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Abstract

Background: Mycobacterium tuberculosis, the causative agent of tuberculosis, still represents a major public health threat in
many countries. Bioluminescence, the production of light by luciferase-catalyzed reactions, is a versatile reporter technology
with multiple applications both in vitro and in vivo. In vivo bioluminescence imaging (BLI) represents one of its most
outstanding uses by allowing the non-invasive localization of luciferase-expressing cells within a live animal. Despite the
extensive use of luminescent reporters in mycobacteria, the resultant luminescent strains have not been fully applied to BLI.

Methodology/Principal Findings: One of the main obstacles to the use of bioluminescence for in vivo imaging is the
achievement of reporter protein expression levels high enough to obtain a signal that can be detected externally. Therefore,
as a first step in the application of this technology to the study of mycobacterial infection in vivo, we have optimised the use
of firefly, Gaussia and bacterial luciferases in mycobacteria using a combination of vectors, promoters, and codon-optimised
genes. We report for the first time the functional expression of the whole bacterial lux operon in Mycobacterium tuberculosis
and M. smegmatis thus allowing the development of auto-luminescent mycobacteria. We demonstrate that the Gaussia
luciferase is secreted from bacterial cells and that this secretion does not require a signal sequence. Finally we prove that
the signal produced by recombinant mycobacteria expressing either the firefly or bacterial luciferases can be non-invasively
detected in the lungs of infected mice by bioluminescence imaging.

Conclusions/Significance: While much work remains to be done, the finding that both firefly and bacterial luciferases can
be detected non-invasively in live mice is an important first step to using these reporters to study the pathogenesis of M.
tuberculosis and other mycobacterial species in vivo. Furthermore, the development of auto-luminescent mycobacteria has
enormous ramifications for high throughput mycobacterial drug screening assays which are currently carried out either in a
destructive manner using LuxAB or the firefly luciferase.
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Introduction

Mycobacterium tuberculosis was first isolated more than 125 years ago.

Although a huge amount of research has been devoted to it over this

time, tuberculosis still represents a major public health threat in many

countries [1]. The main hindrances in fighting this disease include a

lack of understanding of the human infection, its establishment and

progression, as well as the host-pathogen interactions that determine

the different outcomes. Furthermore, the treatment regimen of six

months administration of up to four drugs has not evolved in more

than four decades, and recent years have seen an alarming increase in

multi-drug resistant (MDR) and extensively drug-resistant (XDR)

strains. It is clear then that novel and imaginative approaches are

needed to speed up both basic and translational research in

tuberculosis, especially in the areas of vaccine and drug development.

Bioluminescence, the production of light by luciferase-catalysed

reactions, is a versatile reporter technology with multiple

applications both in vitro and in vivo. In vivo bioluminescence

imaging (BLI) represents one of its most outstanding uses by

allowing the non-invasive localisation of luciferase-expressing cells

within an animal. Applied to the study of infectious diseases, BLI

permits the detection of microorganisms from within living

animals thus allowing the spatiotemporal study of infection in

real-time in the same host [2]. Moreover, using luciferase as a

reporter of gene expression, it is possible to establish when and

where a gene function is needed, shedding light on bacterial

pathogenesis [3,4,5]. Finally, BLI constitutes an easy and rapid

method to test novel antimicrobial compounds in vivo [6,7].

Luciferases are a large family of enzymes that catalyse the

oxidation of a substrate, generically called luciferin, to yield

PLoS ONE | www.plosone.org 1 May 2010 | Volume 5 | Issue 5 | e10777



oxyluciferin with the concomitant production of light. Three main

luciferin-luciferase systems have been utilised for BLI [8]. The first

system is represented by the firefly luciferase (FFluc) from Photinus

pyralis which uses D-luciferin (a benzothiazole) as substrate, is

dependent on ATP and results in the production of yellow-green

light (557 nm). The second system includes the luciferases from the

marine organisms Renilla reniformis (a cnidarian) and Gaussia princeps

(a copepod) and the substrate coelenterazine. The signal produced

by the G. princeps luciferase (Gluc) has been reported to be stronger

than that of FFluc [9], even though the light emitted is in the blue

range (480 nm) and is therefore more susceptible to tissue

absorption and scattering. The fact that Gluc is strongly resistant

to heat and extreme pH [9,10], and that it is secreted by

eukaryotic cells also make this system very attractive. Bacterial

luciferases, found in the terrestrial bacterium Photorhabdus lumines-

cens and marine bacteria from the genera Vibrio and Photobacterium,

constitute the third luciferin-luciferase system. These luciferases

are heterodimeric enzymes that use FMNH2 and a long-chain

aldehyde as substrates. Bacterial luciferases are encoded by the

genes luxAB that form an operon (luxCDABE) together with three

additional genes (luxCDE) whose products synthesise the long-

chain aldehyde. The main advantage of this system is that it does

not need exogenously added substrate, but again the light

produced is in the blue range (490 nm).

Bioluminescence has been used in mycobacterial research for

more than 20 years. Initially, FFluc was used to measure ATP as

an indirect method of assessing cell viability and cell numbers

[11,12]. Considering the long duplication times of mycobacteria,

the advantages of using bioluminescence as a reporter to assay

anti-mycobacterial agents soon became evident when compared to

the more traditional colony count methods. To this end LuxAB

(requiring the addition of exogenous substrate) and FFluc have

been used in M. smegmatis, M. tuberculosis, M. bovis BCG, and even

M. avium, M. intracellulare and M. aurum [13,14,15,16,17,18,19].

The development of luciferase reporter phages represented a

further improvement as it enabled testing of the drug susceptibility

of clinical strains and has subsequently been applied to

tuberculosis diagnostics [20,21,22,23,24,25,26,27]. Finally, lumi-

nescent reporter strains have also been used for antibiotic testing

and immunity assessment in cell cultures and ex vivo in organ

homogenates of infected mice [28,29,30,31,32,33,34,35].

Despite the extensive use of luminescent reporters in mycobac-

teria, these have only recently been applied to the imaging of

mycobacteria in vivo [36]. In the single published paper on BLI of

mycobacteria, Heus and collaborators utilised a recombinant M.

bovis BCG strain expressing luxAB to monitor mycobacteria

infection in vivo. While the authors prove that BLI can be used

to study bacterial dissemination, drug efficacy and the role of the

immune response, their approach has some limitations. In fact, the

authors failed to detect BCG in the lungs of infected mice despite

being able to detect bacteria in these organs by colony counting

and ex vivo imaging. Because their luminescent strain of BCG did

not express the luxCDE genes for substrate synthesis, Heus and

collaborators had to administer decanal to the mice in order to

image the bacteria. This substrate is highly toxic and, although

they were able to deliver it by injection into the murine

peritoneum dissolved in a mixture of olive oil and ethanol, this

delivery method would appear to have limited distribution to the

lungs, which are of major importance for tuberculosis research.

In the work reported here, we have improved the signal

obtained from FFluc and Gluc (both of which use non-toxic

substrates), and Lux in mycobacteria using a combination of

vectors, promoters, and codon-optimised genes. We report for the

first time the functional expression of the whole Lux operon in M.

tuberculosis and M. smegmatis thus allowing the development of auto-

luminescent mycobacteria. Moreover, we demonstrate that FFluc

and Lux are both useful for the non-invasive detection of

mycobacteria in the lungs of infected mice.

