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Executive Summary

This study has two main objectives. One is to extend the classic theory for determination of
the optimum distribution of circulation along a propeller blade for the purpose of achieving
the highest efficiency for a given thrust. The other objective is a comparison of different
propellers by use of energy coefficients. These coefficients are related to an axial loss, a
rotational loss, a frictional loss and a loss due to the finite blade number of the propeller. If
the propeller is located in a radially varying wake, this will be related to an axial gain.

The optimum distribution of circulation can be found by solving a variational problem where
the propeller torque is minimised for a given propeller thrust. In classic theory this problem
is solved in an integral formulation where the propeller is modelled as a lifting line with a
continuous distribution of circulation. Betz (1927) and Lerbs (1952) solve this problem for a
propeller in open water and in a radially varying wake, respectively, and find two optimum
criteria. In order to solve the problem it is necessary to use Munk’s displacement theorem
(von Kármán and Burgers, 1963) and linearise the problem. The method used in this thesis
for solution of the problem is based on the method described by Kerwin et al. (1986). In
this method the continuous distribution of circulation is discretised and thus it is possible
to solve the problem directly without the assumptions from classic theory. Kerwin et al.
(1986) use a lifting-line model of the propeller but in this thesis the propeller is modelled
by the vortex-lattice method and thus the effect of the entire blade can be included in the
optimisation. In the vortex-lattice method the propeller blade is replaced by a lattice of
quadrilateral panels with constant circulation and the shed horseshoe vortices follow regular
helices. According to Munk’s displacement theorem it is necessary to specify the chordwise
distribution of circulation in order to reach a solution to the variational problem. It is shown
that the largest contribution to the forces on the propeller blade comes from the vortex along
the trailing edge, which combines the two shed vortices in a horseshoe vortex. This is in
accordance with Munk’s displacement theorem and due to this the form of the chordwise
distribution of circulation has only a small influence on the results. As the entire blade is used
in the optimisation it is possible to examine the influence of the propeller geometry on the
optimum distribution of circulation. Results from five propellers from the David W. Taylor
Naval Ship Research and Development Center (DTNSRDC) propeller series with systematic
varying skew and skew-induced rake show that the radial distribution of thrust is almost
identical for all the propellers, whereas the distributions of circulation and torque differ.
This results in increased efficiency with increasing skew, which is also noted by Mishima
and Kinnas (1997). If the skew-induced rake is removed the efficiency is further increased.

iii



iv Executive Summary

The reasons for this are not known in detail and should be further investigated. But an
examination of the total velocities at the trailing edge shows that skew has a favourable
influence on these velocities. It is interesting that the distributions of thrust are identical
for all the propellers. Hence, the propeller geometry has no influence on the optimum
distribution of thrust but the geometry influences the efficiency. It is possible to include
a radially varying axi-symmetric onset flow including all three velocity components in the
optimisation. Furthermore, it is possible to include a simple alignment of the grid and the
trailers during the optimisation. This method is similar to that used for moderately loaded
propellers. The present method has been used to optimise a Kappel propeller in a wake with
specification of both axial and radial velocity components and with inclusion of the wake
alignment procedure. The results from the present method are compared to results obtained
by the method described in Andersen (1997). This comparison shows a good agreement for
the torque coefficient and a reasonable agreement for the distribution of circulation and the
pitch of the shed vortices.

The energy coefficients proposed by Dyne (1993) have been extended to include a radially
varying axial onset flow. Thus, it is possible to calculate the efficiency for a propeller as
a sum of five energy coefficients related to the axial loss, the rotational loss, the frictional
loss and a finite blade number loss. If the propeller is located in a wake the fifth coefficient
is included, which is an axial gain. The axial and rotational losses have been compared
to the two corresponding coefficients derived by Glauert (1963) for a simple propeller with
satisfactory agreement.

In order to calculate the energy coefficients it is necessary to know the averaged axially
induced velocity at the propeller plane and the averaged axial and tangential velocities far
downstream of it. These velocities are found either by the optimisation computer program
or by a modified linear actuator disk model of the propeller. By this model the induced
velocities are found as a weighted sum of the induced velocities from a normal linear disk
and a duct. By use of the modified actuator disk it is possible to make fast calculations
of the induced velocities from propellers with skew, skew-induced rake and unconventional
geometry. Examinations of the induced velocities from the five DTNSRDC propellers calcu-
lated by the two methods indicate that they may be too simple, but this should be further
investigated. The open water energy coefficients for the five propellers have been calculated.
Unfortunately, the efficiency for a propeller with an infinite number of blades calculated by
the energy coefficients does not agree with the efficiency found in the optimisation. In the
optimisation the efficiency is increasing with increasing skew, whereas the efficiency based
on the coefficients is decreasing with increasing skew. The reason is that the averaged in-
duced axial velocity at the propeller plane is increasing with increasing skew, whereas the
axial velocities far downstream are almost identical for all five propellers. This results in an
increased axial loss and thus a decrease in the efficiency. If this is a real effect or caused
by the methods used in the calculation of the induced velocities is not known and should
be further investigated. The open water energy coefficients for three Kappel propellers have
been calculated by the actuator disk model. Unfortunately, again with questionable results,
which should be further examined but it is probably due to the actuator disk model.



Synopsis

Dette studium har to formål: Dels at udvide den klassiske måde at finde den optimale be-
lastningsfordeling p̊a et propellerblad, s̊a virkningsgraden for propelleren bliver størst mulig.
Dels at sammenligne forskellige propellere ved hjælp af energikoefficienter. Disse koefficienter
relaterer sig til et aksialt tab, et rotationstab, et friktionstab og et tab p̊a grund af endeligt
bladantal. Hvis propelleren arbejder i et radialt varierende medstrømsfelt, vil dette dog være
forbundet med en aksial gevinst.

Den optimale belastningsfordeling p̊a propellerbladet kan findes ved at løse et varationsprob-
lem, hvor propellermomentet minimeres for et givet propellertryk. I den klassiske teori bliver
dette problem løst i en integral formulering, hvor propelleren er modelleret som en løftende
linje med en kontinuert fordeling af cirkulation. Betz (1927) og Lerbs (1952) løser dette
problem for en propeller i henholdsvis åbenvand og i et radialt varierende medstrømsfelt.
For at løse problemet er det nødvendigt at bruge Munks teorem (von Kármán and Burg-
ers, 1963) og linearisere problemet. Metoden til at løse variationsproblemet i dette studium
bygger p̊a en diskretisering af den kontinuerte cirkulationsfordeling foresl̊aet af Kerwin et al.
(1986). Ved at diskretisere fordelingen kan variationsproblemet løses direkte, og antagelserne
fra den klassiske teori undg̊as. Metoden i Kerwin et al. (1986) bygger p̊a en løftende linje
model for propelleren, men i dette studium er propelleren beskrevet med en hvirvelmetode,
s̊a hele bladets indflydelse kan inkluderes i optimeringen. I hvirvelmetoden er bladet ind-
delt i firkantede paneler med konstant cirkulation, og de afløste hvirvler er hesteskohvirvler,
der følger regulære skruelinjer. Ifølge Munks teorem er det nødvendigt at specificere den
kordevise trykfordeling for at opn̊a en løsning p̊a variationsproblemet. Med den benyttede
hvirvelmetode er det p̊avist, at det største bidrag til kræfterne p̊a propellerbladet stammer
fra kraften p̊a den agterste hvirvel, der følger agterkanten af bladet og forbinder de to afløste
hvivler til hesteskohvirvelen. Dette er i overensstemmelse med Munks teorem og er årsagen
til, at den angivne kordevise trykfordeling kun har en mindre indflydelse p̊a resultaterne. Ved
at inkludere indflydelsen fra hele bladet er det muligt at undersøge propellergeometriens ef-
fekt p̊a den optimale belastningsfordeling. Resultater for fem propellere med varierende skew
og skew induceret rake fra David W. Taylor Naval Ship Research and Development Center’s
(DTNSRDC) propellerserie viser, at den radiale trykkraftfordeling er næsten ens for alle pro-
pellerne, mens cirkulations- og momentfordelingerne er forskellige. Dette resulterer i en øget
virkningsgrad, hvis skew øges, dette er ogs̊a p̊avist i Mishima and Kinnas (1997). Fjernes den
skew inducerede rake vil virkningsgraden øges yderligere. Hvad denne forøgelse af virknings-
graden skyldes vides ikke med sikkerhed og skal underøges nærmere. Men en undersøgelse
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vi Synopsis

af de totale hastigheder p̊a agterkanten af bladet viser, at skew har en gunstig indvirkning
p̊a disse. Det er bemærkelsesværdigt, at trykkraftfordelingen er ens for alle propellerne,
dermed har propellergeometrien ingen indflydelse p̊a den optimale trykkraftfordeling, men
kun p̊a virkningsgraden. Det er muligt at inkludere et radialt varierende aksesymmetrisk
medstrømsfelt, hvor alle tre hastighedskomposanter kan angives. Endvidere kan en sim-
pel opdatering af de afløste hvirvler og nettets placering inkluderes under optimeringen.
Metoden er magen til den, der bliver benyttet for moderat belastede propellere. Den nye
optimeringsmetode er brugt til at optimere en Kappel propeller i et medstrømsfelt, hvor
b̊ade den aksiale og den radiale hastighedskomposant er specificeret. Opdateringen af nettet
og de afløste hvirvler er ogs̊a indkluderet. Resultaterne fra den nye metode er sammenlignet
med resultaterne fra metoden, der er beskrevet i Andersen (1997). Denne sammenligning
viser en god overensstemmelse for momentkoefficienten og en rimelig overensstemmelse for
cirkulationsfordelingen og for stigningen af de afløste hvirvler.

Energikoefficienterne foresl̊aet i Dyne (1993) er udvidet til at inkludere et radialt varierende
medstrømsfelt i den aksiale komposant. Ved hjælp af koefficienterne kan virkningsgraden for
propelleren beregnes som en sum af fem energikoefficienter, der relaterer sig til et aksialt,
et rotations- og et friktionstab samt et tab p̊a grund af endeligt bladantal. Hvis propelleren
befinder sig i et medstrømsfelt, resulterer dette i en aksial gevinst. For en simpel pro-
peller sammenlignes det aksiale tab og rotationstabet med tilsvarede koefficienter foresl̊aet
af Glauert (1963) med tilfredsstillende overensstemmelse.

For at beregne energikoefficienterne er det nødvendigt at kende de midlede aksialt inducerede
hastigheder i propellerplanet og de midlede aksialt og tangentielt inducerede hastigheder
langt nedstrøms for propelleren. Disse hastigheder er enten fundet ved hjælp af computer-
programmet, der bruges til optimeringen, eller ved hjælp af en modificeret lineær impulsskive-
model for propelleren. I denne model findes hastighederne som en vægtet sum af hastighed-
erne fra den normale impulsskive og en dyse. Ved hjælp af den modificerede impulsskive
er det muligt hurtigt at beregne hastighederne fra propellere med skew, rake og ukonven-
tionel geometri. Undersøgelser af de inducerede hastigheder fra de fem DTNSRDC pro-
pellere indikerer, at de to metoder måske er for simple, men dette skal undersøges nærmere.
Energikoefficienterne i åbenvand er beregnet for de fem propellere. Desværre er der uov-
erensstemmelser mellem virkningsgraden for en propeller med et uendeligt antal blade fun-
det med energikoefficienterne og virkningsgraden fundet ved optimeringen. I optimeringen
stiger virkningsgraden, hvis skew øges, mens den derimod er faldende ifølge energikoefficien-
terne. Grunden til dette er, at de midlede akisialt inducerede hastigheder i propellerplanet
stiger med øget skew, mens hastighederne langt nedstrøms næsten er identiske for de fem
propellere. Dette giver et øget aksialt tab og dermed en faldende virkningsgrad. Om dette
virkelig er tilfældet eller skyldes metoderne brugt til at beregne hastighederne vides ikke
og skal undersøges nærmere. Energikoefficienterne i åbenvand for tre Kappel propellere er
beregnet med impulsskivemodellen. Desværre igen med tvivlsomme resultater, som skal
undersøges nærmere, men dette skyldes formentlig den brugte impulsskivemodel.
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Symbols

The symbols used in this thesis are generally explained when they are first introduced. The
following list contains the main symbols used.

Roman Symbols

A Area

AXG Energy coefficient for the axial gain

AXL Energy coefficient for the axial loss

Ae/A0 Expanded blade area

a NACA mean line constant

b Semispan of hydrofoil

CD Sectional drag coefficient = D(y)/(1
2ρU2

0 c(y))

Ctot
D Total drag coefficient = D/(1

2ρU2
0 A)

CL Sectional lift coefficient = L(y)/(1
2ρU2

0 c(y))

CL,i Ideal lift coefficient

CL,r Required lift coefficient = Lr/(
1
2ρU2

0 A)

CTh Thrust loading = T/(1
2ρU2

AπR2)

∆Cp Pressure jump coefficient = (p − p0)/(
1
2ρU2

0 )

∆Cprot Pressure reduction coefficient in the slipstream due to rotation

c Chord length

c0 Maximum chord length for the elliptic planform

D Drag / propeller diameter

FBNL Energy coefficient for the finite blade number loss

FRL Energy coefficient for the frictional loss

H(x) Heaviside’s step function

∆H Jump in total head across the propeller disk

J Advance number J = Ua/(nD)

KQ Torque coefficient = Q/(ρn2D5)
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xii Symbols

KQ,∞ Torque coefficient for a propeller with infinite number of blades

KT Thrust coefficient = T/(ρn2D4)

KT,∞ Thrust coefficient for a propeller with infinite number of blades

L Lift

Lr Required lift
�l Vector for the panel side = (lx, ly, lz)

Msp Number of spanwise panels

Nch Number of chordwise panels

n Rate of revolutions

(na, nr, nt) Unit normal of a surface

P Pitch of the trailers

p Pressure in the fluid

p0 Free-stream pressure

∆p Pressure jump across the propeller disk

Q Propeller torque

QZ Torque for a propeller with a finite number of blades

Qn− 1

2

(Z) Legendre functions of the second kind and the order n − 1
2

Q
′

n− 1

2

(Z) Derivative of Qn− 1

2

(Z) with respect to Z

Q∞ Torque for a propeller with an infinite number of blades

∆Qfr Additional torque due to viscosity

�q ∗
i Induced velocity from an entire panel with unit circulation

R Propeller radius

ROTL Energy coefficient for the rotational loss

s Arc length parameter/non-dimensional spanwise parameter

T Propeller thrust

T∞ Thrust for a propeller with infinite number of blades

∆Tfr Additional thrust due to viscosity

t Non-dimensional chordwise parameter

(ta, tr, tt) Tangent vector

U0 Axial onset flow

U0,x, U0,r, U0,t Onset flow in cylindrical coordinates

U0,x, U0,y, U0,z Onset flow in Cartesian coordinates

UA Advance speed = (1 − w)Us

Us Ship speed

Ux, Uy, Uz Total velocity in Cartesian coordinates

ux, ur, ut Induced velocity in cylindrical coordinates

ux, uy, uz Induced velocity in Cartesian coordinates



Symbols xiii

ua,0 Induced axial velocity at the propeller plane

ua,−∞, ut,−∞ Induced axial and tangential velocity far downstream

w Wake fraction

x, r, φ Cylindrical coordinates

x, y, z Cartesian coordinates

xm Propeller rake

Z Number of blades / parameter for the Legendre functions

Greek Symbols

α Angle of attack

β Pitch angle

β0 Pitch angle for the onset flow = tan−1(U0/ωr)

βh Horizontal pitch angle

βi Pitch angle for the total inflow = tan−1((U0 − ua)/(ωr − ut))

βv Vertical pitch angle

δ(x) Dirac’s delta function

η Propeller efficiency = J/(2π)KT /KQ

ηideal Ideal efficiency = 2/(1 +
√

1 + CTh)

η∞ Efficiency for a propeller with infinite number of blades = J/(2π)KT,∞/KQ,∞

Γ Circulation

Γ0 Maximum circulation for the elliptic distribution

γ Chordwise circulation

κ Weight function

λ Lagrange multiplier

ν Ratio of the flat plate pressure distribution

ω Angular velocity = 2πn

φT.E. Phase angle for the trailers

φm Skew angle

ρ Density of sea water = 1025kg/m3

Superscripts

ˆ Non-dimensional parameter

FP Flat plate pressure distribution

RT Rooftop pressure distribution



xiv Symbols

Subscripts

cp Control point

gp Grid point

h Hub

t Tip

Abbreviations

DTNSRDC David W. Taylor Naval Ship Research and Development Center

or DC

LL Lifting line

LS Lifting surface

L.E. Leading edge

NACA National Advisory Committee for Aeronautics

T.E. Trailing edge

xdisk Actuator disk computer program

xlift Lifting-surface optimisation program



Chapter 1

Introduction

Even though propellers have been used to drive ships for over a century investigations of
the action and the design of the propellers are as important as ever. Both because the size
of ships continues to increase and because of increased focus on the limited fuel resources
and the impact on the environment from the burning of fuel. This forces the propeller
manufacturers to think of new alternative solutions of ship propulsion systems which are
capable of fulfilling the requirements of developing higher thrust with higher efficiency.

The action of the propeller will inevitably involve a loss of energy. This loss can be divided
into three, i.e. an axial loss, a rotational loss and a loss due to the friction. An example of
the magnitude of the losses as a function of the thrust loading for a propeller in open water
is shown in Table 1.1. From the table it is seen that the axial loss is highest, followed by the
frictional loss and finally the rotational loss. As the axial loss comes from the acceleration of
the fluid through the propeller disk, which is necessary in order to develop the thrust, it is
impossible to remove this loss. Hence, if the efficiency of the propeller should be increased,
it is necessary to focus on lowering the rotational and the frictional losses.

The frictional loss depends on the surface roughness and the blade area. The cavitation
on the blades is dependent on these parameters as well. Therefore, the blade area cannot
be based solely on frictional considerations but the cavitation has to be considered too. As
both the friction and the cavitation inception are lowered when the surface is smooth, the
propeller is manufactured with a smooth surface.

This leaves the rotational loss as the part which should be minimised in order to improve the
efficiency. This has also been the task of many research projects during the past decades,
resulting in new systems of propulsion such as propeller and vane wheel, contra-rotating
propellers and propeller and stators. The ITTC (1990) made a comparison of the efficiencies
for a number of these unconventional propulsion systems, which in full-scale tests showed
improvements of 6–16% achieved by these systems.

A simpler way to improve the efficiency is by modifying the tip geometry of the propeller.
By this method the more complicated construction of a two-device propulsion system is

1
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Table 1.1: Energy coefficients for a propeller in open water. From Glover (1987).

CTh Axial loss (%) Rotational loss (%) Frictional loss (%) Total efficiency

0.56 15.5 6.7 16.4 61.4

1.43 22.7 5.6 13.9 57.8

3.44 32.1 4.8 14.3 48.8

5.98 40.6 6.9 10.7 41.8

avoided. This modification is inspired by the results obtained in the aircraft industry. For
aeroplane wings it is possible to improve the lift to drag ratio by fitting winglets to the
wings, see Andersen (1999) for an overview of the improvements. The idea is that a similar
modification to the tip of the propeller blade will result in an improved efficiency by increased
thrust-torque ratio. During the past two decades many results for the tip modified propellers
have been published, see e.g. Sparenberg (1984), de Jong (1991) or Andersen et al. (2000).
Numerical results and model experiments show that improvements in the efficiency of 1–4%
are possible with a tip modified propeller (Andersen, 1999).

Another way of improving the overall propulsive efficiency is by improving the propeller-hull
interaction. This may be done by placing a duct around the propeller or fitting the hull
with other flow straightening devices. ITTC (1990) shows that in full-scale tests, propulsive
efficiency improvements of 5–10% can be achieved.

The focus of this thesis will be on the development of a new optimisation method for pro-
pellers, including the tip modified ones. From the above it is seen that the improvements
in efficiency for the tip modified propellers are in the range of 1–4%, which is in fact the
lowest gain of the mentioned systems. Despite this, the tip modified propellers are an in-
teresting alternative to the other propulsive systems, as the construction of the propellers is
less complicated and the maintenance costs are lower. The one to four per cent increase in
efficiency may seem small, but as the total fuel consumption of the merchant fleet today is
approximately 275 million tons per year (Andersen et al., 2000), even a small improvement
of the ship’s propulsive efficiency will reduce the consumption with millions of tons per year
for the benefit of the shipowner and the environment. The new method will, unlike the
classic approach, make it possible to include more details about the propeller geometry.

