-plan generation problems in the case of
private holding cost with T = 2, d1 = 1, and d2 = 2.

Moreover, we potentially need to solve pseudo-polynomially many n-plan gener-
ation problems by Corollary 5.3. We have not been able to determine an efficient
combinatorial algorithm to solve all n-plan generation problems. However, there
seems to be a redundancy in the complete list of plans. For example, the plans in
Figures 5.3c and 5.3e lead to the same supplier’s lot-sizing costs, but the retailer’s
lot-sizing costs are lower for the plan for n = 0 (Figure 5.3e). In other words, the
plan of Figure 5.3c has a form of inefficiency. Unfortunately, it is not directly clear
whether we can omit this plan, since the side payments need to be taken into account.

If we assume a uniform distribution for the retailer’s type, then the following
lemma provides further indications that certain plans are redundant. Lemma 5.14
states a necessary condition for assigning a plan with a slope that does not occur in
φ∗.

Lemma 5.14. Assume that ω is a uniform distribution. Consider k ∈ {2, . . . ,K−1}
such that φ∗ has no slopes n∗ with nk−1 > n∗ > nk+1. If plan k is assigned, i.e.,
θ̄k >

¯
θk, then the following must hold:

(Ck + cpub
k ) − (Ck−1 + cpub

k−1)

nk−1 − nk
+

(Ck + cpub
k ) − (Ck+1 + cpub

k+1)

nk − nk+1
< 0. (5.27)
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In particular, if we consider all possible plans (nk+1 = nk − 1), Lemma 5.14
implies that an assigned plan k ∈ K such that nk is not a slope of φ∗ must satisfy

2(Ck + cpub
k ) − (Ck−1 + cpub

k−1) − (Ck+1 + cpub
k+1) < 0.

We can apply this to the example in Figure 5.3. Realise that n = 1 is not a slope of
φ∗. The condition of Lemma 5.14 for n = 1 is

0 > 2(F + min{F,H} + 2f) − (F + f) − (F + min{F, 2H} + 2f)

= f + 2 min{F,H} − min{F, 2H} ≥ f > 0.

This is a contradiction. Hence, the plan for n = 1 is never assigned.
Under the additional assumption that the supplier’s setup cost F is high enough

to prevent any additional supplier setups, we can solve the plan generation problem
in polynomial time. In this case, all optimal plans have exactly a single supplier
setup. The idea is to use Lemma 5.14 to exclude many plans and show that the
remaining plans can be determined efficiently. Of particular interest are so-called
extreme plans. We call a plan m-extreme if it has minimal retailer inventory with
m retailer setups, where m ∈ {1, . . . , T}. It is trivial that these extreme plans must
satisfy the zero-inventory property. Note that all default plans of φ∗ are extreme
plans. Lemma 5.15 shows that under the mentioned assumptions T extreme plans
are sufficient for optimality for the contracting problem.

Lemma 5.15. Assume that ω is a uniform distribution and F > H maxτ∈T {(τ −
1)
∑T

t=τ dt}. A list consisting of an m-extreme plan for each m ∈ {1, . . . , T} is
sufficient for optimality for the contracting problem.

Under the assumptions of Lemma 5.15, all m-extreme plans for fixed m have
the same supplier’s costs and retailer’s public costs. Consequently, it is sufficient to
determine any m-extreme plan. In this case, we can solve the (entire) plan generation
problem by determining these T extreme plans, which can be done by dynamic
programming. The result is a polynomial-time algorithm for the plan generation
under the specified assumptions, see Lemma 5.16.

Lemma 5.16. Assume that ω is a uniform distribution and F > H maxτ∈T {(τ −
1)
∑T

t=τ dt}. Generating plans sufficient for optimality for the contracting problem
can be done in O(T 3) time by dynamic programming.

By combining Theorem 5.7 and Lemmas 5.15 and 5.16, we conclude that under
the stated conditions the contracting problem can be solved in polynomial time, see
Corollary 5.17.

Corollary 5.17. If ω is a uniform distribution and F > H maxτ∈T {(τ−1)
∑T

t=τ dt},
then the contracting problem can be solved in polynomial time.

From numerical experiments we have indications that similar results hold without
the condition on the supplier’s setup cost F . Furthermore, we have the following
property. Consider a list containing the plans for all slopes of φ∗. Now keep all
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side payments fixed and focus on the plans with slopes different from φ∗. These
other plans share a special property: they can always be removed from a feasible
menu to obtain a new feasible menu (without changing the side payments). This
property is obvious from the graphical interpretation and can potentially be used to
exclude plans from consideration. To conclude, we conjecture that plans with the
same slopes as φ∗ are essential for optimality for the contracting problem. However,
more research needs to be done for a formal proof and for other distributions for ω.

5.4 Discussion and conclusion

The modelling concept and solution approach is applicable to a broader range of
problems. In this section, we discuss the generalisability of our results, propose
research directions, and conclude our findings.

5.4.1 Demand assumption

One of our assumptions is that the demand in each period is strictly positive. This is
not without loss of generality, especially due to the time-independent holding costs.
We will discuss the consequences if demand can be zero.

First, we often use that the number of retailer setups lies between 1 and T . In-
stead, there is a maximum feasible number of retailer setups 1 ≤ K ≤ T . This has no
significant impact on the results. Second, the dynamic-programming algorithms for
both plan generation problems need to be adjusted slightly to prevent dummy retailer
setups. Consequently, fewer options need to be considered during the algorithm, so
the complexity results still hold.

Only our results for the plan generation for private setup cost are significantly
affected. In the proofs of Lemmas 5.10 and 5.11 we have explicitly mentioned where
we use that demand is strictly positive. There is a very specific case for which the two
stated proofs do not hold if demand can be zero: there needs to be a substructure that
violates the zero-inventory property where this retailer inventory cannot be decreased
without invalidating a retailer setup. All details are provided in Appendix 5.C, which
we summarise here.

A common assumption for lot-sizing problems is that value is added to the prod-
uct as it moves downstream in the supply chain, increasing the holding cost. In
other words, H ≤ h holds. Another interpretation is that the supplier benefits from
economies of scale to have less holding costs. In Appendix 5.C.1 we prove for the
case H ≤ h that without loss of optimality a plan is assigned in an optimal menu
only if it satisfies the zero-inventory property. We conclude that, when demand is
non-negative and H ≤ h, the plan generation problem is solvable in O(T 4) time by
dynamic programming.

The other case, H > h, can be analysed using techniques similar to those in
our proofs. The (unique) optimal n-plan can be non-decomposable, as shown in
Appendix 5.C.2. However, we show that an optimal plan consists of substructures
similar to Figure 5.2. That is, the solution is fixed when we know the supplier setups
and how many retailer setups occur in between supplier setups. This allows for
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a dedicated dynamic-programming algorithm with O(T 5) running time, which can
potentially be improved.

We conclude that our results are still valid when demand is non-negative, albeit
that some modifications are needed.

5.4.2 Generalisability

For several of our results we did not use any property of the lot-sizing problem,
implying that these results are also valid for other problems. Here, we discuss the
generalisability of our approach. We still refer to the two involved parties by the
supplier and the retailer.

The more general setting is as follows. Given the decision variables (the plan) of
the supplier, the retailer needs to solve a Mixed Integer Linear Programming (MILP)
problem to determine his optimal plan, and vice versa. Both the supplier and the
retailer want to minimise costs as their objective. We assume that for any retailer
plan there exists a feasible supplier plan, in order to have a well-defined default
option.

The retailer has single-dimensional private information θ ∈ [
¯
θ, θ̄] = Θ ⊆ R, which

must only affect his objective value (his costs). Let x denote all decision variables
from the supplier and the retailer. The retailer’s costs for type θ ∈ Θ are

φ(x|θ) = (a⊤x + a0)θ + (b⊤x + b0),

for given vectors a and b, and scalars a0 and b0. Hence, we have public costs cpub =
b⊤x + b0 and slope n = a⊤x + a0. We assume that this slope a⊤x + a0 only takes on
finitely many values over all feasible plans x, which is essential. Consequently, the
retailer’s default option φ∗ is the lower envelope of finitely many linear functions.

Under the described setting and assumptions, we can apply the same two-stage so-
lution approach consisting of a plan-generation stage and a plan-assignment stage. In
particular, all results related to the graphical interpretation and the plan assignment
are valid, since these are independent of the lot-sizing setting. The main difference
in the difficulty in solving the contracting problem lies in the plan generation. If the
bi-level optimisation problem with the additional constraint that (a⊤x + a0) = n
for some slope n can be solved by a single-level MILP problem, then general MILP
solvers can be used. Whether polynomial-time algorithms exist highly depends on
the underlying optimisation problem. Also, if the number of plans to generate is
high, it might be useful to use heuristics instead, which we will discuss in the next
section.

To conclude the generalisability, we provide the details on which results are still
valid. First, since the default option φ∗ is the lower envelope of finitely many linear
functions, equivalent properties as in Lemma 5.1 hold (except for the complexity re-
sult). By trivially modifying the cost functions in our proofs, we obtain the following
similar results. As in Lemma 5.2, the slopes of the assigned plans must be strictly
decreasing. By the finitely many possible slopes, we get a bound on the number of
contracts and properties similar to Corollary 5.3. In the equivalent of Theorem 5.4,
the slope a⊤x + a0 must be fixed to n and the joint optimisation problem minimises
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the sum of the supplier’s costs and the retailer’s public costs b⊤x+b0. Regarding the
plan assignment, Lemmas 5.5, 5.6, and 5.14, and Theorem 5.7 are valid, since they
do not use any lot-sizing properties. The other results concern the plan generation
and are specific to the lot-sizing problem.

5.4.3 Heuristics

Our analysis provides several research directions for heuristics. First of all, the plan
generation can be restricted to (potentially suboptimal) plans that can be constructed
efficiently, e.g., lot-sizing plans satisfying the zero-inventory property. Also, we can
generate plans only for slopes with intuitive interpretations. For example, only plans
with slopes that appear in φ∗ or in the optima of the unrestricted traditional joint lot-
sizing problem, when a sensitivity analysis is performed on the private cost parameter.

Second, by rescaling the side payment zk as z̃k = zk − cpub
k , the constraints of the

plan assignment problem only depend on the slopes of the included plans. This leads
the following idea. First, add a place-holder plan for each possible slope. Second,
determine lower bounds on the joint costs Ck + cpub

k for each k ∈ K. These costs
appear in the objective after rescaling the side payment. This results in a relaxation
for the contracting problem. Then, we determine the exact joint costs for (a subset
of) the place-holder plans assigned in the optimum of the relaxation. If we calculate
the joint costs of all assigned plans, then we obtain an upper bound. By repeating
this process, we get better lower and upper bounds, and a solution approach.

