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ABSTRACT

Urban flooding damages properties, causes economic losses and can seriously threaten public

health. An innovative, fuzzy logic (FL)-based, local autonomous real-time control (RTC) approach for

mitigating this hazard utilising the existing spare capacity in urban drainage networks has been

developed. The default parameters for the control algorithm, which uses water level-based data,

were derived based on domain expert knowledge and optimised by linking the control algorithm

programmatically to a hydrodynamic sewer network model. This paper describes a novel genetic

algorithm (GA) optimisation of the FL membership functions (MFs) for the developed control

algorithm. In order to provide the GA with strong training and test scenarios, the compiled rainfall

time series based on recorded rainfall and incorporating multiple events were used in the

optimisation. Both decimal and integer GA optimisations were carried out. The integer optimisation

was shown to perform better on unseen events than the decimal version with considerably reduced

computational run time. The optimised FL MFs result in an average 25% decrease in the flood volume

compared to those selected by experts for unseen rainfall events. This distributed, autonomous

control using GA optimisation offers significant benefits over traditional RTC approaches for flood risk

management.
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INTRODUCTION

Climate change, demographics and economic change all

cause considerable impact on the performance of urban

drainage networks. Climate change is generally accepted

to influence future rainfall patterns and is expected to

increase the occurrence of extreme rainfall events (IPCC

). However, wide regional variations are predicted for

the UK (Sanderson ). Currently, climate change

models work on a larger space and time scales than urban

drainage systems. Gooré Bi et al. () provide an overview

of the recent work on downscaling the predictions of rainfall

data for climate change impact studies in urban areas. The

validity of many downscaling methods has, however, not

yet been tested in urban areas, and there is little published

information available on their effectiveness to predict rain-

fall–runoff at smaller urban (1–10 km2) scales. Hence, any

solutions to deal with future urban drainage flooding will

need to be intrinsically flexible and adaptable and cannot

rely on rainfall and runoff predictions at small urban scales.

Wastewater service providers are under renewed

pressure to improve their sewer network performance

through innovation and asset optimisation. One such area

for performance improvement is urban flooding. Currently,

the vast majority of sewers and piped drainage networks

are passive systems, with operators having little or no
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control of the system during rainfall and any resulting pol-

lution and/or flooding events. The size, complexity and

varied elevation of sewer networks mean that local urban

flooding events can occur while there is still the significant

storage capacity available within the sewer network.

Real-time control (RTC) systems have been utilised to

regulate the stormwater flow and hence reduce the urban

flood risk. Pleau et al. () and Fuchs & Beeneken

() have described RTC system deployments using large

centralised control systems. However, the drivers for these

systems tend to be focused on solving existing system-wide

water quality problems caused by overflows rather than

local flooding issues. The RTC of sewer systems has often

developed slowly apart from large cities in economically

advanced countries (see, e.g. Schutze et al. ). Latest

approaches have proposed the more distributed RTC of

urban drainage systems to locally manage flooding and over-

flow (Garofalo et al. ).

Local, autonomous RTC systems have the potential to

optimise the performance of urban drainage networks at

relatively low cost through retrofitting. The RTC algorithms

can adapt to different climatic conditions, and there is the

potential for the hardware to be relocated as circumstances

change. Abdel-Aal et al. () describe a novel system using

intelligent fuzzy logic (FL)-based RTC which has been

designed and developed to take advantage of the local

unused storage capacity that is present in the upper parts

of many sewerage networks, thus attenuating the flow at

flood-threatened downstream locations.

This paper presents and tests a new genetic algorithm

(GA)-based methodology for optimisation of the local RTC

system, described by Abdel-Aal et al. (). Rather than

using design rainfall events, the compiled rainfall time

series based on recorded rainfall and incorporating multiple

events were used as an input to the hydrodynamic model

which is used in the optimisation.

BACKGROUND

The RTC of sewer networks utilises current and predicted

states of flows and wastewater levels in a network to

adjust a control strategy (Vanrolleghem et al. ; Vezzaro

& Grum ). In such a way, it is possible to redirect flows

in order to, for example, reduce combined sewer overflow

(CSO) discharge loads (environmental impact) by actively

controlling the system (e.g. using gates and pumps). RTC

offers benefits for system operators, the environment and

for customers, subject to charges (Beeneken et al. ). Vil-

leneuve et al. () describe the essential components of an

RTC system as sensors, automated gates and some form of

strategy. Campisano et al. () give a comprehensive

review of the field. Lund et al. () give a state-of-the-art

review in the context of smart real-time water management.

Highly complex, centralised RTC strategies are vulner-

able to sensor or network failure, and they also come with

large investment costs (and fixed infrastructure); hence,

they are less adaptable in the future, if the local climate

does not behave as predicted (Radhakrishnan et al. ).

Along with limited robustness and capacity for graceful

degradation in performance, there is also a significant cost

involved in the maintenance and in the expensive provision

of several layers of fail-safe mechanisms necessary within

such RTC systems (Frier et al. ).

