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Abstract. The purpose of this study was to design and test an intelligent computer software developed 
with the purpose of increasing average productivity of milling not compromising the design features of the 
final product. The developed system generates optimal milling parameters based on the extent of tool wear. 
The introduced optimisation algorithm employs a multilayer model of a milling process developed in the 
artificial neural network. The input parameters for model training are the following: cutting speed vc, feed 
per tooth fz and the degree of tool wear measured by means of localised flank wear (VB3). The output 
parameter is the surface roughness of a machined surface Ra. Since the model in the neural network exhibits 
good approximation of functional relationships, it was applied to determine optimal milling parameters in 
changeable tool wear conditions (VB3) and stabilisation of surface roughness parameter Ra. Our solution 
enables constant control over surface roughness parameters and productivity of milling process after each 
assessment of tool condition. The recommended parameters, i.e. those which applied in milling ensure 
desired surface roughness and maximal productivity, are selected from all the parameters generated by the 
model. The developed software may constitute an expert system supporting a milling machine operator. In 
addition, the application may be installed on a mobile device (smartphone), connected to a tool wear 
diagnostics instrument and the machine tool controller in order to supply updated optimal parameters of 
milling. The presented solution facilitates tool life optimisation and decreasing tool change costs, 
particularly during prolonged operation. 

1 Introduction 
Milling processes are non-stationary operations, the 
realisation of whose involves the constant change of 
parameters crucial to productivity and quality of 
machining. One of such parameters, critical to the 
surface roughness of machined workpiece, is the 
condition of the cutting tool [1]. In the case in question, 
the relationship between tool wear and surface roughness 
parameter Ra is exponential. Both the pace and the 
functional character of these changes are relative to an 
array of difficult-to-define factors and exhibit non-linear 
dependence on the tool operation time [2]. These 
relationships affect production economics, particularly in 
lot production at constant milling parameters. The limit 
value of Ra specified in the product design 
documentation must be attained, nevertheless tool wear 
may hamper these efforts at certain stages of production. 
In the event of such an occurrence, constant monitoring 
of the state of machined surfaces [3,4,5] enables spotting 
the defect and applying the most sensible solution – 
cutting tool change. However, this will inevitably lead to 
halting the production process and generate delay of 
machining time of a given lot of machined products. 
This leads to the question, whether altering machining 
parameters may prolong tool life, and provide the 
desired surface roughness of the workpiece. 

In our experimental study, we developed a model 
which confirmed such presumption. However, 
implementation of the model for adjusting machining 
parameters that would ensure obtaining the required 
surface roughness of products may compromise the 
productivity of the process. The optimising algorithm is 
therefore designed to select parameters, from the 
established variants, that will produce specified Ra at 
a minimum loss of machining productivity. This strategy 
proves particularly effective when the surface roughness 
requirements are to be maintained in high lot size 
production. Resolving to the conventional solution 
would entail frequent stops for changing the cutting tool 
and maintenance-work-related productivity loss. 
Approaching both strategies from the perspective of 
production economics, what must be resolved is the 
issue of the limit tool wear, beyond which it is pointless 
to search for machining parameters to obtain the required 
Ra of machined surfaces. Therefore, to assess the 
suitability of approaches we must collate the increased 
machining costs, resulting from decreased machining 
parameters, and the alternative cost of halting the 
machining process for tool change operations, the cost of 
unused machining capacity and a potential cost of setting 
up a new tool. If lower machining productivity, resulting 
from the necessary machining parameters alteration, 
should generate comparable or higher costs, the 
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decision-making algorithm should select the cutting tool 
change variant. 

The solution to the presented problem may be 
obtained by means of the algorithms, implemented by 
the developed decision-aiding software. The computer 
application may either aid the decision-making process 
of a machine tool operator, or alternatively, conduct the 
decision-making process automatically [6], given it is 
connected through proper interfaces with the machine 
tool controller. The model was built for cyclic milling of 
workpieces in high-sized lot production, at relatively low 
surface roughness parameter Ra. 

The system was developed and tested following the 
stages listed below: 
- conducting experimental milling processes for 
a specified area of acceptable parameters and different 
tool wear; 
- employing the obtained experimental data into building 
the multilayer non-linear model defining relationships 
between feed per tooth, cutting speed and tool wear 
parameters and the target surface roughness. The model 
was developed by means of a designed artificial neural 
network; 
- developing optimisation algorithms for milling process 
parameter selection; 
- testing the system.  