Results

Maximising luminescent reporter gene expression
As a first step towards the generation of highly-luminescent

mycobacteria, each of the three luciferases was cloned into three

different expression vectors that contained the same promoter

(Phsp60) but which differ in copy number: (i) pSMT3, which has a

pAL5000 replicon and is maintained at 2–5 copies per cell [37,38];

(ii) pSMT3M [39], which has a mutation in the repA gene that

increases the copy number to 32–64 copies [40]; and (iii)

pMV306hsp which integrates into the chromosomal attB site and

hence results in single copy number [38]. For the Lux reporter we

used a luxABCDE operon that had been previously modified for

expression in Gram positive bacteria by replacement of the

ribosome binding sites and reorganisation of the genes [41]. All the

constructs were electroporated into M. smegmatis, and the

luminescence of 10 randomly selected clones was analysed for

each type of construct (Fig. 1). For the three reporters, a high

luminescent signal was produced by colonies expressing the

integrated constructs derived from pMV306hsp with median

values of 1.16107 RLUs for FFluc, 8.96106 RLUs for Gluc, and

3.66104 RLUs for Lux. The pSMT3 derivatives also yielded good

signal levels with Gluc (median value, 1.56107 RLUs) and in three

out of ten FFluc clones (4.56105, 5.86106 and 1.56107 RLUs).

Remarkably, a high variation was detected among the

pSMT3+FFluc clones (signal range of 3.76102–1.56107 RLUs),

with light production only slightly over the background in three of

them (Fig. 1A); this is likely related to the fact that many of these

clones carried deletions affecting the reporter gene (data not

shown). For all three reporters, the lowest luminescence was

obtained with pSMT3M, the high copy number vector. In

particular, seven out of ten transformants carrying

pSMT3M+FFluc and all the pSMT3M+Lux clones analysed

produced only background levels of bioluminescence (Fig. 1A, C).

Further screening of 96 pSMT3M+Lux transformants imaged

with the IVISH Spectrum failed to detect any bioluminescent

clones. Similarly, out of 387 pSMT3+Lux transformants obtained,

only 12 were glowing when imaged with the IVISH Spectrum.

However, these positive clones lost their luminescence after

subculturing. Deletions of 5–6 kb, comprising almost the whole

lux operon, were detected in these and the pSMT3M+Lux

transformants (data not shown). Therefore the highest expression

and stability was achieved with the pMV306hsp integrating vector,

which was selected for further studies.

Next, we tested different promoters to drive expression of the

luciferase genes. Using the integrating vector pMV306, each

reporter gene was cloned in front of previously described strong

promoters: Phsp60, PmyctetO [42], and PG13 [43,44]. These

constructs were introduced into M. smegmatis, and the lumines-

cence of 10 randomly selected transformants analysed (Fig. 2).

Similar luminescence values were obtained among strains

expressing either FFluc or Gluc under the control of either Phsp60
or PG13 (median values of 1.56107 and 2.36107 RLUs respec-

tively for FFluc, 8.96106 and 5.056106 RLUs for Gluc), while

production of light from PmyctetO clones was 3–13 times lower. In

the case of Lux, the highest luminescence was achieved using Phsp60
(3.66104 RLUs), followed by PG13 (9 times lower), and PmyctetO

(180 times lower than that of Phsp60). Consequently Phsp60 was the

promoter chosen for expression of the luminescent reporters.

Bioluminescent Mycobacteria
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Additionally, in order to increase the amount of substrate

synthesised by the Lux operon and in this way the amount of

luminescence, PG13 was cloned in front of luxC in

pMV306hsp+Lux. This resulted in a 6-fold increase in the

luminescence activity compared to the original pMV306hsp+Lux,

from 3.66104 to 2.256105 RLUs (Fig. 2C).

Lastly, as a potential way of enhancing the expression of

reporter genes at the translational level, we utilised versions of ffluc

and gluc whose codon usage had been optimised for use in

mycobacteria, together with an improved Shine Dalgarno

sequence [45]. We also tested a lux operon with codon usage

optimised for mycobacteria, but no luminescence was produced by

this strain, even if the substrate for the bacterial luciferase was

added exogenously (data not shown). Alternatively, we used a

luxCDABE operon (LuxStm) codon-optimised for Streptomyces

coelicolor [46]. Using pMV306hsp as the expression vector the

luminescence of the optimised reporters was compared to that of

the wild-type genes (Fig. 3). Codon optimisation resulted in a 30-

fold, 2.5-fold and 4-fold improvement in the signal for FFluc, Gluc

and Lux respectively. Accordingly, the optimised gluc and ffluc

genes were selected for further study. However, since the

luminescence of LuxStm was lower than that of the reorganised

lux operon with PG13 cloned in front of luxC, the latter was chosen

for further study.

The three reporters were also tested in M. tuberculosis by

electroporating pMV306hsp+FFluc, pMV306hsp+Gluc and

pMV306hsp+Lux and measuring the bioluminescence of 10

randomly selected clones (Fig. 4). The signal obtained inM. tuberculosis
was slightly lower than that of M. smegmatis for FFluc (1.16107 and

1.56107 RLUs, respectively), whereas no significant differences were

detected for Gluc and Lux (5.86105 vs. 8.46105 RLUs, and 3.66104

vs. 4.66104 RLUs, correspondingly).

Optimisation of the in vitro bioluminescence reaction
To achieve the highest signal to background ratio we tested

different integration times (0.1–10 s) for the three reporters, at four

Figure 2. Expression of luciferases using promoters Phsp60 and PG13 leads to greater light production. Luminescence of M. smegmatis
expressing ffluc (a), gluc (b) and lux (c) was assayed using Phsp60, PmyctetO, and PG13 in the integrating vector pMV306. Each dot represents a randomly
selected transformant. Results are given as relative light units (RLUs) and are corrected for the background. Statistical significance was evaluated by
the Kruskal–Wallis test with subgroup analysis performed by Dunn’s multiple comparison test and those found to be significant (p,0.05) are
indicated with *.
doi:10.1371/journal.pone.0010777.g002

Figure 1. Expression from an integrating vector results in the highest and most stable bioluminescent signal. To study the effect of
copy number on light production each reporter was cloned into standard (pSMT3), high (pSMT3M), and single copy number (pMV306hsp) vectors.
Luminescence was measured for 10 independent M. smegmatis transformants each carrying the FFluc (a), Gluc (b) and Lux (c) constructs. Results are
given as relative light units (RLUs) and are corrected for the background. Overall differences between groups were assessed using the Kruskal–Wallis
non-parametric test with differences between subgroups assessed by Dunn’s multiple comparisons test and those found to be significant (p,0.01)
are indicated with *.
doi:10.1371/journal.pone.0010777.g001
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different substrate concentrations for Gluc and FFluc (Fig. 5). As

shown in Fig. 5A, increasing the integration time yielded an

increased ratio for FFluc, reaching a maximal ratio at integration

times between 5 and 10 s, depending on substrate concentration.