Third, we can design an iterative heuristic as follows. If we fix the number
of contracts and their assignment to retailer types, then the resulting optimisation
model is a mixed integer linear program. This model is given in Appendix 5.D. For
a given partition, we solve this model to obtain procurement plans. Then, solve
the plan assignment model for these plans, resulting in a new partition. Switching
between these models leads to an iterative heuristic.

5.4.4 Concluding remarks

If all information is shared in the supply chain, then it is trivial to show that the
supplier’s contracting problem can be solved by a single joint lot-sizing problem.
Namely, compared to the model with information asymmetry in Section 5.2.2, there
is only a single type, a single IR constraint, and no IC constraints. In any optimal
solution the IR constraint binds, i.e., z = φ(x) − φ∗, where we omit the single type.
Substituting this in the objective function results in a traditional joint lot-sizing
problem that minimises the sum of the supplier’s costs and all retailer’s costs. As
discussed before, this problem can be solved in polynomial time.

Our analysis and obtained results show that information asymmetry does not
necessarily change the complexity class of the underlying optimisation problem. That
is, we have identified cases for which we can solve the contracting problem under
information asymmetry in polynomial time. However, clearly it is more complicated
to determine the optimal solution. Not only do we need to solve multiple joint
lot-sizing problems to generate a sufficient list of plans, we also need to solve the
assignment model. Furthermore, the interdependence between the contracts through
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the side payments results in offering atypical procurement plans. For example, plans
that do no satisfy the zero-inventory property or that are not decomposable into
independent subproblems.

Although the plan generation for private setup cost can be solved in polynomial
time for any instance, further research might narrow down which n-plans are sufficient
for optimality for the contracting problem. For the case of private holding cost
more research is needed to prove polynomial-time complexity under less restrictive
assumptions (if valid at all). Finally, the above described generalisability provides
research directions to other, more general, problem settings.

Appendix

5.A Proofs of Section 5.3

This appendix contains all proofs of Section 5.3. Note that many results also have
an intuitive graphical interpretation for which we refer to the main text.

5.A.1 Proofs of Section 5.3.1

Proof of Lemma 5.1. The default option φ∗ follows from the single-level lot-sizing
problem on the retailer’s level. It is trivial that there are finitely many feasible
procurement plans and each feasible plan is linear and non-decreasing in θ. By
definition, φ∗ is the point-wise minimum (the lower envelope) of these finitely many
linear functions. Only the plans that for a given number of setups (ranging from
1 to T ) minimise the retailer’s holding costs can be minimisers and form the lower
envelope. Consequently, these plans must satisfy the zero-inventory property. This
proves the stated properties of φ∗. Finally, φ∗ can be determined efficiently in O(T 2)
time by using the method described in Van Hoesel and Wagelmans (2000).

Proof of Lemma 5.2. First, realise that by definition we have

φ(x(θ)|θ) − φ(x(θ̂)|θ) + φ(x(θ̂)|θ̂) − φ(x(θ)|θ̂)

= (f(θ) − f(θ̂))
(∑

t∈T
yR

t (θ) −
∑

t∈T
yR

t (θ̂)
)

+ (h(θ) − h(θ̂))
(∑

t∈T
IR

t (θ) −
∑

t∈T
IR

t (θ̂)
)

.

(5.28)

Hence, if






∑

t∈T
yR

t (θ) =
∑

t∈T
yR

t (θ̂) if setup cost f is private

∑

t∈T
IR

t (θ) =
∑

t∈T
IR

t (θ̂) if holding cost h is private
(5.29)

then the right-hand side of (5.28) is equal to zero and

φ(x(θ)|θ) − φ(x(θ̂)|θ) = φ(x(θ)|θ̂) − φ(x(θ̂)|θ̂).
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Second, the IC conditions state

φ(x(θ)|θ) − z(θ) ≤ φ(x(θ̂)|θ) − z(θ̂), φ(x(θ̂)|θ̂) − z(θ̂) ≤ φ(x(θ)|θ̂) − z(θ),

implying that

φ(x(θ)|θ) − φ(x(θ̂)|θ) ≤ z(θ) − z(θ̂) ≤ φ(x(θ)|θ̂) − φ(x(θ̂)|θ̂). (5.30)

So if (5.29) is true, then (5.30) holds with equalities, resulting in

φ(x(θ)|θ) − z(θ) = φ(x(θ̂)|θ) − z(θ̂), φ(x(θ̂)|θ̂) − z(θ̂) = φ(x(θ)|θ̂) − z(θ).

In other words, both types θ and θ̂ are indifferent to each other’s contracts and these
contracts can be interchanged without affecting feasibility.

Now consider an optimal menu of contracts. If (5.29) holds for types θ and θ̂,

then assigning both types either contract (x(θ), z(θ)) or (x(θ̂), z(θ̂)) is feasible as
shown above. Assigning the contract that leads to the lowest supplier’s net costs
cannot result in a worse objective value, i.e., the new menu must be optimal as well.
By repeating this argument, we conclude that without loss of optimality distinct
contracts do not satisfy (5.29).

Finally, from (5.30) it follows that (5.28) must be non-positive. For types θ < θ̂

with distinct contracts we have either f(θ) < f(θ̂) or h(θ) < h(θ̂), depending on
which cost parameter is private. Furthermore, with the above insight (5.28) must
be strictly negative (without loss of optimality). Thus, (5.13) holds without loss of
optimality.

Proof of Corollary 5.3. By Lemma 5.2 we can bound the number of distinct con-
tracts. First, the total number of retailer setups lies between 1 and T . Since dt > 0
for all t ∈ T , all numbers 1, . . . , T of retailer setups are feasible. Second, the total re-
tailer inventory lies between 0 (use the maximum number of setups) and

∑

t∈T (t−1)dt

(use one setup). All discrete intermediate values are also feasible by appropriately de-
laying parts of the orders (starting with a single setup). Here, we use our assumption
that the products are indivisible, i.e., the retailer order quantities must be discrete.
Consequently, by the finite bounds given above and the discrete nature, Lemma 5.2
implies that there are only finitely many contracts in an optimal menu (without loss
of optimality). Hence, retailer types must be pooled, i.e., some are offered the same
contract.

The partitioning of the retailer types follows trivially from the ordering implied by
(5.13). Only the technicality that we can use closed subintervals remains to be shown.
Consider the case that the k-th contract (xk, zk) is the most preferred contract for all
types (

¯
θk, θ̄k], but not for type

¯
θk. Instead, type

¯
θk strictly prefers the l-th contract

(xl, zl):

φ(xl |̄θk) − zl < φ(xk |̄θk) − zk.

However, we also have

φ(xk|θk) − zk ≤ φ(xl|θk) − zl ∀ θk ∈ (
¯
θk, θ̄k]

=⇒ φ(xk |̄θk) − φ(xl |̄θk) = lim
θk→

¯
θk

{φ(xk|θk) − φ(xl|θk)} ≤ zk − zl.
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Here, the continuity of the limit follows from the fact that φ(xk|θk) − φ(xl|θk) is
continuous in θk. The result contradicts that

¯
θk strictly prefers the l-th contract.

Similar arguments hold for the other cases. Thus, each subinterval is closed.

Proof of Theorem 5.4. Consider a feasible menu and any of its contracts (x(θ), z(θ)).
Modify the lot-sizing variables of contract (x(θ), z(θ)), resulting in x̄(θ), in any way
such that it is a feasible lot-sizing plan satisfying (5.2)-(5.9) and (5.14). Adjust the
side payment to z̄(θ) to compensate for the change in costs for type θ:

z̄(θ) = z(θ) + φ(x̄(θ)|θ) − φ(x(θ)|θ).

By construction, we have

φ(x̄(θ)|θ) − z̄(θ) = φ(x(θ)|θ) − z(θ) ≤ φ∗(θ),

φ(x̄(θ)|θ) − z̄(θ) = φ(x(θ)|θ) − z(θ) ≤ φ(x(θ̂)|θ) − z(θ̂), ∀ θ̂ ∈ Θ.

Furthermore, for θ̂ ∈ Θ we get

φ(x̄(θ)|θ̂) − z̄(θ) = φ(x̄(θ)|θ̂) − φ(x̄(θ)|θ) + φ(x(θ)|θ) − φ(x(θ)|θ̂) + φ(x(θ)|θ̂) − z(θ)

= (f(θ̂) − f(θ))
(∑

t∈T
ȳR

t (θ) −
∑

t∈T
yR

t (θ)
)

+ (h(θ̂) − h(θ))
(∑

t∈T
ĪR

t (θ) −
∑

t∈T
IR

t (θ)
)

+ φ(x(θ)|θ̂) − z(θ)

= φ(x(θ)|θ̂) − z(θ) ≥ φ(x(θ̂)|θ̂) − z(θ̂).

Here, the last equality holds since both plans satisfy (5.14) and the inequality follows
from the IC constraints. To conclude, the menu with the modified contract is feasible.

Finally, consider an optimal menu. We can modify each contract sequentially as
described above, where the corresponding term in the objective is

∑

t∈T

(

F ȳS
t (θ) +HĪS

t (θ)
)

+ z̄(θ)

=
∑

t∈T

(

F ȳS
t (θ) +HĪS

t (θ)
)

+ z(θ) + φ(x̄(θ)|θ) − φ(x(θ)|θ),

where z(θ) and φ(x(θ)|θ) are now constants. Furthermore, in

φ(x̄(θ)|θ) = f(θ)
∑

t∈T
ȳR

t (θ) + h(θ)
∑

t∈T
ĪR

t (θ)

one of these terms is constant (equal to n times the retailer’s type) by (5.14) and the
other term does not depend on the retailer’s type. The result now follows.
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5.A.2 Proofs of Section 5.3.2

Proof of Lemma 5.5. For k ∈ K the IR and IC constraints must hold for all types
θk ∈ [

¯
θk, θ̄k] with respect to contract (xk, zk). First, we consider the IC constraints.

For k ∈ K \ {1} two (adjacent) IC constraints state

φ(xk |̄θk) − φ(xk−1 |̄θk) ≤ zk − zk−1 ≤ φ(xk|θ̄k−1) − φ(xk−1|θ̄k−1).