1.1 Background

Before the new method is described a review of the classic design cycle will be given. Apart
from the fact that a ship propeller has to deliver the necessary thrust to maintain the
cruising speed, it is necessary that the blades have sufficient strength to avoid deflection
during operation. These two basic requirements should be fulfilled with the highest possible
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efficiency for the propeller and with the lowest possible levels of induced vibrations and
cavitation. As all this cannot be fulfilled at the same time, the best compromise between high
efficiency and low induced vibrations and cavitation is regarded as the optimum propeller.

In order to find this best compromise, the propeller is normally designed in a number of
steps, which are described in the following. Before the design cycle is initiated the following
input data should be determined:

- Main dimensions, i.e. radius of the propeller and the hub, number of blades, submer-
gence of the shaft ggg

- Design point, i.e the required thrust or available power, the number of rotations and
the advance speed of the propeller

- Sectional profile data, i.e. the thickness distribution and the mean line

- Blade outline, i.e. chord length, skew and rake distributions based on cavitation and
vibration considerations and maximum thickness distribution based on strength re-
quirements

- Wake in the propeller plane

Figure 1.1: Design steps.

As in any other design process iterations through the steps can be necessary before the
optimum solution is found. Through the design cycle, which consists of three steps as
depicted in Figure 1.1, the blade pitch and camber distributions are determined. In the first
step the radial distribution of loading, which gives the highest efficiency for the propeller,
is found. Commonly used optimum criteria are the Betz (1927) criterion for propellers in
uniform inflow and the Lerbs (1952) criterion for wake adapted propellers. By use of this
distribution as input to the second step the corresponding pitch and camber distributions
are found. For that purpose either a vortex-lattice method, see e.g. Greely and Kerwin
(1982), or a panel method is used, see e.g. Su and Ikehata (1999). These methods include
the effects of the entire blade and it is possible to include a better description of the trailing
vortices than in the optimisation. In step three the cavitation and the induced vibrations
are examined in unsteady and off-design conditions. These investigations can either be
performed numerically, by an unsteady vortex-lattice method, see e.g. Kerwin and Lee
(1978), or a panel method, see e.g. Kinnas and Fine (1994), or experimentally.
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During the years the above method has proved to be very useful for the design of conventional
propellers, but the focus in recent years on unconventional propulsion systems has made it
necessary to review the design method in order to treat these devices. Kerwin et al. (1986)
developed a method by which the optimum distribution of circulation could be found for
a multiple device system, such as contra-rotating propellers or a propeller and a stator.
The method is based on a vortex-lattice description of the lifting line for which the optimum
distribution is found by solving a variational problem where the propeller torque is minimised
for a given thrust. The same approach is used by Andersen (1997) to find the optimum
distribution of circulation for a propeller with tip modified geometry. Unlike the classic
lifting-line theory the geometry of the lifting line can be curved as it corresponds to the
midchord line of the propeller. The calculations of the forces on the blades are confined
to the lifting line, while the circulation is distributed over the entire blade. Another way
of designing tip modified propellers is described by de Jong (1991). Here the optimum
distribution of circulation is found by minimising the lost energy in the slipstream infinitely
abaft the propeller. In this method it is furthermore possible to include an optimisation of
the thickness and chord length distributions in order to minimise the frictional loss.

Modifications to the second step, see Figure 1.1, in the design cycle have been applied
continuously during the years. In recent years the focus has been on the determination of
the effective wake, which is normally found by empirical corrections to the nominal wake.
Kerwin et al. (1994) overcome this problem by coupling a vortex-lattice method and an axi-
symmetric Navier-Stokes solver. The vortex-lattice method is used to determine the blade
shape and the Navier-Stokes solver finds the corresponding effective wake.

In recent years several attempts have been made to integrate the three design steps. One
attempt is that of Kinnas et al. (1998), which couples a vortex-lattice analysis method for
cavitating flows, an Euler solver and a numerical optimisation method in order to develop
an automated, systematic design of cavitating blades. The method is capable of finding the
blade shape which has the highest efficiency for a given thrust, with given constraints on the
cavitation extent and the induced hull pressure pulses. Generic algorithms have also been
used to integrate the three steps, see e.g. Caponnetto (2000), who uses a generic algorithm
to find the optimum design of contra-rotating propellers, and Karim et al. (2001), who use
a micro generic algorithm in the design of conventional propellers.

1.2 Objective of the Thesis

The aim of the present work is to extend the method by which the optimum distribution
of loading is found, hence the present work is confined to step one in the design cycle, see
Figure 1.1. As in Kerwin et al. (1986), the optimum distribution will be found by solving a
variational problem in which the torque is minimised for a required thrust. The essential fact
of the present method is that the effect of the entire blade is included in the optimisation. To
calculate the thrust and torque for the propeller the vortex-lattice method is used. By this
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method the geometry of the propeller can be chosen almost arbitrarily so the present method
can be applied to both conventional and tip modified propellers. A simple wake and blade
alignment procedure is included similar to the wake alignment procedure for the moderately
loaded lifting line. For simplicity the effects of the thickness and the hub have been omitted.
The vortex-lattice method is used as it is fast compared to boundary element methods
and Navier-Stokes solvers and at the same time has a sufficient accuracy. Therefore, the
computational time can be reduced at the design stage, where iterations will be necessary
in order to find the optimum propeller, without loss of accuracy, using the vortex-lattice
method. As the present method is restricted to step one in the design cycle, it is necessary
to give the same input data as in the classic design method.

As shown in Table 1.1 it is possible to decompose the propeller efficiency into different losses.
This is used to compare different propellers as a supplement to the propeller efficiency. In
the present work the energy coefficients of Dyne (1993) will be used. Dyne (1993) suggests
that the efficiency for a propeller in open water can be calculated as a sum of four energy
coefficients. These coefficients are connected with the axial loss, the rotational loss, the
frictional loss and finally a loss due to the finite number of blades. The work of Dyne (1993)
has been extended to include a radially varying axial onset flow. Thus, an axial gain is
introduced.

1.3 Outline of the Thesis

The contents of the thesis are presented in seven chapters. Chapter 2 is an outline of the
potential flow theory and the linearised thin wing theory.

Chapter 3 gives an outline of the lifting-surface optimisation method for a planar hydrofoil
in uniform inflow. The chapter describes the grid generation and the calculation of induced
velocities for the used vortex-lattice method. The chapter ends with a grid study for the
present method.

Chapter 4 contains the derivation of the lifting-surface optimisation method for propellers.
The chapter also contains the results for the optimisations of five DTNSRDC propellers in
open water and of a Kappel propeller in a wake.

Chapter 5 describes the derivation of the expressions for the induced velocities and the
pressure for the modified actuator disk theory. The removal of the singular terms in the
derived expressions is outlined. A validation of the method is also included.

Chapter 6 contains the derivation of the energy coefficients and the validations of the coeffi-
cients. The chapter presents the obtained energy coefficients for the DTNSRDC propellers
series and the Kappel propellers.

Chapter 7 contains the conclusions.
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Chapter 2

Equations of Motion

The basic equations for any fluid motion are the equation for conservation of mass, i.e. the
continuity equation, and the equations for conservation of momentum. In the present study
the equations of motion are used in a simplified form which will be outlined in the following.
A thorough derivation of the complete equations of motion and their simplifications can be
found in e.g. Breslin and Andersen (1994) or Newman (1978).

All flows considered concern deeply submerged bodies. The fluid will in all cases be water,
which can be considered to be incompressible. Furthermore, the water is assumed to be
inviscid. This assumption is valid as the propeller is working at a relatively high Reynolds
number so that the viscose effects are restricted to a thin boundary layer on the body, whose
influence on the overall flow can be ignored. During the design phase the both spatially and
time-varying wake behind the hull is assumed to be steady and axi-symmetric. Thus, the
equations of motion are not functions of the time but only of the three Cartesian coordinates
(x, y, z).

The continuity equation for a steady incompressible and inviscid fluid is given by

∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
= 0 (2.1)

and the conservation of momentum is given by the steady Euler equations

∇
[

p

ρ
+ 1

2 |�u|2
]

− �u × �ξ =
�F

ρ
(2.2)

7
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where

∇ =
( ∂

∂x
,

∂

∂y
,

∂

∂z

)

is the gradient operator,

�u = (ux, uy, uz) is the velocity vector,

�ξ = ∇× �u is the vorticity,

ρ is the density,

p is the pressure and

�F are the external forces per unit volume acting on the fluid.

As gravitational forces are ignored the external forces are only due to the lifting surfaces in
the fluid. The forces from the fluid on these surfaces will be opposite and equal the forces
from the surfaces on the fluid.

2.1 Irrotational Flow

By use of Lord Kelvin’s theorem it is possible to simplify the equations of motion further.
This theorem states that for an ideal fluid acted upon by conservative forces the circulation
is constant about any closed material contour moving with the fluid. The circulation, Γ, is
defined as the integral of the tangential velocity along a closed contour

Γ =

∫

C

�u · d�x.

where C is any closed contour in the fluid.

Thus, any motion which started from a state of rest at some initial time will remain irrota-
tional for all subsequent times, and the circulation about any material contour will vanish
(Newman, 1978). That this holds can be seen by applying Stokes’ theorem to the circulation.
Then the circulation can be related to the vorticity vector by

∫

S

(∇× �u)dS =

∫

C

�u · d�x

where the integral on the left-hand side is a surface integral and S is the surface bounded
by the contour C. As the flow started from a state of rest where the circulation is zero the
circulation should remain zero, therefore it is necessary that the integrand of the surface
integral is zero:

∇× �u = 0 (2.3)

This means that the motion of the fluid is irrotational.

As shown in e.g. Newman (1978) this is a sufficient condition for the existence of a scalar
velocity potential, φ, which can describe the flow.
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2.2 The Velocity Potential

By introducing the velocity potential the equations of motion are further simplified as the
velocities and the velocity potential are related through

ux =
∂φ

∂x
; uy =

∂φ

∂y
; uz =

∂φ

∂z
(2.4)

Thus, the velocity is now expressed by just one scalar instead of the three components of �u.

By inserting Equation (2.4) in the continuity equation, Equation (2.1), a Laplace equation
for the velocity potential follows:

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= ∇2φ = 0 (2.5)

By solving the Laplace equation with additional boundary conditions, which are described
later, the motion of the fluid is found. In order to obtain a complete description of the
motion, it is necessary to have an expression for the pressure in the fluid. This expression
can be found from the Euler equations.

2.3 The Bernoulli Equation

In Lord Kelvin’s theorem the external force was assumed to be conservative, hence it is
possible to express the force as the negative gradient of a scalar function, Ω:

�F = −∇Ω (2.6)

By inserting Equation (2.6) together with the assumption of irrotational flow, Equation
(2.3), in the Euler equations, Equation (2.2), these are reduced to

∇
[

p + Ω

ρ
+ 1

2 |�u|2
]

= 0

In order to fulfil this, the term in the brackets should be constant:

p + Ω

ρ
+ 1

2 |�u|2 = C (2.7)

This is the Bernoulli equation, which gives a relation between the velocity and the pressure
in the fluid. For an irrotational flow it can be applied between any to points in the fluid.

If the disturbance velocity from the body is small compared to the onset flow, the Bernoulli
equation can be linearised (Breslin and Andersen, 1994):

p = p∞ + ρU0ux (2.8)
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Figure 2.1: Deeply submerged lifting surface.

where ux is the axial component of the disturbance velocity from the body. Rewriting the
above equation gives the relation between the pressure coefficient ∆Cp and the disturbance
velocity, which will be used in a following section

∆Cp =
p − p∞
1
2ρU2

0

≈ 2
ux

U0

(2.9)

2.4 Boundary Conditions

The derived boundary conditions are for the deeply submerged planar hydrofoil in Figure
2.1, which is a lifting surface subject to an onset flow �U0. The boundary conditions are the
same for a propeller.

As the Laplace equation is linear it is possible to separate the boundary value problem into
a problem for the undisturbed onset flow, with the potential φonset, and a problem for the
perturbation flow caused by the lifting surface, with the potential φ. The final solution will
then be the sum of these two potentials.

The velocity potential for the onset flow is derived from the definition of the velocity poten-
tial, see Equation (2.4), hence

φonset = �U0 · �x = U0,xx + U0,yy + U0,zz (2.10)

As there is no flow through the surface of the body the flow has to be tangential to it:

∂φ

∂n
= − �U0 · �n on the surface (2.11)
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Figure 2.2: Example of a thin wing section. The proportions are exaggerated.

where �n is the unit normal of the surface with direction from the surface into the fluid, see
Figure 2.1. The flow has to leave the trailing edge smoothly. This is secured by applying
the Kutta condition at the trailing edge, this means that the velocity induced by the body
has to be finite at the trailing edge:

∇φ < ∞ at the trailing edge (2.12)

As the influence from the body should vanish far from it, the perturbation potential has to
fulfil the radiation condition:

∇φ(r) → 0 for r → ∞ (2.13)

These are the boundary conditions which the perturbation potential should fulfil in the
general case, but by restricting the bodies to be thin and with a small angle of attack the
thin wing theory can be used.

2.5 Linearised Thin Wing Theory

The thin wing theory was originally developed for flow about two-dimensional wing sections,
hence the flow in this section will be assumed to be two-dimensional only. The flow will be
in the x-z-plane of Figure 2.1. A thorough description of the theory can be found in Abbott
and von Doenhoff (1959), Newman (1978) or Breslin and Andersen (1994). As the name
suggests the theory is applied to thin profiles with the additional restriction that the angle
of attack is small. An example of a profile is shown in Figure 2.2, where zu(x) defines the
upper side of the profile and zl(x) the lower side and c the chord length. If the thin wing
assumption is to be valid the zu(x) and zl(x) should be small compared to the chord length,
furthermore, the slope of the profile, z′u(x) and z′l(x), should be small compared to one. If
these requirements are fulfilled the velocity boundary condition in Equation (2.11) can be
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linearised (Newman, 1978), hence

∂φ

∂z
= −Uz′u(x) on z = 0+, −c/2 ≤ x ≤ c/2

∂φ

∂z
= −Uz′l(x) on z = 0−, −c/2 ≤ x ≤ c/2

(2.14)

Thus for the linearised theory the singularities describing the foil are located on the x-axis
between −c/2 ≤ x ≤ c/2 as illustrated in Figure 2.2.

The question is which singularities should be used to describe the profile. This can be seen
by dividing the disturbance potential into an even and an odd potential (Newman, 1978):

φ(x, z) = φe(x, z) + φo(x, z)

φe(x, z) = φe(x,−z) = 1
2

[

φ(x, z) + φ(x,−z)
]

φo(x, z) = −φo(x,−z) = 1
2

[

φ(x, z) − φ(x,−z)
]

(2.15)

so that the boundary condition, Equation (2.14), becomes (Newman, 1978):

∂φe

∂z
= ∓1

2U(z′u(x) − z′l(x)) on z = 0±, −c/2 ≤ x ≤ c/2 (2.16)

∂φo

∂z
= −1

2U(z′u(x) + z′l(x)) on z = 0±, −c/2 ≤ x ≤ c/2 (2.17)

Since ∂/∂z is an odd operator, ∂φe/∂z is odd and ∂φo/∂z is even. Then the physical
interpretation of the even potential is a flow past a symmetric profile, with no angle of
attack and with the thickness τ = zu(x) − zl(x). The physical interpretation of the odd
potential is an asymmetric flow past an arc with zero thickness defined by the profile camber
line z = 1

2
(zu(x) + zl(x)). The two profiles are shown in Figure 2.3.

Figure 2.3: Left: Symmetric section with thickness τ . Right: Camber line with angle of
attack α.

This means that the problem is now separated into a thickness problem, represented by the
even potential, and a problem for the camber and angle of attack, represented by the odd
potential. As the flow is symmetric about the profile with thickness there is no lift related
to this flow, hence the lift of a profile is only related to the angle of attack and its camber.



2.6 Distribution of Circulation 13

The thickness is important to the distribution of pressure along the chord and thus it can
influence the inception of separation and cavitation.

From the boundary condition for the even potential, Equation (2.16), it is seen that the
potential has an asymmetric vertical velocity along the projection of the profile on the x-axis.
A distribution of sources along the projection results in such a velocity, see e.g. Breslin and
Andersen (1994). The boundary condition for the odd potential, Equation (2.17), requires
that the vertical velocity along the projection is symmetric. A distribution of vortices gives
a symmetric velocity, see e.g. Breslin and Andersen (1994).

Thus, the flow about a sufficiently thin and horizontal profile can be modelled by a distribu-
tion of sources and vortices along the projection of the profile on the x-axis as illustrated in
Figure 2.2. As mentioned previously, the effects from the thickness will be omitted in this
work, hence the foil is replaced by a distribution of circulation.

2.6 Distribution of Circulation

The mean line of a cambered section can be written as

z = 1
2(zu(x) + zl(x)) = αx + zf (x) (2.18)

where zf (x) is the camber line function and α is the angle of attack, see Figure 2.3, right.
Hence, the boundary condition for the odd potential, Equation (2.17) is

∂φo

∂z
= −Uz′(x) = −U(α + z′f (x)) on z = 0±, −c/2 ≤ x ≤ c/2 (2.19)

It is seen that the boundary condition can be divided into a contribution from the angle of
attack and another from the camber line. For the present study it is necessary to know the
distribution of circulation along the chord. Therefore, two very useful distributions will be
reviewed in the following.

The distribution of circulation related to the angle of attack corresponds to the distribution
for a flat plate with an angle of attack. Hence, the distribution is given by (Breslin and
Andersen, 1994):

γFP (x) = 2U0α

√

c/2 + x

c/2 − x
for − c/2 ≤ x ≤ c/2 (2.20)

It is seen that the distribution is square-root singular at the leading edge, therefore the
solution close to the leading edge will not be accurate but for the rest of the profile the
solution will be usable.

The distribution of circulation related to the camber line is found from a prescribed pres-
sure distribution ∆Cp(x) across the line and the linearised Bernoulli equation, Equation
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(2.9). Furthermore, it is used that the tangential velocity ux(x, z) on either side of a planar
distribution of circulation along the x-axis is given by (Breslin and Andersen, 1994):

ux(x, 0±) = ∓γ(x)

2
for − c/2 ≤ x ≤ c/2 (2.21)

Insertion of this in Equation (2.9) gives

γ(x) = 1
2U0∆Cp(x) (2.22)

thus, when ∆Cp(x) is specified along the mean line the circulation is known.

The pressure distribution should of course be suitable with respect to separation and cavita-
tion. The NACA a mean line series represents such distributions. The factor a is the fraction
of the chord, from the leading edge, over which the pressure is constant. Over the last part
of the mean line the pressure is linearly decreased to zero at the trailing edge. Hence, these
mean lines are often referred to as having a rooftop pressure distribution. The distribution
of circulation for these mean lines is

γRT (x) =







(c/2+x)U0

c(1−a
2)

CL,i for − c/2 ≤ x ≤ c/2(1 − 2a)

U0

1+a
CL,i for c/2(1 − 2a) ≤ x ≤ c/2

(2.23)

where CL,i is a specified ideal lift coefficient. A more thorough description of the NACA a
mean lines is given in Abbott and von Doenhoff (1959).

By adding the distributions from Equation (2.20) and Equation (2.23) the chordwise distri-
bution of circulation is known for a profile with rooftop pressure distribution and arbitrary
angle of attack, provided that the limits of the linear theory are not exceeded.

After this description of the linearised thin wing theory in two dimensions it is simple to
extend the theory to three dimensions.

2.7 Three-Dimensional Flow

Unlike the flow past a body in two dimensions the flow in three dimensions will have a varia-
tion in the spanwise direction also. Thus, the circulation is a function of both the chordwise
and spanwise coordinates, where the chordwise variation is given by the two-dimensional ex-
pressions. The linearised thin wing theory can also be applied in three dimensions provided
that the two-dimensional assumptions are also valid spanwise.

In two-dimensional steady flow the requirement for irrotational flow is fulfilled by applying
a vortex infinitely downstream of the foil, i.e. the shed starting vortex. This vortex has the
same circulation as the total chordwise circulation at the foil but in the opposite direction,
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hence the net circulation will be zero as required. For three dimensions the requirement
is fulfilled if the vortices are closed curves and the circulation is constant along the curve
(Newman, 1978). Thus, for a body in steady flow with a varying circulation in the spanwise
direction, there will be a vortex sheet behind it combining the shed starting vortices and
the trailing edge. The circulation of the vortex sheet is dΓ(y)/dy, where Γ(y) is the total
chordwise circulation at the spanwise coordinate y. As the vortex sheet is force-free it has
to move with the fluid according to Helmholtz’s theorem.