This was also the case for Lux, with 10 s yielding the best result

(Fig. 5C). In contrast, increasing the integration time resulted in a

decreased signal to noise ratio for Gluc (Fig. 5B). This was likely

due to the high background produced by auto-oxidation of its

substrate coelenterazine [47]. Therefore, for further studies the

integration times selected were 5 s, 0.1 s and 10 s for FFluc, Gluc

and Lux respectively.

We then studied the effect of substrate concentration on light

production by FFluc and Gluc (Fig. 6). In both cases the

luminescence increased with increasing substrate concentration

in an exponential manner until a plateau was reached at 40 mM

coelenterazine for Gluc and 1570 mM luciferin for FFluc, with

40 mM and 470 mm chosen as working concentrations.

Luminescence reaction kinetics
The kinetics of light output for each luciferase was measured for

M. smegmatis pMVhsp+FFluc, pMVhsp+Gluc and pMVhsp+Lux-

AB+G13+CDE over 30 min, following the addition of substrate as

appropriate (Fig. 7). For both Gluc and FFluc, the maximum

signal was obtained immediately after substrate addition with

median values of 2.9610568.96103 RLUs for Gluc and

2.2610767.16105 RLUs for FFluc. Then, Gluc luminescence

decreased dramatically with a 90% loss in just 1 min, whereas the

FFluc signal dropped slowly, still retaining 50% of the initial signal

after 17 min. In contrast, the light output for Lux remained stable

between 1.16106 and 2.26106 RLUs during the whole experi-

ment, most likely reflecting a continuous production of substrate

by the cells.

We then analysed luminescence production during the growth

of the same luciferase-producing strains (Fig. 8). The level of

luminescence correlated well with cell density during the

exponential growth phase for all the three reporters. However,

the signal dropped when the cultures of lux- and ffluc-expressing

cells entered stationary phase with a total loss of 83% and 77%

respectively between the time points 12 and 28 h (Fig. 8A, C). This

is most likely related to a decrease in the metabolic activity of the

bacteria, and therefore in the availability of the FMNH2 and ATP

needed by Lux and FFluc, respectively. In contrast, luminescence

from cells expressing the Gaussia luciferase, which does not require

any bacterial cofactors to catalyse the luminescence reaction,

remained related to cell numbers until the end of the growth curve

(Fig. 8B). Moreover, using mid-log cultures a good correlation

(Spearman r= 1) was found between colony forming units (CFU)

and luminescence (measured with the plate luminometer) over a

Figure 3. Codon optimisation increases bioluminescence in vitro. Relative light units (RLUs) were measured in 10M. smegmatis clones transformed
with a wild-type or aMycobacterium optimised FFluc (a) or Gluc (b), or with a Gram positive or Streptomyces optimised Lux (c). In all cases pMV306hsp was
used as backbone. Results are corrected for the background. Statistical significance was evaluated by the Mann-Whitney non-parametric test for FFluc and
Lux, and by unpaired t test for Gluc (data normality passed) and those found to be significant (p,0.05) are indicated with *.
doi:10.1371/journal.pone.0010777.g003

Figure 4. Bioluminescence levels in M. tuberculosis and M. smegmatis are comparable in vitro. Relative light units (RLUs) were measured in
10 M. smegmatis and 10 M. tuberculosis clones transformed with pMV306hsp+FFluc (a), pMV306hsp+Gluc (b) or pMV306hsp+Lux (c). Results are
corrected for the background. Statistical significance was evaluated by the Mann-Whitney non-parametric test for Lux, and by unpaired t test for
FFluc and Gluc (data normality passed) and those found to be significant (p,0.05) are indicated with *.
doi:10.1371/journal.pone.0010777.g004
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range of cell numbers: 104 and 108 CFU for ffluc-expressing M.

smegmatis, 103 and 108 for lux-expressing cells, and 104–106 for

Gluc producing M. smegmatis (Fig. 8D–F).

Secretion of Gaussia luciferase
It has previously been stated that Gluc is secreted from eukaryotic

cells because of a signal peptide situated at the N-terminal end of the

Figure 5. Signal:noise for FFluc and Lux increases with integration time, and decreases for Gluc. Luminescence was measured using six
different integration times and four different substrate concentrations for M. smegmatis producing FFluc (a) and Gluc (b), or without substrate for Lux
(c). The background luminescence was obtained from cultures of M. smegmatis with the empty pMV306hsp. Assays were performed with three
independent mid-log cultures and each culture was measured in duplicate. As the data was not normally distributed, median values are displayed
(bar) with inter-quartile ranges (box), and highest and lowest values (whiskers).
doi:10.1371/journal.pone.0010777.g005

Figure 6. Bioluminescence correlates with substrate concentration at low concentrations. Luminescence (given as relative light units
[RLUs]) of M. smegmatis pMVhsp+FFluc (a) and M. smegmatis pMVhsp+Gluc (b) was measured with integration times of 5 s and 0.1 s respectively. The
substrate concentrations assayed ranged from 20 to 4710 mM luciferin for FFluc, and from 0.05 to 400 mM coelenterazine for Gluc. Means and
standard deviations (smaller than symbols) of six replicates are shown.
doi:10.1371/journal.pone.0010777.g006
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protein [9]. To determine if Gluc was also secreted inM. smegmatis, we

examined the luminescence produced by the whole culture, the cells

or the culture supernatant. Moreover, as a way to assess the role of the

signal peptide, experiments were also performed using strains

expressing codon-optimised and wild-type forms of Gluc without

the signal sequence. As shown in Fig. 9, almost 100% of the

luminescence was detected in the supernatant of all gluc-expressingM.

smegmatis regardless of the presence or absence of the signal peptide

and the codon usage of the gene used. In contrast, only 2% of the

total luminescence was found in the supernatant of FFluc-

producingM. smegmatis when analysed in a similar way. Surprisingly,

the light output from Gluc was higher when the signal peptide

was deleted (Fig. 9), both for the Mycobacterium optimised

(8.2610565.66104 RLUs compared to 1.75610563.86104

RLUs with signal peptide) and the wild-type genes

(1.5610561.366104 RLUs compared to 2.1610461.36103 RLUs).

Bioluminescence in vivo imaging
To assess if the signal produced by each of the three reporters

could be detected in vivo, three or four Balb/c mice were

endotracheally inoculated with 106–107 CFU of luminescent M.

smegmatis and imaged 24 h later with the IVISH Spectrum. The

background level of luminescence was estimated by imaging two

mice inoculated with the non-luminescent M. smegmatis

pMV306hsp.

