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Abstract. The exploitation of solar power for energy supply is of in-
creasing importance. While technical development mainly takes place in
the engineering disciplines, computer science offers adequate techniques
for simulation, optimisation and controller synthesis.

In this paper we describe a work from this interdisciplinary area. We
introduce our tool for the optimisation of parameterised solar thermal
power plants, and report on the employment of genetic algorithms and
neural networks for parameter synthesis. Experimental results show the
applicability of our approach.
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1 Introduction

The contribution of renewable energies to global energy supply has significantly
increased over the past ten years. Completely new branches of industry have
developed in the fields of solar, wind, and biomass energy. Among such tech-
nologies, concentrating solar thermal power (CSP) plants are a promising option
for power generation in regions with high direct solar irradiation. The principle
seems to be very simple: Large mirrors concentrate rays of sunlight to heat water
and the emerging vapour powers a turbine to generate electricity (see Fig. 1).

In the early planning stage of commercial CSP plants, it is necessary to
develope a conceptual plant design that fixes the configuration of the plant, such
as the solar field size and the temperature and pressure levels in the water cycle.
In the ideal case the design minimises the levelised cost of electricity (LCOE),
describing the costs per generated electricity unit, for the given project and site,
and taking specific properties like solar conditions and cooling water availability
into account.

In this paper, we describe our simulation-based techno-economical optimisa-
tion tool for the development of such project-specific plant concepts that are well-
designed with respect to economic criteria. The optimisation tool uses adequate

? This work is based on the Fraunhofer ISE project ”optisim”, which was funded by
the German Ministry of Environment (project number FKZ 0325045).
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Fig. 1. Structure of a concentrating solar thermal power plant. In the solar block,
large mirrors collect rays of sunlight and concentrate them on an absorber pipe. The
concentrated heat of the sun is used to heat a transfer fluid, usually thermal oil. The
hot fluid is either sent to the power block, where in a heat exchanger hot steam is
generated from liquid water, or its energy is stored in a molten salt storage for later
use after sun-set. In the power block the vapour streams through the turbine to power
its blades so that the generator generates electricity.
Source: Solar Millennium 2009, own modifications

computer science techniques: The global optimum of a solar plant configura-
tion is found using a genetic algorithm, whereas the thermodynamic-energetical
procedures of a solar plant are described by an artificial neural network.

The physical behaviour of CSP plants is very complex, so their analytical
optimisation is in practice not possible. Instead we use genetic algorithms [3]
for the optimisation. The basic idea is very simple: Given an arbitrary set of
CSP configurations, we simulate each of them energetically and economically to
compute their LCOE average over a year. The LCOE serves as the objective
function for the optimisation. We select the best configurations with minimal
costs and combine them to get a new generation of configurations for which we
repeat the procedure. By mutation this method avoids getting stuck in local
minima.

In order to get reasonable LCOE values for a CSP configuration, we need to
simulate the plant behaviour for each hour of a year. Without further improve-
ments (see Section 4) the optimisation would take about 1000 days due to the
time-consuming thermodynamical power block simulation using Thermoflex [12].

To reduce the calculation time we approximate the thermodynamical power
block simulation by bilinear interpolation: For each considered configuration,
instead of simulating each hour of a year we simulate only at an experimentally



determined number of interpolation points. In this way we are able to reduce
the running time of the optimisation to 2 days.

To further reduce the running time, we train a neural network [5] to learn the
required function of the power block behaviour, and replace the simulation by
the trained neural network. This is the main contribution of this paper, whereby
the computation time is reduced to about 2 hours (including training).

Related work There are several tools that simulate CSP plants (e.g. Ther-
moflex [12]). However, these tools are not able to optimise the configurations
of CSP plants. Morin [10] connected in his PhD thesis Thermoflex (for power
block simulation) with the solar block simulation tool ColSim [14, 10] and with
an optimisation algorithm using genetic algorithms and bilinear interpolation
(but no neural networks). To our knowledge this is the only work on global
optimisation of CSP plant designs, including power block design.