2 Data collection for the neural network model 
The data for the neural network was obtained from the 
series of test runs of the milling machine tool, conducted 
at a specified constant milling parameters. 

The study was carried out on 25 mm x 25 mm x 80 
mm cuboid-shaped workpiece specimens made of 
55NiCrMoV7 tool steel (hardness 240 HB). The 
specimens were subjected to face milling with cutting 
fluid, carried out on FV-580A vertical machining centre 
supplied by MOC-Mechanicy. The process was realised 
with R390-050C5-18060 square shoulder milling cutter 
(D = 50 mm, entering angle κr = 900) equipped with 
R390-180612H-PL coated cemented carbide cutting 
inserts, produced by Sandvik Coromant.  

The milling process was conducted at the following 
constant milling parameters: 
- axial depth of cut ap = 0.5 mm, 
- radial depth of cut ae = 25 mm (partial symmetrical 
face milling). 

Changeable parameters of the process were: 
- cutting speed in the range of vc = 60 ÷ 450 m/min.,  
- feed per tooth, in the range of fz = 0.02 ÷ 0.3 
mm/tooth,  
- localised flank wear at the tool-workpiece interface 
VB3 = 0 – 0.6 mm. 

The value of VB3 was monitored immediately after 
each machining of a test specimen by means of Keyence 
VHX 5000 digital microscope. 

Average surface roughness parameter Ra, the 
arithmetic average of the absolute values of the profile 
heights, measured with Surtronic 3+ surface texture 
measurement system produced by Rank Talyor Hobson, 
was specified as nominal roughness. 

Fig. 1. Data collection for the neural network model of milling 
process. 

3 Neural network as a model of milling process  
Considering the non-linear and multilayer character of 
the modelling object it was resolved that the best 
solution for representation would be provided by the 
neural network [7,8]. Among its advantages, a model 
generated by the neural network exhibits one 
significantly beneficial feature, i.e. it is capable of 
calculating values of a modelled function outside of the 
training data set.  

The neural model building process consists of three 
stages: 
- defining the structure of a neural network, 
- network learning, 
- validation and testing. 

The process was modelled in MatLab environment 
with the application of Neural Network Toolbox. 
Machine learning in MatLab begins with a processing 
function creating the network based on the values of 
input and output data: 

),,(_ STPnewffmfnet    (1) 

where: net_mf – a variable defining the structure of the 
neural network, P- R-by-Q matrix of Q input vectors of 
R elements each, T- matrix of output vectors, S- number 
of neurons in hidden layer. 

The structure of thus defined network may be 
modified by means of optional parameters, according to 
the descriptions found in Neural Network Toolbox 
guidebook. The network designed for solving the 
problem of a given process is shown in Fig. 2. 

Fig. 2. Designed neural network. 

The network model is adjusted to fit the experimental 
data at the learning stage, which in MatLab is carried out 
by the function train: 

),,_(_ TPmfnettrainmfnet   (2) 

where: 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚 – milling process model. 
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The process of learning involves specifying weights 
in particular neurons and fit assessment of the model to 
training data and to data outside of the training data set 
but were obtained from the same experimental milling 
process. The experimental machining process in question 
produced 27 values of surface roughness parameter Ra 
of machined surfaces for different combinations of three 
input parameters: cutting speed vc, feed per tooth fz, and 
tool wear VB3. Variable P in the function of training 
took the form of a 3x27 matrix, whereas variable T was 
represented by a single-row matrix with 27 columns. The 
history of training and the correlation between targets 
and outputs may assessed from diagram in Fig. 3. 

Fig. 3. Training history of neural network. 

The network model net_mf obtained through training 
is a virtual model representing the process of milling for 
values of three selected input machining parameters 
from the set of training data. The statement is true if 
other parameters of the milling process, constant and not 
included in the model, are not subject to change. This 
condition is fulfilled for lot production processed on the 
same milling machine, on the same workpiece, and with 
the same tools and inserts.  

Fig. 4. Graphic representation of machined surface roughness 
changes depending on feed per tooth fz and cutting speed vc, 
given zero tool wear (VB3=0). 

The model may be represented graphically only to 
a limited extent due to the fact that the function 
describing the architecture of the model contains three 

variables. Fig. 4 shows the correlation between surface 
roughness of the machined workpiece, feed per tooth and 
cutting speed at zero tool wear VB3, while Fig. 5 
represents surface roughness at identical machining 
parameters but carried out with a worn tool, VB3 = 0.6 
mm. In both diagrams the relationship exhibits a non-
linear character, whereas advancing tool wear results in 
higher sensitivity to feed per tooth and cutting speed 
changes, as well as lower and more limited range of 
surface roughness values. 