On the basis of the reviewed theory the examined lifting surfaces, i.e. hydrofoils or propellers,
will in the following be modelled by a distribution of vortices on the planform of the surface
and a sheet of trailing vortices in the wake of the surface. Even though the theory may seem
to include many restrictions on the fluid and the flow, the potential flow theory has been
used extensively over the years and has given reliable results.
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Chapter 3

Optimisation of a Planar Hydrofoil

3.1 Introduction

In the following chapter the optimisation of a planar hydrofoil with elliptic planform is shown.
The aim of the optimisation is to find the spanwise distribution of circulation which gives
the highest lift to drag ratio for the hydrofoil. The elliptic planform is interesting as Prandtl
derived analytically the optimum distribution of circulation for this planform. Therefore,
it is possible to see how the new optimisation routine performs compared to the analytical
solution. The term hydrofoil is used for a wing deeply submerged in water.

3.2 The Vortex-Lattice Method

The optimisation problem is solved by the numerical vortex-lattice method. In this method
the continuous distribution of circulation over the planform of the foil is replaced by a discrete
distribution, and the planform of the foil is replaced by a lattice of straight line vortices.

3.2.1 Grid Generation

The geometry of the hydrofoil is described in a body fixed Cartesian coordinate system, see
Figure 3.1, with the x-axis pointing upstream, the y-axis pointing left and finally the z-axis
completes the right-hand system, the onset flow is in the negative x-direction.

As the continuous distribution of circulation is replaced with a discrete distribution, the
planform of the foil is divided into a number of panels, as depicted in Figure 3.1. Each
panel consists of four straight lines forming a quadrilateral. Consistent with linear theory

17
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Figure 3.1: The coordinate system for the hydrofoil.

the panels are placed on the x-y-plane and not directly on the surface of the foil. The
circulation is positive counterclockwise along the sides of the panel and in order to fulfil
Lord Kelvin’s theorem the circulation along the sides is constant. The corners of the panels,
the grid points, are numbered from P1 to P4 in the direction of the circulation and the
vectors along the sides are designated as �l1 to �l4 so that the vector along side 1 �l1 is from P1
to P2, and so on, an example of a panel is shown in Figure 3.2.

The spanwise location of the grid points follows James (1972):

sgp,m = −1 +
8m − 6

4Msp + 2
for m = 1, 2, . . . , Msp + 1 (3.1)

where s = y/b is a non-dimensional spanwise parameter, b is the semispan of the hydrofoil
and Msp is the number of panels along the span. This discretisation has equidistance between
the grid points and the outermost points at the tips are moved one quarter interval inward.

In the chordwise direction a cosine discretisation, according to Lan (1974), is used:

tgp,1 = −1
2

tgp,n = −1
2 cos

(

(n − 3
2
)π

Nch

)

for n = 2, 3, . . . , Nch + 1
(3.2)

where t = x/c is a non-dimensional chordwise parameter and Nch is the number of panels
along the chord. t = −1

2
at the trailing edge and t = 1

2
at the leading. This discretisation

provides finer spacing at the leading and trailing edges.
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Figure 3.2: Description of a panel and a trailer for a fictive discretisation.

3.2.2 The Trailers

The trailing vortex sheet is due to the discretisation reduced to a finite number of horseshoe
vortices, see Figure 3.1. A horseshoe vortex consists of three straight line vortices, i.e. two
vortices from the trailing edge to infinity downstream and a vortex at the trailing edge
combining these two, see Figure 3.2. In order to fulfil the Kutta condition the circulation of
the shed horseshoe vortex is equal to the circulation of the adjacent trailing edge panel. The
trailers are according to linear theory aligned with the onset flow. Thus, they are parallel to
the x-axis, and the geometry is not changed during the calculations.

3.3 Lift and Drag Calculations

The force on the panel sides is found by the Kutta-Joukowsky theorem:

�Fside = ρ�U(�x) × �Γside

where �Γside is the total circulation of the panel side, which is the difference in circulation for
the two adjacent panels, see Figure 3.3. �U(�x) is the total velocity at the midpoint of the
panel side given by

�U(�x) = �U0(�x) + �u(�x)

where �U0(�x) is the onset flow and �u(�x) is the induced velocities from the entire vortex
distribution. The induced velocity is found by the law of Biot-Savart, hence the velocity
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Figure 3.3: Description of the total circulation at a panel side.

from one panel in the point �x is

�u ∗
i (�x) =

Γi

4π

4
∑

k=1

∫ sk

0

d�ξ × �R

|�R|3
= Γi�q

∗
i (�x) (3.3)

where Γi is the circulation of the panel, d�ξ is a length element along the panel side of the
length sk. �R is the vector from the vortex line element, d�ξ, to the point �x, see Figure 3.4. �q ∗

i

is defined as the velocity induced by the entire panel with an unit circulation. The numerical
evaluation of the integral is given in Appendix B.

For the optimisation of the planar hydrofoil the two used forces are the lift force, the force
in the z-direction, and the drag force, the force in the negative x-direction. The total forces
on the hydrofoil are the sum of the forces on each panel, hence the total lift on the hydrofoil
is

L = �Fz = ρ

Msp
∑

m=1

Γ1+(m−1)Nch

{

Nch
∑

n=1

κn

4
∑

k=1

[

ly,n+(m−1)Nch,kUx(�xn+(m−1)Nch,k)

− lx,n+(m−1)Nch,kUy(�xn+(m−1)Nch,k)
]

− ly,1+(m−1)Nch,4Ux(�x1+(m−1)Nch,4)

+ lx,1+(m−1)Nch,4Uy(�x1+(m−1)Nch,4)

}

(3.4)
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Figure 3.4: Description of the parameters used in the Biot-Savart law.

and the total drag for the hydrofoil is

D = −�Fx = −ρ

Msp
∑

m=1

Γ1+(m−1)Nch

{

Nch
∑

n=1

κn

4
∑

k=1

[

lz,n+(m−1)Nch,kUy(�xn+(m−1)Nch,k)

− ly,n+(m−1)Nch,kUz(�xn+(m−1)Nch,k)
]

− lz,1+(m−1)Nch,4Uy(�x1+(m−1)Nch,4)

+ ly,1+(m−1)Nch,4Uz(�x1+(m−1)Nch,4)

}

(3.5)

where �xi,k is the coordinate of the midpoint of side k of panel i, Ux,y,z(�x) is the x−, y−, z–
component, respectively, of the total velocity in position �x and lx,y,z,i,k is the x−, y−, z–

component, respectively, of the vector �lk for panel i and side k. The circulation Γ1+(m−1)Nch

in the above expressions corresponds to the circulation of the trailing vortices. The chordwise
distribution of circulation is given by the weight function κn.

3.4 The Weight Function

According to Munk’s displacement theorem, which states that the induced drag for a lifting
surface only depends on the total chordwise circulation and not on the chordwise distribution
of the circulation, see von Kármán and Burgers (1963), it is necessary to specify the chordwise
distribution of circulation in order to achieve convergence of the optimisation. Therefore, the
optimisation problem is reduced to finding the optimum distribution of the total circulation
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Figure 3.5: Description of the total circulation at a panel side.

for each chordwise strip, which corresponds to the circulation of the shed vortex. The
chordwise distribution of circulation is specified through a weight function.

For a two-dimensional section with a discrete distribution of vortices, as depicted in Figure
3.5, the weight function is defined as

κ̃n ≡ Γ̃n

Γtot

(3.6)

where Γ̃n is the total circulation at grid point n. This is equal to the difference in circulation
for two adjacent panels, see Figure 3.5. Γtot is the total circulation for the chordwise strip,
which is given by

Γtot =

∫ c/2

−c/2

γ(x)dx (3.7)

where γ(x) is the given continuous distribution of circulation. This is a combination of the
flat plate distribution, see Equation (2.20), and the rooftop distribution, see Equation (2.23).

The circulation for the discrete vortex can be approximated by

Γ̃n = c

∫ tcp,n

tcp,n−1

γ(t′)dt′ ≈ γ(tgp,n)
(

tcp,n − tcp,n−1)

)

(3.8)

where tcp,n is the location of the control point, which is (Lan, 1974):

tcp,n = −1
2 cos

(

(n − 1)π

Nch

)

for n = 1, 2, . . . , Nch (3.9)

for the discretisation given in Equation (3.2). By inserting Equation (3.9) in Equation (3.8)
the discrete circulation can be approximated by

Γ̃n ≈ γ(tgp,n)C
√

(

1
2 − tgp,n

)(

1
2 + tgp,n

)

(3.10)

where C is a constant and the grid point tgp,n is given by Equation (3.2), hence the weight
function is

κ̃n =
γ(tgp,n)

√

(

1
2 − tgp,n

)(

1
2 + tgp,n

)

∑Nch+1
i=1 γ(tgp,i)

√

(

1
2 − tgp,i

)(

1
2 + tgp,i

)

for n = 1, 2, . . . , Nch + 1 (3.11)
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Table 3.1: Induced vertical velocity at the grid points with the cosine and equidistant dis-
cretisations. The flat plate distribution of circulation is used. The theoretical value is
uz/U0 = −0.318. It should be noted that the t-coordinate for the same grid point number
is different for the two discretisations.

Cosine Equidistant

Grid point uz/U0 uz/U0

1 -0.318 -0.274

2 -0.288 -0.290

3 -0.288 -0.296

4 -0.286 -0.297

5 -0.282 -0.297

6 -0.274 -0.295

7 -0.254 -0.288

8 -0.180 -0.261

9 0.737 0.389

As the circulation in the vortex-lattice method is applied to the panels the weight function
is changed so the weight function gives the circulation of the panels. The relation between
the weight function, κ̃, and the circulation of the panels is

κ̃1 = 0

κ̃n =
Γn−1 − Γn

Γtot

for n = 2, 3, . . . , Nch

κ̃Nch+1 =
ΓNch

Γtot

(3.12)

From this the weight function for the circulation of the panels, κ, becomes

κn =

Nch+1
∑

i=n+1

(

(1 − ν)κ̃RT
i + νκ̃FP

i

)

, for n = 1, 2, . . . , Nch (3.13)

where κ̃FP
i is the weight function for the flat plate distribution and κ̃RT

i is for the rooftop
distribution. ν is the ratio of the flat plate distribution.

3.4.1 Validation of the Weight Function

The weight function has been validated for a two-dimensional section with either the flat
plate distribution of circulation, see Equation (2.20) or the rooftop distribution with a = 0.8,
see Equation (2.23). The validation is made for two different discretisations, both with the
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Table 3.2: Induced vertical velocity at the control points with the cosine and equidistant
discretisations. The flat plate distribution of circulation is used. The theoretical value is
uz/U0 = −0.318. It should be noted that the t-coordinate for the same control point number
is different for the two discretisations.

Cosine Equidistant

Control point uz/U0 uz/U0

1 -0.318 -0.310

2 -0.318 -0.313

3 -0.318 -0.315

4 -0.318 -0.318

5 -0.318 -0.322

6 -0.318 -0.329

7 -0.318 -0.347

8 -0.318 -0.421

cosine discretisation given by Lan (1974), see Equation (3.2) and Equation (3.9), and with
an equidistant discretisation given by James (1972). For this discretisation the grid points
and control points are located at

tgp,1 = −1
2

tgp,n =
i − 5/4

Nch

− 1

2
for n = 2, 3, . . . , Nch + 1

tcp,n =
i − 3/4

Nch

− 1

2
for n = 1, 2, . . . , Nch

(3.14)

The weight function has been modified for the equidistant distribution.

Figure 3.6: The location of the vortices and the control points, for the cosine discretisation,
for the two-dimensional calculations.

In accordance with linear theory the vortices are distributed along the x-axis, see Figure 3.6.
The vertically induced velocity from the discrete distribution should, as the velocity from
the continuous distribution, fulfil the boundary condition in Equation (2.19). The boundary
condition requires that the induced velocity for the flat plate distribution is constant along
the chord and for the rooftop distribution the velocity should equal the slope of the mean line.
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Table 3.3: Induced vertical velocity at the grid points with the cosine and equidistant dis-
cretisations. The NACA a = 0.8 rooftop distribution of circulation is used. The ratio
between the slope of the mean line and the calculated velocities is also shown. The theoret-
ical value for this ratio is z′f/(uz/U0) = 0.5. It should be noted that the t-coordinate for the
same grid point number is different for the two discretisations.

Cosine Equidistant

Grid point uz/U0 z′f/(uz/U0) uz/U0 z′f/(uz/U0)

1 -0.463 0.498 -0.424 0.544

2 -0.452 0.547 -0.442 0.641

3 -0.447 0.633 -0.338 0.535

4 -0.306 0.578 -0.179 0.504

5 -0.113 0.547 -0.073 0.459

6 0.030 0.613 0.020 0.833

7 0.171 0.576 0.115 0.601

8 0.341 0.588 0.232 0.593

9 0.581 0.689 0.429 0.685

The equation for the NACA rooftop mean lines is given in e.g. Abbott and von Doenhoff
(1959) and is reproduced in Appendix C.

The vertically induced velocity for the discrete vortex distribution is

uz,j =
1

2πc

Nch
∑

i=1

Γ̃i

tgp,i − tj
(3.15)

where tj is the point where the velocity is calculated and tgp,i is the location of the vortex
with the circulation Γ̃i, which will be numerically negative.

The vertically induced velocity has been calculated at the grid points and at the control
points for both distributions of circulation and both discretisations. Table 3.1 shows the
induced velocity at the grid points for the flat plate with both discretisations. It is seen that
the velocity is varying and that the velocity at the grid point nearest to the leading edge
even has an opposite sign relative to the others. Table 3.2 shows the induced velocity at the
control points for the flat plate with both discretisations. These results show that the cosine
discretisation gives the exact constant velocity at all control points, unlike the equidistant
discretisation, which has a small variation.

Table 3.3 shows the induced velocity at the grid points and Table 3.4 shows the velocity at
the control points for the NACA a = 0.8 rooftop distribution with both discretisations. The
ratio between the induced velocity and the mean line slope is also shown in the tables. This
ratio should be constant if the boundary condition is fulfilled. From the tables it is seen that
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Table 3.4: Induced vertical velocity at the control points with the cosine and equidistant
discretisations. The NACA a = 0.8 rooftop distribution of circulation is used. The ratio
between the slope of the mean line and the calculated velocities is also shown. The theoretical
value for this ratio is z′f/(uz/U0) = 0.5. It should be noted that the t-coordinate for the
same control point number is different for the two discretisations.

Cosine Equidistant

Control point uz/U0 z′f/(uz/U0) uz/U0 z′f/(uz/U0)

1 -0.463 0.498 -0.508 0.524

2 -0.540 0.501 -0.507 0.517

3 -0.531 0.505 -0.246 0.515

4 -0.211 0.519 -0.123 0.490

5 -0.040 0.521 -0.026 0.316

6 0.113 0.505 0.067 0.633

7 0.284 0.509 0.169 0.591

8 0.535 0.515 0.312 0.610

this ratio is varying both at the grid points and at the control points, but the variation at
the control points is smaller and again the cosine discretisation is superior to the equidistant
discretisation.

Another important aspect is the calculation of the drag of the profile, which should be zero
for a two-dimensional section. The total drag of a section with a discrete distribution of
vortices is as follows, see Equation (3.5):

D = ρ

Nch
∑

i=1

uz,iΓ̃i (3.16)

where uz,i is the vertically induced velocity at the grid point i. The velocity can be calculated
either directly at the grid points, so the velocity corresponds to the results in Tables 3.1 and
3.3, or as an interpolation of the velocities at the control points, which are given in Tables
3.2 and 3.4. The calculations show that the drag for both the flat plate and the rooftop
distribution is zero only if the velocities are calculated directly at the grid points. This is
the case for both discretisations. For the flat plate this is because the velocity at the grid
point nearest to the leading edge has an opposite sign, hence the force calculated here is
opposite the drag on the remaining part of the profile. This force corresponds to the leading
edge suction force.

From the above validation it is seen that the continuous distribution of circulation can
be discretised by use of the weight function from Equation (3.13). The validation shows
furthermore that the cosine discretisation is the most accurate of the two discretisations,
for the flat plate it is even exact. And finally the validation shows it is important that the
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velocities, used for the force calculations, are calculated directly at the points where the
discrete vortices are placed.

3.5 Optimisation

In the optimisation for the hydrofoil the aim is to find the distribution of circulation which
gives the minimum drag for a specified lift. The distribution is found by solving a variational
problem.

3.5.1 Optimisation Procedure

As the optimisation procedure is identical for the hydrofoil and for the propeller the main
results will only be given here and a more thorough description of the procedure is postponed
until the propeller is treated, see Chapter 4.

The functional to be minimised is

H(�Γ, λ) = D(�Γ) + λ(L(�Γ) − Lr) (3.17)

where �Γ is the sought distribution of circulation for the trailers, Lr is the required lift, and
λ is the Lagrange multiplier.

The optimum distribution is found by setting the partial derivatives with respect to �Γ and λ
of the functional equal to zero. This gives a non-linear system of equations for the unknown
circulations and the Lagrange multiplier. The system is linearised and therefore iterations
are necessary in order to obtain the solution.

The linear system of equations is

∂D(�Γ)

∂Γ1+(m−1)Msp

+ λt−1 ∂L(�Γ)

∂Γ1+(m−1)Msp

+ λt ∂L( �U0)

∂Γ1+(m−1)Msp

= − ∂D( �U0)

∂Γ1+(m−1)Msp

L(�Γ) = Lr − L( �U0)

(3.18)

for m = 1, 2, ...,Msp. ∂L( �U0)/∂Γ1+(m−1)Msp
is the part of ∂L/∂Γ1+(m−1)Msp

which is inde-

pendent of the circulation and ∂D( �U0)/∂Γ1+(m−1)Msp
is the similar part for the drag. L( �U0)

is the part of the lift which is independent of the circulation. The superscript t − 1 refers
to the value from the previous step in the iteration. The partial derivative for the drag is
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found by differentiating Equation (3.5), thus

∂D

∂Γ1+(m−1)Nch

= −ρ

{

Nch
∑

n=1

κn

4
∑

k=1

{

lz,n+(m−1)Nch,kU0,y(�xn+(m−1)Nch,k)

− ly,n+(m−1)Nch,kU0,z(�xn+(m−1)Nch,k)
}

− lz,1+(m−1)Nch,4U0,y(�x1+(m−1)Nch,4)

+ ly,1+(m−1)Nch,4U0,z(�x1+(m−1)Nch,4)

+

Msp
∑

j=1

Γ1+(j−1)Nch

[

Nch
∑

n=1

κn

Nch
∑

i=1

κi

4
∑

k=1
{

lz,n+(m−1)Nch,kq
∗
y,i+(j−1)Nch

(�xn+(m−1)Nch,k)

− ly,n+(m−1)Nch,kq
∗
z,i+(j−1)Nch

(�xn+(m−1)Nch,k)

+ lz,i+(j−1)Nch,kq
∗
y,n+(m−1)Nch

(�xi+(j−1)Nch,k)

− ly,i+(j−1)Nch,kq
∗
z,n+(m−1)Nch

(�xi+(j−1)Nch,k)
}

+

Nch
∑

i=1

κi

{

−lz,1+(m−1)Nch,4q
∗
y,i+(j−1)Nch

(�x1+(m−1)Nch,4)

+ ly,1+(m−1)Nch,4q
∗
z,i+(j−1)Nch

(�x1+(m−1)Nch,4)
}

+

Nch
∑

n=1

κn

{

−lz,1+(j−1)Nch,4q
∗
y,n+(m−1)Nch

(�x1+(j−1)Nch,4)

+ ly,1+(j−1)Nch,4q
∗
z,n+(m−1)Nch

(�x1+(j−1)Nch,4)
}

]}

for m = 1, 2, . . . , Msp

(3.19)

and the partial derivative for the lift is found by differentiating Equation (3.4):

∂L

∂Γ1+(m−1)Nch

= ρ

{

Nch
∑

n=1

κn

4
∑

k=1

{

ly,n+(m−1)Nch,kU0,x(�xn+(m−1)Nch,k)

− lx,n+(m−1)Nch,kU0,y(�xn+(m−1)Nch,k)
}

− ly,1+(m−1)Nch,4U0,x(�x1+(m−1)Nch,4)

+ lx,1+(m−1)Nch,4U0,y(�x1+(m−1)Nch,4)

+

Msp
∑

j=1

Γ1+(j−1)Nch

[

Nch
∑

n=1

κn

Nch
∑

i=1

κi

4
∑

k=1
{

ly,n+(m−1)Nch,kq
∗
x,i+(j−1)Nch

(�xn+(m−1)Nch,k)

− lx,n+(m−1)Nch,kq
∗
y,i+(j−1)Nch

(�xn+(m−1)Nch,k)

+ ly,i+(j−1)Nch,kq
∗
x,n+(m−1)Nch

(�xi+(j−1)Nch,k)

− lx,i+(j−1)Nch,kq
∗
y,n+(m−1)Nch

(�xi+(j−1)Nch,k)
}



3.5 Optimisation 29

+

Nch
∑

i=1

κi

{

−ly,1+(m−1)Nch,4q
∗
x,i+(j−1)Nch

(�x1+(m−1)Nch,4)

+ lx,1+(m−1)Nch,4q
∗
y,i+(j−1)Nch

(�x1+(m−1)Nch,4)
}

+

Nch
∑

n=1

κn

{

−ly,1+(j−1)Nch,4q
∗
x,n+(m−1)Nch

(�x1+(j−1)Nch,4)

+ lx,1+(j−1)Nch,4q
∗
y,n+(m−1)Nch

(�x1+(j−1)Nch,4)
}

]}

for m = 1, 2, . . . , Msp

(3.20)

where U0,x,y,z is the x−, y−, z-component, respectively, of the onset flow, and q∗x,y,z,i(�xj,k)
is the x−, y−, z-component, respectively, of the induced velocity from panel i in point �xj,k,
which is the midpoint of side k of panel j.