Much of the recent RTC research for sewer systems is

focused on model-based optimisation techniques, which

are used at the higher layers in the control hierarchy (Mol-

lerup et al. ). Experiences from related fields (such as

the plantwide control of wastewater treatment plants)

suggest that it is preferable for system operators to focus

on lower layer controllers to obtain high resilience (Mol-

lerup et al. ). This approach favours decentralised

solutions which feature fail-safe abilities, ensuring that

system performance is not compromised in the event of

sensor/power/communication failure. Decentralised con-

trol promotes robustness and decreases maintenance costs.

García et al. () reviewed modelling and the RTC of

urban drainage systems and the potential of rule-based and

fuzzy control in this context. Most ‘simple’ control theories

(such as PID systems), routinely used in industrial plant con-

trol applications, assume that the behaviour of the system is

linear and transfer functions are known and fixed. In con-

trast, fuzzy control systems do not require either of those

two assumptions and have been shown to provide superior

performance in some control plant applications (Natsheh

& Buragga ). Urban drainage networks are dynamic sys-

tems where the inputs are variable and non-linear; hence,

FL control approaches are more applicable.
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Work on providing the active control of the flow pattern

in urban drainage systems has been progressed in recent

years, with the aim of utilising infrastructure in a more intel-

ligent way. This work is now moving from academia into

practical applications. Seggelke et al. () presented a

practical implementation of RTC for the combined sewer

system in the German coastal city of Wilhelmshaven. Link-

ing together both sewer flow modelling and wastewater

treatment modelling enabled the derivation of a set of IF-

THEN fuzzy rules for integrated control. Kroll et al. ()

also presented an automated design of RTC strategies for

combined sewer systems and with implementation and test-

ing on five case studies. Pumping station optimisation, for

on/off states, has been explored within the sewer system

described as a directed graph and then attempting an opti-

mal set of on/off states over a set of pumps in order to

minimise environmental damage caused by CSO events

during storm conditions (van Nooijen & Kolechkina ).

The potential for data-driven approaches within urban

drainage system management is receiving increased interest,

as the practical constraints and scientific challenges of using

conventional hydrodynamic modelling approaches become

more apparent (Solomatine & Ostfeld ). Data require-

ments for hydrodynamic model calibration impose a

significant cost burden on urban drainage system operators,

and significant uncertainties remain even after model verifi-

cation (Sriwastava et al. ). Techniques for the time-series

analysis of urban drainage data (Branisavljević et al. )

and for autocalibration of urban storm water runoff

models using multiple rainfall events within the network

employing GAs (Pierro et al. ; Barco et al. ) have

sought to address such issues. Data-driven approaches are

especially suited to local RTC applications as, once the con-

trol systems are trained or optimised, these systems can be

autonomous rather than be managed from a central control

site. This approach removes a significant proportion of the

cost and complexity of traditional RTC approaches and

allows a faster response to network conditions.

In this work, an RTC system makes use of frequently

measured water levels to control a gate by using fuzzy

logic (FL), and the objective is to minimise local flooding

by maximising the use of storage in the network during rain-

fall events. The use of local flow level sensing avoids the

need for spatial and temporal characterisation of rainfall

via an expensive real-time radar or rain gauge systems and

the large communication and computational resources

required for rainfall–runoff and hydrodynamic network

models needed for large centralised RTC solutions. After

initial development and testing in a full-scale laboratory

environment (Abdel-Aal et al. ), complete pilot systems

have been manufactured and installed in Coimbra, Portugal

and Toulouse, France to conduct a field testing programme

(although this paper does not use these sites).

The performance of any FL-based control system is a

function of the rules and membership functions (MFs)

which capture expert knowledge for the system operation.

It may, however, be beneficial to carry out further optimis-

ation of the control algorithm parameters, in particular,

the MFs. A genetic algorithm (GA) is one suitable technique

for such optimisation. GAs are highly parallel, mathematical

algorithms based on the mechanics of natural selection and

genetics that transform a set (population) of mathematical

objects (typically strings of ones and zeros in the form of

genes) into a new population over multiple generations.

GAs and other evolutionary algorithms have successfully

been applied to many complex engineering optimisation

problems. They have been shown to provide highly effective

solutions for hydrological applications (Nicklow et al. ).

The initial work to develop a control algorithm for an

RTC gate defined a rule base and manually set the vertices

of the membership functions (MFs) (which were predeter-

mined in shape and number) for the FL controller. This

control algorithm was first tested in a modelling study (Shep-

herd et al. ) and subsequently in a laboratory system

(Abdel-Aal et al. ). An initial pilot study of GA optimis-

ation was explored which would allow the RTC MFs to be

automatically tuned for sites with different characteristics or

enable it to be re-tuned in case of changes within a sewer

network or in the prevailing climate (Shepherd et al. ).