Two substrate concentrations and two routes of administration

were assessed for FFluc: (i) 300 mg kg21 body weight and 500 mg

kg21 body weight for the intraperitoneal route, and (ii) 15 mg

ml21 and 30 mg ml21 for the intranasal route. Images were

acquired over a 3 h time period to determine the optimal time to

image after luciferin administration. For luciferin administered via

the intraperitoneal route, no signal could be detected until 5 min

post-substrate administration at which point bioluminescence was

evident in the lungs of all four positive mice and in the abdomen of

one mouse injected with 500 mg kg21 luciferin (Fig. 10). The

signal in the abdomen most likely reflects the presence of ffluc-

expressingM. smegmatis in the gastrointestinal tract, which could be

due to the introduction of some bacteria into the oesophagus

during the endotracheal inoculation. After the first 5 min, the

bioluminescent signal increased exponentially, reaching a peak

25–30 min after substrate injection, with a level four to six times

greater when using the higher concentration of luciferin (4.56107–

7.56107 photons s21 compared to 1.26107–1.46107 photons

s21). After that the light level diminished approximately 50% in

30 min, followed by another 50% decrease every hour until the

end of the experiment. No signal was detected in mice inoculated

with M. smegmatis pMV306hsp (Fig. 10A), with stable background

levels during the whole experiment (66104–86104 photons s21 for

300 mg kg21 luciferin, and 5.96104–1.26105 photons s21 for

500 mg kg21 luciferin, Fig. 10B). Therefore the best conditions for

imaging of ffluc-expressing M. smegmatis given intraperitoneal

substrate are using 500 mg kg21 luciferin and imaging 25–

30 min post-substrate administration.

For luciferin administered by the intranasal route, biolumines-

cence could be detected immediately after substrate introduction

(Fig. 11), and the maximum signal in the lungs was obtained in just

5–10 min (3.56106–4.66106 photons s21 when 15 mg ml21

luciferin was administered, and 2.56106–4.66106 photons s21

for 30 mg ml21 luciferin). In addition to the signal in the lungs a

strong signal could be detected in the nose of the three positive

mice (Fig. 11A) indicating the presence of FFluc-producing M.

smegmatis in that organ too. This signal was not observed when the

luciferin was administered via the intraperitoneal route, most likely

as a result of the increased systemic distribution of the substrate.

After reaching a peak, the bioluminescence in the lung and nose

decreased by 50–80% in 30 min falling close to background levels

2–3 h after substrate administration (Fig. 11). The background

levels remained constant during the whole experiment at

approximately 1.26105 photons s21. Thus the best conditions

for imaging of ffluc-expressing M. smegmatis given intranasal

substrate are using 15 mg ml21 luciferin and imaging 5–10 min

post-substrate administration.

A similar assay was performed using Gluc. Two coelenterazine

concentrations were administered intranasally (10 and 20 mg) and

images were acquired at different time points over 3 h. A high

background was detected in all cases and no differences were

observed between mice inoculated with M. smegmatis
pMV306hsp+Gluc or M. smegmatis pMV306hsp (Fig. 12A, B).

The same mice were then administered 10 mg coelenterazine by

Figure 7. Light production from FFluc and Lux is stable, whereas the signal from Gluc rapidly dissipates. Luminescence (given as
relative light units [RLUs]) was measured every 10 s for gluc-expressing M. smegmatis and every 30 s for ffluc- or lux-expressing M. smegmatis, over a
30 min period. The integration times used were 0.1 s, 5 s and 10 s for Gluc, FFluc and Lux respectively. At time point 0 min, 470 mM luciferin or
40 mM coelenterazine were added to FFluc- and Gluc-producing M. smegmatis respectively. Two independent cultures were used for FFluc and Lux,
and three for Gluc. Each culture was measured in duplicate and the means and standard deviations (smaller than symbols) are plotted.
doi:10.1371/journal.pone.0010777.g007
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the intraperitoneal route 5 h after initial intranasal substrate

administration. A high background signal was detected in the

abdomen of both the positive and control mice (Fig. 12C), while

the bioluminescence observed in the nose was due to the previous

intranasal coelenterazine. Consequently, Gluc is not useful for in

vivo imaging of M. smegmatis.

Mice infected with M. smegmatis pMVhsp+LuxAB+G13+CDE

were also imaged. Bioluminescence could be detected in the lungs

of the positive mice while no signal was observed in the control

mouse (Fig. 13).

Finally, we also imaged mice infected with ffluc-expressing M.

tuberculosis after administering intranasal luciferin. Bioluminescence

Figure 8. Bioluminescence correlates with cell density during exponential growth in vitro. Cultures of M. smegmatis pMVhsp+FFluc (a),
pMVhsp+Gluc (b) and pMVhsp+Lux (c) were inoculated to an optical density (OD) at 600 nm of 0.1 and the OD and the luminescence [given as
relative light units (RLUs)] measured over 28 h. The luminescence was measured with integration times of 5, 0.1, and 10 s respectively, and substrate
concentrations of 470 mM luciferin for FFluc and 40 mM coelenterazine for Gluc. The values represented correspond to the means of two independent
cultures measured in triplicate. The error bars indicate standard deviations. A near linear relationship was found between bioluminescence [given as
RLUs] and colony counts (given as colony forming units [CFU]) for mid-log cultures of M. smegmatis pMVhsp+FFluc (d), pMVhsp+Gluc (e) and
pMVhsp+Lux (f) using a plate luminometer.
doi:10.1371/journal.pone.0010777.g008
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was detected in the lungs of mice receiving ffluc-expressing

bacteria, while no signal was observed in the control mouse

infected with the wild-type M. tuberculosis H37Rv (Fig. 14).

Discussion

Work with mycobacteria is hampered by their long duplication

times meaning that, in the case of M. tuberculosis, results based on

organ CFU counts are only available three to four weeks after the

conclusion of the experiment. This handicap can, in part, be

overcome by the use of non-invasive imaging techniques which

allow infection dynamics to be studied in real-time. Moreover,

such techniques allow for drastic reductions in the numbers of

animals used in experiments. Recently an M. tuberculosis recom-

binant strain expressing a bacterial thymidine kinase was visualised

in vivo using [125I]FIAU-single photon emission computed

tomography (SPECT) [48]. While this technique is able to

accurately measure the level of signal and has good spatial

resolution, there are some issues with non-specific signals and the

relatively high cost [48].

An alternative to this technique is the use of BLI which has

proved very useful in the study of infectious diseases caused by a

variety of bacteria [49,50,51,52,53,54]. In the only work on BLI of

mycobacteria published so far, the luxAB genes were used, thus

requiring the administration of the toxic substrate decanal.

Although the infection could be detected in the abdomen of

intravenously infected mice, the signal in the lungs was too low to

be detected after intraperitoneal administration of aldehyde. To

overcome these problems and thus further develop BLI imaging of

mycobacteria, we have optimised the FFluc and Gluc luciferases

for use in mycobacteria, both of which use non-toxic substrates,

and the whole lux operon that does not require the external

addition of substrate.

Approaches for imaging reporter gene expression mainly

depend on robust levels of reporter protein. This, in turn, depends

on the nature of the expression vector used, including the copy

number, and the transcriptional and translational signals. With

this in mind we compared the bioluminescent signal obtained with

each reporter using three different vectors (two episomal vectors

with 2–5 and 32–64 copies per cell, and one integrating vector),

three different promoters (Phsp60, PmyctetO, and PG13), and finally,

with an optimised Shine-Dalgarno sequence, we also tested the

effect of codon optimisation. Our results demonstrate that the best

expression was achieved using the integrating vector, a finding

most likely linked to a considerable instability of the replicating

vectors when expressing ffluc and lux. In fact, the whole lux operon

was only stably expressed in M. smegmatis when it was cloned into

the integrating vector, with no positive clones isolated using the

episomal vectors. This would explain why this reporter operon had

never been successfully expressed in mycobacteria until now. A

similar situation has also been reported for the expression in

mycobacteria of other recombinant genes like the HIV-1 gp120

[38] or the human interleukin 2 [55]. The more stable expression

of foreign antigens in mycobacteria using integrating vectors as

opposed to episomal vectors has been extensively documented

[56,57,58,59] and is mainly attributed to lower expression, and

therefore a lower metabolic burden, associated with the reduction

in the copy number.