The optimum distribution of circulation is obtained by inserting the above derivatives in
Equation (3.18) and iterating until convergence.

3.5.2 Results for the Optimisation of an Elliptic Hydrofoil

As previously mentioned, Prandtl found analytically the spanwise distribution of circulation
for a planar wing with elliptic planform and high aspect ratio, see e.g. Breslin and Andersen
(1994). Prandtl used a lifting-line model for the wing, which is a valid assumption for the
high aspect ratios, and found that the distribution was elliptic, thus the spanwise circulation
is

Γ(y) = −Γ0

√

1 −
(

y

b

)2

(3.21)

where Γ0 is the maximum circulation and b is the semispan of the wing.

This distribution corresponds to the optimum distribution of circulation for the planar wing,
which can be seen from the following considerations.

For the elliptic distribution of circulation the vertically induced velocity along the lifting line
has the constant value

uz(y) = −Γ0

4b
(3.22)

As the induced drag is

D(y) = ρuz(y)Γ(y) (3.23)
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Figure 3.7: Optimum distribution of circulation for an elliptic hydrofoil, with b = 6.0 m,
c0 = 3.0 m, U0 = 10.0 m/s, and CL,r = 0.345.

and the sectional drag coefficient is

CD(y) =
D(y)

1
2
ρU2

0 c(y)
=

Γ2
0

2U2
0 bc0

(3.24)

it is seen that the sectional drag coefficient is constant. It has been used that the chord
length is

c(y) = c0

√

1 −
(

y

b

)2

(3.25)

where c0 is the maximum chord length. The sectional lift coefficient is constant also, as the
lift is given by

L(y) = −ρU0Γ(y) (3.26)
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Figure 3.8: Sectional lift coefficient for an elliptic hydrofoil, with b = 6.0 m, c0 = 3.0 m,
U0 = 10.0 m/s, and CL,r = 0.345.

and the sectional lift coefficient is

CL(y) =
L(y)

1
2
ρU2

0 c(y)
=

Γ0

1
2
U0c0

(3.27)

Therefore, the sectional lift to drag ratio will be constant along the entire span of the wing.
If this ratio is varying the overall ratio could be increased by moving the load to the point
with the highest lift to drag ratio. Thus, the elliptic distribution of circulation corresponds
to the optimum distribution for a wing with elliptic planform.

For a wing with elliptic planform and elliptic distribution of circulation the maximum cir-
culation is found from the required lift coefficient, CL,r:

Γ0 = 1
2U0c0CL,r (3.28)

and the corresponding angle of attack is (Breslin and Andersen, 1994):

α =
Γ0(4b + πc0)

4πU0bc0

(3.29)
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Figure 3.9: Sectional drag coefficient for an elliptic hydrofoil, with b = 6.0 m, c0 = 3.0 m,
U0 = 10.0 m/s, and CL,r = 0.345.

The surface optimisation has been tested on an elliptic hydrofoil with the following input
data:

b = 6.0 m, c0 = 3.0 m, U0 = 10.0 m/s, CL,r = 0.345, and 103Ctot
D,ana = 7.441.

The chordwise distribution of circulation corresponds to half a flat plate and half a NACA
a = 0.8 rooftop distribution (ν = 0.5). The discretisation is equidistant spanwise, see
Equation (3.1), and cosine chordwise, see Equation (3.2). The specified lift corresponds to
a 4.4o angle of attack, which is within the limits of the linear theory.

The optimisation has been performed with four different grid sizes from Msp × Nch = 9 × 5
to 72 × 40. Table 3.5 shows the minimised drag as a function of the number of panels. It is
seen that the agreement with the analytical solution is very good already for nine spanwise
and five chordwise panels. Furthermore, it is seen that the difference between the analytical
and the numerical solution is decreasing for increasing number of panels.
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Table 3.5: Minimised total drag coefficient, Ctot
D , as a function of the number of panels for

an elliptic planform, with b = 6.0m, c0 = 3.0m, U0 = 10.0m/s, CL,r = 0.345, and103Ctot
D,ana =

7.441.

Msp Nch 103Ctot
D Ctot

D,ana/C
tot
D

9 5 7.430 1.0015

18 10 7.428 1.0018

36 20 7.435 1.0008

72 40 7.438 1.0004

Figure 3.7 shows the distribution of circulation for the trailers. It is seen that the distribu-
tions for all four calculations fit the analytical solution very well.

Figure 3.8 shows the sectional lift coefficient. It is seen that the distribution is almost
constant along the span. The 9 × 5 grid is only constant over 50% of the span but already
from 18×10 the CL is constant over approximately 80% of the span. Close to the tips all the
grids deviate from the constant value. This is due to the rapid decrease of the chord length
at the tips, which is not captured by the discretisation. Furthermore, it is seen that the
sectional lift coefficient is higher than the analytical for all the grids. It is most pronounced
for the 9× 5 grid in Figure 3.8. This is because the lift coefficient, due to the discretisation,
is actually based on a planform area which is smaller than the area of the ellipse, while the
total lift has the required value, thus the lift coefficient for the discretised hydrofoil will be
higher.

Figure 3.9 shows the sectional drag coefficient. It is observed that even though the total
drag coefficient is well predicted there is a difference between the analytical and numerical
sectional drag coefficient, as the numerical CD is only constant on a small part of the span
and tends to zero at the tips. This variation is due to the discretisation and the relatively
small chord length at the tips.

For the above optimisation the only induced velocity is the vertical velocity uz and the onset
flow is parallel to the x-axis. Furthermore, the length of the panel sides in the y-direction
ly is equal for all the panels. By using this it is seen that the calculations of the lift and
the drag can be reduced. For the lift, see Equation (3.4), it is observed that the lifts of
the individual panels cancel each other and that the lift comes from the spanwise vortex
at the trailing edge, which combines the trailers into a horseshoe vortex. For the drag, see
Equation (3.5), it is seen that the drag from the individual panels depends on the difference
in induced velocity at the sides 2 and 4, which will be small.
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Figure 3.10: Optimum distribution of circulation for an elliptic planform with different
spanwise discretisations for Msp × Nch = 18 × 10, b = 6.0 m, c0 = 3.0 m, U0 = 10.0 m/s, and
CL,r = 0.345.

3.6 Spanwise Discretisation

To determine the most suitable spanwise discretisation three different discretisations have
been tested for the optimisation of the hydrofoil.

Discretisation no. 1 (Streckwall, 1994):

sgp,i = − cos

(

(i − 1)π

Msp

)

, i = 1, 2, . . . , Msp + 1

scp,i = − cos

(

(i − 1
2
)π

Msp

)

, i = 1, 2, . . . , Msp

Here the outermost vortices are placed at the tips of the wing and due to the cosine function
the spacing is finer in the tip regions. Because the number of chordwise panels is constant,
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Figure 3.11: Sectional lift coefficient for an elliptic planform with different spanwise discreti-
sations for Msp × Nch = 18 × 10, b = 6.0 m, c0 = 3.0 m, U0 = 10.0 m/s, and CL,r = 0.345.

it is necessary to have a finite chord length at the tip, in order to avoid numerical problems.

Discretisation no. 2 (Kerwin and Lee, 1978):

sgp,i = − cos

(

(i − 1
2
)π

Msp + 1

)

, i = 1, 2, . . . , Msp + 1

scp,i = − cos

(

iπ

Msp + 1

)

, i = 1, 2, . . . , Msp

This is also a cosine discretisation but unlike no. 1 the vortices are moved a little inward
from the tips. This discretisation corresponds to the Lan (1974) discretisation transformed
to the spanwise direction.

Discretisation no. 3 is the equidistant discretisation from Equation (3.1), where the control
points are located at

scp,i = 1
2(sgp,i + sgp,i+1), i = 1, 2, . . . , Msp
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Figure 3.12: Sectional drag coefficient for an elliptic planform with different spanwise dis-
cretisations for Msp ×Nch = 18× 10, b = 6.0 m, c0 = 3.0 m, U0 = 10.0 m/s, and CL,r = 0.345.

This corresponds to the James (1972) discretisation transformed to the spanwise direction.

Optimisation for a lifting line shows that the two cosine discretisations (no. 1 and no. 2)
give the exact induced drag for a very low number of panels, when the induced velocity
is calculated at the control points. The equidistant discretisation (no. 3) gives reasonable
results for nine or more panels. For all three discretisations the optimum distribution of
circulation is elliptic.

A hydrofoil with the same input parameter as before is optimised with the three discreti-
sations. For all calculations the grid contains 18 panels spanwise and 9 chordwise. Table
3.6 shows the minimised total drag coefficient for the different discretisations. From the
table it is seen that, unlike the lifting-line calculations, the equidistant discretisation, i.e.
discretisation no. 3, is closest to the analytical solution when the planform is included in
the optimisation.

The optimum distribution of circulation is shown in Figure 3.10. It is seen that all three
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Table 3.6: Minimised total drag coefficient for an elliptic planform with different discretisa-
tions for Msp × Nch = 18 × 10, b = 6.0 m, c0 = 3.0 m, U0 = 10.0 m/s, and CL,r = 0.345.

Discretisation 103Ctot
D Ctot

D,ana/C
tot
D

Cosine no. 1 (grid points at the tip) 7.340 1.0138

Cosine no. 2 7.348 1.0127

Equidistant no. 3 7.428 1.0018

distributions fit the analytical distribution well. The sectional lift coefficient is shown in
Figure 3.11. Again the differences between the results from the different discretisations are
small. The largest discrepancies are observed at the tips, where the cosine discretisation
no. 1 (Streckwall, 1994) increases rapidly and the cosine discretisation no. 2 (Lan, 1974)
decreases abruptly. For the equidistant discretisation the sectional lift coefficient is constant
over a larger part of the span than the coefficients from the cosine discretisations.

Figure 3.12 shows the spanwise variation of the sectional drag coefficient. It is seen that
the sectional drag coefficients from the cosine discretisations are lower and closer to the
analytical solution than the coefficients from the equidistant discretisation. But for the
cosine discretisations the CD is decreasing rapidly close to the tip and the point nearest to
the tip has even a negative CD. This results in the lower total drag coefficient for the cosine
discretisations compared to the coefficient for the equidistant discretisation. This shows why
the total drag coefficient from the equidistant discretisation is closest to the analytical value.

Even though the negative drag coefficients at the tips have only a small influence on the over-
all drag coefficient, it indicates that there might be problems with the cosine discretisations
at the tips. Therefore, the equidistant discretisation has been chosen as the most suitable
spanwise discretisation. The same conclusions were drawn in Kerwin and Lee (1978), also
due to problems in the tip region for the cosine discretisation. But from the above comparison
it is evident that the differences between the discretisations are small.

3.7 Summary

In this chapter the lifting-surface optimisation procedure is outlined and tested with a planar
hydrofoil with elliptic planform. The results are in good agreement with the analytical results
obtained by Prandtl. For the used vortex-lattice method for the planar hydrofoil it is shown
that the lift is restricted to the vortex at the trailing edge, whereas the drag depends on
the difference in induced velocity at the sides of the panel which are perpendicular to the
onset flow, i.e. side 2 and 4. According to Munk’s displacement theorem (von Kármán and
Burgers, 1963), it is necessary to use a weight function for the chordwise distribution of
circulation. The hydrofoil is optimised with different types of discretisations and the results
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show that the cosine discretisation should be used chordwise and the equidistant should be
used spanwise.



Chapter 4

Optimisation of Propellers

4.1 Introduction

The aim of the optimisation procedure is to find the radial distribution of circulation, which
results in the highest efficiency for the propeller. The problem can be formulated as a
variational problem where the applied torque is minimised for a specified thrust. Betz (1927)
solved this problem for a propeller in open water by the assumption of linear theory and the
lifting-line model. He used the integral formulation of the problem and it was necessary to
use Munk’s displacement theorem, see e.g. Yim (1976), in order to solve the problem. Betz
(1927) found that the criterion for the optimum distribution of circulation is

tan β0(r)

tan βi(r)
= c (4.1)

where β0(r) is the pitch angle of the onset flow and βi(r) is the pitch angle for the total
inflow. Lerbs (1952) extended the problem to include a radially varying axial onset flow and
found an optimum criterion similar to Betz’s criterion:

tan β0(r)

tan βi(r)
= c

√

1 − w(r)

1 − t(r)
(4.2)

where β0(r) is the pitch angle of the onset flow, βi(r) is the pitch angle of the total inflow,
w(r) is the radially varying wake fraction, and t(r) is the radially varying thrust deduction
fraction. For a propeller in open water Lerbs’ criterion is identical to that of Betz. For the
calculation of the induced velocities from the trailing vortices, which are assumed to have a
regular helix shape, Lerbs used induction factors. The shed vortices are in Lerbs’ method
aligned with the total flow at the lifting line, which is known as the method for moderately
loaded propellers. Betz’s and Lerbs’ criteria have for decades been used extensively to
optimise single conventional propellers. The need for an optimisation method for multi-
component propulsors caused Kerwin et al. (1986) to introduce another method for solving

39



40 Chapter 4. Optimisation of Propellers

the variational problem. The propeller is still modelled by a lifting line but the continuous
distribution of circulation along the line is discretised. This makes it possible to solve the
variational problem directly. Kerwin et al. (1986) showed that the obtained distributions
of circulation were identical for the discrete model and for the Betz optimisation. Coney
(1992) continued the work on the discrete method and showed that the discrete distribution
of circulation for a lightly loaded propeller fulfilled Betz’s criterion. The distribution of
circulation obtained by the discrete method was compared to the distribution obtained by
Lerbs’ criterion for a propeller in a radial varying wake. The obtained distributions were
identical. From Kerwin et al. (1986) and Coney (1992), it can be concluded that it is possible
to find the optimum distribution of circulation for a discrete distribution of circulation and
that the results for sufficiently low loading resemble the results from the Betz and the Lerbs
criteria. The advantage of the discrete model is that Munk’s displacement theorem and the
linearisation which were necessary in the integral approach adopted by Betz and Lerbs are
avoided by the direct solution of the variational problem. Other advantages of the discrete
model are, as concluded by Coney (1992), that the geometry of the propeller can be of
theoretically unlimited complexity and that the propeller model is not restricted to the
lifting-line model. The observation about the geometry is important to the present work, as
one of the aims is to optimise the distribution of circulation for the Kappel propellers. The
Kappel propellers are propellers with an integrated tip fin, for details of the Kappel propellers
see e.g. Andersen et al. (2000). As a further modification to the optimisation procedure the
lifting-line model is replaced by a lifting-surface model for the propeller. The model used has
some similarities, but it is not completely identical to the vortex-lattice model described by
Kerwin and Lee (1978) and Greely and Kerwin (1982). By using the lifting-surface method
it is possible to include the effects of the entire blade in the optimisation.

4.2 Propeller Geometry

The propeller is described in a Cartesian coordinate system which rotates with the propeller.
The x-axis is positive upstream, the y-axis is positive to the port side and the z-axis completes
the right-hand coordinate system, see Figure 4.1. The origin of the coordinate system is at
the centre of the hub. The angular velocity of the propeller, ω, is positive when the propeller,
viewed in the positive x-direction, is rotating clockwise. For the cylindrical coordinate
system the radius, r, is positive away from the origin and the angle, φ, is positive in the
same direction as ω. φ is measured from the z-axis. The x-coordinate for the cylindrical
coordinate system is the same as for the Cartesian system. The cylindrical coordinate system
is also shown in Figure 4.1.

4.2.1 Description of the Blade Surface

The geometry of the Kappel propeller is given in e.g. Andersen (1988) and is described
briefly in the following. Figure 4.1 shows the geometry of a Kappel propeller. The reference
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Figure 4.1: Coordinate system for the propeller.

surface of the propeller blade is described by the vector �R(s, t), where s is an arc length
parameter along the midchord line and t is the dimensionless chordwise parameter, which
is t = 1

2
at the leading edge (L.E.) and t = −1

2
at the trailing edge (T.E.). In a rolled off

coordinate system, (x, r, rφ), the reference surface is

�R(s, t) =







xm(s) + c(s) cos(βv(s)) sin(βh(s))t
rm(s) + c(s) sin(βv(s))t

−rm(s)φm(s) + c(s) cos(βv(s)) cos(βh(s))t







(4.3)

where xm(s) is the rake, rm(s) is the radius and φm(s) is the skew of the midchord line. φm

is positive in the opposite direction of φ, thus skew back is positive. βh(s) is the horizontal
pitch angle of the nose-tail line, which corresponds to the pitch angle of a conventional
propeller. For the Kappel propeller an additional pitch angle, βv(s), is introduced. This
angle allows the profiles to be inclined with respect to a cylinder with the radius rm(s) and
the axis parallel to the x-axis. Finally, c(s) is the chord length. The Cartesian coordinates
for the blade surface are

(x, y, z) = (x,−r sin(φ), r cos(φ)) (4.4)
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At the outset of the optimisation the pitch angles βh and βv are not known. Therefore βv is
set equal to zero, consistently with linear theory, and βh is equal to the fluid pitch angle βi

of the reference flow. Section 4.4 describes how this angle is found. Hence, the description
of the blade in the Cartesian coordinate system is

φ(s, t) = −φm(s) +
c(s)

rm(s)
cos(βi(s))t

x(s, t) = xm(s) + c(s) sin(βi(s))t

y(s, t) = −rm(s) sin(φ(s, t))

z(s, t) = rm(s) cos(φ(s, t)), for − 1
2 ≤ t ≤ 1

2 and shub ≤ s ≤ stip

For a conventional propeller the s-parameter is equal to the radius r.

4.2.2 Grid Generation

The blade surface is divided into a number of quadrilateral panels and the trailing vortex
sheet is thus reduced to a number of trailing horseshoe vortices. An example of a propeller
grid is shown in Figure 4.2. The description of the panels is similar to the description of the
panels on the hydrofoil, which was given in Section 3.2.1.

The grid study of the hydrofoil, see Section 3.6, showed that the discretisation should be
equidistant spanwise and cosine chordwise. For the propeller this means that the radial
discretisation should be equidistant and the chordwise discretisation should be cosine. Hence,
the radial discretisation is

sgp,i =
4i − 3

4Msp + 2
(stip − shub) + shub for i = 1, 2, . . . , Msp + 1

scp,i = 1
2(sgp,i + sgp,i+1) for i = 1, 2, . . . , Msp

(4.5)

where Msp is the number of spanwise panels and gp refers to grid points and cp refers to
control points. The chordwise discretisation is

tgp,1 = −1

2
located at T.E.

tgp,i = −1

2
cos

(

(i − 3
2
)π

Nch

)

for i = 2, 3, . . . , Nch + 1

tcp,i = −1

2
cos

(

(i − 1)π

Nch

)

for i = 1, 2, . . . , Nch

(4.6)

where Nch is the number of chordwise panels.