Since θ̄k−1 =
¯
θk, equality holds throughout and we obtain

zk − zk−1 = φ(xk |̄θk) − φ(xk−1 |̄θk). (5.31)

This shows necessity of (5.31) and we continue with proving its sufficiency. We denote

the lot-sizing variables of retailer plan xi by y
R(i)
t and I

R(i)
t . For l < k we have

zk − zl =

k∑

i=l+1

(zi − zi−1)
(5.31)

=

k∑

i=l+1

(φ(xi |̄θi) − φ(xi−1 |̄θi))

=

k∑

i=l+1

(

f(
¯
θi)
(∑

t∈T
y

R(i)
t −

∑

t∈T
y

R(i−1)
t

)

+ h(
¯
θi)
(∑

t∈T
I

R(i)
t −

∑

t∈T
I

R(i−1)
t

))

(5.13)

≤
k∑

i=l+1

(

f(θl)
(∑

t∈T
y

R(i)
t −

∑

t∈T
y

R(i−1)
t

)

+ h(θl)
(∑

t∈T
I

R(i)
t −

∑

t∈T
I

R(i−1)
t

))

= φ(xk|θl) − φ(xl|θl),

for any θl ∈ [
¯
θl, θ̄l]. Likewise, for l > k we get

zk − zl = −
l∑

i=k+1

(zi − zi−1)
(5.31)

= −
l∑

i=k+1

(φ(xi |̄θi) − φ(xi−1 |̄θi))

= −
l∑

i=k+1

(

f(
¯
θi)
(∑

t∈T
y

R(i)
t −

∑

t∈T
y

R(i−1)
t

)

+ h(
¯
θi)
(∑

t∈T
I

R(i)
t −

∑

t∈T
I

R(i−1)
t

))

(5.13)

≤ −
l∑

i=k+1

(

f(θl)
(∑

t∈T
y

R(i)
t −

∑

t∈T
y

R(i−1)
t

)

+ h(θl)
(∑

t∈T
I

R(i)
t −

∑

t∈T
I

R(i−1)
t

))

= φ(xk|θl) − φ(xl|θl),

for any θl ∈ [
¯
θl, θ̄l]. Thus, all IC constraints are implied by (5.31).

Second, the IR constraints for k ∈ K are

φ(xk|θk) − zk ≤ φ∗(θk) ∀ θk ∈ [
¯
θk, θ̄k]

⇐⇒ sup{φ(xk|θk) − φ∗(θk) : θk ∈ [
¯
θk, θ̄k]} ≤ zk.

Since φ∗(θk) is concave by Lemma 5.1 and φ(xk|θk) is linear in θk, the difference
φ(xk|θk) − φ∗(θk) is a convex function in θk. The stated supremum is therefore
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attained at one of the border points
¯
θk or θ̄k and the other IR constraints are redun-

dant. In fact, more IR constraints are redundant, provided that the IC constraints
hold. For k ∈ K \ {K} we have

φ(xk+1 |̄θk+1) − zk+1
(5.31)

= φ(xk |̄θk+1) − zk = φ(xk|θ̄k) − zk.

This implies that we only need one of the IR constraints corresponding to types θ̄k

and
¯
θk+1.

Proof of Lemma 5.6. Suppose
¯
θk = θ̄k, i.e., the k-th contract is effectively not as-

signed and is redundant. First, we consider the IC constraints. From (5.16) we
have

zk+1 − zk = φ(xk+1 |̄θk+1) − φ(xk |̄θk+1),

zk − zk−1 = φ(xk |̄θk) − φ(xk−1 |̄θk).

Adding both equalities and using
¯
θk = θ̄k =

¯
θk+1 results in

zk+1 − zk−1 = φ(xk+1 |̄θk+1) − φ(xk |̄θk+1) + φ(xk |̄θk) − φ(xk−1 |̄θk)

= φ(xk+1 |̄θk+1) − φ(xk |̄θk+1) + φ(xk |̄θk+1) − φ(xk−1 |̄θk+1)

= φ(xk+1 |̄θk+1) − φ(xk−1 |̄θk+1).

This is the IC constraint if we would omit the redundant k-th contract from the
model.

Second, consider the IR constraints. If k ∈ K \ {K} we have

φ(xk |̄θk) − zk = φ(xk|θ̄k) − zk = φ(xk |̄θk+1) − zk
(5.16)

= φ(xk+1 |̄θk+1) − zk+1.

Thus, the corresponding IR constraints are implied by others and have no effect.
Similarly, if k = K it holds that

φ(xK |θ̄K) − zK = φ(xK |̄θK) − zK = φ(xK |θ̄K−1) − zK
(5.16)

= φ(xK−1|θ̄K−1) − zK−1.

Notice that this leads exactly to the second IR constraint required for type K − 1 if
we would omit the K-th contract from the model. We conclude that the redundant
contract has no effect on the feasible region.

Finally, the probability that the k-th contract is selected by the retailer is equal

to
∫ θ̄k

¯
θk
ω(θ)dθ. If

¯
θk = θ̄k then this probability is zero. Furthermore, other contracts

are unaffected as argued above. Therefore, such redundant contracts do not affect
the optimisation problem.

Proof of Theorem 5.7. First, define θ̄0 =
¯
θ for notational convenience. Since ω is a

uniform distribution, the objective function in (5.17) becomes

∑

k∈K

θ̄k − θ̄k−1

θ̄ −
¯
θ

(Ck + zk)

=

K−1∑

k=1

(Ck − Ck+1 + zk − zk+1)θ̄k

θ̄ −
¯
θ

+
(CK + zK)θ̄ − (C1 + z1)

¯
θ

θ̄ −
¯
θ

.
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We can use (5.21) to get

(Ck − Ck+1 + zk − zk+1)θ̄k =
(
Ck − Ck+1 + cpub

k − cpub
k+1 + (nk − nk+1)

¯
θk+1

)
θ̄k

= (nk − nk+1)θ̄2
k +

(
Ck + cpub

k − Ck+1 − cpub
k+1

)
θ̄k.

Furthermore, we can repeatedly use (5.21) to obtain

zk = z1 +
k∑

i=2

(

cpub
i − cpub

i−1 − (ni−1 − ni)
¯
θi

)

= z1 + cpub
k − cpub

1 −
k∑

i=2

(ni−1 − ni)
¯
θi

= z1 + cpub
k − cpub

1 −
k−1∑

i=1

(ni − ni+1)θ̄i. (5.32)

Combining all results and substituting zK , leads to the objective function

z1 − cpub
1 +

(CK + cpub
K )θ̄ − (C1 + cpub

1 )
¯
θ

θ̄ −
¯
θ

+

K−1∑

k=1

(nk − nk+1)θ̄2
k +

(
Ck + cpub

k − Ck+1 − cpub
k+1 − (nk − nk+1)θ̄

)
θ̄k

θ̄ −
¯
θ

.

(5.33)

This objective is convex quadratic, as nk > nk+1 holds.
After eliminating unnecessary variables and using (5.32), the quadratic formula-

tion is to minimise (5.33) subject to

n1
¯
θ + cpub

1 − z1 ≤ φ∗(
¯
θ), [λ0]

nkθ̄k +

k−1∑

i=1

(ni − ni+1)θ̄i + cpub
1 − z1 ≤ φ∗(θ̄k), ∀ k ∈ {1, . . . ,K − 1}, [λk]

nK θ̄ +
K−1∑

i=1

(ni − ni+1)θ̄i + cpub
1 − z1 ≤ φ∗(θ̄), [λK ]

¯
θ − θ̄1 ≤ 0, [µ0,1]

θ̄k − θ̄k+1 ≤ 0, ∀ k ∈ {1, . . . ,K − 2}, [µk,k+1]

θ̄K−1 − θ̄ ≤ 0. [µK−1,K ]

Note that we do not need the IC constraints in the model any more. Also, the IR
constraints have been rewritten by using

nk
¯
θk +

k−1∑

i=1

(ni − ni+1)θ̄i = nk−1θ̄k−1 +

k−2∑

i=1

(ni − ni+1)θ̄i.

Finally, the default values φ∗(θ̄k) can each be modelled using at most T linear con-
straints, as shown in Section 5.3.2.2.
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Thus, if ω is a uniform distribution, then the plan assignment model can be for-
mulated as a linearly-constrained convex-quadratic model with (K−1)+1 continuous
variables and 2 + (K − 1)T + K linear constraints. Furthermore, the coefficients of
the model are polynomial in the input size of the contracting problem as they relate
to total costs in lot-sizing plans. This convex-quadratic model can be solved in poly-
nomial time in the number of contracts K by interior-point methods, see for example
Ye and Tse (1989).

5.A.3 Proofs of Section 5.3.3

Proof of Lemma 5.8. Suppose there exists an optimal solution where the supplier’s
lot-sizing plan does not satisfy the zero-inventory property. Consequently, there exists
a time τ ∈ T such that IS

τ−1 > 0 and yS
τ = 1. We can strictly improve the contract

by shifting IS
τ−1 units from the origin order(s) to time τ , leading to a reduction in

the total costs by at least H > 0. This contradicts the optimality of the original
lot-sizing plan. Hence, the supplier’s plan must satisfy the zero-inventory property
in the optimal solution.

Proof of Lemma 5.9. Suppose there is an optimal solution where yS
τ = 1 and yR

τ = 0
for some τ ∈ T . The supplier order must transfer to the retailer at some time, so it
must hold that τ < T . Furthermore, as yR

τ = 0 it is feasible to delay the considered
supplier order. By shifting the supplier order from time τ to time τ + 1 the total
costs reduce by HxS

τ > 0, contradicting optimality.

Proof of Lemma 5.10. Consider an optimal solution and suppose there exist two sup-
plier setups part of the same subplan. Let t1 < t2 ∈ T be the time periods of the
first of such setups: yS

t1
= yS

t2
= 1 and yS

t = 0 for all t1 < t < t2. By Lemmas 5.8
and 5.9 we conclude that IS

t1−1 = IS
t2−1 = 0 and yR

t1
= yR

t2
= 1. By assumption, both

setups are part of the same subplan, so it must hold that IR
t2−1 > 0. Furthermore,

IR
t1−1 = 0 and the origin of these IR

t2−1 products is the supplier order at time t1, since
times t1 and t2 correspond the first occurrence of the described supplier setups.

Now, realise that we can feasibly shift one unit of supply from the retailer’s
inventory IR

t2−1 to the supplier and retailer setups at time t2 without invalidating
any retailer setups in time periods t1, . . . , t2 − 1 (for details, see below). This results
in a total cost reduction of at least h > 0, contradicting optimality. Hence, no
two supplier setups can be part of the same subplan, implying that an optimal
solution results in the stated decomposition into independent subplans. Note that
each subplan must prescribe the number of retailer setups to ensure that the retailer
uses exactly n setups in total.

The feasibility of the described shift is guaranteed by the assumption that dt > 0
for all t ∈ T . The details are as follows. Arbitrarily follow one unit of supply from
the supplier order at time t1 to the retailer’s inventory at time t2 − 1, which prevents
time t2 from being the start of a new independent subplan. Let τ (t1 ≤ τ < t2) be
the time this supply is transferred to the retailer’s level, so xR

τ > 0. If xR
τ = 1 we

cannot use this path to remove the considered unit of supply as that would remove
the retailer setup at time τ , causing issues with the fact that the total number of
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retailer setups is fixed. However, by assumption we have IR
t−1 + xR

t = IR
t + dt > IR

t

for all t ∈ T . In particular, IR
τ−1 + 1 = IR

τ−1 + xR
τ = IR

τ + dτ > IR
τ ≥ 1, implying

IR
τ−1 > 0. Thus, there exists an alternative supply path. By repeating this argument

and using IR
t1−1 = 0, we conclude that there must exist a supply path for which

xR
τ > 1. This path can be used to feasibly shift supply.