In the case of the lux operon, we have previously found that

plasmid-based expression of luxD is toxic in mycobacteria (S.

Wiles, unpublished results). This gene encodes an acyl transferase

which forms part of an enzyme complex (along with the products

of luxC and luxE) responsible for recycling the fatty acid by-

products of the luciferase reaction back into long chain aldehydes

for use as further substrate. Given the importance of fatty acids in

the cell wall structure of mycobacteria, it is not surprising that

over-expression of fatty acid modifying enzymes would be

detrimental.

Regarding promoter selection, we have found that the promoter

Phsp60 drove the highest luminescence for the three reporters,

although the differences between the three promoters were only

minor. Phsp60 is known to be a strong promoter in mycobacteria and

has been used extensively to over-express proteins [38,60,61,62,63].

However, PmyctetO, isolated from an M. smegmatis/M. tuberculosis

library using GFP to assess gene expression in vitro [42]; and PG13,

Figure 9. Gaussia luciferase is secreted from mycobacterial cells. Luminescence (given as relative light units [RLUs]) was measured in culture,
supernatant and cell samples of M. smegmatis producing Gluc Mycobacterium optimised with (GlucSS) or without (Gluc) signal peptide, Gluc wild-
type with (GlucWT+SS) or without (GlucWT-SS) signal peptide, and FFluc as control. Assays were performed with three independent cultures and each
culture was measured in duplicate. As the data was not normally distributed, median values are displayed (bar) with inter-quartile ranges (box), and
highest and lowest values (whiskers).
doi:10.1371/journal.pone.0010777.g009
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isolated from an M. marinum library expressing GFP inside

macrophages [43,44], have both been reported to be stronger than

Phsp60 (10 and 10–20 times, respectively). The discrepancy with our

results could be related to the different reporters used to measure gene

expression, and the toxicity and metabolic load associated with their

over-expression. It may also be that the highest stable level of

expression for our reporters had already been achieved with the Phsp
and therefore the use of stronger promoters did not increase

expression further. This would be in agreement with the instability

observed using the episomal vectors for ffluc and lux, and when using

the PmyctetO with lux.

Perhaps unsurprisingly, codon-optimisation was found to increase

the signal obtained for FFluc (30-fold [76% homology]) and Gluc

(2.5-fold [74% homology]). Unexpectedly, the M. tuberculosis codon-

optimised Lux was found to be non-functional, even after the addition

of exogenous substrate. We have not explored the basis for this

inactivity; however, there is a suggestion from the optimised sequence

that after transcription the DNA may form secondary structures that

impede translation (data not shown).

We also characterised the various bioluminescence reactions by

varying the integration time and substrate concentration, and by

measuring the kinetics of light output. The results obtained are

similar to those previously described [9,10] proving that Gluc

catalyses a rapid ‘flash’ reaction, FFluc has glow kinetics, and the

continuous synthesis of substrate by the lux operon allows for

steady luminescence. In this work, we have found that FFluc

produced the highest luminescence, 10 times brighter than that

obtained with Lux, and 100 times that of Gluc. This is in contrast

with the results of Snewin et al. who found LuxAB to be brighter

than FFluc [31], but this was done using an episomal reporter that

required the addition of aldehyde substrate. Consequently, the

substrate may have been in excess, which might be a limiting

factor in our whole operon lux reporter. To test this hypothesis an

extra promoter was cloned in front of luxCDE to boost substrate

synthesis, and indeed a 6-fold higher signal was obtained. The

alternative of adding exogenous substrate also increased the signal

5–10 times (data not shown). The availability of FMNH2 could

also be a limiting factor. In yeast, co-expression of luxAB together

with the frp gene, encoding a NADPH-FMN oxidoreductase from

Vibrio harveyi, led to a 100-fold increase in the luminescence [64].

However, we have found the same approach in mycobacteria to

have no effect on the final signal (unpublished results).

Once the best conditions for reporter expression were selected,

we proceeded to explore if the bioluminescence signal obtained

was strong enough for the imaging of mycobacteria in vivo.

Importantly, bioluminescence could be detected in the lungs of

mice infected with either ffluc or lux-expressing M. smegmatis or

ffluc-expressing M. tuberculosis. FFluc utilises a non-toxic, well

Figure 10. Kinetics of FFluc activity in M. smegmatis infected mice after intraperitoneal injection of luciferin. Mice were endotracheally
inoculated with 1.46107 CFU of M. smegmatis pMV306hsp+FFlucWT [two representative mice (M1 and M2) out of four are shown] or with
6.86106 CFU of M. smegmatis pMV306hsp (control). 300 mg kg21 or 500 mg kg21 luciferin intraperitoneal was given 24 h post-inoculation and
images were acquired at time points 0 (immediately after substrate administration), 5, 10, 15, 20, 25, 30, 60, 120 and 180 min. (a) Images were
obtained using an IVIS Spectrum and are displayed as pseudocolour images of peak bioluminescence (given as photons s21 cm22 steridian [sr]21),
with variations in colour representing light intensity at a given location. Mice injected with 300 mg kg21 luciferin were imaged with an integration
time of 1 min, whereas those that received 500 mg kg21 luciferin were imaged for 10 s to avoid saturation of the image. Three representative time
points are shown. (b) Bioluminescence (given as photons s21) in the thorax was quantified for each time point using the region of interest tool in the
Living Image software program.
doi:10.1371/journal.pone.0010777.g010

Bioluminescent Mycobacteria

PLoS ONE | www.plosone.org 9 May 2010 | Volume 5 | Issue 5 | e10777



tolerated substrate that can be repeatedly administered for

repetitive imaging. The main route of luciferin administration is

by intraperitoneal injection, however intranasal delivery has been

recently described as a more efficient route for the monitoring of

bioluminescence in the lungs, while using 30 times less luciferin

[65]. We have found that a good signal is obtained using

intranasal luciferin, although a stronger signal can be achieved

using intraperitoneal luciferin which would also have the

advantage of allowing detection of signal in other locations

besides the lungs.

Surprisingly, the signal from Gluc-producing M. smegmatis in

mice could not be distinguished from the strong background

produced by the coelenterazine substrate alone. These results were

unexpected considering that published work with eukaryotic cells

states that the Gluc signal is 1000 times stronger than that of FFluc

in cell culture, and as bright as FFluc in vivo, with no background

detected in vivo even using a 20-fold higher concentration of

coelenterazine [9]. Gluc is naturally secreted from eukaryotic cells

and this has been used to quantify the number of Gluc-producing

cells in murine blood samples [66]. Although we have proved that

Gluc is also secreted from M. smegmatis, we have been unable to

detect it in blood samples taken from infected mice thus far (data

not shown). Overall these results preclude Gluc as a reporter for

either in vivo imaging of mycobacteria or ex vivo monitoring of

infected organs.