As for the hydrofoil, the shed vortices are horseshoe vortices consisting of two sides which are
moved infinitely downstream with the fluid and a straight line at the trailing edge combining
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Figure 4.2: Example of a grid, the trailers and the direction of the circulation for the
propeller.

the sides in the horseshoe. The sides of the horseshoes are assumed to follow regular helices
with constant pitch and radius, see Figure 4.2. Hence, the shed vortex is described by

�x =

{

x,−r sin

(

2π

P
(x − xT.E.) + φT.E.

)

, r cos

(

2π

P
(x − xT.E.) + φT.E.

)}

(4.7)

where r is the radius, corresponding to the radius of the grid point at the trailing edge from
which the vortex is shed. P is the pitch of the helix, which is equal to the pitch of the
reference flow, see Section 4.4. φT.E. is the phase angle of the helix.

From Equation (4.6) it is seen that the first grid point is at the trailing edge in order to fulfil
the Kutta condition. This condition is fulfilled as the net circulation at the trailing edge is
zero because the circulations of the trailer and the first panel are identical.

4.3 Onset Flow and Induced Velocities

The onset flow is given in the cylindrical coordinate system and it is possible to specify
all three components. The onset flow is assumed to be axi-symmetric and independent of
the longitudinal position, so that the onset flow has only a radial variation. The Cartesian
components of the onset flow are

�U0(�x) = (−U0,x(s), −U0,r(s) sin φ − (U0,t(s) − ωr(s)) cos φ,

U0,r(s) cos φ − (U0,t(s) − ωr(s)) sin φ)
(4.8)
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where (U0,x(s), U0,r(s), U0,t(s)) are the wake velocities given in cylindrical coordinates and
ωr, which is the tangential velocity caused by the rotation of the propeller, is included, as
the coordinate system is fixed to the blade.

The induced velocities from the panels at the propeller blade are calculated in the same way
as for the hydrofoil, see Equation (3.3) and Appendix B.

In order to calculate the induced velocities from the shed vortices the wake of the propeller
is divided into two parts. The first part, which is designated the transition wake, covers
the helix from the trailing edge of the propeller and four radii downstream. The second
part, designated the ultimate wake, covers the part from the end of the transition wake and
infinitely downstream. The regular helix is in the transition wake replaced by a number of
straight line vortices so that the induced velocity can be found in the same way as for a
panel side, see Equation (B.2). The induced velocity from the ultimate wake is found by
the method developed by de Jong (1991). The expressions are derived in Appendix B for
Cartesian coordinates.

The total velocity at point �x is the sum of the onset flow and the vortex induced velocities:

�U(�x) =

Msp
∑

j=1

�Γ1+(j−1)Nch

Nch
∑

i=1

κi�q
∗
i+(j−1)Nch

(�x) + �U0(�x) (4.9)

where κi is the weight function, which was defined in Section 3.4. �q ∗
i+(j−1)Nch

is the induced

velocity from panel number i + (j − 1)Nch for all the blades. The induced velocities from
the trailing horseshoe vortices are included in the �q ∗

i+(j−1)Nch
function for i = 1, which

corresponds to the trailing edge panels.

4.4 Grid and Wake Alignment

The applied grid and wake alignment procedure assumes that the pitch of the shed vortices
is constant and neglects the contraction of the slipstream. Furthermore, it is assumed that
the blade and the shed vortices have the same pitch. The pitch is based on the total velocity
at the midchord line of the blade, hence the pitch angle of the grid and the shed vortices is

βi(s) = tan−1

(

U0,x(s) − ux(s)

ωr(s) − ut(s) − U0,t(s)

)

(4.10)

where ux(s) and ut(s) are the total axial and tangential components, respectively, of the
induced velocities from the vortex system at the midchord line. The midchord line is located
at t = 0.

The applied alignment procedure corresponds to the wake alignment used in the moderately
loaded lifting-line theory. But unlike the lifting-line theory the induced velocity from the
bound vortices is included in the total induced velocity for the lifting-surface optimisation.
The effects of these vortices are assumed to be small, which they will be for a propeller
without skew and rake, but for a skewed propeller the assumption is more questionable.
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4.5 Thrust and Torque Calculations

The forces on the propeller blade are found in the same manner as for the hydrofoil. Thus,
the forces from the circulation are found by the law of Kutta–Joukowsky and the force on
one side of the panel is

�Fside = ρ�U(�x) × �Γside = ρΓside

(

�U(�x) ×�lside

)

(4.11)

where the total velocity �U(�x) is calculated at the midpoint of the panel side, �lside is the
vector for this side, see Figure 3.2, and Γside is the total circulation on the side.

The moment from one side of the panel is

�Mside = �r(�x) × �Fside (4.12)

where �r(�x) is the vector from the origin of the coordinate system to the midpoint of the side.
It is assumed that there is no local moment on the side.

The total force on the propeller blade is found by adding the contributions from all the panel
sides on the blade. As the propeller is working in a steady state condition the forces on all
the blades are the same. Hence, the force on the entire propeller is found by multiplying
the force on one blade by the number of blades, Z. The thrust of the propeller is the
x-component of the total force, so that the total thrust for the propeller is

T = Fx = ρZ

Msp
∑

m=1

Γ1+(m−1)Nch

{

Nch
∑

n=1

κn

4
∑

k=1

[

lz,n+(m−1)Nch,kUy(�xn+(m−1)Nch,k)

− ly,n+(m−1)Nch,kUz(�xn+(m−1)Nch,k)
]

− lz,1+(m−1)Nch,4Uy(�x1+(m−1)Nch,4)

+ ly,1+(m−1)Nch,4Uz(�x1+(m−1)Nch,4)

}

(4.13)

where ly and lz are the y- and z-components of �l, respectively, and Uy and Uz are the y-
and z-components of the total velocity, respectively. �xn+(m−1)Nch,k is the coordinate for the
midpoint of side k of the panel number n + (m − 1)Nch.

The torque, Q, which should be applied to the propeller axis is the negative x-component
of the total moment, hence

Q = −Mx = −
sides
∑

i=1

(yFz − zFy)i

= Q2 − Q1

(4.14)

where Fy and Fz are the y− and z−components of the force on side i, respectively, and y, z
are the coordinates for the midpoint of the panel side. Q1 and Q2 are introduced in order
to make the expression more readable.
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The two components of the torque are

Q1 = ρZ

Msp
∑

m=1

Γ1+(m−1)Nch

{

Nch
∑

n=1

κn

4
∑

k=1

yn+(m−1)Nch,k

[

ly,n+(m−1)Nch,kUx(�xn+(m−1)Nch,k)

− lx,n+(m−1)Nch,kUy(�xn+(m−1)Nch,k)
]

+ y1+(m−1)Nch,4

[

−ly,1+(m−1)Nch,4Ux(�x1+(m−1)Nch,4)

+ lx,1+(m−1)Nch,4Uy(�x1+(m−1)Nch,4)
]

}

(4.15)

Q2 = ρZ

Msp
∑

m=1

Γ1+(m−1)Nch

{

Nch
∑

n=1

κn

4
∑

k=1

zn+(m−1)Nch,k

[

lx,n+(m−1)Nch,kUz(�xn+(m−1)Nch,k)

− lz,n+(m−1)Nch,kUx(�xn+(m−1)Nch,k)
]

+ z1+(m−1)Nch,4

[

−lx,1+(m−1)Nch,4Uz(�x1+(m−1)Nch,4)

+ lz,1+(m−1)Nch,4Ux(�x1+(m−1)Nch,4)
]

}

(4.16)

4.6 The Variational Problem

The aim of the optimisation procedure is to find the distribution of circulation which enables
the propeller to develop a specified thrust with a minimum use of energy. Therefore, the
torque applied to the propeller should be as low as possible. This distribution is found by
solving a discrete variational problem as described in Kerwin et al. (1986).

The functional for the problem is

H(�Γ, λ) = Q(�Γ) + λ(T (�Γ) − Tr) (4.17)

where �Γ is the sought distribution of circulation, λ is the Lagrange multiplier, and Tr is the
required thrust. As the circulation on the blade is given by the weight function and the
circulation of the trailing vortices the number of unknown circulations corresponds to the
number of radial panels Msp.

The optimum distribution is that which minimises the functional, H. Thus, the distribution
can be found by setting the partial derivatives of H(�Γ, λ) with respect to �Γ and λ equal to
zero.

This gives the following system of equations:

∂H

∂Γ1+(m−1)Nch

=
∂Q

∂Γ1+(m−1)Nch

+ λ
∂T

∂Γ1+(m−1)Nch

= 0 for m = 1, 2, · · ·Msp

∂H

∂λ
= T − Tr = 0

(4.18)
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which has Msp + 1 equations with Msp + 1 unknowns. The unknowns are the circulation of
the Msp trailing vortices and the Lagrange multiplier.

The derivative of the thrust is found by differentiating Equation (4.13):

∂T

∂Γ1+(m−1)Nch

= ρZ

{

Nch
∑

n=1

κn

4
∑

k=1

{

lz,n+(m−1)Nch,kU0,y(�xn+(m−1)Nch,k)

− ly,n+(m−1)Nch,kU0,z(�xn+(m−1)Nch,k)
}

− lz,1+(m−1)Nch,4U0,y(�x1+(m−1)Nch,4)

+ ly,1+(m−1)Nch,4U0,z(�x1+(m−1)Nch,4)

+

Msp
∑

j=1

Γ1+(j−1)Nch

[

Nch
∑

n=1

κn

Nch
∑

i=1

κi

4
∑

k=1
{

lz,n+(m−1)Nch,kq
∗
y,i+(j−1)Nch

(�xn+(m−1)Nch,k)

− ly,n+(m−1)Nch,kq
∗
z,i+(j−1)Nch

(�xn+(m−1)Nch,k)

+ lz,i+(j−1)Nch,kq
∗
y,n+(m−1)Nch

(�xi+(j−1)Nch,k)

− ly,i+(j−1)Nch,kq
∗
z,n+(m−1)Nch

(�xi+(j−1)Nch,k)
}

+

Nch
∑

i=1

κi

{

−lz,1+(m−1)Nch,4q
∗
y,i+(j−1)Nch

(�x1+(m−1)Nch,4)

+ ly,1+(m−1)Nch,4q
∗
z,i+(j−1)Nch

(�x1+(m−1)Nch,4)
}

+

Nch
∑

n=1

κn

{

−lz,1+(j−1)Nch,4q
∗
y,n+(m−1)Nch

(�x1+(j−1)Nch,4)

+ ly,1+(j−1)Nch,4q
∗
z,n+(m−1)Nch

(�x1+(j−1)Nch,4)
}

]}

for m = 1, 2, . . . , Msp

(4.19)

From Equation (4.15) the derivative of Q1 is found:

∂Q1

∂Γ1+(m−1)Nch

= ρZ

{

Nch
∑

n=1

κn

4
∑

k=1

yn+(m−1)Nch,k

{

ly,n+(m−1)Nch,kU0,x(�xn+(m−1)Nch,k)

− lx,n+(m−1)Nch,kU0,y(�xn+(m−1)Nch,k)
}

+ y1+(m−1)Nch,4

{

−ly,1+(m−1)Nch,4U0,x(�x1+(m−1)Nch,4)

+ lx,1+(m−1)Nch,4U0,y(�x1+(m−1)Nch,4)
}
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+

Msp
∑

j=1

Γ1+(j−1)Nch

[

Nch
∑

n=1

κn

Nch
∑

i=1

κi

4
∑

k=1

[

yn+(m−1)Nch,k

{

ly,n+(m−1)Nch,kq
∗
x,i+(j−1)Nch

(�xn+(m−1)Nch,k)

− lx,n+(m−1)Nch,kq
∗
y,i+(j−1)Nch

(�xn+(m−1)Nch,k)
}

+ yi+(j−1)Nch,k

{

ly,i+(j−1)Nch,kq
∗
x,n+(m−1)Nch

(�xi+(j−1)Nch,k)

− lx,i+(j−1)Nch,kq
∗
y,n+(m−1)Nch

(�xi+(j−1)Nch,k)
}

]

+

Nch
∑

i=1

κiy1+(m−1)Nch,4

{

−ly,1+(m−1)Nch,4q
∗
x,i+(j−1)Nch

(�x1+(m−1)Nch,4)

+ lx,1+(m−1)Nch,4q
∗
y,i+(j−1)Nch

(�x1+(m−1)Nch,4)
}

+

Nch
∑

n=1

κny1+(j−1)Nch,4

{

−ly,1+(j−1)Nch,4q
∗
x,n+(m−1)Nch

(�x1+(j−1)Nch,4)

+ lx,1+(j−1)Nch,4q
∗
y,n+(m−1)Nch

(�x1+(j−1)Nch,4)
}

]}

for m = 1, 2, . . . , Msp

(4.20)

Finally, the derivative of Q2 is found from Equation (4.16):

∂Q2

∂Γ1+(m−1)Nch

= ρZ

{

Nch
∑

n=1

κn

4
∑

k=1

zn+(m−1)Nch,k

{

lx,n+(m−1)Nch,kU0,z(�xn+(m−1)Nch,k)

− lz,n+(m−1)Nch,kU0,x(�xn+(m−1)Nch,k)
}

+ z1+(m−1)Nch,4

{

−lx,1+(m−1)Nch,4U0,z(�x1+(m−1)Nch,4)

+ lz,1+(m−1)Nch,4U0,x(�x1+(m−1)Nch,4)
}

+

Msp
∑

j=1

Γ1+(j−1)Nch

[

Nch
∑

n=1

κn

Nch
∑

i=1

κi

4
∑

k=1

[

zn+(m−1)Nch,k

{

lx,n+(m−1)Nch,kq
∗
z,i+(j−1)Nch

(�xn+(m−1)Nch,k)

− lz,n+(m−1)Nch,kq
∗
x,i+(j−1)Nch

(�xn+(m−1)Nch,k)
}

+ zi+(j−1)Nch,k

{

lx,i+(j−1)Nch,kq
∗
z,n+(m−1)Nch

(�xi+(j−1)Nch,k)

− lz,i+(j−1)Nch,kq
∗
x,n+(m−1)Nch

(�xi+(j−1)Nch,k)
}

]
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+

Nch
∑

i=1

κiz1+(m−1)Nch,4

{

−lx,1+(m−1)Nch,4q
∗
z,i+(j−1)Nch

(�x1+(m−1)Nch,4)

+ lz,1+(m−1)Nch,4q
∗
x,i+(j−1)Nch

(�x1+(m−1)Nch,4)
}

+

Nch
∑

n=1

κnz1+(j−1)Nch,4

{

−lx,1+(j−1)Nch,4q
∗
z,n+(m−1)Nch

(�x1+(j−1)Nch,4)

+ lz,1+(j−1)Nch,4q
∗
x,n+(m−1)Nch

(�x1+(j−1)Nch,4)
}

]}

for m = 1, 2, . . . , Msp

(4.21)

From Equation (4.18) it is seen that the optimisation procedure is non-linear. The non-
linearity occurs because there are products of λ and Γ and because the induced velocities,
which are used to calculate the thrust, depend on the circulation.

The non-linear variational problem is linearised, which results in the following system of
equations:

∂Q(�Γ)

∂Γ1+(m−1)Msp

+ λt−1 ∂T (�Γ)

∂Γ1+(m−1)Msp

+ λt ∂T ( �U0)

∂Γ1+(m−1)Msp

= − ∂Q( �U0)

∂Γ1+(m−1)Msp

(4.22)

for m = 1, 2, ...,Msp, and

T (�Γ) = Tr − T ( �U0) (4.23)

where Q(�Γ) and T (�Γ) refer to the parts of Q and T which are functions of the circulation and

Q( �U0) and T ( �U0) refer to the parts of Q and T which are functions of the onset flow. t − 1
is the value from the previous iteration. Due to the linearisation, iterations are necessary to
achieve a solution to the problem. The iterations are carried out until the residual defined
as

Rt = max
m=1,2,...,Msp

(∣

∣

∣

∣

∣

1 −
Γt

1+(m−1)Msp

Γt−1
1+(m−1)Msp

∣

∣

∣

∣

∣

)

(4.24)

is below a certain small limit.

4.7 Optimisation Procedure

The solution to the variational problem is found by the computer code xlift . The flow chart
of the program is shown in Figure 4.3.
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Figure 4.3: Flow chart for the optimisation program xlift.

At the outset of the optimisation a list of input parameters should be specified. These
include the main dimensions of the propeller, i.e. the radius of the propeller and of the
hub, and the number of blades. The size of the grid should be specified, i.e. the number
of radial and chordwise panels. The geometry of the midchord line is specified through the
distributions of radius, rake, and skew, which are all functions of the arc length parameter.
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The chord length distribution is given in order to construct the grid. The design point, i.e.
the advance number and the required thrust, and the onset flow are specified and finally the
ratio between the flat plate and the rooftop distributions should be given.

With the given input the initial system of equations for the variational problem is constructed
according to Equation (4.22). The distribution of circulation is initially set to zero and
the Lagrange multiplier is −1 (Coney, 1992). The iteration for the variational problem is
continued until the residual, see Equation (4.24), is below 10−5, which is normally reached
by less than ten iterations. When the variational problem has converged, the grid and the
trailers are aligned according to Equation (4.10). Then the system of equations for the
variational problem is updated with the new grid and wake geometry and the variational
problem is solved again. The alignment of the grid and the wake is continued until the
residual for the pitch distribution of the wake is less than 10−5. The number of iterations
required for the wake alignment to converge depends on the propeller geometry and the
loading of the propeller, but in general the convergence is slower than for the variational
problem. When the wake alignment has converged the distribution of circulation is written
to a file and the program stops.

It is necessary to obtain the optimum distribution of circulation without changing the wake
or grid, as Kerwin et al. (1986) showed that the solution to the variational problem is a
heavily tip-loaded propeller if the wake is aligned for each iteration of the optimisation
procedure. The heavy tip loading results in a high pitch of the tip vortex, which contradicts
experimental results for the pitch of the tip vortex, see e.g. Hoshino (1989). The conclusion
in Kerwin et al. (1986) is that as long as the problems of aligning the wake cannot be solved
satisfactorily the optimisation is done better by the linear theory. This conclusion is later
modified by Coney (1992), who obtained usable results if the wake is aligned for each solution
of the optimisation problem.

4.8 Results

The performance of the optimisation routine has been tested on the DTNSRDC propeller
series, see e.g. Kerwin and Lee (1978). For these calculations five of the propellers from the
series are used. The propellers are designed for the same radial distribution of circulation
with the same expanded blade area and thickness distribution, whereas the skew and the
skew-induced rake are varied. Therefore, the pitch and camber distributions are different for
the propellers. The main dimensions and the design point for the propellers are

Z = 5, R = 3.0 m, r̂h = 0.2, AE/A0 = 0.725, J = 0.889, KT,D = 0.2055, CTh = 0.662
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DC4381, no skew or rake.

DC4497, 36o skew and no skew-induced rake.

DC4382, 36o skew and skew-induced rake.

DC4498, 72o skew and no skew-induced rake.

DC4383, 72o skew and skew-induced rake.

Figure 4.4: Grids for the five DTNSRDC propellers for J = 0.889 and Msp ×Nch = 20× 10.
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Figure 4.5: Grid study for the reference propeller, DC4381. CTh = 0.662, J = 0.889 and
U0 = 10.0 m/s.

The design thrust coefficient, KT,D, is approximated from Kerwin and Lee (1978), which
also contains the detailed geometry of the propellers. The radius is chosen for this project.
The five propellers are one reference propeller, which has no skew or rake, and the other four
are connected two and two so that they both have the same skew, but only one of them has
skew-induced rake. The skew is either 36o or 72o. An outline of the propellers with their
designations is seen in Figure 4.4.

At first a grid study is performed in order to verify that the optimisation routine is at all
useful. The grid study is done with the reference propeller, DC4381, and the propeller with
72o skew and skew-induced rake, DC4383. For the grid study the linear theory is used.
Hence, the grids of the propellers are aligned with the onset flow and the grid is not changed

Table 4.1: Parameters for the grid study.