This pilot study used a design rainfall event, with a return

period of 5 years (20% annual exceedance probability) and

the duration of 120 min (Reed et al. ) on a test network.

This event was selected for the GA optimisation because it

resulted in a total flood volume larger than the available

storage, thus ensuring that the objective function had a

suitable target. The optimisation resulted in a flood volume

reduction of between 2 and 25% when compared to the

flood volumes resulting from the unoptimised expert MFs.
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In the present work, the GA optimisation approach is

developed significantly, including the application of both

integer (Deep et al. ) and decimal input vector optimis-

ation (to explore issues of speed and generalisation), and

with metrics describing gate movements. Furthermore,

results of optimising on the combined time series of real

rainfall events are presented and performance on comple-

tely unseen events assessed. The combined rainfall time

series were used as these are a significant improvement in

the use of a single design event because they provide a

range of different and realistic characteristics, such as the

rate of rise in the flow, and also provide the environment

for the storage volume to be emptied between each event.

The parameter space being optimised is also explored via

a Monte Carlo exposition to give some understanding of

the solution space.

METHODS

The RTC system considered in this work aims to prevent or

minimise flooding at a downstream location by autono-

mously closing a gate in order to mobilise upstream

storage. Water-level data are input into the FL control algor-

ithm, the outputs of which are processed to determine the

timing and magnitude of the gate movements. A GA is uti-

lised to optimise the FL MFs with the objective of

minimising flood volumes. The GA interfaces with an

SWMM hydrodynamic sewerage network model to calcu-

late the flood volumes. Figure 1 provides a summary flow

chart of this methodology and its components.

Sewer network modelling

Urban catchments are physically complex systems, and

mathematical models describe the rainfall–runoff and in-

pipe hydraulic processes, hence incorporating various fea-

tures of a hydrological and hydrodynamic simulation

albeit under a certain level of simplification. In this study,

a small UK catchment of combined sewers was used

which included a known flood location and excess in-pipe

capacity that could be used to store the flow volume and

hence reduce the flood risk. The network upstream of the

flooding location drains an area of just under 39 ha, 17 ha

of which is classed as impermeable. The network is mod-

elled in the hydrodynamic sewer network software

SWMM (Rossman ), utilising a network of subcatch-

ments, nodes and links in order to route dry weather

wastewater flow rainfall–runoff through the combined

sewer network. The area upstream of the flooding location

Figure 1 | Flow chart of methodology.
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includes 31 subcatchments and 2.6 km of pipes with diam-

eters in the range of 225–1,550 mm (mean 384 mm) and

slopes in the range of 0.002–0.144 m/m (mean 0.053 m/m).

In order to minimise model run times and hence the GA

run time, the network was simplified, as shown in Figure 2,

where dotted lines represent the parts of the network which

have been removed. The simplified network has a total con-

duit length of 438 m and uses inflow hydrographs from

previous model runs to represent the upstream catchments.

The locations where the network has been cut were care-

fully selected to ensure that results in the simplified

network did not differ from the full model.

RiañoBriceñoetal. ()havedevelopedan interface (API)

‘MatSWMM’ (https://github.com/water-systems/MatSWMM)

which allows a SWMM simulation to be started and con-

trolled programmatically. MatSWMM was therefore used

to allow the MATLAB-based FL control to be applied. In

order to minimise run times, the original model was cut at

appropriate locations both the upstream of the storage

location and the downstream of the flooding location.

Flows from the upstream subcatchments were generated in

the original model and saved as time-series data to be used

as an inflow in the MatSWMM simulations.

Rather than using design rainfall events consisting of a

single symmetrical rainfall profile, the compiled rainfall

time series based on recorded rainfall for the catchment

and incorporating multiple (non-conservative) events were

used. The complete recorded time series were not used

because they would be too long to use for the large

number of simulations required by the GA optimisation pro-

cess. These time series were created by manually assembling

recorded rainfall data to form a number of discrete events.

Each of these discrete events was large enough to cause

flood volumes in the SWMM model that would not be

easy to control, e.g. the flood volume was greater than the

available hydraulic capacity. Multiple events were included

in each time series to ensure that the optimisation target

required the FL controller to reopen the gate quickly to be

ready for any future rainfall which could also cause flooding.

It was decided to base the time series on recorded, rather

than design, rainfall because recorded rainfall exhibits a

more natural variation in intensities and thus results in a

range of rates of change in the runoff flow that would not

be seen if the single design event was to be used. The dis-

crete events in the time series were separated by a suitable

minimum dry period, and this period was determined by

running the simulations without control and using the

expert hydraulic modelling judgment to estimate a short

but realistic time for the storage to be emptied. The judg-

ment for the separation of discrete events in the time

series was based on the uncontrolled system being able to

drain down between events, so the emptying time was a

function of both the total flood volume and the shape of

the recession limb.