The results presented here represent an important step towards

the use of bioluminescence for the non-invasive study of

mycobacteria infection in vivo. In fact, the use of FFluc, or the

whole lux operon would represent a major advantage compared,

for example, to the use of just luxAB. There are, however, some

issues that should be considered and further investigated. First, the

minimal number of bacteria capable of being detected within the

lungs is expected to be quite high, especially when compared to

the inocula that are normally used in experimental M. tuberculosis

infections. Although this could limit the use of BLI studies for the

initial stages of the infection, it would not pose a problem in more

advanced phases of the infection and would still represent an

important improvement in drug or vaccine efficacy testing.

Secondly, luciferin accessibility to the bacteria contained in

granulomatous lesions could affect the signal obtained and has

to be further investigated. To that end, preliminary results have

shown that luminescence can be detected during infection of

macrophage in vitro thus proving the permeability of macrophages

to luciferin (unpublished data). Finally, the signal obtained is also

affected by the metabolic state of the bacteria since the luciferase

reaction relies on bacterial metabolites, mainly ATP and FMNH2

for FFluc and Lux respectively. This is exemplified by the decrease

in the luminescence observed when M. smegmatis enters the

stationary phase and has also been previously described for other

bacteria [67,68,69,70,71]. Although this could represent a

Figure 11. Kinetics of FFluc activity inM. smegmatis infected mice after intranasal administration of luciferin. Mice were endotracheally
inoculated with 6.66106 CFU of M. smegmatis pMV306hsp+FFlucWT [two representative mice (M1 and M2) out of four are shown] or with
6.86106 CFU of M. smegmatis pMV306hsp as a control (one representative mouse out of two is shown). 20 ml of 15 mg ml21 or 30mg ml21 luciferin
intranasal was administered 24 h post-inoculation and mice were imaged 0, 5, 10, 15, 30, 60, 120 and 180 min after. (a) Images were obtained using
an IVIS Spectrum and are displayed as pseudocolour images of peak bioluminescence (given as photons s21 cm22 sr21). Red represents the most
intense light emission while blue correspond to the weakest signal. The colour bar indicates relative signal intensity. Mice were imaged with an
integration time of 30 s. Three representative time points are shown. (b) Signal intensity (given as photons s21) in the lungs was quantified for each
time point using the region of interest tool in the Living Image software program.
doi:10.1371/journal.pone.0010777.g011
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handicap for the study of, for example, dormant M. tuberculosis it

could be a powerful tool to gain insights into the metabolic state of

M. tuberculosis during infection, to study entrance into dormancy, as

well as for the rapid detection of drugs acting on bacterial

metabolism.

Materials and Methods

Bacterial strains and growth conditions
M. smegmatis mc2155 [72], M. tuberculosis H37Rv and Escherichia

coli NEB-10b (New England Biolabs UK Ltd) were used in this

work. M. smegmatis and M. tuberculosis were grown on Middlebrook

7H11 agar medium (BD Diagnostics) supplemented with 0.5%

glycerol and 10% oleic acid albumin-dextrose-catalase (OADC)

(BD Diagnostics). When required, filter-sterilised luciferin was

added at a final concentration of 0.157 mM. Liquid cultures of M.

smegmatis and M. tuberculosis were grown either in Middlebrook

7H9 broth (BD Diagnostics) containing 0.05% Tween 80 (Sigma)

and 10% albumin-dextrose-catalase (ADC) enrichment (BD

Diagnostics), or (for M. smegmatis Gluc assays) in Luria-Bertani

(LB) medium with 0.05% Tween. LB medium was preferred for

the Gluc assays because the background of coelenterazine was 100

times lower in that medium than in 7H9 broth. LB medium was

used for culturing E. coli. All the strains were grown at 37uC. The

following antibiotics were added when appropriate: ampicillin

[100 mg ml21 (Sigma)], hygromycin B [150 mg ml21 (Invitrogen)]

and kanamycin [25 mg ml21, for mycobacteria, 50 mg ml21 for E.

coli (Sigma)].

Figure 12. BLI of gluc-expressing M. smegmatis. Mice were endotracheally inoculated with 3.326106 CFU of M. smegmatis pMV306hsp+Gluc
[two representative mice (M1 and M2) out of three are shown,) or with 1.586107 CFU of M. smegmatis pMV306hsp as a control (one out of two mice
is shown). 10 mg of coelenterazine intranasal was administered 24 h post-inoculation and mice were imaged at time points 0, 5, 10, 15, 30, 60, 120
and 180 min. (a) Images were obtained using an IVIS Spectrum and are displayed as pseudocolour images of peak bioluminescence (given as
photons s21 cm22 sr21), with variations in colour representing light intensity at a given location. Integration time was 5 min. (b) Bioluminescence
(given as photons s21) was quantified using the Living image software. (C) 10 mg of coelenterazine was given intraperitoneally to the same mice 5 h
post-intranasal coelenterazine. Mice were imaged 0, 5, 10, 15, 20, 25 and 30 min post-intraperitoneal coelenterazine with integration times of 3 min.
doi:10.1371/journal.pone.0010777.g012
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Construction of bioluminescent reporter plasmids and
strains
The plasmids used in this study are described in Tables 1–4.

The integrating expression vectors pMV306hsp and pMV306myc

were constructed by cloning into pMV306 the promoters Phsp60
and Pmyc1tetO obtained as NotI-HindIII and XbaI-SalI fragments

from pSMT3 and pSE100 respectively. All reporter genes, except

for the lux operon, were PCR amplified using the primers and

templates listed in Table 5. These primers contained an optimised

Shine-Dalgarno sequence (Mega SD) [45] and/or restriction sites

as indicated. The sequence of the PCR products was confirmed by

DNA sequencing. The M. smegmatis optimised gluc gene was cloned

into pSMT3 and pSMT3M as a BamHI-HindIII fragment and

into pMV306myc as an EcoRI-SalI fragment. For cloning the

wild-type and optimised gluc genes into pMV306hsp the PCR

products were digested with EcoRI-SalI. Plasmids containing the

M. tuberculosis optimised ffluc gene were made in a similar way but

cloning the EcoRI-XbaI PCR product into pUC18 first to use the

restriction sites of this vector’s MCS. The wild-type ffluc was

cloned into pMV306hsp as a HindIII-SalI insert. Plasmids

pMV306hsp+Lux, pSMT3+Lux and pSMT3M+Lux were created

by cloning a 5.7-kb EcoRI-PstI blunted fragment (containing the

whole lux operon) from pSB2025 into the respective expression

vector. Deletion of a 0.4 kb NotI-EcoRI fragment (containing

Phsp60) from pMV306hsp+Lux and insertion of Pmyc1tetO from

pMV306myc produced pMV306myc+Lux. In a similar way, the

reporter plasmids containing the G13 promoter were made

replacing the Phsp60 of the corresponding reporter vector with

PG13 by digestion with NotI-EcoRI. pMVhsp+LuxAB+G13+CDE

was obtained by cloning the KpnI PG13 PCR fragment into

pMVhsp+Lux in front of luxC. Finally, luxCDABE from pMU1*

was cloned into pMV306hsp as a 5.7-kb EcoRI PCR fragment.