Proof of Lemma 5.11. The idea of the proof is as follows. Consider such an optimal
independent subplan, which by definition must have exactly one supplier setup (in
the initial period). Hence, all post-initial demand is supplied from inventory (on the
supplier’s or retailer’s level).

If H < h it is strictly optimal to shift as much inventory as possible to the sup-
plier’s level, keeping the prescribed number of retailer setups in mind. Therefore, an
optimal subplan must satisfy the zero-inventory property. If H = h the described
shifts are weakly optimal, so the zero-inventory property holds without loss of opti-
mality.

If H > h then it is strictly optimal to shift as much inventory as possible to
the retailer’s level. This implies placing all prescribed retailer setups as early as
possible, i.e., in the first n periods, and reducing the post-initial retailer orders to
the minimum of 1 unit of products. This unique optimal subplan satisfies the zero-
inventory property only under very specific conditions.

We continue with a formal proof of the above argument. To simplify notation,
we assume without loss of generality (by independence) that the considered optimal
independent subplan spans all time periods 1, . . . , T . Thus, by definition of the
subplan: yS

1 = 1, yS
t = 0 for 1 < t ≤ T , IS

0 = IS
T = 0, yR

1 = 1,
∑

t∈T y
R
t = n,

IR
0 = IR

T = 0.
Case I: suppose H ≤ h.
Suppose the optimal subplan does not satisfy the zero-inventory property. Let

t2 ∈ T be the first time that the zero-inventory property is violated, which must be
in the retailer’s lot-sizing plan by Lemma 5.8. Let 1 ≤ t1 < t2 be the time of the
preceding retailer setup, which must exist. Hence, we have yR

t1
= yR

t2
= 1, yR

t = 0 for
all t1 < t < t2, IR

t1−1 = 0, and IR
t2−1 > 0. We emphasise that by assumption dt1

> 0
so xR

t1
> IR

t2−1 must hold, which is essential.
Now, shift IR

t2−1 units of inventory to the supplier instead of the retailer as follows.
We reduce the retailer order at time t1 by IR

t2−1 and keep these units in the supplier’s
inventory, resulting in a change in total costs of (H − h)(t2 − t1)IR

t2−1 ≤ 0. If H < h
then this is a strict inequality, which contradicts optimality. If H = h then this
shift does not affect the total costs, but removes this violation of the zero-inventory
property. By repeating this argument, an optimal subplan can be constructed which
satisfies the zero-inventory property.

Case II: suppose H > h.
First, we show that all post-initial retailer orders must be the minimum of 1 unit

of products. Suppose 1 < τ ≤ T exists such that xR
τ > 1. Shift a unit of supply from

the retailer order at time τ to time 1, resulting in change in costs of (τ−1)(h−H) < 0.
This contradicts optimality, so it must hold that xR

t ∈ B for all 1 < t ≤ T .
Second, we prove that all n retailer setups must be in the first n periods. Suppose

there exist t1, t2 ∈ T with t2 > t1 + 1, xR
t1

= xR
t2

= 1, and xR
t = 0 for all t1 < t < t2.
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Shifting the retailer order from time t2 to t1 + 1 results in a change in costs of
(h − H)(t2 − t1 − 1) < 0, which contradicts optimality. We conclude that all n
retailer setups are in the first n periods.

To conclude this case, if H > h there is a unique optimal solution given as follows
(see Figure 5.2). The retailer setups are all in the first n periods: yR

t = 1 if and only
if 1 ≤ t ≤ n. All post-initial retailer orders have size 1: xR

t = 1 for all 1 < t ≤ n.
All remaining demand is supplied from the retailer’s inventory, by the order in the
initial period: xR

1 =
∑

t∈T dt − (n− 1). The total costs for the subplan are

F + nf + (H − h)

n∑

t=1

(t− 1) + h

T∑

t=1

(t− 1)dt.

This subplan, the unique optimum, satisfies the zero-inventory property if and only if
n = 1, or n = T and dt = 1 for all 1 < t ≤ T . Note that if the subplan spans a subset
of the time periods, these expressions need to be trivially adjusted accordingly.

Proof of Theorem 5.12. The Dynamic-Programming (DP) algorithm that provides
optimal solutions for all n-plan generation problems is based on Zangwill (1969).
From Lemma 5.3 and Theorem 5.4 we know that we need to solve several joint lot-
sizing problems where the number of retailer setups is fixed to 1, . . . , T . The DP relies
on the fact that any optimal solution is decomposable into independent subplans,
see Lemma 5.10. By considering all possible decompositions, we can determine an
optimal solution. As such, we need to solve the corresponding subproblems, for which
we use the insights of Lemma 5.11.

We now present the DP algorithm. The DP states are (
¯
t, n) which corresponds to

the joint lot-sizing problem with time periods {̄t, . . . , T} ⊆ T and prescribes having
exactly 1 ≤ n ≤ T retailer setups. Let v(

¯
t, n) be the corresponding optimal objective

value. Thus, our list of optimal plans follows from the states (1, n) with n = 1, . . . , T .
We also need states related to the subproblems. For the subproblems, we have

DP states (
¯
t, t̄, n) which corresponds to the joint lot-sizing problem with time periods

{̄t, . . . , t̄} ⊆ T and where the number of retailer setups is fixed to 1 ≤ n ≤ T .
Let w(

¯
t, t̄, n) be the optimal objective value minus supplier setup cost F of the

corresponding optimal independent subplan.
The DP initialisation is given by

v(
¯
t, 1) = F + w(

¯
t, T, 1),

where we consider all feasible states: 1 ≤
¯
t ≤ T . That is, if only a single retailer

setup is allowed, it must be an independent subplan. The DP recursion is:

v(
¯
t, n) = F + min

{

w(
¯
t, T, n),

min
¯
t≤τ<T

{
min

1≤m≤1+τ−
¯
t

n+τ−T ≤m≤n−1

{w(
¯
t, τ,m) + v(τ + 1, n−m)}

}}

,

where we consider all feasible states (n = 1 is the initialisation): 1 ≤
¯
t ≤ T and

1 < n ≤ (1 + T −
¯
t). Essentially, the DP recursion compares the non-decomposable

subplan (
¯
t, T, n) to all other feasibly decomposable subplans.
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The solutions to the subproblems can be determined as follows. First, if only a
single retailer setup is allowed (n = 1), there is a single feasible solution. We have
for all feasible states 1 ≤

¯
t ≤ t̄ ≤ T :

w(
¯
t, t̄, 1) = f + h

t̄∑

t=
¯
t

(t−
¯
t)dt.

Next, we use Lemma 5.11 and need to consider two cases. If H > h then we directly
know the unique optimal solution and obtain

w(
¯
t, t̄, n) = nf + (H − h)

n∑

t=1

(t− 1) + h

t̄∑

t=
¯
t

(t−
¯
t)dt,

where we consider all feasible states (except n = 1): 1 ≤
¯
t < t̄ ≤ T and 1 < n ≤

(1 + t̄−
¯
t).

Otherwise, if H ≤ h there exists an optimal solution that satisfies the zero-
inventory property and we can use a straightforward modification of the standard
joint lot-sizing DP:

w(
¯
t, t̄, n) = min

¯
t≤τ≤t̄+1−n

{(

f + h
τ∑

t=
¯
t

(t−
¯
t)dt +H(τ + 1 −

¯
t)

t̄∑

t=τ+1

dt

)

+ w(τ + 1, t̄, n− 1)
}

,

where we consider all feasible states (except n = 1): 1 ≤
¯
t < t̄ ≤ T and 1 < n ≤

(1 + t̄−
¯
t).

The optimal plans are constructed by keeping track of the optimal choices made
during the DP. It remains to determine the complexity of this DP. Precomputing
the summations of demand takes O(T 2) time. The calculation of one w(

¯
t, t̄, n) value

then takes at most O(T ) time, leading to O(T 4) time to determine w. Next, one
v(

¯
t, n) value needs O(T 2) time, resulting in O(T 4) time for a complete specification

of v. Thus, the total complexity is polynomial, namely O(T 4) time.

Proof of Theorem 5.13. First, realise that solving all n-plan generation problems re-
sults in a list of T plans, so the number of contracts K is equal to T and is polynomial
in the input size. The theorem now follows immediately by combining Theorems 5.7
and 5.12.

Proof of Lemma 5.14. If ω is a uniform distribution the plan assignment model can
be reformulated into a convex model. We refer to the proof of Theorem 5.7 for the
model and its dual variables. We will use the Karush-Kuhn-Tucker (KKT) conditions
(see Karush (1939) and Kuhn and Tucker (1951)) to prove the lemma.

For dual feasibility, all dual variables λk (k ∈ {0, . . . ,K}) and µk,k+1 (k ∈
{0, . . . ,K − 1}) must be non-negative. The KKT stationarity condition for z1 is

1 −
K∑

k=0

λk = 0. (5.34)
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The stationarity conditions for θ̄k, k ∈ {1, . . . ,K − 1}, are

0 ∈ 1

θ̄ −
¯
θ

(

2(nk − nk+1)θ̄k +
(
(Ck + cpub

k ) − (Ck+1 + cpub
k+1) − (nk − nk+1)θ̄

))

+
(

nk − ∂φ∗(θ̄k)
)

λk + (nk − nk+1)

K∑

i=k+1

λi − µk−1,k + µk,k+1. (5.35)

Here, we need the subdifferential ∂φ∗(θ̄k), since φ∗ is not differentiable in all points.
In our case, ∂φ∗(θ̄k) is the closed interval

∂φ∗(θ̄k) =
[

lim
θk↓θ̄k

d

dθk
φ∗(θk), lim

θk↑θ̄k

d

dθk
φ∗(θk)

]

.