Two of these rainfall time series were assembled, one for

training (time series 1) and one for unseen testing (time

series 2). Statistics of these compiled rainfall time series

are presented in Table 1. The test catchment has an approxi-

mate time of concentration of 15 min, and the peak return

period (Reed et al. ) for a 15-min duration is 5.4 years

for time series 1 and 7.0 years for time series 2, while the

return periods for the complete time series are 70.5 and

29.1 years, respectively. A SWMM model run of 18 h was

required for each.

The water levels and calculated derivatives, used as an

input to the FL during the GA optimisation, are generated

by the SWMM hydrodynamic model. The SWMM simu-

lation is run with a variable routing time step between 0.1

and 2 s. After each simulation time step, MatSWMM returns

control to MATLAB, the FL is run at predetermined steps of

1, 2 or 5 min, if the FL is not run, results are stored in

MATLAB and control returns to the SWMM. These FL

Figure 2 | Topology of the simplified urban drainage network model used in the GA.
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time step frequencies were selected to represent the likely

periods to be used in real-world field deployments; shorter

FL steps will provide a finer control of the gate, as long as

the step is not too short to allow impacts of changes to be

seen at the monitoring location, whereas longer FL steps

reduce the number of communications to the base station

and hence improve the battery life for the communications

system. The FL outputs a target gate position, and

MATLAB instructs the SWMM to move the gate to this pos-

ition at a rate of 3.75 mm/s and the SWMM simulation

resumes. This rate of gate movement was determined follow-

ing a discussion with a manufacturer. The flow through the

gate is computed by the SWMM, based on the area of its

opening, its discharge coefficient and the head difference

across the orifice. This ‘virtual testing’ modelling method-

ology and the sewer network used are described in more

detail in Shepherd et al. (). Total gate movements and

total distance moved by the gate were calculated to allow

the additional assessment of a particular FL controller for

any particular event. These gate metrics allow some

measures of efficiency, in terms of wear on the gate and

electricity usage to be calculated. The motor powering the

gate will also have a duty cycle, so excessive gate movements

may exceed the duty cycle of the motor. Note that although

not part of the objective function, these are instructive as to

how the controller is operating.

FL controller

The FL control algorithm uses water-level data provided by

a local sensing network as input data, the FL rules

implement expert knowledge, and the output adjusts the set-

ting of the flow control gate. Level data are recorded at the

downstream flood location and also upstream of the gate.

The algorithm uses four sets of input data (level and calcu-

lated level derivatives at two locations), each has three

MFs with triangular or trapezoidal shapes defined by 11 ver-

tices in total (see Figure 3), seven of which are optimised by

the GA. The default shapes of MFs were predetermined

based on expert knowledge (an experienced hydraulic mod-

eller with knowledge of multiple networks) since the goal is

a technically feasible and sound solution. For example, the

Table 1 | Rainfall event datasets and baseline results for default FL input MFs

Name

Rainfall event

duration (h)

Total rainfall

(mm)

Peak intensity

(mm/h)

Flood volume (m3)

Default FL gate metrics number/total

distance (m)

Gate inactive

Default FL

1 min 2 min 5 min 1 min 2 min 5 min

Time series 1 10.4 76 135 170.6 73.7 77.7 210.2 268/3.52 213/4.58 80/3.47

Time series 2 9.9 60 84 128.2 64.7 44.7 68.3 240/3.04 183/4.14 118/5.15

Design event (M5-120) 2 23 44 247.0 111.0 113.4 141.2 75/1.08 53/1.33 31/1.37

Figure 3 | Example input MFs for the level at the flood location. (a) Default and (b) optimised.

286 S. R. Mounce et al. | Optimisation of an FL local RTC system for mitigation of sewer flooding using GAs Journal of Hydroinformatics | 22.2 | 2020

Downloaded from http://iwaponline.com/jh/article-pdf/22/2/281/665565/jh0220281.pdf
by guest
on 16 August 2022



MFs for one of the level data inputs are Normal (N), High

(H) or Very High (VH), and these MF labels give a textual

description, e.g. VH represents a water-level range which

may start from the pipe full flow and up to the onset of flood-

ing. The output variable, change position (CP), has five MF

labels, corresponding to changes in the gate position as fol-

lows: Small Open (SO), Big Open (BO), Small Close (SC),

Big Close (BC) or Zero Change (Z). This output is used to

adjust the gate by a given percentage which is a function

of the FL step.

The FL rules (rule base) are expressed in the form of IF-

THEN fuzzy rules written using expert knowledge (of the

sewer network operation). This expert knowledge takes

into account the expected response of drainage networks

to the impact of rainfall events along with the understanding

of when the gate should be activating – e.g. ‘If rate of change

at the gate is negative, and if level at the gate is High, and if

rate of change at the flood location is Zero, and if level at the

flood location is Normal, then control change is Big Open’.