Reporter strains were obtained by electroporation of reporter

plasmids into M. smegmatis mc2155 or M. tuberculosis H37Rv as

previously described [73]. Each strain was named according to the

plasmid it contained. The strains transformed with an integrating

vector were checked by PCR with primers amplifying the

corresponding promoter and reporter gene; whereas recombinant

strains with replicating vectors were confirmed by recovering the

plasmid after transformation into E. coli.

Bioluminescence assays
Luciferases substrates. Coelenterazine (Gold BioTech-

nologyH, Inc., St. Louis, Mo., USA), the substrate for Gluc, was

reconstituted in acid methanol to a concentration of 10 mM

(4.238 mg ml21). The substrate for FFluc, D-luciferin (Gold

BioTechnologyH), was prepared in distilled water at 94 mM

(30 mg ml21). All stocks were stored at 220uC and diluted in

broth media or D-PBS (without calcium or magnesium)

immediately before use. Working solutions were kept on ice in

the dark during preparation.

Screening of transformants. After electroporation, 10

randomly selected transformants were grown in broth media.

Luminescence was then measured at room temperature on a tube

Figure 13. BLI of lux-expressing M. smegmatis. Mice were
inoculated endotracheally with M. smegmatis pMV306hsp+Lux-
AB+G13+CDE [7.96106 CFU, two mice (M1 and M2) out of four are
shown] or M. smegmatis pMV306hsp (6.86106 CFU, control) and
imaged 24 h post-inoculation. Images were obtained using an IVIS
Spectrum and are displayed as pseudocolour images of peak
bioluminescence (given as photons s21 cm22 sr21), with variations in
colour representing light intensity at a given location. Mice were
imaged with an integration time of 5 min.
doi:10.1371/journal.pone.0010777.g013

Figure 14. BLI of ffluc-expressing M. tuberculosis. Mice were inoculated endotracheally with 56106 CFU of either wild-type M. tuberculosis
(control) or FFluc-producing M. tuberculosis. 20 ml of 30 mg ml21 luciferin was administered intranasally and mice were imaged 5–10 min after. Mice
were contained in a large air-tight box for safety considerations. The image was obtained using an IVIS Spectrum and is displayed as a pseudocolour
image of peak bioluminescence (given as photons s21 cm22 sr21). Red represents the most intense light emission while blue correspond to the
weakest signal. The colour bar indicates relative signal intensity. Mice were imaged with an integration time of 1 min.
doi:10.1371/journal.pone.0010777.g014
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luminometer (ModulusTM Single Tube Multimode Reader,

Turner Biosystems) by adding coelenterazine to a final

concentration of 10 mM or luciferin to 470 mM, and integrating

the signal over 1 s. The results are expressed as relative light units

(RLU). The luminescence of Lux transformants was measured in a

similar way but without adding any substrate. M. smegmatis Lux

electroporation plates were imaged in the IVISH Spectrum

imaging system (Caliper Life Sciences, Alameda, CA) using the

Living ImageH software (Caliper Life Sciences) and acquiring the

signal for 1 s to 30 s. M. smegmatis or M. tuberculosis transformed

with the corresponding empty vector were used to measure the

background luminescence.

Luciferase activity assays. For the integration time,

substrate and kinetics assays, two or three independent cultures

of each strain were grown to an optical density (OD) at 600 nm of

0.6 (mid-log phase) and each culture was measured in duplicate at

37uC with a microplate reader (Mithras LB 940, Berthold

Technologies, Bad Wildbad, Germany) using MicroWin

2000 software (Berthold Technologies). When required 50 ml of

substrate was injected into 50 ml of sample in a polystyrene 96-well

plate and luminescence was measured for 0.1 s to 10 s after a

delay of 0.1 s. For the kinetics assay luminescence was measured

immediately after adding the substrate and then every 10 s or 30 s

(Gluc and FFluc respectively) for 30 min. In the case of the

bacterial luciferase the light output was also measured every 30 s

for 30 min but without adding exogenous substrate. Cultures ofM.

smegmatis pMV306hsp were processed in parallel to each

experiment and the measurements were treated as the

luminescence’s background. The results are expressed as RLUs.

Study of Gaussia luciferase secretion
Three independent cultures of M. smegmatis expressing gluc were

grown in LB-Tween to mid-log phase (OD=0.6). A sample of

0.5 ml of each culture was centrifuged, the supernatant filtered

using a 0.22 mm Ultrafree-MC centrifugal filter unit (Millipore)

and the cell pellet resuspended in 0.5 ml of fresh medium. The

luminescence was then measured in duplicate in samples taken

from the culture, supernatant and cells using the Mithras LB 940

microplate reader as above.

In vivo studies
Experiments were performed in accordance with the Animals

Scientific Procedures Act (1986) and were approved by the local

Ethical Review Committee. Barrier-bred female 8–12 week old

Balb/c mice (Charles River UK Ltd) were anaesthetised by

intraperitoneal injection of 100 mg kg21 body weight ketamine

(Ketaset; Fort Dodge Animal Health, Southampton, UK) and

10 mg kg21 body weight xylazine (Rompun; Bayer, Newbury,

Berkshire, UK) and inoculated with M. smegmatis or M. tuberculosis

Table 1. Plasmids used in this study.

Plasmid Description

Reference

or source

pSMT3 Mycobacterial replicating
expression vector containing Phsp60, Hyg

r
[75]

pSMT3M pSMT3 with a high copy number mutation [39]

pSE100 Mycobacterial replicating expression
vector containing Pmyc1tetO, Hyg

r
[76]

pMV306 Mycobacterial integrating vector, Kmr [38]

pMV306hsp pMV306 derivative containing Phsp60 This study

pMV306myc pMV306 derivative containing Pmyc1tetO This study

pUC18 E. coli cloning vector, Ampr Fermentas

doi:10.1371/journal.pone.0010777.t001

Table 2. Firefly luciferase encoding vectors used in this study.

Plasmid Description

Reference or

source

pJ246:17659 E. coli cloning vector encoding the firefly
luciferase (FFluc) codon optimized for M.

tuberculosis, Ampr, Kmr, Cmr, Genr

J. Cirillo and K.
Francis

pSMT3+FFluc pSMT3 encoding the codon
optimized FFluc

This study

pSMT3M
+FFluc

pSMT3M encoding the codon
optimized FFluc

This study

pMV306hsp
+FFluc

pMV306hsp encoding the codon
optimized FFluc

This study

pMV306myc
+FFluc

pMV306myc encoding the codon
optimized FFluc

This study

pMV306G13
+FFluc

pMV306hsp+FFluc derivative in
which Phsp60 has been replaced with PG13

This study

pGL2-Basic E. coli vector encoding the wild-type
FFluc, Ampr

Promega

pMV306hsp
+FFlucWT

pMV306hsp encoding the wild-type FFluc This study

doi:10.1371/journal.pone.0010777.t002

Table 3. Gaussia luciferase encoding vectors used in this
study.