Hence, in the optimal solution there exist subgradients, for simplicity denoted by
d

dθ̄k
φ∗(θ̄k) ∈ ∂φ∗(θ̄k) for k ∈ K, such that (5.35) is satisfied. In other words, for these

subgradients it must hold that

θ̄k =
(Ck+1 + cpub

k+1) − (Ck + cpub
k )

2(nk − nk+1)
+

1

2

(

θ̄ − (θ̄ −
¯
θ)

K∑

i=k+1

λi

)

− (θ̄ −
¯
θ)

2(nk − nk+1)

((

nk − d

dθ̄k

φ∗(θ̄k)
)

λk − µk−1,k + µk,k+1

)

. (5.36)

Now consider k ∈ {2, . . . ,K− 1} such that φ∗ has no slopes n∗ with nk−1 > n∗ >
nk+1. If plan k is assigned, we have θ̄k > θ̄k−1 and µk−1,k = 0. Substituting (5.36)
in θ̄k > θ̄k−1 results in the condition

(Ck + cpub
k ) − (Ck−1 + cpub

k−1)

2(nk−1 − nk)
+

(Ck + cpub
k ) − (Ck+1 + cpub

k+1)

2(nk − nk+1)

+
(θ̄ −

¯
θ)

2(nk − nk+1)

((

nk+1 − d

dθ̄k

φ∗(θ̄k)
)

λk + µk,k+1

)

+
(θ̄ −

¯
θ)

2(nk−1 − nk)

(

−
(

nk−1 − d

dθ̄k−1

φ∗(θ̄k−1)
)

λk−1 + µk−2,k−1

)

< 0. (5.37)

Note that the summations over λi almost cancel out: only λk remains which explains
why the term nk+1λk is present. We claim that the terms in (5.37) containing λk−1

and λk are non-negative.
First, if λk−1 > 0 then the IR constraint binds at θ̄k−1. This is only possible if

nk−1 ≥ d
dθ̄k−1

φ∗(θ̄k−1). If nk−1 = d
dθ̄k−1

φ∗(θ̄k−1), then the term with λk−1 is zero.

Otherwise, if nk−1 >
d

dθ̄k−1
φ∗(θ̄k−1), we get a contradiction with our assumptions.

Namely, in this case it must hold that limθk−1↓θ̄k−1

d
dθk−1

φ∗(θk−1) ≤ nk+1 < nk

as there are no larger eligible slopes of φ∗ by assumption. Assigning plan k will
violate the IR constraints, which leads to a contradiction. We conclude that

(
nk−1 −

d
dθ̄k−1

φ∗(θ̄k−1)
)
λk−1 = 0.
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Second, if λk > 0 then nk >
d

dθ̄k
φ∗(θ̄k), where the inequality is strict since nk is

not a slope of φ∗. In particular, it must hold that d
dθ̄k

φ∗(θ̄k) ≤ nk+1. This proves

our claim.
Thus, all terms with dual variables in (5.37) are non-negative. Therefore, the

other terms must be strictly negative in total, i.e., (5.27) must hold.

Proof of Lemma 5.15. First of all, realise that maxτ∈T {(τ − 1)
∑T

t=τ dt} is the max-
imum inventory that can be rerouted to a new supplier setup. So the assumption on
the supplier’s setup cost implies that it is never optimal to have more than a single
supplier setup in a lot-sizing plan. Consequently, any optimal solution for the n-plan
generation problem always has total costs

F +
(∑

t∈T
(t− 1)dt − n

)

H (5.38)

for the supplier. Only the number of retailer setups can be minimised. Let mk ∈ N≥1

be the number of retailer setups of the optimal nk-plan.
Suppose we have determined a minimal list of plans sufficient for optimality for

the contracting problem. Hence, each of these plans is assigned to retailer types.
Add to this list the following T plans if not yet present: for m ∈ {1, . . . , T} add
any m-extreme plan, i.e., a plan that has minimal retailer inventory with m retailer
setups. Denote the indices of the combined list by K and the resulting indices of the
extreme plans by L ⊆ K. It can be verified from the properties of φ∗ that the slopes
of φ∗ are contained in {nl : l ∈ L}.

By definition of the extreme plans, we have n1 =
∑

t∈T (t − 1)dt, nK = 0, and
1,K ∈ L. By our assumptions, and consequently by (5.38), all m-extreme plans have
the same supplier’s costs and retailer’s public costs for fixed m. Therefore, it does
not matter which m-extreme plan is added. Also, any two extreme plans in L have
different amounts of retailer inventory: the plan with the most retailer setups has
the lowest retailer inventory. This trivially follows from adding retailer setups to the
plan with less retailer setups, which must decrease the retailer inventory.

Consider a non-extreme plan k ∈ K \ L, so 1 < k < K holds. Realise that we can
apply Lemma 5.14 to this plan. If this plan would be assigned in the optimal menu,
then Lemma 5.14 states that the following condition must be met:

(Ck + cpub
k ) − (Ck−1 + cpub

k−1)

nk−1 − nk
+

(Ck + cpub
k ) − (Ck+1 + cpub

k+1)

nk − nk+1
< 0

⇐⇒ (nk−1 − nk)H + (mk −mk−1)f

nk−1 − nk
+

(nk+1 − nk)H + (mk −mk+1)f

nk − nk+1
< 0

⇐⇒ mk −mk−1

nk−1 − nk
+
mk −mk+1

nk − nk+1
< 0.

(5.39)

Define
¯
k, k̄ ∈ L such that n

¯
k > nk > nk̄ and mk̄ = m

¯
k + 1, so

¯
k < k < k̄. Note

that these must exist. By definition, (5.39) must hold for each
¯
k < k < k̄. Adding
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these inequalities results in

m
¯
k+1 −m

¯
k

n
¯
k − n

¯
k+1

+
mk̄−1 −mk̄

nk̄−1 − nk̄

< 0,

as all interior terms cancel out. We claim that this is a contradiction. By definition,
n

¯
k is the minimum amount of retailer inventory when using m

¯
k retailer setups, and

likewise for nk̄ and mk̄. Since nk < n
¯
k for all k >

¯
k it follows that mk > m

¯
k for

k >
¯
k. Also, by definition we have mk̄ = m

¯
k + 1 and, as a consequence, mk ≥ mk̄

for k >
¯
k. By combining these insights, we obtain the following contradiction:

0 >
m

¯
k+1 −m

¯
k

n
¯
k − n

¯
k+1

+
mk̄−1 −mk̄

nk̄−1 − nk̄

≥ 1

n
¯
k − n

¯
k+1

> 0.

We conclude that we only need to include plans which have minimal retailer
inventory for each number of retailer setups.

Proof of Lemma 5.16. Recall that under the assumptions all m-extreme plan have
the same supplier’s costs and retailer’s public costs for fixed m. Therefore, we only
need to determine a plan that minimises the retailer’s inventory and uses exactly
m retailer setups. The Dynamic-Programming (DP) algorithm is as follows. The
DP states are (

¯
t,m), which corresponds to the joint lot-sizing problem with time

periods {̄t, . . . , T} ⊆ T and prescribes having exactly 1 ≤ m ≤ T retailer setups.
The corresponding minimal retailer inventory is denoted by v(

¯
t,m). Hence, our list

of extreme plans follows from the states (1,m) with m = 1, . . . , T .
The DP initialisation for 1 ≤

¯
t ≤ T is

v(
¯
t, 1) =

T∑

t=
¯
t

(t−
¯
t)dt.

The DP recursion is given by

v(
¯
t,m) = min

¯
t≤τ≤T +1−m

{ τ∑

t=
¯
t

(t−
¯
t)dt + v(τ + 1,m− 1)

}

,

where we consider all feasible states (except m = 1): 1 ≤
¯
t < T and 1 < m ≤

(1 + T −
¯
t).

The plans are constructed by keeping track of the optimal choices made during
the DP algorithm. Precomputing the summations of demand takes O(T 2) time. The
calculation of each DP state then requires O(T ) time, leading to O(T 3) time in total
for the algorithm.

Proof of Corollary 5.17. By Lemma 5.15 it is sufficient for optimality to use a list
consisting of an m-extreme plan for each m ∈ {1, . . . , T}. This list consists of T plans
and it can be constructed in polynomial time by Lemma 5.16. Thus, the number of
contracts K is equal to T and polynomial in the input size. The result now follows
from Theorem 5.7.
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5.B Example for private setup cost

In this appendix we give an example for the private setup cost case where the optimal
menu assigns a contract that violates the zero-inventory property. We consider the
smallest example by setting T = 2, d1 = 1, and d2 = 2, see Figure 5.4 for the optimal
solution for each n-plan generation problem. Note that the plan in Figure 5.4a does
not satisfy the zero-inventory property.

(1) (2)

3

2

1

1
1

(a) n = 2, H > h,
F > H + h.

(1) (2)

3

1

2

2

(b) n = 2, H ≤ h,
F > 2H.

(1) (2)

1

1

2

2

(c) n = 2, F ≤ 2H,
F ≤ H + h.

(1) (2)

3

3
2

(d) n = 1.

Figure 5.4: The optimal solutions for the n-plan generation problems in the case of
private setup cost with T = 2, d1 = 1, and d2 = 2.

The cost parameters are as follows:
¯
θ = 1, θ̄ = 5, F = 4, H = 2, and h = 1. It is

trivial to verify that the default option φ∗ is given by

φ∗(θ) =

{

2θ if θ ∈ [1, 2]

θ + 2 if θ ∈ (2, 5]
.

Since H > h and F > H + h the plan in Figure 5.4a is the only optimum for n = 2.
Furthermore, we let ω be a uniform distribution. For the first contract we have
n1 = 2 retailer setups, C1 = F +H = 6, and cpub

1 = h = 1. For the second contract

these parameters are n2 = 1, C2 = F = 4, and cpub
2 = 2h = 2.

If the optimal θ̄1 lies in [1, 2), then the first segment of φ∗ binds. By (5.19) and
(5.21) the side payments must be

z2 = cpub
2 + n2

¯
θ2 − φ∗(

¯
θ2) = 2 + θ̄1 − 2θ̄1 = 2 − θ̄1,

z1 = z2 + cpub
1 − cpub

2 + (n1 − n2)
¯
θ2 = (2 − θ̄1) + 1 − 2 + θ̄1 = 1.

Consequently, the objective function is

1
θ̄−

¯
θ

(

(θ̄1 −
¯
θ)(C1 + z1) + (θ̄ − θ̄1)(C2 + z2)

)

= 1
4

(

θ̄2
1 − 4θ̄1 + 23

)

.

Since the derivative is 1
4 (2θ̄1 −4) < 0 on [1, 2), it is optimal set θ̄1 as large as possible

in [1, 2).
If the optimal θ̄1 lies in (2, 5], then the second segment of φ∗ binds. Similar to the

previous case, this leads to side payments z2 = 2 + θ̄1 − (θ̄1 + 2) = 0 and z1 = θ̄1 − 1.
The resulting objective function is 1

4 (θ̄2
1 + 15), which has strictly positive derivative

on (2, 5]. Hence, it is optimal to set θ̄1 as small as possible in (2, 5].
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Finally, it can be similarly verified that if θ̄1 = 2, then z1 = 1, z2 = 0, and
the objective value is 19

4 . This corresponds to the limits of the above two cases. We
conclude that this is the unique optimal solution, which assigns the plan in Figure 5.4a
to types [1, 2] and the plan in Figure 5.4d to types [2, 5]. Thus, the optimal menu
assigns a plan that violates the zero-inventory property.