The FL algorithm was developed with the MATLAB FL tool-

box, and it uses the Mamdani approach (Mamdani &

Assilian ) and after defuzzification it provides a final

output value for CP.

GA optimisation

The GA optimisation of the FL input MFs has been accom-

plished through a MATLAB script using the Global

Optimisation toolbox. This allows the iterative running of

a parameterised function of MFs (defined by the input

vector) in the setting of gate positions and the calculation

of the resulting flood volumes. MF positions were chosen

as the decision variable for the GA, and as during

manual tuning of the FL algorithm, it was found to be sen-

sitive to changes in locations of the input MF vertices. After

modifying the input vector, for each candidate solution at

each iteration, the SWMM was used to calculate the

flood volume for the input compiled rainfall time series.

The objective of the GA is to minimise the flood volume

by determining the optimum locations of the vertices of

the MFs’ relevant edges for the four sets of input data.

The vertices which are optimised are highlighted for one

of the level MFs in Figure 3, each input dataset has seven

MF vertices to be optimised; hence, a total of 28 values

are optimised. The objective function indicating the fitness

of the parameter set is the flood volume from the target

node for the input time series. Using a truncated network

model prevents an assessment of flooding impacts in the

whole catchment; however, in practice, any additional

flooding upstream of the gate is prevented by the use of

an overtopping weir. This weir allows flows to overtop

the gate and thus limit upstream surcharge once the storage

is full. Two versions of the GA were implemented, one inte-

ger only and one decimal in order to explore issues of speed

and generalisation.

Three methodologies for initialisation of the GA starting

point had been previously compared (Shepherd et al. ).

These initialisations are (1) the default expert configuration,

(2) a randomised configuration and (3) a pseudo-randomised

configuration, where the default expert values have small

perturbations applied. Figure 4 shows a flow diagram of

the GA optimisation module for a randomised or pseudo-

randomised start point. The starting point of the main GA

optimisation for the randomised and pseudo-randomised

sets is selected from the results of 10 generation mini-runs

(population size 5), each starting from a different random-

ised or pseudo-randomised configuration (this latter

involving small perturbations of the default expert starting

points). Prior to running the FL, the randomised/pseudo-

randomised values are first pre-sorted to maintain the MF

shape and crossover (structure informed by the expert

design). Appropriate lower/upper bounds, linear inequality

constraints and tolerance checks are conducted in the next

stage. For running the optimisation, the seeding of the

random number generator needs consideration especially

for repeatability. For every combination of the FL time

step (1, 2 and 5 min) and initialisation methodology, three

runs were conducted: two randomised (termed Shuffles 1

and 2) and one using the in-built MATLAB default (Mers-

enne Twister with seed 0). The GA stop criteria were

based on having no improvement in the objective function

for a number of generations (stall limit) or until the

maximum number of generations is reached (see

Supplementary Figure 1 for an example of results from

each generation of this optimisation process). The GA par-

ameters were set based on extensive empirical trials. For

the decimal version, 25 generations with a population size

of 200 were used with a stall limit of 5 generations. For
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the integer version, 100 generations with a population size

of 200 and a stall limit of 20 generations were used. A full

simulation is run for each population member. These

values were empirically discovered to be a useful compro-

mise between run times and an improvement in the

objective function. ‘Arithmetic’ (creating children that are

the weighted arithmetic mean of two parents) and ‘Adapt

feasible’ (randomly generating directions that are adaptive

with respect to the last successful or unsuccessful generation

and satisfying bounds and linear constraints) were selected,

respectively, as the crossover and mutation functions for the

decimal optimisation. The integer implementation uses

special functions to enforce variables to be integers as

described by Deep et al. ().

Figure 4 | Flow diagram for the GA optimisation module.
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RESULTS AND DISCUSSION

The results of experiments using the assembled rainfall time

series (based on recorded rainfall data) to explore the ability

of the GA to improve the performance of the FL RTC system

are now presented, along with some comparisons to the

design rainfall used in Shepherd et al. (). The aim of

the experiments is to optimise the FL MFs for a local RTC

system installed in a particular sewer network but to avoid

overfitting to the training events, i.e. a lack of generalisation,

which is a common issue and the area of active research in

the GA and the genetic programming field (Gonçalves &

Silva ).

Optimisation and testing

Table 1 provides some overview statistics of the rainfall and

baseline results for flooding without FL control (gate inac-

tive) and for the non-optimised default FL for the two

rainfall time series and the design event used in Shepherd

et al. (). It can be seen that, when compared to the

‘gate inactive’ case, the default FL reduces flood volumes

for all cases, except the 5-min FL time step for time series

1. It is interesting to note that in general, the shorter FL

time steps result in lower flood volumes and also a smaller

total distance moved by the gate during the time series.

The exceptions are the 5-min FL time step gate movement

for time series 1 which is the lowest and the 2-min FL step

for time series 2 which has a significantly lower flood

volume than either 1 min or 5 min. The former is due to

the gate tending to stay in a closed position more of the

time, hence smaller gate movements, but the flood volume

is large. For the 2-min FL step, the gate movements are

allowing the stored volume to drain more quickly and

hence there is more storage available for the later runoff.