CTh 0.662 2.0 4.0

KT 0.2055 0.2055 0.2055

J 0.889 0.512 0.362

U0 10.0 m/s 5.754 m/s 4.070 m/s
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Figure 4.6: Grid study for propeller with 72o skew and skew-induced rake, DC4383. CTh =
4.0, J = 0.362 and U0 = 4.070 m/s.

during the calculations. The grid study is performed in the open water condition for three
thrust loadings, CTh = 0.662, CTh = 2.0 and CTh = 4.0. Table 4.1 shows the input data. As
the linear theory is used the results from the high thrust loadings, CTh = 2.0 and CTh = 4.0,
are not correct due to the missing alignment of the trailers, but the results indicate how the
method performs for high thrust loadings. The lowest thrust loading, CTh = 0.662, is low
enough to justify the use of linear theory. There will of course be a difference between results
with and without wake alignment, but it is assumed to be small for this thrust loading. The
size of the grid is varied from Msp×Nch = 5×5 to 80×40. Tables 4.2 and 4.3 show the results
from the grid study. It is seen from the tables that the relative difference between the lowest

Table 4.2: Optimised torque coefficient (10KQ) for the reference propeller, DC4381, and
varying number of grid points.

CTh

Msp × Nch 0.662 2.0 4.0

5 × 5 0.3701 0.2725 0.2490

20 × 10 0.3695 0.2715 0.2477

40 × 20 0.3697 0.2717 0.2478

80 × 40 0.3698 0.2718 0.2479
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Table 4.3: Optimised torque coefficient (10KQ) for the propeller with 72o skew and skew-
induced rake, DC4383, and varying number of grid points.

CTh

Msp × Nch 0.662 2.0 4.0

5 × 5 0.3639 0.2615 0.2328

20 × 10 0.3640 0.2612 0.2316

40 × 20 0.3645 0.2616 0.2319

80 × 40 0.3649 0.2620 0.2322

and the highest value is below 0.5% for all thrust loadings. Furthermore, it is seen that the
absolute difference between the results is decreasing for increasing number of panels, except
for DC4383 for the two highest thrust loadings where the absolute difference is constant.
Figure 4.5 presents the distribution of circulation for the different grids for propeller DC4381
with CTh = 0.662. It should be noted that the differences between the distributions are small.
Figure 4.6 shows the circulation for propeller DC4383 with CTh = 4.0. Again the differences
between the results are negligible. Thus, it is concluded from the grid study that the number
of grid points is not so important to the final result, but only concerns the desired resolution
of the solution. Furthermore, the results are converging for increasing number of panels.

The effect of the chordwise pressure distribution has also been investigated. Table 4.4 shows
the torque coefficient for an optimisation for propeller DC4381 and DC4383 with CTh = 0.662
and varying chordwise pressure distribution. The pressure distribution is either pure rooftop
(ν = 0.0 and a = 0.8), half rooftop and half flat plate (ν = 0.5) or pure flat plate (ν = 1.0).
It is seen from the table that the pressure distribution has only a small effect on the results.
The relative differences in KQ for the different distributions are below one percent, with the
lowest KQ for the pure flat plate distribution. This is in agreement with the Munk theorem,
which states that the thrust and energy loss is only a function of the radial distribution of
integrated chordwise pressures and does not depend upon the modes of chordwise distribution
as long as the integrated lift is the same (von Kármán and Burgers, 1963).

In order to compare the lifting-surface optimisation and the lifting-line optimisation the
reference propeller, DC4381, has been optimised for a constant thrust loading and a range

Table 4.4: Torque coefficient (10KQ) for the reference propeller with no skew or rake,
DC4381, and for the propeller with 72o skew and skew-induced rake, DC4383, for dif-
ferent chordwise pressure distributions. CTh = 0.662, J = 0.889, U0 = 10.0 m/s and
Msp × Nch = 40 × 20.

ν DC4381 DC4383

0.0 0.3709 0.3658

0.5 0.3697 0.3645

1.0 0.3684 0.3628
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Figure 4.7: Optimum distributions of circulation for the reference propeller, DC4381, with
lifting-surface calculations. CTh = 0.662 and U0 = 10.0m/s with varying number of rotations.

of advance numbers. The calculations are similar to those presented in Coney (1992) for a
lifting line with a discrete distribution of circulation. The calculations are made for a thrust
loading of 0.662 and the uniform onset flow has a velocity of 10.0 m/s. The advance number
is varied by changing the rotational speed of the propeller. The chordwise loading is half flat
plate and half rooftop (ν = 0.5). The grid size is 40 panels spanwise and 20 panels chordwise
and the linear theory is used. The results of the optimisation are given in Table 4.5. In the
table the corresponding results from a lifting-line optimisation are given as well. For the
lifting-line calculations the same procedure as for the lifting-surface optimisation has been
used, but the grid of the propeller blade is replaced by a straight line. Figure 4.7 shows
the optimum distribution of circulation from the lifting-surface optimisation for the different
advance numbers. The outline of the figure is similar to the one in Coney (1992).

First it should be noted that all distributions fall off to zero at the root and the tip of
the blade. This is as expected since the pressure difference between the suction and the
pressure side must vanish there. For the low advance numbers the high rotational speed will
tend to eliminate the influence from the individual blades and the propeller will appear as a
propeller with an infinite number of blades or an actuator disk. The optimum distribution
for an actuator disk without slipstream rotation is a constant distribution, see e.g. Glauert
(1963). Figure 4.7 shows that the distribution found by the lifting-surface optimisation
approaches a constant distribution for decreasing advance number.
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Table 4.5: Results for the optimisation for the reference propeller, DC4381, with different
advance numbers. CTh = 0.662, U0 = 10.0 m/s, ν = 0.5 and Msp × Nch = 40 × 20. LL
references to lifting line and LS to lifting surface.

J 0.1 0.2 0.4 0.6 0.8 1.0 1.2

n (rps) 16.667 8.333 4.167 2.778 2.083 1.667 1.389

ω (rad/sec) 104.7198 52.3599 26.1799 17.4533 13.090 10.4720 8.7266

KT 0.00260 0.01040 0.04161 0.09363 0.16645 0.26008 0.37453

KQ LS 0.00005 0.00039 0.00317 0.01091 0.02655 0.05371 0.09709

KQ LL 0.00005 0.00039 0.00319 0.01099 0.02681 0.05438 0.09866

ηLS 0.85211 0.84795 0.83585 0.81961 0.79810 0.77074 0.73673

ηLL 0.84914 0.84455 0.83166 0.81373 0.79043 0.76118 0.72501

J 1.4 1.6 1.8 2.0

n (rps) 1.190 1.042 0.926 0.833

ω (rad/sec) 7.4800 6.5450 5.8178 5.2360

KT 0.50976 0.66581 0.84266 1.04033

KQ LS 0.16348 0.26390 0.41989 0.69325

KQ LL 0.16695 0.27160 0.43882 0.76304

ηLS 0.69477 0.64248 0.57493 0.47768

ηLL 0.68036 0.62426 0.55013 0.43399

For increasing advance numbers the circulation is observed to increase. This is as expected
as the force on the blade is a function of the velocity and the circulation, see Equation
(4.11). Hence, if the thrust should be the same it is necessary that the circulation increases
for decreasing rotational velocity.

Furthermore, it is seen that the position of the maximum circulation is moved toward the
tip of the blade for increasing advance number. The same is observed for the lifting line in
Coney (1992). For the straight lifting-line this effect can be explained by the expressions for
the thrust and the torque given by

T = ρ

Msp
∑

i=1

Γi(ωri − ut(ri))∆r

Q = −ρ

Msp
∑

i=1

Γiri(U0,x + ux(ri))∆r

(4.25)

where Msp is the number of discrete vortex elements along the line. They are of the length
∆r and have the circulation Γi. ri is the radius to the midpoint of the element. ux and ut

are the induced velocities at the midpoint and U0,x is the axial onset flow.

The above proves that the thrust is a function of the circulation and the total tangential
velocity and the torque is a function of the circulation, the moment arm and the total axial
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velocity. Thus, at the tip, more thrust is available with an increment of the circulation due
to the higher rotational speed, ωr, but at the same time the moment arm is increased and
thereby the torque. The optimum distribution of circulation is therefore a balance between
the prescribed thrust and the minimum torque (Coney, 1992). For the lifting surface the
explanation is similar but due to the more complicated description of the blade some remarks
will be given. Equation (4.13) shows that the thrust is a function of the transverse velocities

(Uy, Uz) and the y- and z-components of the vector �l for the panel side. From the equation
it is seen that the contribution from each panel is added to get the total thrust. As the grid
will be almost tangential to the resulting flow, the contribution to the thrust from the panel
sides 1 and 3 will be small whereas sides 2 and 4 will give the highest contribution to the
thrust, see Figure 4.2 for an example of a panel. Calculations show that the contribution to
the thrust and torque from sides 1 and 3 is below 5% of the total values. From Equation
(4.13) it is seen that the thrust is dependent on the term (lzUy − lyUz). This term can be
rearranged in the following way:

lzUy − lyUz = lz(U0,r(ri)yi/ri − U0,t(ri)zi/ri + ωzi + uy(ri))

− ly(U0,r(ri)zi/ri + U0,t(ri)yi/ri − ωyi + uz(ri))

= ω(lzzi + lyyi) + U0,r(ri)/ri(lzyi − lyzi) − U0,t(ri)/ri(lzzi + lyyi)

+ lzuy(ri) − lyuz(ri)

= (ω − U0,t(ri)/ri)(lzzi + lyyi) + U0,r(ri)/ri(lzyi − lyzi)

+ lzuy(ri) − lyuz(ri)

= (ω − U0,t(ri)/ri)�r ·�l + U0,r(ri)(lzyi − lyzi)/ri

+ lzuy(ri) − lyuz(ri)

(4.26)

where all three components of the onset flow are included and uy, uz are the y− and z-
components of the induced velocities. �r = (0, yi, zi) where yi and zi are the coordinates of

the midpoint of the panel side, ri = |�r| and �l = (lx, ly, lz). By use of vector calculus the first
term on the right-hand side is observed to correspond to (ω − U0,t(ri)/ri)ri∆r. As ri is the
same and ∆r has an opposite sign for sides 2 and 4, the contributions from the tangential
onset flow on these sides will cancel for each panel. The term which contains the radial
onset flow will not necessarily disappear, only if �r and �l are parallel. By this derivation
it becomes clear that the net contribution from each panel is due to the difference in the
term lzuy(ri) − lyuz(ri) on sides 2 and 4. This difference will be small and therefore the
contributions from the panels will generally be small. The largest contribution to the thrust
is due to the side at the trailing edge which combines the two trailers in the horseshoe vortex,
i.e. the term −lz,1+(m−1)Nch,4Uy(�x1+(m−1)Nch,4) + ly,1+(m−1)Nch,4Uz(�x1+(m−1)Nch,4) of Equation
(4.13), because the contribution from the tangential onset flow does not vanish here and the
induced velocities are fully included. A similar derivation can be made for the torque, where
the contributions from sides 1 and 3 are again negligible. From Equations (4.14), (4.15) and
(4.16) it is seen that the torque depends on the term y(lyUx − lxUy) − z(lxUz − lzUx). This
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can be expressed in the following form:

y(lyUx − lxUy) − z(lxUz − lzUx) =

= (−U0,x(ri) + ux(ri))(yily + zilz) − lx(yi(U0,y(ri) + uy(ri))

+ zi(U0,z(ri) + uz(ri)))

= (−U0,x(ri) + ux(ri))(�r ·�l) − lx(yi(U0,r(ri)yi/ri − U0,t(ri)zi/ri + ωzi + uy(ri))

+ zi(U0,r(ri)zi/ri + U0,t(ri)yi/ri − ωyi + uz(ri)))

= (−U0,x(ri) + ux(ri))ri∆ri − lx(U0,r(ri)ri + yiuy(ri) + ziuz(ri))

= (−U0,x(ri) + ux(ri))ri∆ri − lxri(U0,r(ri) + ur(ri)) (4.27)

As for the thrust, the net contribution from the axial onset flow is observed to vanish for
the panels. Hence, from the first term in the above expression the net contribution will be
the difference in induced axial velocity on sides 2 and 4, which will be small. The last term
will also be small as lx is small for sides 2 and 4. Therefore, the largest contribution to the
torque is again from the side at the trailing edge where the onset flow contribution does
not vanish and the induced velocities are fully included. This is in accordance with Munk’s
displacement theorem. From the above derivations it is clear that also the circulation for the
lifting-surface optimisation should be increasingly tip-loaded for decreasing advance number,
because of the same arguments as for the lifting line.
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Figure 4.8: Efficiency for the reference propeller, DC4381, from lifting-surface and lifting-line
calculations compared with the ideal efficiency. CTh = 0.662.
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Figure 4.8 shows the efficiency as a function of the advance number for the above optimisa-
tions. The propeller efficiency is given by

η =
J

2π

KT

KQ

(4.28)

Together with the efficiencies from the lifting-surface and the lifting-line calculations the
ideal efficiency is also shown. The ideal efficiency is

ηideal =
2

1 +
√

1 + CTh

(4.29)

From the figure it is seen that the efficiencies are approaching the ideal efficiency for decreas-
ing advance numbers. This is again an indication of the high rotational velocities eliminating
the individual blades and the results therefore approach the actuator disk results. For in-
creasing advance numbers the efficiency is observed to decrease. This is because the relative
magnitude of the axial velocity to the rotational velocity is increased for increasing advance
numbers. Thus the torque is also increased relative to the thrust (Coney, 1992). For the
entire range of advance numbers the efficiency for the lifting line is lower than for the lifting
surface. This is also noted by Greely and Kerwin (1982).

As a further comparison between lifting-surface and lifting-line optimisations the optimum
distribution of circulation and the corresponding distributions of thrust and torque are con-
sidered. Figure 4.9 shows the optimum distribution of circulation and the radial distributions
of thrust and torque for two different advance numbers, J = 0.8 and J = 1.0.

The figure reveals that the circulation for the lifting-line optimisation is higher than the
lifting-surface distribution at the hub and at the tip, but from approximately r/R = 0.5 to
r/R = 0.7 the lifting-surface distribution is highest.

The differences in the shape of the distributions of circulation are not seen for the distribution
of thrust. They are almost identical for the two methods, but the lifting-surface optimisation
tends to be slightly more loaded at the tip than the lifting-line optimisation.

For the distributions of torque the lifting-surface distribution is lower on the entire blade,
except from approximately r/R = 0.5 to r/R = 0.7, resulting in the higher efficiency for the
lifting-surface optimisation. The difference between the two methods is largest at the tip.

For the classic optimisation theory the blade outline has no influence on the optimum distri-
bution of circulation, as the Munk theorem is applied and the optimum distribution is found
for a straight lifting line. In order to see if this is also the case for the lifting-surface opti-
misation procedure, the five DTNSRDC propellers are optimised for four different advance
numbers. The parameters are the same as listed in Table 4.5 and the advance numbers are
from J = 0.6 to J = 1.2. The results from the optimisation are given in Table 4.6, which
shows that the efficiency is increasing with increasing skew. This effect was also noted by
Mishima and Kinnas (1997), though for a design for a non-uniform wake. From the table it
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Figure 4.9: Comparison between lifting-surface results and lifting-line results for the reference
propeller, DC4381. Left J = 0.8, right J = 1.0.

is seen that skew has a major influence on the results while rake has only a minor influence.
The differences are increasing with increasing advance number.
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Table 4.6: Results for the lifting-surface optimisation with different propellers.
J 0.6

KT 0.09363

Propeller 4381 4382 4383 4497 4498

Skew 00 360 720 360 720

Indu.-rake no yes yes no no

KQ 0.01091 0.01087 0.01082 0.01086 0.01081

η 0.81961 0.82286 0.82661 0.82314 0.82736

η/η4381 - 1.00397 1.00854 1.00431 1.00946

J 0.8

KT 0.16645

Propeller 4381 4382 4383 4497 4498

Skew 00 360 720 360 720

Indu.-rake no yes yes no no

KQ 0.02655 0.02641 0.02623 0.02639 0.02619

η 0.79810 0.80252 0.80786 0.80305 0.80935

η/η4381 - 1.00554 1.01222 1.00620 1.01410

J 1.0

KT 0.26008

Propeller 4381 4382 4383 4497 4498

Skew 00 360 720 360 720

Indu.-rake no yes yes no no

KQ 0.05371 0.05330 0.05279 0.05324 0.05263

η 0.77074 0.77658 0.78409 0.77743 0.78654

η/η4381 - 1.00758 1.01732 1.00868 1.02050

J 1.2

KT 0.37453

Propeller 4381 4382 4383 4497 4498

Skew 00 360 720 360 720

Indu.-rake no yes yes no no

KQ 0.09709 0.09610 0.09476 0.09594 0.09431

η 0.73673 0.74436 0.75486 0.74560 0.75848

η/η4381 - 1.01036 1.02461 1.01204 1.02952
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Figure 4.10: Comparison between results for the reference propeller, DC4381, the propeller
with 36o skew and skew-induced rake, DC4382, and the propeller with 72o skew and skew-
induced rake, DC4383. Left J = 0.8, right J = 1.0.
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Figure 4.10 shows the distributions of circulation, thrust and torque for the reference pro-
peller, DC4381, and the two propellers with both skew and skew-induced rake, i.e. DC4382
and DC4383. The results are only given for J = 0.8 and J = 1.0 but the results are similar
for the other two advance numbers. From the figure it is seen that the maximum value of the
circulation is decreasing with increasing skew. Hence, the shape of the propeller has an in-
fluence, though small, on the optimum distribution of circulation. The distribution of thrust
is almost the same for all three propellers. The skewed propellers have a slightly heavier
tip loading whereas the thrust is lower on the inner part of the blade (r/R < 0.7), resulting
in the same total thrust for all three propellers. The torque on the inner part of the blade
(r/R < 0.7) is a little higher for the skewed propellers but on the outer part of the blade
the torque is lower, which results in the lower total torque for the skewed propellers. For
the skewed propellers it is observed that the outermost point has a relatively higher value,
which is believed to be caused by the poor panel shape at the tip of the skewed propellers.
A comparison of the tip geometry for the reference propeller and the propeller with 72o skew
and skew-induced rake is shown in Figure 4.11.

Figure 4.11: Left:Tip geometry for the propeller with 72o skew and skew-induced rake,
DC4383. Right: Tip geometry for the reference propeller, DC4381. The grids are made for
J = 0.889 and Msp × Nch = 20 × 10.

Figures 4.12 and 4.13 present a comparison of the results for the skewed propellers with and
without skew-induced rake, the results for the reference propeller are also given. The figures
show that the results for the circulation and the thrust distributions are almost identical
for the skewed propellers with and without skew-induced rake. For the torque there are
small differences. The propellers without skew-induced rake have a higher value on the inner
part of the blade, for r/R < 0.7, but a lower value on the outer part, which results in the
slightly lower total torque for the propellers without skew-induced rake. As the distribution
of circulation and the efficiency for the propellers with and without skew-induced rake are
almost identical the results are in accordance with Munk’s displacement theorem.

The reasons for the higher efficiencies of the skewed propellers are not known in detail and
should be further investigated, but an indication of the reasons is given in the following. As
previously shown, see Equations (4.26) and (4.27), the largest contributions to the thrust
and the torque are from the trailing edge. Thus some insight into why the skewed propellers
have higher efficiencies can be gained by combining the total axial and tangential velocities
at the trailing edge with the optimum distribution of circulation. For the skewed propellers
the total tangential velocity is higher on the outer part of the blade and smaller on the inner
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Figure 4.12: Comparison between results for the reference propeller, DC4381, and the two
propellers with 36o skew, DC4382 which has skew-induced rake and DC4497 which has no
rake. Left J = 0.8, right J = 1.0.
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Figure 4.13: Comparison between results for the reference propeller, DC4381, and the two
propellers with 72o skew, DC4383 which has skew-induced rake and DC4498 which has no
rake. Left J = 0.8, right J = 1.0.
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part compared to the velocities for the propeller without skew and rake. As the circulation
for the skewed propellers is lower on the outer part this results in the almost identical
distribution of thrust for all the propellers, as can be seen in Figures 4.10, 4.12 and 4.13.
For the skewed propellers the total axial velocity is lower on the outer part of the blade
and higher on the inner part. Combined with the distribution of circulation this results in
the shape of the torque distribution shown in Figures 4.10, 4.12 and 4.13, where the torque
for the skewed propellers is a little higher on the inner part and lower on the outer part,
resulting in the lower torque for the skewed propellers. From this comparison of propellers
with and without skew it seems that skew has a favourable influence on the total axial and
tangential velocities on the blades.

Figure 4.14: Final grid for the Kappel propeller K1. For J = 0.7472, Msp × Nch = 20 × 14.