There are also papers on combining genetic algorithms [3] with neural net-
works [5]. The NNGA approach applies neural networks to find advantageous
initial sets for the genetic algorithm (see, e.g., [6]). In reverse, the so-called
GANN approach uses genetic algorithms to set the parameters of the neural
network. A broad variety of problems has been investigated by different GANN
approaches, such as face recognition [4], Boolean function learning and robot
control [9], classification of the normality of the thyroid gland [11], color recipe
prediction [2], and many more. In contrast to the above approaches we use in
our work neural networks to generate the input data for the genetic algorithms.

The rest of the paper is structured as follows. Section 2 describes the sim-
ulation of CSP plants. Section 3 is devoted to the optimisation using genetic
algorithms. We use bilinear interpolation and employ neural networks to speed
up the optimisation in Section 4. After presenting experimental results in Sec-
tion 5, we conclude the paper in Section 6 with an outlook on future work.

2 The Simulation of CSP Plants

The aim of optimising concentrating solar thermal power plants is to generate
electricity as cheaply as possible. The cost-efficiency of a power plant is generally
specified by the so-called levelised cost of electricity (LCOE), which describes
the costs per generated electricity unit (e.g. in Eurocent per kWh).

We consider up to 20 design parameters of a CSP plant. Examples for such
parameters are solar field size, storage capacity, condenser size, distance between
collector rows, as well as pressure and temperature levels. We use pdesign to
denote the design parameters of the CSP plant (see Fig. 1 for the CSP plant
structure). Our goal is to find a configuration of these parameters that yields a
minimal LCOE.

For a fixed configuration of the CSP plant the LCOE must be calculated
under consideration of the seasonal and daily variations of its site parameters:
The direct normal solar irradiance (DNI) has an influence on the collected ther-
mal power in the solar block and the ambient temperature influences the cooling
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Fig. 2. General structure of the optimisation procedure. Given a configuration fixing
the design parameters of the CSP plant, we use the solar and power block models to
simulate the CSP behaviour and compute the generated electrical energy for each hour
of the year, under consideration of the site parameters. Summing up the generated
electrical energy for each hour of the year gives the total energy amount, used as input
to the economic model to compute the LCOE under some economic assumptions. The
LCOE is the basis for the genetic algorithm to evaluate the configuration of the CSP
plant and to create new generations of configurations.

section of the power block3. Therefore, the model for computing the LCOE is
based on hourly time resolution over one year. We use qtDNI and T t

amb to denote
the DNI and the ambient temperature for the tth hour of the year.

The LCOE of a CSP plant for a given configuration is computed in two steps:
Firstly, we determine the electrical net energy Eel,net generated over a year using
an energetic model of the CSP plant. Secondly, this value is used by the economic
plant model to compute the LCOE under consideration of economic assumptions.

2.1 The Energetic Model of a CSP Plant

Physically the electrical energy is defined as the time-integral of the electrical
power: E =

∫
t
Pel(t) dt. The electrical net energy generated over a year by a

CSP plant for a given configuration is approximated with numerical rectangle
method as the sum of the electrical power generated during each hour t of a
year: Eel,net =

∑8760
t=1 P t

el.
To compute the electrical power P t

el for the tth hour of a year, we first com-
pute with the help of the solar block model the thermal power P t

therm gained
by the solar block. This value serves as an input to the power block model that
determines the generated power P t

el (see Fig. 2).
The solar block model provides a function fsolar to calculate the thermal

power P t
therm = fsolar(T

t
amb, q

t
DNI,pdesign) based on the available direct normal

3 The hotter the ambient air, the less efficient the power plant



solar irradiance qtDNI and the configuration pdesign of the solar block. The calcu-
lation first determines the optical collector performance and then subtracts heat
loss and thermal inertia effects (when heating up or cooling down). We use the
ColSim tool [14, 10] for these calculations. Depending on the operation strategy,
either heat is stored or hot fluid is sent to the power block.

The efficiency of converting thermal energy into electrical energy in the power
block depends on the thermal power P t

therm, the ambient temperature T t
amb (in-

fluencing the cooling section), and the configuration pdesign of the plant. The
power block model provides a function fpower to specify for each hour t the
electrical energy P t

el = fpower(P
t
therm, T t

amb,pdesign). The power block receives a
thermal energy flow from the solar field and/or the storage and converts it first
into mechanical and then into electrical energy. Mass and energy balances are
computed for each component (e.g., steam turbine, condenser and pumps). We
use the Thermoflex [12] tool for these computations.