Table 2 presents results for the integer optimisation,

and the same data for the decimal optimisation are

included in Supplementary Table 1. Time series 1 is the

training set, and time series 2 is the independent test set.

In Table 2, the column header abbreviations are as follows:

RNG is the random number generator used for seeding,

Init. is the GA initialisation strategy, Stall is the number

of generations after which the GA stalls, Gate # is the

number of gate movements and Gate dist. is the total dis-

tance the gate moves. It can be seen that within the

results for a single FL time step, the RNG and initialisation

strategy impact both the flood volume and gate metrics,

showing that in this relatively complex solution space,

there are many local minima. For example, the 1-min FL

time step training flood volumes vary from 23.5 to

48.2 m3, with an average of 31.4 m3, while the number of

gate movements and the total distance moved vary by simi-

lar multiples, but there is no correlation between the gate

movements or distance moved and the flood volume. In

all cases, the integer optimisation stalled due to not

improving the solution outside the tolerance for 20

generations.

Table 3 presents a summary of the overall results, includ-

ing the mean percentage reduction in flood volumes from

the default FL and no control option; results are presented

for each FL time step; and the average of all time steps for

both integer and decimal optimisation is reported. In

Table 3, we see that the decimal optimisation provides the

best reduction in the flood volume on the training set

(mean of 59.7% flood volume reduction across all runs

and time steps compared to 43.3% for the integer optimis-

ation). However, the integer version provides better

generalisation on the unseen time series (26.7% reduction

in the flood volume compared to 23.2% for the decimal

optimisation). Both integer and decimal GAs achieve the

best flood volume reduction for the unseen time series on

a 1-min FL time step and perform least well on the unseen

time series for a 2-min time step. The decimal version

gives the highest performance for the training dataset for a

5-min FL time step, although referring to Table 1, the default

FL performed badly, resulting in flood volumes greater than

if the gate was inactive; hence, there was the greatest scope

for improvement. Overall, the integer version has the advan-

tage of less overfitting and much faster run time. On a

standard desktop PC (Intel® Core™ i7-3770 CPU, 32 GB

RAM, Microsoft Windows 10) running MATLAB R2016b,

the run time of the integer version is approximately 2.75 h

compared to 9.75 h of an equivalent decimal run – i.e.

around a 70% reduction.

The M5-120 design event, as used in Shepherd et al.

(), was not expected to be representative as a training

set, and this was the case when this was explored for a
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1-min FL time step. The subsequent optimised controller

resulted in higher flood volumes than the default FL when

both time series 1 and 2 were used as tests. The M5-120

event has also been used as a test event, and the integer

optimisation provides the best reduction in the flood

volume for the design event with a mean reduction of

4.3% across all runs and time steps, with the decimal optim-

isation providing only 2.7% reduction.

Table 4 summarises the gate movements across the

optimisation type and time step (see Table 1 for the metrics

for the default FL controller before optimisation). A

general observation concludes that there are a greater

number of gate movements for the smaller time steps,

which is to be expected, although this is not reflected

strongly in the total distance gates moved because the dis-

tance moved in each step is a function of the FL time

step. Time series 1, the training event, tends to have a

greater number of gate movements and greater distance

moved, and this could indicate overfitting, but may also

be a reflection of the differences in the total rainfall

depth and the periods in the time during the event when

rain is falling.

Table 2 | Integer optimisation

FL time step (min) RNG Init. Stall

Training results Test results

Flood volume (m3) Gate # Gate dist. (m) Flood volume (m3) Gate # Gate dist. (m)