5.C Relaxing the demand assumption

If demand can be zero certain results are no longer valid or need to be adjusted. This
appendix describes the required changes. In Assumption 5.1 we state the properties
of the considered demand.

Assumption 5.1. The (integer) demand is strictly positive in the first and last
period, and non-negative otherwise, i.e., d1, dT ∈ N>0 and dt ∈ N for 1 < t < T .

Since we have time-independent costs, the assumption d1, dT > 0 is without loss
of generality. If either is zero, that period can be removed from the problem. Under
Assumption 5.1 only the results for the plan generation for private setup cost are
significantly affected, i.e., Lemmas 5.10 and 5.11, and Theorem 5.12. To address the
issues we condition on whether H ≤ h (Section 5.C.1) or H > h (Section 5.C.2).
Before we do so, we mention the minor adjustments needed for the other results.

Throughout our results and proofs we use that the number of retailer setups lies
between 1 and T . If some demand is zero, there is a maximum feasible number of
retailer setups 1 ≤ K ≤ T , which should be used instead. This has no significant
impact on the results. Furthermore, dummy setups (with zero order quantity) need
to be prevented in any dynamic-programming algorithm. This slight adjustment does
not affect the complexity results.

For the remainder of this appendix we consider the plan generation problem for
private setup cost f under Assumption 5.1. For the proofs we often refer to or reuse
parts of the proofs for Lemmas 5.10 and 5.11, and Theorem 5.12.

5.C.1 Case H ≤ h

This case is more regular and essentially all results still hold. In Lemma 5.18 we
will show that any plan assigned in the optimal menu must satisfy the zero-inventory
property (and thus be decomposable). This lemma replaces Lemmas 5.10 and 5.11
for this case, and leads to the same overall conclusion. Consequently, Theorem 5.12
is unaffected and this case is solvable in O(T 4) time by dynamic programming. We
continue with the lemma and its proof.

Lemma 5.18. Under Assumption 5.1, private setup cost f , and H ≤ h, it suffices
for optimality for the contracting problem to restrict the plan generation to plans
satisfying the zero-inventory property.

Proof. The idea is as follows. First, we show that without loss of optimality an
optimal n-plan violates the zero-inventory property only if n is strictly larger than
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the maximum slope of φ∗. This implies that this plan has unnecessary many retailer
setups. Next, we show that such plans are never assigned in an optimal menu. The
details are given below.

Part 1: violating the zero-inventory property implies a larger slope than φ∗.
We first introduce some notation. For t ∈ T with IR

t−1 > 0 we can backtrack
the flow of a unit of products from the inventory IR

t−1 to its origin at the supplier.
At some time period τ ∈ {1, . . . , t − 1} this unit of products is transferred from
the supplier to the retailer by a retailer order, which we call the transfer time. Since
there can be multiple options when backtracking, we define the indices L(t) such that
{τl : l ∈ L(t)} ⊆ {1, . . . , t− 1} are all possible transfer times for a unit of products of
the inventory IR

t−1. That is, any path in the network flow graph from the supplier to
the retailer’s inventory IR

t−1 transfers to the retailer’s layer at some time τl, l ∈ L(t).
By definition, we have xR

τl
≥ 1 for all l ∈ L(t). We denote the first and last transfer

times by τ1(t) and τL(t), respectively.
Suppose an optimal solution to the n-plan generation problem exists that violates

the zero-inventory property, say at time t1 ∈ T (and potentially elsewhere). By
Lemma 5.8 this implies that 1 < t1 ≤ T , xR

t1
> 0, and IR

t1−1 > 0.
If l ∈ L(t1) with xR

τl
> 1 exists, then we can reduce the inventory IR

t1−1 by shifting
a unit of products to the supplier’s inventory at time τl instead of the retailer’s
inventory (see Figure 5.5a). The costs change by (t1 − τl)(H − h) ≤ 0. Since τl < t1
this contradicts optimality ifH < h, otherwise (if H = h) we can exclude this solution
without loss of optimality. Hence, for any time t ∈ T where the plan violates the
zero-inventory property (xR

t > 0 and IR
t−1 > 0) it must hold that xR

τl
= 1 for all

l ∈ L(t).
Suppose there exists a time t ∈ T with yR

t = 0, IR
t−1 > 0, and xR

τl(t) > 1 for

some l ∈ L(t). See also Figure 5.5b. Decrease IR
t1−1 by shifting one unit of the

flow through the latest time τL(t1) to the supplier’s inventory instead. This removes
the retailer setup at time τL(t1), but still leads to a feasible plan with a change
in costs of (H − h)(t1 − τL(t1)) ≤ 0. Reinsert the removed retailer setup at time
t and shift a single unit of products from time τl(t) < t (which has xR

τl(t) > 1 by

assumption) to this new setup. The result is a feasible n-plan with a change in costs
of (H − h)(t − τl(t)) + (H − h)(t1 − τL(t1)) ≤ 0, compared to the original n-plan.
This contradicts the optimality of the original plan if H < h or we can exclude it
without loss of optimality (H = h).

Thus, by combining the above, we have for all t ∈ T with IR
t−1 > 0 that xR

τl
= 1

for all l ∈ L(t). Suppose there exists t ∈ T with dt > 0 and yR
t = 0, which implies

that IR
t−1 > 0. Hence, xR

τl
= 1 for all l ∈ L(t) must hold. Realise that this is only

possible if dτ1(t) = 0. We can reposition this retailer setup at time τ1(t) to time t
resulting in a change in costs of (H − h)(t − τ1(t)) ≤ 0. Again, this results in a
contradiction to optimality (H < h) or can be excluded without loss of optimality
(H = h).

We conclude that yR
t = 1 for all t ∈ T with dt > 0. Furthermore, it must hold that

dτ1(t1) = 0 as xR
τ1(t1) = 1. Therefore, the plan must have strictly more retailer setups

than the number of time periods with strictly positive demand. In other words, the
plan has enough retailer setups to directly satisfy all demand without any retailer
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inventory. However, there are redundant retailer setups (such as at τ1(t1)) that only
increase the number of retailer setups and lead to higher costs for both the supplier
and the retailer. Consequently, the number of retailer setups n of this optimal plan
exceeds the maximum slope of φ∗, which is essential.

(τl) (t1)

−

+

− −

+

−

+

+

(a) Without changing retailer setups.

(τL(t1)) (t1) (τl(t)) (t)

×

−

+

−

+

+ −

− −

+ +

X

· · ·

· · ·

(b) A retailer setup is removed at time
τL(t1) and reinserted at time t.

Figure 5.5: Shifting flow in procurement plans. Reduced flows are red, increased
flows are blue, purple setups are removed, and green setups are new.

Part 2: plans violating the zero-inventory property are not assigned in an optimal
menu.

Suppose the considered plan, which violates the zero-inventory property, is as-
signed to retailer types in an optimal solution to the contracting problem. Let it
be the k-th contract in the optimal menu and let nk denote its number of retailer
setups. By Lemma 5.6 we assume without loss of generality that the (k+ 1)-th con-
tract has a plan with one less retailer setup, nk+1 = nk − 1, but is potentially not
assigned to retailer types. Consider the k-th plan and remove a unit of inventory
from IR

t1−1, remove the retailer setup at time τL(t1), and shift that supply to the
supplier’s inventory. We obtain a feasible (nk − 1)-plan with a change in costs of
(H − h)(t1 − τL(t1)) ≤ 0. Hence, it must hold that

Ck+1 + cpub
k+1 ≤ Ck + cpub

k + (H − h)(t1 − τL(t1)) ≤ Ck + cpub
k .

By also using (5.21), we have

Ck+1 + zk+1 = Ck+1 + cpub
k+1 − cpub

k+1 + zk+1 ≤ Ck + cpub
k − cpub

k+1 + zk+1

= Ck + zk − (nk − nk+1)
¯
θk+1 < Ck + zk. (5.40)

Thus, keeping the side payments zk+1, . . . , zK constant and replacing the k-th con-
tract by the (k + 1)-th leads to a strictly better objective value when considered
in isolation. In terms of the partition, we only change

¯
θk+1 to

¯
θk, so the k-th

contract is no longer assigned. However, the side payments of contracts 1, . . . , k
also need to be adjusted for feasibility. This can be done by decreasing z1, . . . , zk

by (nk − nk+1)(
¯
θk+1 −

¯
θk) > 0 according to (5.21). Namely, consider (5.21) for

k + 1. Since
¯
θk+1 is changed to

¯
θk, zk needs to decrease by (nk − nk+1)(

¯
θk+1 −

¯
θk).

Now consider (5.21) for k. As
¯
θk remains unchanged, we need to decrease zk−1 by

(nk−nk+1)(
¯
θk+1−

¯
θk). The previous argument also holds for all contracts 1, . . . , k−1.

Graphically, we are shifting all lines 1, . . . , k vertically upwards such that the k-th
line is no longer essential for the lower envelope. By (5.40) and the decrease in side
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payments, these modifications improve the objective value. All these modifications
to the menu are feasible with respect to the IR constraints, since the plans of all
contracts 1, . . . , k + 1 have a slope of at least the maximum slope of φ∗. The latter
property is essential for this argument.

We conclude that we have constructed a strictly better feasible menu where the
considered k-th contract is not assigned to retailer types. This contradiction im-
plies that it suffices for optimality for the contracting problem to restrict the plan
generation to plans that satisfy the zero-inventory property.

5.C.2 Case H > h

In this case, there are instances for which any optimal n-plan is non-decomposable
into independent subplans for certain values of n. For example, by appropriately
choosing H > h, M , and F , the plan in Figure 5.6a is the unique optimum. In
particular, for any H > h this example can be extended such that the optimum is
non-decomposable. Thus, Lemma 5.10 does not hold in general. The details are as
follows.

(1) (2) (3) (4) (5) (6)

M + 1 M − 1 M + 2

M

1

1
1

M − 1 M + 1

1

1
1 1

(a) Non-decomposable solution.

(1) (2) (3) (4) (5) (6)

M M M + 2

M M M

2 1

1 1

(b) Decomposable solution.

Figure 5.6: Two possible solutions for the 5-plan generation problem in the case of
private setup cost with T = 6, d = (M, 0,M,M, 1, 1).

For given H and h with H > h, let T ≥ 6 be such that

H >
T − 3

T − 5
h,

and set the demand to d = (M, 0,M,M, 1, . . . , 1) for some M ∈ N>0 large enough.
The parameters M and F are chosen such that it is optimal to have a supplier setup
only at the time periods with demand M , i.e., time periods 1, 3, and 4.