The total electric net energy Eel,net =
∑8760

t=1 P t
el serves as an input to the

economic model.

2.2 The Economic Model of a CSP Plant

The economic plant model specifies a function fecon to calculate the LCOE. The
total investment costs for the solar block and the power block are computes
depending on economic assumptions cecon (e.g. investment costs of collectors,
interest rate, etc.) and the configuration pdesign. The investments occuring at the
initial project phase are distributed over the lifetime of a plant using the annuity
factor. On top of the investment-related annuity the running costs occuring in
the phase of operation of the plant need to be added. The annual running costs
consist of: Staff for operation and maintenance of the plant (e.g. mirror washing),
water, spare parts and plant insurance. These economic assumptions are included
in cecon. The levelised cost of electricity LCOE = fecon(cecon,pdesign, P

total
el )

equals the quotient of the annual costs and the electrical energy generated over
a year. The ColSim tool also supports these computations.

3 Use of Genetic Algorithms to Optimise Solar Plants

As described above the techno-economical model can be used to compute the
LCOE of a configuration. However, the number of possible configurations grows
exponentially in the number of parameters. To compute the LCOE for every
configuration in the search space is not realisable in practice. Hence, we need an
efficient heuristic approach to approximate such a multi-dimensional optimisa-
tion problem.

Genetic algorithms, a special type of evolutionary algorithms, are well-suited
for this purpose because they do not require knowledge about the problem struc-
ture. Furthermore, they can easily handle discontinuities, which is of crucial im-
portance here since technically unrealisable configurations have to be sorted out.



Another kind of discontinuities comes from several technological solutions (e.g.
integer number of collector loops).

A set of initial individuals (in our case configurations) widely spread over the
whole search area form an initial generation. Analogous to biological evolution,
genetic algorithms select the best individuals (in our case the configurations
with the smallest LCOE’s) from the current generation and use features such
as selection, recombination and mutation to produce a new generation. Iterative
application of this procedure leads to individuals close to the optimal solution.

Our optimisation tool embeds such a genetic algorithm. The implementation
is based on the free C++ library GALib [13]. We treat undesirable or contra-
dictory configurations by penalisation: they get assigned a very high LCOE and
are thus discriminated in the subsequent selection process.

On average, the genetic algorithm needs about 25 iterations with 40 config-
urations per iteration to get close to the global minimum.

4 Improvements of the Optimisation

The running time of the optimisation based on a genetic algorithm is mainly
determined by the simulation of the power block (see Section 2.1) that calculates
the generated electrical energy. A typical characteristic diagram for the function
fpower of the power block model is shown on Fig. 3. The computation of the
function values must consider complex physical processes, and is therefore very
time-consuming. For a single configuration, the computation of the electrical
energy P i

el generated during a certain hour i of a year needs about 10 seconds4 on
a standard computer. That means, it takes about a day to compute the electrical
energy P total

el generated over a year. The genetic algorithm considers about 1000
configurations until it gets close to the optimum. Thus the optimisation would
need around 1000 days without further improvements.

For applications we need to reduce the computation time. Below we present
two improvements to speed up the optimisation. The first approach involves
bilinear interpolation, whereas the second one employs artificial neural networks.

4.1 Bilinear Interpolation

Assume a power block configuration ppower is given. Instead of computing the
generated electrical energy P t

el = fpower(P
t
therm, T t

amb,ppower) for each hour t
of a year we compute it only for the grid points of a two-dimensional grid in
the space of thermal power and ambient temperature. We use these grid points
together with their computed function values to interpolate the function fpower

for the given configuration, i.e., to get approximations for P t
el for each hour of

the year. We use bilinear interpolation for this purpose, which performs linear
interpolation first in one dimension and then in the other dimension.

Experiments have shown that it is sufficient to compute the values of fpower

for a 4×4 grid, i.e., to simualate a configuration, the modified power block model

4 See Section 5 for more details.
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Fig. 3. Typical characteristic diagram of the function fpower for a fixed power block
configuration specifying the electrical power for each thermal power and ambient tem-
perature value pairs.

needs only 16 simulations (10 seconds each) instead of 8760 simulations. As the
genetic algorithm needs about 1000 configurations to get close to the optimum,
we have an approximate running time of about 2 days.