4.8.1 Optimisation of the Kappel Propeller K1

The Kappel propeller K1, see Figure 4.14 for an outline, is optimised by the lifting-surface
method with the following input parameters:

Z = 6, R = 3.727 m, Us = 11.57 m/s J = 0.7472

The propeller is optimised for a radially varying wake, with a variation for both the axial and
the radial velocity component. The wake alignment procedure is included in the optimisation.

The optimisation of the Kappel propeller is normally done by the procedure outlined in
Andersen (1997). By this method the force calculation is restricted to the midchord line of
the propeller whereas the induced velocities at the line are calculated from both the trailers
and the bound circulation, which is distributed along a part of the trailers.

Table 4.7 shows a comparison of the optimised torque coefficient and the efficiency for the
two methods along with the input parameters for the optimisation. The results from the
lifting-line optimisation are kindly provided by J.J. Kappel. The obtained values are almost
identical for the two methods. Figure 4.15 shows a comparison of the optimised distributions
of circulation. From the figure it is seen that the shapes of the distributions are almost
identical. However, the distribution from the lifting-surface optimisation is a little lower on
the outer part of the blade and a little higher at the root. A comparison of the distributions
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Figure 4.15: Comparison between results for a lifting-line and a lifting-surface optimisation
for the Kappel propeller K1.
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of the final pitch angle for the trailers is also shown in the figure. This comparison shows
that the pitch angle for the lifting-surface optimisation is higher along the entire blade.

Table 4.7: Results for the optimisation of the Kappel propeller K1 with a lifting-line opti-
misation and a lifting-surface optimisation.

J Us UA CTh KT 10KQ η

Lifting line 0.7472 11.57 m/s 9.280 m/s 1.0254 0.2248 0.3409 0.7842

Lifting surface 0.7472 11.57 m/s 9.274 m/s 1.0258 0.2249 0.3425 0.7810

4.9 Summary

The results from the lifting-surface optimisations show that the method converges with in-
creasing number of panels, even for relatively high thrust loadings. The calculations show
furthermore that the influence of the chordwise pressure distribution is negligible according
to Munk’s displacement theorem (von Kármán and Burgers, 1963). Even though the en-
tire blade is included in the optimisation it becomes clear that with the used vortex-lattice
method the larger part of the thrust and torque comes from the sides of the horseshoe vortices
along the trailing edges, where the onset flow and the induced velocities are fully included,
see Equations (4.26) and (4.27). This is also in agreement with Munk’s theorem. The com-
parison between lifting-line and lifting-surface optimisations for the reference propeller shows
that the distribution of thrust is almost identical for the two methods, whereas the distri-
butions of circulation and torque differ, see Figure 4.9. This results in a higher efficiency
for the propeller optimised by the lifting-surface optimisation. The details about this effect
are not known and should be further investigated. The comparison for the DTNSRDC pro-
pellers shows that the distribution of thrust is almost identical for all the propellers, whereas
the distributions of circulation and torque differ, see Figures 4.10, 4.12 and 4.13. From the
comparison it is furthermore seen that skew increases the efficiency and the efficiency can be
further improved by removing the skew-induced rake. Even though the details for this effect
are not known some insight is obtained by comparing the combination of the distribution of
circulation and the total velocities at the trailing edge for the different propellers. This com-
parison shows that skew has a favourable influence on the induced velocities at the trailing
edge. Combined with the distribution of circulation for the skewed propellers the result is
the higher efficiencies for these propellers. A further investigation is necessary in order to de-
scribe fully why skewed propellers have a higher efficiency, but similar findings are reported
in Mishima and Kinnas (1997). It is noticeable that the distributions of thrust are almost
identical for both the lifting-line and the lifting-surface optimisation for the five DTNSRDC
propellers, see Figures 4.9, 4.10, 4.12 and 4.13. This indicates that, at least for linear the-
ory, the method used for the optimisation has no influence on the optimum distribution of
thrust. Furthermore, this optimum distribution is independent of the propeller geometry.
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But the calculations also show that the distributions of circulation and torque are dependent
on the propeller geometry. The lifting-surface method was also used to optimise a Kappel
propeller in a radially varying inflow by application of the wake alignment procedure. The
comparison with results from the normal optimisation procedure for the Kappel propellers
shows a good agreement for the optimised torque coefficient and a reasonable agreement for
the distribution of circulation. The comparison of the pitch angles for the trailers shows that
the angles for the lifting-surface optimisation are higher. This indicates that the induced
velocities are higher for the lifting-surface optimisation.



Chapter 5

Actuator Disk Theory

The actuator disk model is used to analyse given propellers. Thus, both the geometry and
the distribution of loading are known in advance and the aim is to find the induced velocities
and the pressure. The theory is based on a solution of the Euler equations where the propeller
is modelled as a propeller with an infinite number of blades, i.e. an actuator disk. Wu (1962)
solved, as one of the first, the equations for a heavily loaded disk in uniform inflow with the
slipstream contraction included and with arbitrary distribution of loading, however, without
including numerical results. Later Hough and Ordway (1965) gave closed-form solutions for
the linear actuator disk in uniform inflow. For the linear theory the slipstream contraction
is neglected. Conway (1995) and Conway (1998) confirmed these derivations and included
numerical results both for the linear and the non-linear disk. All these solutions are based
on an axially and tangentially applied force only, but as the aim is to treat Kappel propellers
the Euler equations are solved including a radially applied force. Furthermore, it is desired
that the computational time should be short and the model should be simple, therefore
the present solution of the Euler equations is restricted to the linear equations. A radially
varying inflow can be included in the Euler equations as in Goodman (1979) or Breslin and
Andersen (1995), who treat the linear equations. Due to the poor results obtained by the
linear shear theory in Breslin and Andersen (1995), it is decided that only the uniform inflow
should be treated in this thesis.

5.1 Modified actuator disk theory

In the actuator disk theory the propeller concerned is replaced by an infinitely thin circular
disk, see Figure 5.1. The disk is rotating with the angular velocity of the propeller, ω, and
over the disk there is a pressure jump, ∆p. The pressure jump and the normal to the disk are
positive from the pressure to the suction side of the disk, see Figure 5.2. As Kappel propellers
are treated the disk is not planar but has a curvature and the arc length parameter s is used
to describe the surface, hence the coordinates describing the disk surface are all functions of

71
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Figure 5.1: Coordinate system for the actuator disk.

Figure 5.2: Side view of the actuator disk.

s. Normally, the tip of the Kappel propellers is allowed to bend towards the hub, but this is
not possible in the actuator disk theory. Therefore, the radius must be monotone increasing
with s, so that the radius of the tip coincides with the propeller radius. Figure 5.2 shows a
side view of a curved disk.

The induced velocities and the pressure from the disk can be obtained by solving the conti-
nuity equation, see Equation (2.1), and the Euler equations, see Equation (2.2). As the flow
will be axi-symmetric a cylindrical coordinate system (x, r, φ) is used. For this coordinate
system x is positive upstream, r is positive from the hub to the tip and φ is positive clockwise
when it is viewed in the positive x-direction, see Figure 5.1.

The continuity equation in cylindrical coordinates is

∂u′
a

∂x
+

1

r

∂u′
t

∂φ
+

∂u′
r

∂r
+

u′
r

r
= 0 (5.1)
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The steady Euler equations in cylindrical coordinates are

(u′
a − U0)

∂(u′
a − U0)

∂x
+ u′

r

∂(u′
a − U0)

∂r
+ u′

t

1

r

∂(u′
a − U0)

∂φ
+

1

ρ

∂p′

∂x
= −1

ρ
F ′

a

(u′
a − U0)

∂u′
r

∂x
+ u′

r

∂u′
r

∂r
+ u′

t

1

r

∂u′
r

∂φ
− 1

r
u

′2
t +

1

ρ

∂p′

∂r
= −1

ρ
F ′

r

(u′
a − U0)

∂u′
t

∂x
+ u′

r

∂u′
t

∂r
+ u′

t

1

r

∂u′
t

∂φ
− 1

r
u′

ru
′
t +

1

ρr

∂p′

∂φ
= −1

ρ
F ′

t

(5.2)

where the primes indicate differential quantities and F ′
a, F ′

r and F ′
t are the axial, radial and

tangential components, respectively, of the applied force over the differential path dS ′. The
forces originate from the pressure jump across the disk. The forces F ′

a, F ′
r and F ′

t are defined
as the forces from the fluid on the blade, hence the minus. In the Euler equations it is
furthermore used that the total differential velocity from the disk is �u′ = (u′

a −U0, u
′
r, u

′
t) as

the onset flow has only an axial component.

In order to linearise the Euler equations, so the closed-form solutions can be obtained, it
is assumed that the onset flow is much larger than the induced velocities, U0 >> u′

a, u
′
r, u

′
t.

This means that only lightly loaded propellers can be treated by this theory. By retaining
only the linear terms of the induced velocities and the derivatives the linear Euler equations
are

−U0
∂u′

a

∂x
+

1

ρ

∂p′

∂x
= −F ′

a

ρ
(5.3)

−U0
∂u′

r

∂x
+

1

ρ

∂p′

∂r
= −F ′

r

ρ
(5.4)

−U0
∂u′

t

∂x
+

1

ρr

∂p′

∂φ
= −F ′

t

ρ
(5.5)

The forces on the right-hand side are found from the pressure jump across the disk:

F ′
a =

∆p(s′)

r
na(s

′)δ(x − x′)δ(r − r′)δ(φ − φ′)dS ′

F ′
r =

∆p(s′)

r
nr(s

′)δ(x − x′)δ(r − r′)δ(φ − φ′)dS ′

F ′
t =

∆p(s′)

r
nt(s

′)δ(x − x′)δ(r − r′)δ(φ − φ′)dS ′

(5.6)

where Dirac’s delta function, δ(x), is used, so the differential forces, F ′
a, F ′

r or F ′
t , are applied

only to the dummy point (x′, r′φ′) = (x(s′), r(s′), φ(s′)). na(s
′), nr(s

′), nt(s
′) are the axial,

radial and tangential normal force components, respectively, and dS ′ is the disk area element.

By operating on the linearised Euler equations with the ’continuity operator’ from Equation
(5.1), it is possible to get a Poisson equation for the pressure. In the continuity equation
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the axial Euler Equation (5.3) is inserted instead of u′
a, the radial Euler Equation (5.4) is

inserted instead of u′
r and, finally, the tangential Euler Equation (5.5) is inserted instead of

u′
t. This gives

− U0
∂

∂x

(∂u′
a

∂x
+

1

r

∂u′
t

∂φ
+

∂u′
r

∂r
+

u′
r

r

)

+
1

ρ

(∂2p′

∂x2
+

1

r2

∂2p′

∂φ2
+

∂2p′

∂r2
+

1

r

∂p′

∂r

)

= −1

ρ

(∂F ′
a

∂x
+

1

r

∂F ′
t

∂φ
+

∂F ′
r

∂r
+

F ′
r

r

)

(5.7)

The first term on the left side is zero according to the continuity equation, so that Equation
(5.7) reduces to a Poisson equation:

∇2p′ = −
(∂F ′

a

∂x
+

1

r

∂F ′
t

∂φ
+

∂F ′
r

∂r
+

F ′
r

r

)

whose solution is

p′ =
1

4π

∫ ∞

−∞

∫ ∞

0

∫ 2π

0

∂F ′

a

∂x′′
+ 1

r′′
∂F ′

t

∂φ′′
+ ∂F ′

r

∂r′′
+ F ′

r

r′′
√

(x − x′′)2 + r2 + r′′2 − 2rr′′cos(φ − φ′′)
r′′dφ′′dr′′dx′′ (5.8)

Each term of Equation (5.8) is integrated separately by inserting the forces from Equation

(5.6). By setting R′′ =
√

(x − x′′)2 + r2 + r′′2 − 2rr′′cos(φ − φ′′) and

R =
√

(x − x′)2 + r2 + r′2 − 2rr′cos(φ − φ′) the ∂F ′
a/∂x′′ term is reduced to

∫ ∞

−∞

∫ ∞

0

∫ 2π

0

∂F ′
a

∂x′′

1

R′′
r′′dφ′′dr′′dx′′

=

∫ ∞

−∞

∫ ∞

0

∫ 2π

0

∆p(s′)

r′′
na(s

′)
∂

∂x′′
δ(x′′ − x′)δ(r′′ − r′)δ(φ′′ − φ′)dS ′ 1

R′′
r′′dφ′′dr′′dx′′

= ∆p(s′)na(s
′)dS ′

∫ ∞

−∞

1
√

(x − x′′)2 + r2 + r′2 − 2rr′cos(φ − φ′)

∂

∂x′′
δ(x′′ − x′)dx′′

= ∆p(s′)na(s
′)dS ′

(

− ∂

∂x′

1

R

)

(5.9)

the ∂F ′
t/∂φ′′ term is reduced to

∫ ∞

−∞

∫ ∞

0

∫ 2π

0

1

r′′
∂F ′

t

∂φ′′

1

R′′
r′′dφ′′dr′′dx′′

=

∫ ∞

−∞

∫ ∞

0

∫ 2π

0

∆p(s′)

r′′
1

r′′
nt(s

′)δ(x′′ − x′)δ(r′′ − r′)
∂

∂φ′′
δ(φ′′ − φ′)dS ′ 1

R′′
r′′dφ′′dr′′dx′′

= ∆p(s′)nt(s
′)

1

r′
dS ′

(

− ∂

∂φ′

1

R

)

(5.10)
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the ∂F ′
r/∂r′′ term is reduced to

∫ ∞

−∞

∫ ∞

0

∫ 2π

0

∂F ′
r

∂r′′
1

R′′
r′′dφ′′dr′′dx′′

=

∫ ∞

−∞

∫ ∞

0

∫ 2π

0

∆p(s′)

r′′
nr(s

′)δ(x′′ − x′)
∂

∂r′′
δ(r′′ − r′)δ(φ′′ − φ′)dS ′ 1

R′′
r′′dφ′′dr′′dx′′

−
∫ ∞

−∞

∫ ∞

0

∫ 2π

0

∆p(s′)

r′′2
nr(s

′)δ(x′′ − x′)δ(r′′ − r′)δ(φ′′ − φ′)dS ′ 1

R′′
r′′dφ′′dr′′dx′′

= ∆p(s′)nr(s
′)dS ′

(

− ∂

∂r′
1

R

)

− SECOND TERM (5.11)

and finally the F ′
r/r

′′ term is reduced to

∫ ∞

−∞

∫ ∞

0

∫ 2π

0

1

r′′
F ′

r

1

R′′
r′′dφ′′dr′′dx′′

=

∫ ∞

−∞

∫ ∞

0

∫ 2π

0

∆p(s′)

r′′2
nr(s

′)δ(x′′ − x′)δ(r′′ − r′)δ(φ′′ − φ′)dS ′ 1

R′′
r′′dφ′′dr′′dx′′

(5.12)

This term cancels the second term of the above equation. Hence, the differential pressure is

p′ =
−1

4π
∆p(s′)

[

na(s
′)

∂

∂x′
+nr(s

′)
∂

∂r′
+nt(s

′)
1

r′
∂

∂φ′

]1

R
dS ′ (5.13)

By an integration over the disk the total pressure is obtained:

p(x, r) =
−1

4π

∫

S

∆p(s′)
[

na(s
′)

∂

∂x′
+nr(s

′)
∂

∂r′
+nt(s

′)
1

r′
∂

∂φ′

]1

R
dS ′ (5.14)

This integral will be solved later.

As the pressure is known it is possible to find expressions for the velocities by integrating the
linear Euler equations. By integrating Equation (5.3) from infinitely upstream ( x → ∞) to
the present point x the differential axial velocity is

− U0(u
′
a(x, r)

∣

∣

x→∞
− u′

a(x, r)) +
1

ρ
(p′(x, r)

∣

∣

x→∞
− p′(x, r))

= −∆p(s′)

ρr
na(s

′)
[

1 − H(x − x′)
]

δ(r − r′)δ(φ − φ′)dS ′ (5.15)

where H(x) is the Heaviside’s step function defined by

H(x) =











0 x < 0,
1
2

x = 0,

1 x > 0.
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The axially induced velocity vanishes far upstream of the disk, thus u′
a(x, r) = 0 for x → ∞.

As only the pressure difference is interesting the pressure is assumed to be zero far upstream,
thus p′(x, r) = 0 for x → ∞. Hence, the differentially induced axial velocity becomes

u′
a(x, r) =

1

ρU0

p′(x, r) − ∆p(s′)

ρU0r′
na(s

′)
[

1 − H(x − x′)
]

δ(r − r′)δ(φ − φ′)dS ′ (5.16)

and the total induced axial velocity is found by an integration over the disk:

ua(x, r) =
1

ρU0

p(x, r) −
∫

S

∆p(s′)

ρU0r′
na(s

′)
[

1 − H(x − x′)
]

δ(r − r′)δ(φ − φ′)dS ′ (5.17)

The integration over the disk is given by

∫

S

...dS′ =

∫ st

sh

∫ 2π

0

...r′dφ′ds′ (5.18)

where sh is the arc length at the hub and st is the arc length at the tip.

By applying the integration the total induced axial velocity is

ua(x, r) =
1

ρU0

p(x, r)−
∫ st

sh

∫ 2π

0

∆p(s′)r′

ρU0r′
na(s

′)
[

1−H(x− x′)
]

δ(r − r′)δ(φ− φ′)dφ′ds′

=
1

ρU0

p(x, r) − ∆p(s)

ρU0

na(s)
[

1 − H(x − x′)
]

(5.19)

where s corresponds to the arc length for the radius r.

Integration of Equation (5.4) gives the differentially induced radial velocity. Again the
radially induced velocity vanishes far upstream (u′

r(x, r) = 0 for x → ∞):

u′
r(x, r) = − 1

ρU0

∫ ∞

x

∂p′

∂r
dx′′

− ∆p(s′)

ρU0r′
nr(s

′)
[

1 − H(x − x′)
]

δ(r − r′)δ(φ − φ′)dS ′ (5.20)

An integration over the disk gives the total induced radial velocity:

ur(x, r) = − 1

ρU0

∫

S

∫ ∞

x

∂p′

∂r
dx′′dS ′−

∫

S

∆p(s′)

ρU0r′
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= − 1
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S
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x

∂p′

∂r
dx′′dS ′ − ∆p(s)

ρU0

nr(s)
[

1 − H(x − x′)
]

(5.21)

where the integration of the pressure will be solved later.

The differentially induced tangential velocity is found by an integration of Equation (5.5),
where the rotational symmetry is applied and again the velocity far upstream is zero (u′

t(x, r) =
0 for x → ∞), hence
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u′
t(x, r) = −∆p(s′)

ρU0

nt(s
′)

r′
[

1 − H(x − x′)
]

δ(r − r′)δ(φ − φ′)dS ′ (5.22)

and the total induced tangential velocity is

ut(x, r) = −
∫

S

∆p(s′)

ρU0

nt(s
′)

r′
[

1 − H(x − x′)
]

δ(r − r′)δ(φ − φ′)dS ′

= −∆p(s)

ρU0

nt(s)
[

1 − H(x − x′)
]

(5.23)

In order to have the final expressions for the velocities it is necessary to find a closed-form
solution for the pressure. To perform the integration over the disk for the pressure, see
Equation (5.14), the 1/R term is rewritten by use of the Legendre functions of the second
kind, see e.g. Breslin and Andersen (1994):

1

R
=

1

π
√

rr′

∞
∑

m=−∞

Q|m|− 1

2

(Z)eim(φ−φ′) (5.24)

where

Z =
(x − x′)2 + r2 + r′2

2rr′
(5.25)

Insert Equation (5.24) in the pressure Equation (5.14):

p(x, r) =
−1

4π

∫ st

sh

∫ 2π

0

∆p(s′)r′
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na(s
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√
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Q|m|− 1

2

(Z)eim(φ−φ′)
)

dφ′ds′ (5.26)

For the na− and nr−terms eim(φ−φ′) is the only function of φ′. The φ′-integration gives

∫ 2π

0

eim(φ−φ′)dφ′ =

{

0 if m 
= 0

2π if m = 0
(5.27)

For the nt-term the φ′-integration gives
∫ 2π

0

∂

∂φ′

1

R
dφ′ =

1

R(2π)
− 1

R(0)
= 0 (5.28)

Thus, the pressure equation is reduced to

p(x, r) =
−1

2π
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∆p(s′)r′
[

n′
a

∂
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∂Z
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]

}

ds′

(5.29)
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where

n′
a = na(s

′)

n′
r = nr(s

′)

∂Z

∂r′
=

2r′

2rr′
+

[

(x − x′)2 + r2 + r′
2] −1

2rr′2
=

1

r
− Z

r′

∂Z

∂x′
=

−2(x − x′)

2rr′
= −x − x′

rr′

Hence, the final expression for the induced pressure is

p(x, r) =
1

2π
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∆p(s′)r′√
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− 1

2

(Z)
]

}

ds′
(5.30)

where Q′
− 1

2

(Z) = ∂Q− 1

2

(Z)/∂Z.