1 Default PseudoRandom 85 30.66 470 7.59 32.4 438 7.05

1 Default Random 71 28.68 564 8.66 23.82 466 7.3

1 Default Default 90 28.62 575 8.96 25.14 492 7.76

1 Shuffle 1 PseudoRandom 45 41.46 341 4.43 28.98 319 4.3

1 Shuffle 1 Random 79 23.7 476 7.89 21 373 5.9

1 Shuffle 1 Default 70 27.42 362 5.32 40.92 356 4.92

1 Shuffle 2 PseudoRandom 40 48.24 281 3.93 30.18 209 2.97

1 Shuffle 2 Random 66 23.52 391 6.17 24.12 329 5.27

1 Shuffle 2 Default 50 30.06 461 7 25.98 409 6.17

2 Default PseudoRandom 62 43.38 286 5.99 38.22 224 4.39

2 Default Random 21 64.8 245 6.17 44.22 199 5.28

2 Default Default 77 51.3 212 5.45 38.34 141 3.48

2 Shuffle 1 PseudoRandom 38 37.56 205 4.81 39.36 160 3.75

2 Shuffle 1 Random 34 45.72 248 6.63 57.54 183 4.98

2 Shuffle 1 Default 80 52.38 238 5.26 43.98 197 4.09

2 Shuffle 2 PseudoRandom 45 44.04 251 5.93 32.22 172 3.85

2 Shuffle 2 Random 44 45.6 283 7.5 44.22 218 5.51

2 Shuffle 2 Default 71 46.74 226 5.58 43.44 185 4.35

5 Default PseudoRandom 46 82.44 106 5.32 52.56 87 4.36

5 Default Random 41 119.4 115 5.52 74.16 116 6.03

5 Default Default 21 210.12 81 3.54 48.42 129 5.17

5 Shuffle 1 PseudoRandom 86 75.06 131 5.88 43.92 112 5.21

5 Shuffle 1 Random 50 79.98 133 6.39 72.78 110 5.1

5 Shuffle 1 Default 63 154.92 101 5.46 59.16 87 4.88

5 Shuffle 2 PseudoRandom 60 178.38 105 6.31 65.16 117 7.69

5 Shuffle 2 Random 21 200.58 97 4.05 52.2 115 4.61

5 Shuffle 2 Default 88 146.46 87 4.43 34.98 108 4.8
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Monte Carlo exploration of the problem space

A GA searches the solution space using an evolutionary

approach whose settings and parameters generally set a

fine balance between exploration and exploitation. Exces-

sive exploration might waste time on solutions that are

less likely to perform well in light of evolution already con-

ducted. Excessive exploitation will result in becoming

trapped in local maxima. A Monte Carlo exposition to

look at a large range of parameter values was conducted

on the 28 MF variables (corresponding to the GA input

vector). A sort ensures that MF crossover and basic sense

checks are carried out as for the GA. 30,000 runs (as a com-

promise between the proportion of solution space explored

and run time) were carried out (the run time on a desktop

PC was 3.5 days), and results were generated for both time

series (Table 1) using a 1-min FL time step. Figure 5 provides

histograms of all results for both time series using decimal

inputs. For time series 1, the flood volumes range from

18.7 to 231.6 m3, while for time series 2, the range is from

7.5 to 172.6 m3. We can see by a reference to the 1-min

time step test results in Table 2 that GA solutions are in

the optimal region of the generated solutions. For time

series 1, all of the trained flood volumes are within the

bottom 2nd percentile, while all of the test results for time

series 2 are within the bottom 43rd percentile of the

Monte Carlo results. The average flood volumes are in the

0.3 and 28th percentiles, respectively. The flood volumes

for the default FL were in the 51st and 73rd percentiles,

respectively.

Example of controller operation

Prior to deploying a particular controller, the modeller will

run a number of optimisations (for a particular FL time

step) using a dataset containing real events for a particular

hydraulic sewer model. The selection of the controller to

be deployed can be based not only on minimum flood

volumes (from training and test sets) but also by using the

gate metrics. As illustrated in Figure 5, the solution space

has multiple candidate solutions giving similar flood

volume reduction; thus, a solution minimising both gate

movements and flood volume can be selected.

In order to show the effect of the different control

options, Figure 6 shows four cases for time series 2, firstly

the control case where the gate is inactive, secondly the

default expert control and finally the test cases for two

optimised controllers. The y-axis in Figure 6 shows the

proportional depth, where 0% is the pipe invert and 100%

represents the ground surface, so any depth >100% indi-

cates flooding. Figure 6(a) shows five periods when

flooding occurs at the flood location, and at these times,

the water depth upstream of the gate is at 22% or below,

showing the potential for storage. Figure 6(b) shows that

the default gate control reduces the amount of time flooding

Table 3 | Summary results (flood reduction)

FL

time

step

(min) GA type

Training results

(time series 1)

Unseen test results

(time series 2)

% mean

flood

reduction

from

default FL

% mean

flood

reduction

from no

gate

control

% mean

flood

reduction

from

default FL

% mean

flood

reduction

from no

gate

control

1 Integer 57.4 81.6 56.6 78.1

2 Integer 38.4 71.9 5.1 66.9

5 Integer 34.4 19.1 18.2 56.4

All Integer 43.3 57.4 26.7 67.2

1 Decimal 60.9 83.1 54.4 77.0

2 Decimal 53.9 79.0 1.6 65.7

5 Decimal 64.7 56.5 9.4 51.7

All Decimal 59.7 72.9 23.2 65.5

Table 4 | Summary results (gate metrics)

FL time

step (min) GA type

Training results

(time series 1)

Test results

(time series 2)

Mean

gate #

Mean gate

dist. (m)

Mean

gate #

Mean gate

dist. (m)

1 Integer 435.7 6.66 376.8 5.74

2 Integer 243.8 5.92 186.6 4.41

5 Integer 106.2 5.21 109.0 5.32

All Integer 261.9 5.93 224.1 5.15

1 Decimal 363.3 4.93 311.4 4.18

2 Decimal 247.3 5.82 195.1 4.61

5 Decimal 129.2 6.00 111.0 5.21

All Decimal 246.6 5.58 205.9 4.67
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by utilising this storage. The remaining flooding periods are

either because the gate has not responded quickly enough or

because the storage has remained too full between events.