Fig. 5. Graphic representation of machined surface roughness 
changes depending on feed per tooth fz and cutting speed vc, at 
given tool wear of vb = 0.6 mm. 

In MatLab software implementation of net_mf model for 
computing Ra of machined surfaces for any given variant 
of fz, vc and VB3 independent variables combination is 
carried out with the function sim: 

𝑅𝑅𝑎𝑎 = 𝑠𝑠𝑠𝑠𝑠𝑠 ( mfnet _ , 𝑣𝑣𝑐𝑐, 𝑓𝑓𝑧𝑧, 𝑉𝑉𝑉𝑉3)  (3) 

4 Optimisation algorithm based on the model 
of milling process 
The model of milling process obtained from the neural 
network provides us with data regarding the surface 
roughness of a machined surface obtained as a result of 
particular combination of machining parameters: feed 
per tooth, cutting speed and tool wear. This functionality 
itself is insufficient in terms of the optimisation 
objective: specifying particular parameters of milling 
that fulfil the optimisation objective function, i.e. 
maximum productivity of milling process W, defined as 
the material removal rate in a given time unit: 

𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑓𝑓𝑧𝑧 ∗ 𝑧𝑧 ∗
1000∗𝑣𝑣𝑐𝑐
𝜋𝜋∗𝑑𝑑𝑓𝑓

 (4) 

where: fz – feed per tooth [mm/tooth]; z – number of 
cutting edges; vc – cutting speed [m/min]; df – milling 
cutter diameter [mm]. 
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Fig. 6. Schematic representation of the algorithm for find best 
parameters of milling process, developed with the application 
of model described in the neural network. 

Simultaneously, one more condition must be 
fulfilled: the surface roughness of a machined workpiece 
Ra must be within the given tolerance range Tol: 

𝑅𝑅𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛−𝑇𝑇𝑇𝑇𝑇𝑇 < 𝑅𝑅𝑎𝑎 < 𝑅𝑅𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛  (5) 

The surface roughness [9] of a machined workpiece 
Ra on a higher than nominal level is unacceptable, 
however, the range of Ra may be limited to values no 
lower than defined by Tol. Such limits may result from 
product design specifications. Decision-making variables 
are fz and vc for a particular localised flank wear VB3. 

The developed algorithm searches the space of 
combination parameters generated by the trained neural 
model with the aim of specifying a sub-set of parameters 
fulfilling the inequality (4). The next step is to find a pair 
of parameters controlling the process of milling, fz and 
vc, which fulfil the objective function (3). The algorithm 
may include the minimal permitted productivity of 
milling Wmin defined by the machine operator and 
dictated by economic analysis of the production process. 
Upon achieving the specified value, the algorithm 
suggests tool change. Fig. 6 shows a simplified 
representation of the optimisation algorithm for the 
milling process, developed with the use of the neural 
network model. In this algorithm has been applied invers 
method for identification of parameters [10, 11]. 
The was programmed in MatLab ver. R2017a. 

The programme is composed of two modules: 
network learning aimed at producing the model, and 
application employing the developed model in 
controlling milling process parameters via milling 
machine controller. At a current level of software 
development the controller conducts regular tool wear 
measurements and updates the VB3 value in the system. 
The interface of the programme is a simple graphic 
design programmed with Guide tool in MatLab software.  

Fig. 7. Programme interface for calculation of optimal milling 
parameters. 

Dialogue boxes are completed automatically with 
constant machining parameters (number of cutting edges 
and milling cutter diameter) specific for a given machine 
tool model, entered in the programme. The remaining 
fields must be completed by a machine tool operator, 
who must specify: 
- nominal surface roughness - Ra; 
- tolerance range of surface roughness - Tol; 
- minimal permitted productivity of a milling process 
carried out with a worn-out tool, producing the surface 
of specified surface roughness – Wmin; 
- regularly updated value of localised tool flank wear VB3. 