Now consider the (T − 1)-plan generation problem. Any plan that does not have
a supplier and retailer setup at times 1, 3, and 4 is suboptimal due to the choice of
M and the resulting large holding costs. Suppose an optimal (T − 1)-plan does not
have a retailer setup at time 2, then it must have retailer setups in all other periods
(similar to Figure 5.6b). Perform the following shift to obtain a feasible plan similar
to Figure 5.6a. Shift the supply provided by xR

T to xR
4 , reposition the retailer setup

at time T to time 2, and set xR
2 = 1 by shifting a unit of supply from the orders at

time 3 to time 1. This leads to a change in costs of (h − H)(T − 4) + (H + h) =
h(T − 3) − H(T − 5) < 0 by choice of T . From this contradiction to optimality, we
conclude that any optimal (T − 1)-plan is non-decomposable.
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There are also instances where this non-decomposable plan is necessary for op-
timality for the contracting problem, i.e., any solution can be improved by adding
it to the menu. For example, let ω be a uniform distribution and take T = 6,
d = (20, 0, 20, 20, 1, 1), F = 20, H = 7, h = 2, and f ∈ [1, 20] = Θ. These pa-
rameters satisfy the conditions given above, so contract 2 with n2 = T − 1 = 5 is
non-decomposable. Furthermore, an optimal solution is to assign contracts 2, 3, and
4 (with n2 = 5, n3 = 4, and n4 = 3) to retailer types [1, 2], [2, 4], and [4, 20], respec-
tively. The side payments are z = (3, 6, 2, 0, 24, 172) and the optimal objective value
is 62. Removing the non-decomposable plan from the menu, leads to an optimal
objective value of approximately 62.1, showing the necessity to include this plan.

With these insights, we provide a dynamic-programming algorithm to solve all
n-plan generation problems. The running time is polynomial, namely O(T 5). The
presented algorithm suffices for our goal to show that this case is also efficiently
solvable. The result is stated in Lemma 5.19.

Lemma 5.19. Under Assumption 5.1, private setup cost f , and H > h, solving all
n-plan generation problems can be done in O(T 5) time by dynamic programming.

Proof. For H > h and some demand being zero, the optimal n-plan solution might be
non-decomposable into independent subproblems (recall the example in Figure 5.6a).
Therefore, a new approach is needed. The idea is as follows.

First, we show that an optimal plan consists of substructures as illustrated in
Figure 5.7, which is similar to Figure 5.2. In particular, the optimal solution is
fixed when we are given the supplier setups and how many retailer setups occur in
between the supplier setups. Here, it is essential that H > h, so we know that
as much inventory as possible is placed at the retailer (without invalidating retailer
setups).

Next, we describe a Dynamic-Programming (DP) algorithm similar to that in
the proof of Theorem 5.12. Since we might have a non-decomposable solution, we
need to add the available inventory to the DP states. In an optimal solution these
inventory states are non-zero only if removing that inventory would lead to dummy
retailer setups. Hence, the inventory states are bounded by T , which is essential to
obtain a polynomial-time algorithm. Below we give all the details.

(ti) (ti + 1) (ti + ni − 1) (ti+1)

ni − 1

1

ni − 2 1

1

· · ·

· · · · · ·

Figure 5.7: The unique optimal substructure in the case of private setup cost and
H > h. There are sequential supplier setups at time periods ti and ti+1, and ni

retailer setups in time periods ti, . . . , ti+1 − 1.
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Part 1: properties of the optimal n-plan.
Consider an optimal solution of the n-plan generation problem. Assume that

t1 < t2 ∈ T exist such that yS
t1

= yS
t2

= 1 and yS
t = 0 for t1 < t < t2. By Lemmas 5.8

and 5.9 we know that IS
t1−1 = IS

t2−1 = 0 and yR
t1

= yR
t2

= 1. Let n1 ∈ {1, . . . , t2 − t1}
be the number of retailer setups in t1, . . . , t2 − 1. Note that if such t1 and t2 do not
exist, then the optimum is an independent subplan and we can apply Lemma 5.11
to obtain similar properties as derived below.

First, we show that all retailer orders in periods t1 + 1, . . . , t2 − 1 must be the
minimum of 1 unit of products. Suppose t1 < τ < t2 exists such that xR

τ > 1. These
products are satisfied from the supplier’s inventory. Shift a unit of supply from the
retailer order at time τ to time t1, resulting in change in costs of (τ − t1)(h−H) < 0.
This contradicts optimality, so it must hold that xR

t ∈ B for all t1 < t < t2.
Second, we prove that all n1 retailer setups must be in the initial periods. Suppose

there exist t1 ≤ τ1 < τ2 < t2 with τ2 > τ1 + 1, xR
τ1

= xR
τ2

= 1, and xR
t = 0 for all

τ1 < t < τ2. Again, these products are satisfied from the supplier’s inventory.
Shifting the retailer order from time τ2 to τ1 + 1 results in a change in costs of
(h − H)(τ2 − τ1 − 1) < 0, which contradicts optimality. We conclude that all n1

retailer setups are in the first n1 periods of the considered time periods.
For the considered optimal solution we have for some N ∈ {1, . . . , T} the supplier

setups t1, . . . , tN ∈ T and the number of retailer setups n1, . . . , nN ∈ {1, . . . , T} such
that ni retailer setups take place in time periods ti, . . . , ti+1 −1 for i ∈ {1, . . . , N−1}
and nN in tN , . . . , T . From the above, we must have xS

ti
> 0, xR

ti
> 0, xR

ti+1 = · · · =
xR

ti+ni−1 = 1 for i ∈ {1, . . . , N} and zero otherwise.
Now realise that the retailer order xR

ti
needs to be minimal in the optimal solution.

Otherwise there is unnecessary retailer inventory at time ti+1 − 1 which can be
transferred to the supplier and retailer setup at time ti+1. This strictly reduces the
total costs, contradicting optimality. The minimal order xR

ti
is at least 1 (to keep it

a valid setup) and is such that all demand in ti, . . . , ti+1 − 1 is satisfied, taking into
account the supply from any available inventory IR

ti−1 and any additional retailer
setups xR

ti+1 = · · · = xR
ti+ni−1 = 1.

In particular, if IR
ti−1 >

∑i−1
j=1 nj for some i ∈ {1, . . . , N}, then the retailer

inventory IR
ti−1 can be reduced, which contradicts optimality. Namely, consider the

artificial situation that dt = 0 for all 1 ≤ t < ti. The
∑i−1

j=1 nj retailer setups need

to provide at least 1 supply each, which is transferred by retailer inventory IR
ti−1 to

time ti. If more inventory is supplied, then a unit of products can be shifted from
a previous order to the order at time ti, without invalidating a retailer setup. This
strictly reduces the costs, proving the claim. Note that a better bound exists, but
this suffices to obtain polynomial running time.

Part 2: the dynamic-programming algorithm.
We can now formulate a DP algorithm with a polynomial running time that solves

all n-plan generation problems. The DP states are (
¯
t, n,min) which corresponds to

the joint lot-sizing subproblem with time periods {̄t, . . . , T} ⊆ T and prescribes
having exactly 1 ≤ n ≤ T retailer setups. Furthermore, the supplier inventory
satisfies IS

¯
t−1 = IS

T = 0 and for the retailer inventory we have IR

¯
t−1 = min ∈ {0, . . . ,

¯
t−
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1} and IR
T = 0. Note that the bound on min follows from the above arguments on

minimal remaining inventory. Let v(
¯
t, n,min) be the corresponding optimal objective

value. Our list of optimal plans follows from the states (1, n, 0) with n = 1, . . . , T (or
up to the maximum feasible number of retailer setups).

We also need states (
¯
t, t̄, n,min) for

¯
t ≤ t̄ ∈ T , n ∈ {1, . . . , 1 + t̄ −

¯
t}, and

min ∈ {0, . . . ,
¯
t − 1} as follows. They correspond to subproblems spanning time

periods
¯
t, . . . , t̄ with a supplier setup only at time

¯
t: yS

¯
t = 1 and yS

t = 0 for
¯
t < t ≤ t̄.

Furthermore, there are exactly n retailer setups:
∑t̄

t=
¯
t y

R
t = n. Finally, the supplier

inventory satisfies IS

¯
t−1 = IS

t̄
= 0 and for the retailer inventory we have IR

¯
t−1 = min.

By the above analysis there exists a unique optimal subplan for each feasible state
(
¯
t, t̄, n,min). Let w(

¯
t, t̄, n,min) denote the corresponding costs. Furthermore, we have

the corresponding (minimal) remaining inventory IR
t̄

denoted by mout(
¯
t, t̄, n,min).

Any infeasible states are assigned the value infinity, i.e., they are omitted when
determining the optimal plans.

The DP initialisation for feasible states is given by

v(
¯
t, 1,min) = w(

¯
t, T, 1,min).

The DP recursion for feasible states is:

v(
¯
t, n,min) = min

{

w(
¯
t, T, n,min),

min
¯
t≤τ<T

{
min

1≤κ≤n−1
{w(

¯
t, τ, κ,min) + v(τ + 1, n− κ,mout(

¯
t, τ, κ,min))}

}}

.

Certain options in the shown ranges might lead to infeasible states and should be
omitted. There are O(T 3) many DP states and each takes O(T 2) time to compute.
Thus, to determine v we need O(T 5) time.

It remains to solve the subproblems related to w and mout. For a feasible state

(
¯
t, t̄, n, 0) the supplier order must be xS

¯
t = max{n,∑t̄

t=
¯
t dt} in order to supply all

demand in
¯
t, . . . , t̄ and to have no dummy retailer setups. We can construct the

corresponding subplan in O(T ) time, from which we obtain IR
t , t ∈ {̄t, . . . , t̄}, and in

particular the remaining inventory mout(
¯
t, t̄, n, 0). The corresponding costs are

w(
¯
t, t̄, n, 0) = F + nf +H

n∑

t=1

(t− 1) + h
t̄∑

t=
¯
t

IR
t .

Thus, calculating w(
¯
t, t̄, n, 0) and mout(

¯
t, t̄, n, 0) for all

¯
t, t̄, and n takes O(T 4) time.

The other feasible states follow from

w(
¯
t, t̄, n,m+ 1) =

{

w(
¯
t, t̄, n,m) if xR

¯
t > 1 in state (

¯
t, t̄, n,m)

w(
¯
t, t̄, n,m) + h(1 + t̄−

¯
t) otherwise

,

mout(
¯
t, t̄, n,m+ 1) =

{

mout(
¯
t, t̄, n,m) if xR

¯
t > 1 in state (

¯
t, t̄, n,m)

mout(
¯
t, t̄, n,m) + 1 otherwise

.
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That is, if xR

¯
t > 1 and if min increases by 1, then this additional initial inventory is

used to satisfy demand in
¯
t, . . . , t̄. Furthermore, we decrease xS

¯
t and xR

¯
t by 1. The

inventory IR
t remains unchanged for t ∈ {̄t, . . . , t̄}. If xR

¯
t = 1, the previously described

changes would lead to a dummy retailer setup at time
¯
t. Hence, the additional initial

inventory is kept in inventory throughout the subplan.
In total, determining w and mout takes O(T 4) time. Overall, the DP takes O(T 5)

time, which can potentially be reduced since many min values are infeasible or not
used.