Figure 6(c) shows that an optimised result can manage the

storage better, and it further reduces the flooding volume

and uses less storage while doing so. The remaining flooding

Figure 5 | Histogram of Monte Carlo runs for the 1-min time step, decimal MFs. (a) Time series 1 and (b) time series 2.

Figure 6 | Time series 2 results for control, default unoptimised and two optimised cases, FL run at a 1-min step. (a) Gate inactive (control), flood volume 128.2 m3. (b) Default expert,

unoptimised, flood volume 73.7 m3, gate # 268, gate dist. 3.52 m. (c) Optimised, pseudorandom initialisation strategy, RNG shuffled, flood volume 22.62 m3, gate # 239, gate

dist. 3.44 m. (d) Optimised, random initialisation strategy, RNG shuffled, flood volume 21.42 m3, gate # 381, gate dist. 5.27 m.
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is at the start of the four main flooding periods seen in the

control case. The gate can be observed to operate more reg-

ularly and tends to operate with a higher opening percentage

than the default expert case. Figure 6(d) shows an alternate

optimisation which gives a very similar overall flood volume

to Figure 6(c), but the gate is moving significantly more, with

142 more movements and moving an extra 1.83 m (53%

further). These extra movements result in a much noisier

depth profile, use more energy to move the gate and result

in more wear to the gate seals, and so are undesirable.

Future work

The presented systemhas tackled the issue of flood reduction,

but the future work could explore other issues, such as water

quality improvement, e.g. by decreasing the frequency and

volume of CSO discharges. Potential further development

could include multi-objective optimisation (e.g. include the

number of gate movements, total time storage is used, total

flood duration and water quality aspects). The application

of controller optimisation to different drainage networks

(including the testing of optimisation in a live situation) is

also planned, as is investigating how optimised MFs vary

depending on the sewer network configuration and imposed

rainfall. When considering future implementations of the

system in new locations, results provided have demonstrated

that in this relatively complex solution space, there are many

local minima. This would suggest that the FL control algor-

ithm is fairly transferable, in that many different settings of

the algorithm should produce a reasonable flood reduction

in potentially multiple networks. However, it is anticipated

that to obtain the optimum FL control algorithm settings, it

would be necessary to carry out GA optimisation using a

hydraulic model of the new network. It would make an inter-

esting future study to apply the FL controlled gate in other

networks to understand how MFs might vary and whether

the GA-optimised results are optimal among multiple net-

works, or if optimised MFs are network specific.

CONCLUSIONS

A GA software tool was coded to optimise an FL control

system which uses local water-level sensing and a flow

control gate to adjust the spatial distribution of the in-pipe

water volume to reduce the local flood risk. The input

MFs of the FL control algorithm are optimised using the out-

puts from a calibrated SWMM hydrodynamic model. A case

study comprising training and test scenarios utilised the

compiled rainfall time series based on recorded rainfall

and incorporating multiple events was used in the optimis-

ation. The average reduction in the flood volume for the

GA-optimised input MFs when compared to no gate control

was 66%. The GA also performs well compared to the

expert (in sewer hydraulic modelling) defined MFs for

unseen test rainfall events, resulting in an average 25%

decrease in the flood volume (an average of 52% reduction

for training events). Two GA-based approaches were

tested. The integer-based GA optimisation performed

better than the decimal version on unseen events, and the

computational run time was significantly reduced. Both

approaches operated significantly better on a 1-min FL

control time step (an average of 56% flood reduction on

unseen events), compared to a 2- or 5-min time step. The

analysis showed that the increased performance in terms

of flood volumes increases gate movements by an average

of 28% and the total distance moved by the gate by an aver-

age of 34%. Key features include:

• Pioneering an autonomous, localised control technique for

reducing the urban flood risk which optimises control rules

based on virtual sensor data without human intervention.

• The GA-optimised FL approach is applicable to any

hydraulically modelled network.

• The technique was applied on multiple (non-Gaussian)

rainfall events and with performance demonstrated on

unseen events (not used in optimisation).

The true potential of data-driven techniques is to distri-

bute intelligent control and machine learning in a

localised, autonomous manner rather than via centralised

control. This paper contributes to defining such systems by

developing an optimisation framework for a FL RTC control

strategy using hydraulic models. Distributed methodologies

offer significant benefits to the management of the large dis-

tributed infrastructure such as the flood risk for piped

networks. These benefits include more efficient and cost-

effective control solutions, faster analysis and response

times, simpler more resilient control solutions and the
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growth of ‘smart’, self-learning and fixing networks, redu-

cing the cost of infrastructure management by moving to

proactive rather than reactive network management.
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