Selecting „CALCULATE OPTIMAL PARAMETERS” 
button initiates generation of new optimal parameters of 
feed per tooth fz and cutting speed vc, which should be 
input in the machine tool controller in subsequent 

Start

Input of changeable data:
VB3, Ra_nom,Tol, Wmin 

Input of
constant

data:
Net_mf, z, 

df

Procedure to generate Ra, using model
Net_mf, for set of combination of 

varibles: VB3, fz,vc 

Procedure to find sets of variables
fz,vc for Ra according to expression:

Ra_nom-Tol<Ra<Ra_nom

Procedure to find one set of varibles
fz,vc which is according expression: 

If
Wmax<Wmin

Dispay: 
change

tool

Yes No

Dispay:
change 

parameters
fz,vc 

End

ITM Web of Conferences 15, 01005 (2017)	 DOI: 10.1051/itmconf/20171501005
CMES’17

4



milling operations. The parameters are automatically 
translated to corresponding values of feed rate f 
[mm/min] and turns of spindle [rev/min]. Updating the 
set of parameters in the milling machine controller will 
ensure maintaining desired surface roughness of 
machined surfaces at a specified level VB3, at maximal 
productivity of the process. 

5 Testing mill ing parameter 
optimisation software 
Programme testing consisted in analysing the fit of 
calculated parameters, fz and vc, and predicted 
productivity of machining. Table 1 collates test results, 
which show that the algorithm for high nominal Ra 
(between 1 and 3 µm) always proposed parameters close 
to maximal for a given cutting tool and milling machine, 
regardless of tool wear indication. As a consequence, 
high values of productivity W, which result from the fact 
that such high limit for surface roughness had little 
impact on decreasing the productivity. It may be 
furthermore seen that lower surface roughness values 
cause the decrease in productivity, particularly for higher 
values of tool wear VB3. For localised flank wear values 
VB3 higher than 0.15 mm it was impossible to attain 
a desired nominal surface roughness of 0.3 µm. 

6 Conclusions and future work in the 
field of computer aided milling 
The results obtained from the presented application tests 
confirmed the proposed theses. The system is capable of 
maintaining specified surface roughness of machined 
workpiece surface. Simultaneously, the generated pair of 
milling parameters f and n ensure maximal productivity 
at a constantly updated tool wear level VB3. Economic-
wise, the efficiency of the proposed solution will depend 
on individually assessed tool change and set-up costs and 
the interval of tool wear measurement VB3. 

Fig.8. Automation of a milling parameter correction system.

The target application of the presented solution is 
automation of the localised tool flank wear monitoring 
procedure [12]. The value of VB3 obtained after machining 
of subsequent workpieces will be sent to the optimisation 
programme. The optimal parameters f and n will be 
automatically updated in the milling controller software. 
Our study suggests that the presented application (Fig. 8)
will shorten correction time and ensure full operation of 
milling cutter inserts without compromising the specified 
design features of the final product. 

Table 1 . Results of software testing. 

Ra nom [µm] 
VB3=0 [mm] 

vc [m/min] fz [mm/tooth] W [mm/min] 
3.0 450 0.3 3443 
2.0 450 0.3 3443 
1.2 450 0.24 2754 
1 450 0.2 2295 

0.8 450 0.2 2295 
0.7 450 0.18 2066 
0.5 450 0.14 1607 
0.3 450 0.05 574 

Ra nom [µm] 
VB3=0.15 [mm] 

vc [m/min] fz [mm/tooth] W [mm/min] 
3.0 450 0.3 3443 
2.0 450 0.3 3443 
1.2 459 0.25 2926 
1 450 0.24 2754 

0.8 450 0.2 2295 
0.7 363 0.17 1574 
0.5 450 0.14 1607 
0.3 450 0.02 230 

Ra nom [µm] 
VB3=0.3 [mm] 

vc [m/min] fz [mm/tooth] W [mm/min] 
3.0 450 0.3 3443 
2.0 450 0.3 3443 
1.2 450 0.23 2639 
1 450 0.23 2639 

0.8 450 0.2 2295 
0.7 450 0.17 1951 
0.5 450 0.11 1262 
0.3 not available 0 

Ra nom [µm] 
VB3=0.45 [mm] 

vc [m/min] fz [mm/tooth] W [mm/min] 
3.0 450 0.3 3443 
2.0 450 0.26 2984 
1.2 450 0.25 2869 
1 450 0.22 2525 

0.8 450 0.18 2066 
0.7 450 0.17 1951 
0.5 450 0.08 918 
0.3 not available 0 

Ra nom [µm] 
VB3=0.6 [mm] 

vc [m/min] fz [mm/tooth] W [mm/min] 
3.0 450 0.3 3443 
2.0 450 0.3 3443 
1.2 450 0.17 1951 
1 450 0.17 1951 

0.8 450 0.14 1607 
0.7 320 0.1 816 
0.5 450 0.05 574 
0.3 not available 0 

Diagnostic system 
of tool wear 

Optimisation system Controller of 
milling machine 

VB3 
f, n 

Milling 
machine 
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