5.D Fixed partition model

In this appendix we formulate the fixed partition model. In this model the number of
contracts and their assignment to the retailer types is fixed, but the lot-sizing plans
and side payments of these contracts need to be determined.

For K ∈ N≥1 we are given a K-partition of Θ, denoted by [
¯
θk, θ̄k] with k ∈ K =

{1, . . . ,K}. It is allowed to have
¯
θk = θ̄k, since (the proof of) Lemma 5.6 also holds

for the fixed partition model. The fixed partition model is given by

min
∑

k∈K

(∫ θ̄k

¯
θk

ω(θ)dθ
)(

F
∑

t∈T
y

S(k)
t +H

∑

t∈T
I

S(k)
t + zk

)

subject to

I
S(k)
0 = 0, ∀ k ∈ K,

I
S(k)
t−1 + x

S(k)
t = I

S(k)
t + x

R(k)
t , ∀ k ∈ K, t ∈ T ,

x
S(k)
t ≤ My

S(k)
t , ∀ k ∈ K, t ∈ T ,

I
R(k)
0 = I

R(k)
T = 0, ∀ k ∈ K,

I
R(k)
t−1 + x

R(k)
t = I

R(k)
t + dt, ∀ k ∈ K, t ∈ T ,

y
R(k)
t ≤ x

R(k)
t ≤ My

R(k)
t , ∀ k ∈ K, t ∈ T ,

y
S(k)
t , y

R(k)
t ∈ B, ∀ k ∈ K, t ∈ T ,

x
S(k)
t , x

R(k)
t , I

S(k)
t , I

R(k)
t ∈ N, ∀ k ∈ K, t ∈ T ,

f(θk)
∑

t∈T
y

R(l)
t + h(θk)

∑

t∈T
I

R(l)
t = φ(xl|θk), ∀ θk ∈ [

¯
θk, θ̄k], k, l ∈ K,

φ(xk|θk) − zk ≤ φ∗(θk), ∀ θk ∈ [
¯
θk, θ̄k], k ∈ K,

φ(xk|θk) − zk ≤ φ(xl|θk) − zl, ∀ θk ∈ [
¯
θk, θ̄k], k, l ∈ K.

By realising that Lemma 5.5 is also valid for this model, the IR and IC constraints
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can be replaced by the following finitely many constraints:

φ(x1 |̄θ) − z1 ≤ φ∗(
¯
θ),

φ(xk |̄θk) − zk ≤ φ∗(
¯
θk), ∀ k ∈ K \ {1},

φ(xK |θ̄) − zK ≤ φ∗(θ̄),

φ(xk |̄θk) − zk = φ(xk−1 |̄θk) − zk−1, ∀ k ∈ K \ {1}.

The resulting model is a standard mixed integer linear program, provided that we
use the linear modelling of φ∗ as shown in Section 5.3.2.2.
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6.1 Main findings

We have analysed a variety of contracting problems between two parties who do
not share all their information. These two parties form a supply chain, but act
individually rationally, i.e., they only care about their own interests. Therefore,
any coordination takes place for their own benefit. The considered supply chain
coordination problems are viewed from the upstream party’s perspective, implying
that the downstream party has private information. The upstream party deals with
this information asymmetry by applying mechanism-design techniques to construct a
menu of contracts, which is offered to the downstream party. Each contract specifies
the procurement plan for the supply chain and a side payment. These side payments
are the incentive mechanism to persuade the downstream party to accept a contract
from the menu.

In this setting, there are several modelling choices to be made, in particular on the
private information and on the requirements of the menu of contracts. In Chapter 1
we introduced three modelling approaches, in which the private information lies either
in a finite discrete set or in a bounded interval, and in which the menu contains finitely
or infinitely many contracts. Chapters 2-5 each consider one of these contracting
models under various problem settings, requiring different techniques for the analysis.
Below, we will discuss the main findings of these chapters.

In Chapter 2 we considered a contracting model with a supplier who must satisfy
a retailer’s demand in the economic order quantity setting. In this setting, both the
supplier and the retailer want to minimise their own costs consisting of ordering and
holding costs. The retailer has single-dimensional private information, which affects
either his ordering costs or his holding costs, resulting in two considered cases. The
retailer’s private information is assumed to lie in a finite discrete set, i.e., there are
finitely many retailer types. The number of contracts in the menu is equal to the
number of retailer types.

First, we showed that both cases of private information are equivalent by rescaling
the parameters and variables. Next, a substitution in the side payment variables
revealed a hidden convexity of the contracting model. Consequently, the contracting
problem can be solved efficiently for any number of retailer types by using numerical
optimisation methods. The remainder of Chapter 2 focuses on determining structural
properties of the optimal menus, leading to a sufficient condition to guarantee unique
contracts in the menu. We used the analysis to derive closed-form formulas for the
case with two retailer types and a minimal list of candidate menus for the case with
three types.

In Chapter 3 we analysed several contracting models with a seller and a buyer, in
which the seller either maximises his utility or minimises his costs. Here, the buyer’s
private information is single dimensional and lies in a bounded interval. In order to
offer finitely many contracts, the seller pools the buyer types a priori by partitioning
the type space into subintervals. The number of contracts is equal to the number of
subintervals and thus controllable by the seller.

Under a condition on the buyer’s utility/cost function, related to monotonicity
in the buyer type, the model has a tractable reformulation with finitely many linear
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constraints. In addition, we derived the optimal menu for certain concave utility
(or convex cost) functions. These results are all for a given partition of the type
space. The next step is to also optimise this partition, either analytically or numer-
ically. Unfortunately, our analysis suggests that it is difficult to guarantee finding
the optimal partition in general, due to the possible existence of multiple local op-
tima. Therefore, we focused on two specific problem settings: certain concave utility
functions with a decreasing marginal gain in the order quantity, and convex cost
functions based on the economic order quantity setting similar to Chapter 2. For
these problems, we determined the optimal partition for any number of contracts.
This allowed us to evaluate the performance of a simple heuristic, namely using the
equidistant partition. The heuristic performs well when offering at least 5 contracts,
compared to the optimal partition. Finally, we quantified the effect of pooling, i.e.,
of offering a limited number of contracts.

Chapter 4 expands on Chapter 3 by considering a multi-objective variant of the
previous contracting model. Namely, the seller wants to balance his expected and
worst-case net utility. We used a constraint-wise formulation, i.e., the seller max-
imises his expected net utility under the additional constraint that his worst-case net
utility meets a certain threshold. By varying this threshold, the seller can quantify
his trade-off between expected and worst-case net utility.

Under weaker assumptions than those in Chapter 3, we determined a tractable
reformulation of the model, and derived the optimal menu of contracts for a given
threshold and a given partition of the buyer types. To gain further insights into the
multi-objective trade-off, we revisited the problem setting with decreasing marginal
gains of Chapter 3 and generalised the associated results. In particular, we derived
the optimal partition and its performance guarantees related to the effects of pooling
and the threshold constraint. The results show that there is a significant trade-off
to be made between the seller’s expected and worst-case net utility, regardless of the
number of contracts in the menu.

Finally, in Chapter 5 we switched to a contracting model where the supply chain
coordination has an underlying combinatorial optimisation problem, namely the dis-
crete lot-sizing problem. As in Chapter 2, this setting has a supplier and a retailer,
both minimising their own costs consisting of ordering and holding costs. However,
the problem considers discrete time periods, a finite planning horizon, and indivisible
products, i.e., integer order quantities. Furthermore, the retailer’s private informa-
tion is single dimensional and lies in an interval. In contrast to Chapters 3 and 4,
there are no restrictions on the number of contracts in the menu.

By exploiting the discrete nature of the underlying lot-sizing problem, we showed
that there exists an optimal menu consisting of finitely many contracts, which will
necessarily pool the retailer types. We focused on such optimal menus, derived
properties of the corresponding optimal contracts, and devised a two-stage solution
approach. The first stage of this approach generates a list of lot-sizing plans that is
sufficient for optimality for the contracting problem. The second stage assigns these
plans to the retailer types and constructs the corresponding menu of contracts by
determining the side payments. We identified cases where these stages can be solved
in polynomial time and provided the associated algorithms.
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Abstract

In a supply chain consisting of individualistic parties, the sharing of information is
not always beneficial to each party. If a party discloses his private information it
could undermine his bargaining position in the supply chain. Consequently, there is
no incentive to share information, which results in information asymmetry between
the involved parties. We consider a two-echelon supply chain setting viewed from
the upstream party’s perspective, who faces an individualistic downstream party
with private information. The upstream party uses mechanism-design techniques to
maximise his own benefit by designing a menu of contracts, which is offered to the
downstream party. Each contract specifies the procurement plan for the supply chain
and a side payment. These side payments are the incentive mechanism to persuade
the downstream party to accept a contract from the menu.

We consider this principal-agent contracting problem for several utility maximi-
sation or cost minimisation problem settings. The goal is to determine a menu of
contracts that is the most beneficial to the upstream party, whilst still being ac-
ceptable for the downstream party. To achieve this goal, we analyse a variety of
optimisation models, which differ in the requirements of the menu of contracts. Our
analysis provides insights into modelling approaches, structural properties of optimal
menus, and solution methods.
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Abstract

In een productieketen met individualistische partijen is het uitwisselen van informatie
niet altijd gunstig voor elke partij. Als een partij zijn private informatie vrijgeeft,
dan kan dit zijn onderhandelingspositie in de productieketen ondermijnen. Dit heeft
als gevolg dat er geen stimulans is om informatie te delen, resulterend in asym-
metrische informatie tussen de betrokken partijen. Wij beschouwen een leverancier
die producten levert aan een afnemer met private informatie. De leverancier ge-
bruikt mechanismen met stimulansen om zijn eigen voordeel te maximaliseren door
een menu van contracten te ontwerpen en aan te bieden aan de afnemer. Elk con-
tract specificeert een leveringsplan en een bijbetaling. De bijbetalingen zorgen voor
financiële stimulansen om de afnemer ervan te overtuigen akkoord te gaan met een
contract uit het menu.

We beschouwen dit principaal-agent-contracteringsprobleem voor verschillende
situaties. Het doel is om een menu van contracten te bepalen dat het voordeligst
is voor de leverancier, maar dat nog wel door de afnemer geaccepteerd zal worden.
Wij analyseren hiervoor een aantal optimalisatiemodellen die zich onderscheiden in de
voorwaarden waaraan het menu moet voldoen. Onze analyse geeft inzicht in model-
leringsaanpakken, oplossingsmethoden en structurele eigenschappen van de optimale
menu’s.
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