4.2 Artificial Neural Networks

To further reduce the computation time, we could think of applying linear in-
terpolation in the dimension of configurations as we did for the environmental
state. However, the behaviour in this dimension is highly non-linear, which leads
to an unacceptable effect on simulation accuracy.

For this purpose we use neural networks [5] instead of linear interpolation.
Neural networks are able to learn how to approximate functions without knowing
the function itself. The learning process is based on a training set consisting of
points from the domain of the function as input and corresponding function
values as output. We use neural networks to learn the behaviour fpower of the
power block model, i.e., to determine the generated electrical energy for a given
configuration and for some thermal power and ambient temperature values.

There exists a wide range of different neural networks. We use multilayer
perceptron, a network consisting of different neuron layers. As shown in Fig. 4,
there is a flow of information through a number of hidden layers from the input
layer which receives the input, to the output layer which defines the net’s output.
Fig. 5 shows the general scheme of the neurons in the layers. Each neuron weights
its inputs and combines them to a net input on the basis of a transfer function
(usually the sum of the weighted inputs). The activation function determines the
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activation output under consideration of a threshold value. During the learning
process the number of hidden layers and the number of neurons in the layers do
not change, but each neuron adopts the weights of its inputs.

We train the multilayer perceptron during the optimisation as follows: Before
the network is trained we apply bilinear interpolation as before. The results are
used as training set for the network, configuration and environmental state are
used as input and the interpolated values as output. Experiments show that it
is sufficient to train with the first 20 configurations. After the network has been
trained we use the neural network approach instead of the bilinear interpola-
tion. For each of the 20 configurations we need 16 simulations for the bilinear
interpolation, leading to a total simulation time of about 2 hours. The remaining
computation times (bilinear interpolation, training, etc.) are insignificant com-
pared to the simulation times. The quality of the results is comparable to the
results of the approach using only bilinear approximation.

5 Experimental Results

We use the Flood tool [7] to define, train, and use multilayer perceptrons with
two hidden layers. The networks can be configured by fixing different network
parameters. The configuration influences the network’s output, which again influ-
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ences the quality of the optimisation result. To attain good results it is therefore
of high importance to find an appropriate configuration.

We determined a well-suited network configuration experimentally: For each
parameter we trained networks with different parameter values and compared
the quality of the outputs. As a measure for the quality of the training we used
the relative error between the target and the predicted values for a test set with
12000 data points.

During training [1] a network tries to adapt its free parameters (edge weights
and neuron thresholds) such that the difference between the target values and
the network output for a set of training points gets smaller. There are different
training algorithms using different objective error functions. The best predictions
were received by application of the conjugate gradient algorithm as training
algorithm and the regularised Minkowski error with regularisation weight s =
0.1.

As optimal parameters we determined as optimal parameters the sum of
the weighted inputs as the transfer function and the hyperbolic tangent as the
activation function for the neurons.

We fixed the above parameter values and varied the number of neurons in
the hidden layers. Fig. 6 presents the relative validation errors. The best results
were gained with 15 neurons in the first and 17 neurons in the second hidden
layer with a relative error of 1.2%.

With these settings of a neural network, an annual simulation of a CSP plant
predicted the LCOE with a relative error of 0.67% and a maximum error of 1.3%.
The effects for the optimisation of using a neural network should be determined in
future work. It is expected, that the approximated optimum determined by using
a neural network should be close to the optimum found by a time-consuming
simulation-based optimisation.



6 Conclusion and Outlook

We described and applied an approach to optimise concentrating solar ther-
mal power plants by determining economically optimal design parameters. The
combination of simulation, genetic algorithms, bilinear interpolation and neural
networks allowed us to reduce the calculation time of the optimisation procedure
by around 90% compared to an approach without neural networks.

Neural networks were used here to detect complex thermodynamic analo-
gies between different plant designs. The achieved accuracy for prediction of the
LCOE is a relative error of less than 1%. In this paper simple multilayer per-
ceptrons were used. In future work here is room for improvements, e.g. using
recurrent neural networks [8], which would need fewer parameters to optimise
and due to their feedback, they are likely to suit the problem more.
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