Plasmid Description

Reference

or source

pUC57+Gluc E. coli vector encoding the Gaussia luciferase
gene optimized for M. smegmatis codon and
lacking the first 48 nt (corresponding to the
secretion signal), Ampr

D. Agranoff

pSMT3+Gluc pSMT3 encoding the codon optimized Gluc This study

pSMT3M
+Gluc

pSMT3M encoding the codon optimized Gluc This study

pMV306hsp
+Gluc

pMV306hsp encoding the codon
optimized Gluc

This study

pMV306myc
+Gluc

pMV306myc encoding the codon
optimized Gluc

This study

pMV306G13
+Gluc

pMV306hsp+Gluc derivative in which Phsp60
has been replaced with PG13

This study

pJ201:26462 E. coli cloning vector encoding the Gaussia

luciferase gene i
ncluding the secretion signal (GlucSS) codon
optimized for M. tuberculosis, Kmr

DNA 2.0

pMV306hsp
+GlucSS

pMV306hsp encoding GlucSS This study

pUC18+GlucWT
-SS

E. coli cloning vector encoding the wild-type
Gluc without the secretion signal, Ampr

B. A.
Tannous

pUC18+GlucWT
+SS

E. coli cloning vector encoding the wild-type
Gluc with the secretion signal, Ampr

B. A.
Tannous

pMV306hsp
+GlucWT-SS

pMV306hsp encoding the wild-type Gluc

without the secretion signal
This study

pMV306hsp
+GlucWT+SS

pMV306hsp encoding the wild-type Gluc

with the secretion signal
This study

doi:10.1371/journal.pone.0010777.t003
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by endotracheal aerosol application of a total volume of 25 ml

using a MicrosprayerH (PennCentury, Philadelphia, PA, USA) as

previously described [74].

Assessment of bioluminescence (photons s21cm22 steridian

[sr]21) from living animals was performed using an IVISH

Spectrum system (Caliper Life Sciences, Alameda, USA) which

consists of a cooled charge-coupled device camera mounted on a

light-tight specimen chamber. Prior to bioluminescent imaging,

mice were anaesthetised with 4% isoflurane. Luciferin dissolved in

sterile D-PBS was then administered to animals inoculated with

FFluc expressing strains [20 ml of 15 mg ml21 (47 mM) or 30 mg

ml21 (94 mM) luciferin via the intranasal route, or 300 mg kg21 or

500 mg kg21 body weight by intraperitoneal injection]. To image

mice infected with Gluc expressing M. smegmatis 50 ml of 0.48 mM

or 0.96 mM coelenterazine (prepared by diluting the 10 mM stock

in sterile D-PBS just before use) was intranasally administered (10

or 20 mg per mouse respectively), or 150 ml of 0.16 mM

coelenterazine via the intraperitoneal route (10 mg). Mice were

placed into the camera chamber of the IVISH Spectrum imaging

system where a controlled flow of 2.5% isoflurane in air was

administered through a nose cone via the IXG8 gas anaesthesia

system (Caliper Life Sciences). A grayscale reference image was

taken under low illumination prior to quantification of emitted

photons over 30 s to 5 min, depending on signal intensity, using

the software program Living Image (Caliper Life Sciences) as an

overlay on Igor (Wavemetrics, Seattle, WA). For anatomical

localisation, a pseudocolour image representing light intensity

(blue, least intense to red, most intense) was generated using the

Living Image software and superimposed over the grayscale

reference image. Bioluminescence within specific regions of

individual mice was also quantified using the region of interest

(ROI) tool in the Living Image software program (given as photons

s21). Animals were imaged immediately after inoculation, to assess

the success of the delivery, and 24 h post-infection. Animals

inoculated with ffluc- or gluc- expressing M. smegmatis were imaged

at different time points after substrate administration for up to 3 h.

Table 4. Bacterial luciferase encoding vectors used in this study.

Plasmid Description Reference or source

pSB2025 E. coli vector containing the LuxABCDE operon from P. luminescens

modified for expression in Gram positive bacteria, Ampr
[41]

pSMT3+Lux pSMT3 encoding LuxABCDE This study

pSMT3M+Lux pSMT3M encoding LuxABCDE This study

pMV306hsp+Lux pMV306hsp encoding LuxABCDE This study

pMV306myc+Lux pMV306myc encoding LuxABCDE This study

pMV306G13+Lux pMV306hsp+LuxABCDE derivative in which Phsp60 has been replaced with PG13 This study

pMV306hsp+LuxAB+G13+CDE pMV306hsp+LuxABCDE derivative with PG13 cloned in front of luxC This study

pMU1* Improved pMU1 (which has a promoterless luxCDABE optimized for
high-GC [46]) with a corrected mutation in luxD

A. Craney & J. Nodwell

doi:10.1371/journal.pone.0010777.t004

Table 5. Primers used in this study.

Target Primera Template

FFluc 59-CCGAGGAATTCGGATCCAGAAGGAGAAGTACCGATG GAAGATGCGAAGAAC-39 pJ246:17659

59-AGGCTTCTAGAGTCACTTGCCTCCTTTCTTCGC-39

FFlucWT 59-AAGCTTAGAAGGAGAAGTACCGATGGAAGACGCCAA AAAC-39 pGL2-Basic

59-GTCGACTTACTTTCCGCCCTTCTTGGC-39

Gluc 59-CCGAGGAATTCGGATCCAGAAGGAGAAGTACCGATG AAGCCGACCGAGAAC-39 pUC57+Gluc

59-TTATATAAGCTTGTCGACTCAGTCGCCGCCGGCGCC-39

GlucWT-SS 59-CCGAGGAATTCGGATCCAGAAGGAGAAGTACCGATG AAACCAACTGAAAAC-39 pUC18+GlucWT-SS

59-GTCGACAAGCTTTTAATCACCACCGGCACCCTTTAT-39

GlucWT+SS 59-CCGAGGAATTCGGATCCAGAAGGAGAAGTACCGAT GGGAGTGAAAGTTCTTTTTG-39 pUC18+GlucWT+SS

59-GTCGACAAGCTTTTAATCACCACCGGCACCCTTTAT-39

PG13 59-GCGGCCGCGATCGCCACTAGCGCCGCGGT-39 M. marinum

59-GAATTCTCGGTTACCAAGCGTGCATTT-39

59-GGTACCGATCGCCACTAGCGCCGCGGT-39

59-GGTACCTCGGTTACCAAGCGTGCATTT-39

LuxStm 59-CCGAGAATTCCAGATCTGACTGAGTGACCAAAG-39 pMU1*

59-TGACGAATTCTCAGCTGTTGAACGCCTGGTT-39

aIn italics, sequence added to include restriction sites (underlined) for cloning procedures, and optimized Shine-Dalgarno sequence (in bold) [45].
doi:10.1371/journal.pone.0010777.t005
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Statistical analysis
Statistical analyses were performed using GraphPad Prism 5.02

(GraphPad Software, San Diego, USA). Normality of data was

tested by use of the D’Agostino & Pearson omnibus normality test.

According to this, differences in reporter constructs activity were

assessed by use of the non-parametric Kruskal-Wallis test for

comparisons of groups of three. If the Kruskal–Wallis test was

statistically significant, then a Dunn’s multiple comparison test was

employed. For groups in pairs the non-parametric Mann-Whitney

test, or the t test for normal data, were used.
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