By inserting Equation (5.30) in Equation (5.19) the closed-form solution for the total induced
axial velocity is

ua(x, r) =
1

2πρU0

∫ st

sh

∆p(s′)r′√
rr′
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n′
a

x − x′

rr′
Q′

− 1

2

(Z)

− n′
r

[

− 1

2r′
Q− 1

2

(Z) +
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ds′

− ∆p(s)

ρU0

na(s)
[

1 − H(x − x′)
]

(5.31)

Returning to the total induced radial velocity from Equation (5.21), the integration of the
pressure is solved by inserting Equation (5.13) for p′:

−1

ρU0

∫ ∞

x

∫

S′

∂p′

∂r
dS ′dx′′

=
1

ρU0

∫ ∞

x
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]1
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r′ds′dφ′dx′′

(5.32)

Again the 1/R term is rewritten by the Legendre functions, see Equation (5.24), and the
angular integration from Equation (5.27) is valid for the na− and nr-terms also. For the nt-
term the φ′-integration gives the following, as the order of differentiation can be interchanged:

∫ 2π

0

∂

∂r

{

∂

∂φ′

1

R

}

dφ′ =
∂

∂r

1

R(2π)
− ∂

∂r

1

R(0)
= 0 (5.33)
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By use of ∂/∂x′ = −∂/∂x′′ the pressure integration from Equation (5.32) is

−1

ρU0

∫ ∞

x

∫

S

∂p′

∂r
dS ′dx′′ =

1

2π

∫ ∞
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∫ ∞
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(Z)
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dx′′
]

ds′

(5.34)

where it is used that Q(Z) → 0 for Z → ∞ in the evaluation of the first x′′-integral.

In order to evaluate the last x′′-integral the Legendre function is written in the following
form, see e.g. Breslin and Andersen (1994):

1√
rr′

Q− 1

2

(Z) = π

∫ ∞

0

J0(kr)J0(kr′)e−k|x−x′|dk (5.35)

where Jn is the Bessel functions of the first kind and the order n. The derivative with respect
to r′ is

∂

∂r′
1√
rr′

Q− 1

2

(Z) = π

∫ ∞

0

−J0(kr)J1(kr′)ke−k|x−x′|dk (5.36)

Hence, the last x′′-integral is
∫ ∞

x

n′
r

∂

∂r′

( 1√
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2

(Z)
)

dx′′ = −π

∫ ∞

x

∫ ∞

0

n′
rJ0(kr)J1(kr′)ke−k|x′′−x′|dkdx′′ (5.37)

In the above expression the term e−k|x−x′| is the only function of x. The x′′-integration gives

− π

∫ ∞

0

nrJ0(kr)J1(kr′)

∫ ∞

x

ke−k|x′′−x′|dx′′dk

= −π

∫ ∞

0

F (k)

∫ ∞

x

ke−k|x′′−x′|dx′′dk

=







−π
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0
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−π
∫∞

0
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∫∞
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]
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=







−π
∫∞

0
F (k)e−k(x−x′)dk for x ≥ x′

−π
∫∞

0
F (k)

[

−ek(x−x′) + 2

]

dk for x < x′

(5.38)

Hence, the last x′′-integral of Equation (5.34) is

∫ ∞

x

n′
r

∂

∂r′

( 1√
rr′

Q− 1

2

(Z)
)

dx′′

=

{

−πn′
r

∫∞

0
J0(kr)J1(kr′)e−k(x−x′)dk for x ≥ x′

πn′
r

∫∞

0
J0(kr)J1(kr′)ek(x−x′)dk − 2πn′

r

∫∞

0
J0(kr)J1(kr′)dk for x < x′

(5.39)
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where the integration of the Bessel functions gives, see e.g. Abramowitz and Stegun (1972):

∫ ∞

0

J0(kr)J1(kr′)dk =











1
r′

for r < r′

1
2r

for r = r′

0 for r > r′
(5.40)

By using Equation (5.40) in Equation (5.39) the Heaviside’s step function can be used to
write Equation (5.39) for x 
= x′ as

∫ ∞

x

n′
r

∂

∂r′

( 1√
rr′

Q− 1

2

(Z)
)

dx′′

= ∓πn′
r

∫ ∞

0

J0(kr)J1(kr′)e−k|x−x′|dk − 2πn′
r

r′
H(r′ − r)H(x′ − x) for x 
= x′ (5.41)

where − applies for x > x′ and + for x < x′. From Equation (5.39) it is seen that the
function is continuous in the point x = x′, but with the introduction of the Heaviside’s step
function it is necessary to omit this point, later it will be included again.

The last integral of the right-hand side of Equation (5.34) gives

∂

∂r

[

∫ ∞

x

n′
r

∂

∂r′

( 1√
rr′

Q− 1

2

(Z)
)

dx′′
]

= ±πn′
r

∫ ∞

0

J1(kr)J1(kr′)ke−k|x−x′|dk +
2πn′

r

r′
δ(r′ − r)H(x′ − x)

=

[

− ∂

∂x

1√
rr′

Q 1

2

(Z) +
2π

r′
δ(r′ − r)H(x′ − x)

]

n′
r for x 
= x′ (5.42)
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Hence, the pressure integration for the radial velocity is

−1

ρU0

∫ ∞

x

∫

S

∂p′

∂r
dS ′dx′′

=
1

2π

∫ st

sh

∆p(s′)r′

ρU0

{

n′
a

∂

∂r

[

1√
rr′

Q− 1

2

(Z)

]

+n′
r

[

− ∂

∂x

1√
rr′

Q 1

2

(Z)+
2π

r′
δ(r′−r)H(x′−x)

]

}

ds′

=
1

2π
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∆p(s′)r′

ρU0
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a√
rr′

[−1
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Q− 1

2

(Z) +
( 1
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− Z

r

)

Q′
− 1

2

(Z)

]

+ n′
r

[ −1√
rr′

x − x′

rr′
Q′

1

2

(Z) +
2π

r′
δ(r′ − r)H(x′ − x)

]

}

ds′

=
1

2π
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∆p(s′)r′

ρU0

{

n′
a√
rr′

[−1

2r
Q− 1

2

(Z) +
( 1

r′
− Z

r

)

Q′
− 1

2

(Z)

]

− n′
r√
rr′

x − x′

rr′
Q′

1

2

(Z)

}

ds′ +
1

2π
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∆p(s′)r′

ρU0

n′
r

2π

r′
δ(r′ − r)H(x′ − x)ds′

=
1

2π
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∆p(s′)r′

ρU0
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n′
a√
rr′

[−1

2r
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2

(Z) +
( 1
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r

)

Q′
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2

(Z)

]
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r√
rr′

x − x′

rr′
Q′

1

2

(Z)

}

ds′

+
∆p(s)

ρU0

nrH(x′ − x) (5.43)

If Equation (5.43) is inserted in Equation (5.21) the closed-form solution for the total induced
radial velocity is obtained:

ur(x, r) =
−1

ρU0

∫ ∞

x

∫

S

∂p′

∂r
dS ′dx′′ − ∆p(s)

ρU0

nr(s)
[

1 − H(x − x′)
]

=
1

2πρU0

∫ st
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∆p(s′)r′√
rr′

{

n′
a

[−1

2r
Q− 1

2

(Z) +
( 1

r′
− Z

r

)

Q′
− 1

2

(Z)

]

− n′
r

x − x′

rr′
Q′

1

2

(Z)

}

ds′

+
∆p(s)

ρU0

nr(s)H(x′ − x) − ∆p(s)

ρU0

nr(s)
[

1 − H(x − x′)
]

=
1

2πρU0

∫ st

sh

∆p(s′)r′√
rr′

{

n′
a

[−1

2r
Q− 1

2

(Z) +
( 1

r′
− Z

r

)

Q′
− 1

2

(Z)

]

− n′
r

x − x′

rr′
Q′

1

2

(Z)

}

ds′

(5.44)

In the above solution for ur(x, r) it is seen that the Heaviside’s step functions have cancelled
each other and therefore the above result can be applied to all x.

In the solutions for ua, see Equation (5.31), and ur, see Equation (5.44), the n′
a-terms are

recognised as the results from Hough and Ordway (1965), i.e. they are similar to the results
for an actuator disk. The n′

r-terms are identical to the induced velocities from a duct, or
more precisely a ring vortex, see e.g. Küchemann and Weber (1953). The expression for



82 Chapter 5. Actuator Disk Theory

ut, see Equation (5.23), is seen to be similar to the results from Hough and Ordway (1965).
Thus, by this modified actuator disk theory, the induced velocities and pressure from the
Kappel propeller are calculated as a weighted sum of the velocities from a normal actuator
disk and a duct.

5.1.1 Evaluation of the Singular Points

The Legendre functions in the expressions for the velocities are singular for Z = 1. This
happens when the field point (x, r, φ) and the dummy point (x′, r′, φ′) coincide as they can
do on the disk only. Fortunately, the singularities are removable and therefore they cause
no problems, except that the integration when the field point is on the disk requires special
attention.

For Z ≈ 1 the dominating terms in the approximation of the Legendre functions are, see e.g.
Breslin and Andersen (1994):

Qn− 1

2

(Z) ≈ −1
2 ln

(

(x − x′)2 + (r − r′)2

2rr′

)

Q′
n− 1

2

(Z) ≈ −rr′

(x − x′)2 + (r − r′)2

(5.45)

These approximations are inserted in the integrand for the induced pressure, see Equation
(5.30), thus for Z ≈ 1:

dp =
1

2π

∆p(s′)r′√
rr′

{

n′
a

x − x′

rr′
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2
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− n′
r

[

− 1

2r′
Q− 1

2

(Z) +
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r
− Z

r′

)

Q′
− 1

2

(Z)
]

}

ds′

≈ 1

2π

∆p(s′)r′√
rr′

{ −(x − x′)n′
a

(x − x′)2 + (r − r′)2

− n′
r

[

1

4r′
ln

(

(x − x′)2 + (r − r′)2

2rr′

)

+

(

1

r
− 1

r′

(

(x − x′)2 + r2 + r′2

2rr′

))

−rr′

(x − x′)2 + (r − r′)2

]}

ds′

=
1

2π

∆p(s′)r′√
rr′

{−(x − x′)n′
a − (r − r′)n′

r

(x − x′)2 + (r − r′)2

− n′
r

[

1

4r′
ln

(

(x − x′)2 + (r − r′)2

2rr′

)

+
1

2r′

]}

ds′

(5.46)

From the above expression it is seen that the first term has a singularity for x = x′ and
r = r′, this singularity will be examined later. Furthermore, it is seen that a logarithmic
singularity is present, which will be treated numerically.
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Figure 5.3: Coordinate transformation from x, r-coordinates to n, t-coordinates.

In order to investigate the singular term (−(x − x′)n′
a − (r − r′)n′

r)/((x − x′)2 + (r − r′)2),
the x, r-coordinate system is transformed into an n, t-system where n is the coordinate along
the normal to the disk and t is the coordinate along the tangent to the disk, see Figure 5.3.
The transformation is

n′ = (x − x′) cos α + (r − r′) sin α = (x − x′)
n′

a
√

n′2
a + n′2

r

+ (r − r′)
n′

r
√

n′2
a + n′2

r

t′ = −(x − x′) sin α + (r − r′) cos α = −(x − x′)
n′

r
√

n′2
a + n′2

r

+ (r − r′)
n′

a
√

n′2
a + n′2

r

(5.47)

where n′
a and n′

r are the axial and radial components of the normal, respectively, at point
(x′, r′). Inserting the above in Equation (5.46) gives

dp ≈ 1

2π

∆p(s′)r′√
rr′

{

−n′
√

n′2
a + n′2

r

n′2 + t′2

− n′
r

[

1

4r′
ln

(

(x − x′)2 + (r − r′)2

2rr′

)

+
1

2r′

]}

ds′

(5.48)

The −n′
√

n′2
a + n′2

r/(n
′2 + t′2) term corresponds to the expression for the tangential velocity

for a planar distribution of vorticity. The result is ∓∆p/2 for n → 0±.

In a region close to s′ the n, t-coordinates are approximated by a second order polynomial:

n′ = n1(s − s′) + n2(s − s′)2

t′ = t1(s − s′) + t2(s − s′)2 (5.49)



84 Chapter 5. Actuator Disk Theory

Hence

−n′
√

n′2
a + n′2

r

n′2 + t′2
=

[−n1(s − s′) − n2(s − s′)2]
√

n′2
a + n′2

r

[n1(s − s′) + n2(s − s′)2]2 + [t1(s − s′) + t2(s − s′)2]2

=
[−n1(s − s′) − n2(s − s′)2]

√

n′2
a + n′2

r

(s − s′)2(n2
1 + t21)

[

1 + 2n1n2+t1t2
n2

1
+t2

1

(s − s′) +
n2

2
+t2

2

n2

1
+t2

1

(s − s′)2
]

(5.50)

The term in the square brackets in the denominator is expanded in a Taylor series as (1 +
x)−1 = 1 − x + x2 + O(x3):

[

1 + 2
n1n2 + t1t2

n2
1 + t21

(s − s′) +
n2

2 + t22
n2

1 + t21
(s − s′)2

]−1

= 1−2
n1n2 + t1t2

n2
1 + t21

(s−s′)− n2
2 + t22

n2
1 + t21

(s−s′)2+4

(

n1n2 + t1t2
n2

1 + t21

)2

(s−s′)2+O
(

(s−s′)3
)

(5.51)

Insert the expansion in Equation (5.50) and neglect terms of (s−s′) with orders higher than
or equal to one:

−n′
√

n′2
a + n′2

r

n′2 + t′2
≈

√

n′2
a + n′2

r

n′2
1 + t′21

[ −n1

(s − s′)
+ 2n1

n1n2 + t1t2
n2

1 + t21
− n2

]

(5.52)

where it is seen that a Cauchy singularity is present for s → s′.

For the radial velocity a similar analysis of the integrand of Equation (5.44) results in

dur ≈
1

2πρU0

∆p(s′)r′√
rr′
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[

1

4r
ln

(
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)
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1
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+
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}

ds′

(5.53)

The −t′
√

n′2
a + n′2

r/(n
′2 + t′2) term corresponds to the integrand for the normal velocity for

a planar distribution of vorticity.

The approximation from Equation (5.49) is used again, hence the −t′
√

n′2
a + n′2

r/(n
′2 + t′2)

term can be approximated by

−t′
√

n′2
a + n′2

r

n′2 + t′2
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√

n′2
a + n′2

r

n′2
1 + t′21

[ −t1
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+ 2t1
n1n2 + t1t2

n2
1 + t21

− t2

]

(5.54)
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Again it is seen that a Cauchy singularity is present for s → s′.

The numerical evaluation of the integrals in the expressions for the velocities and the pres-
sure, see Equations (5.31), (5.44) and (5.30), is performed using Simpson’s method. When
the point (x, r) is not on the disk it is straightforward to calculate the velocities. If (x, r) is
on the disk it is necessary to introduce the above approximations, the axial velocity is used
as an example. The integrand for the axial velocity is calculated at a number of points from
the hub to the tip, by use of Equation (5.31). In the entire interval the singular logarithmic
term from Equation (5.46) is subtracted. The integral of the logarithmic term is then calcu-
lated numerically by an IMSL-routine (Visual Numerics, Inc., 1997). In a small region close
to the singularity point (x′, r′) the Cauchy term given by Equation (5.52) is subtracted. The
remaining part of the integrand, i.e. the original integrand minus the logarithmic term and
minus the Cauchy term, is a smooth function which is integrated by Simpson’s method. The
integral with the Cauchy singularity is calculated by an IMSL-routine. The sum of the three
integral components, i.e. the logarithmic term, the Cauchy term and the remaining part, is
the total axial velocity. A similar approach is adopted for the radial velocity. The evaluation
of the induced tangential velocity causes no problems, as there are no singularities or even
need of an integration, see Equation (5.23). The computer program is designated xdisk.

5.1.2 Input Geometry

In order to calculate the induced velocities it is necessary to find the normal to the blade
surface. As described in Section 4.2 the reference surface for a propeller in a rolled-off
coordinate system, (x, r, rφ), is described by the vector

�R(s, t) =















xm(s) + tc(s) cos βv(s) sin βh(s)

rm(s) + tc(s) sin βv(s)

−rm(s)φm(s) + tc(s) cos βv(s) cos βh(s)















(5.55)

The Cartesian coordinates for the blade surface are

(x, y, z) = (x,−r sin(φ), r cos(φ)) (5.56)

As the propeller concerned is approximated by the actuator disk the normals in the calcu-
lations are assumed to be equal to the normal for the blade on the midchord line, which is
given by

�n =
�N

| �N |

∣

∣

∣

∣

∣

t=0

(5.57)

where

�N =
∂ �R
∂s

× ∂ �R
∂t

(5.58)
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Figure 5.4: Normals for the Kappel propeller K1.
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(5.59)

∂ �R
∂t

=
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c cos βv sin βh
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


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(5.60)

Thus
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∣
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c (5.61)
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In order to calculate the normals in xdisk a number of geometrical data is given as input
functions of s. The given input data is the radius, chord length, rake, skew, horizontal and
vertical pitch angle. Furthermore, the derivatives of the radius (∂rm/∂s), the rake (∂xm/∂s)
and the skew (rm∂φm/∂s) with respect to s are given. Figure 5.4 shows the normals for the
Kappel propeller K1.

5.1.3 Input Pressure Distribution

The pressure distribution ∆p(s) is determined either from the radial distribution of thrust

dT (s) = 2πr(s)∆p(s)na(s)ds

∆p(s) =
1

2πr(s)na(s)

dT (s)

ds

(5.62)

or from the radial distribution of circulation for the blades. When the distribution of circu-
lation is known the force is found by the Kutta-Joukowsky law:

d�F = ρ�U(s) × d�Γ(s) = ρΓ(s)�U(s) × �t(s)ds (5.63)

where �U is the total velocity and �t(s) is the tangent to the midchord line:

�t(s) =
∂ �R/∂s

|∂ �R/∂s|

∣

∣

∣

∣

∣

t=0

(5.64)

where ∂ �R/∂s is given in Equation (5.59). The thrust is the x-component of the force:

dT (s) =
(

d�F
)

x
= ρΓ(s)ds(Urtt − Uttr) (5.65)

where Ur and Ut are the radial and tangential components, respectively, of the total velocity.
In accordance with linear theory the induced velocities are omitted, hence only the tangential
onset flow is left and the thrust is

dT (s) = ρΓ(s)ωr(s)tr(s)ds (5.66)

Therefore, the pressure jump is

ρΓ(s)ωr(s)tr(s)ds = 2πr∆p(s)na(s)ds

∆p(s) =
ρω

2π

Γ(s)tr(s)

na

(5.67)

where tr(s) is the radial component of the tangent from Equation (5.64).
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5.1.4 Validation of xdisk

As the velocities for the modified actuator disk theory correspond to the sum of the velocities
for a normal actuator disk and the velocities from a duct, the numerical results from xdisk are
compared to results for the actuator disk given by Hough and Ordway (1965) and for the
duct given by Küchemann and Weber (1953).

The distribution of circulation for the duct is given by (Küchemann and Weber, 1953):

Γ = C
√

1 − (1 − 2s)2 (5.68)

and for the propeller the circulation is (Hough and Ordway, 1965):

Γ = Cs
√

1 − s (5.69)

The results for the calculations performed by xdisk and the results given by Küchemann and
Weber (1953) and Hough and Ordway (1965) are shown in Figure 5.5.

As can be seen from the figure, the correlation between the results from the literature and
the present program is good. There are no numerical results at or close to the leading and
trailing edges of the duct as they cannot be calculated by the used numerical method.

5.2 Results for the DTNSRDC Propellers

The induced velocities from two propellers from the DTNSRDC propeller series have been
calculated by xdisk. The two propellers are the reference propeller, i.e. DC4381, and the
propeller with 72o skew and skew-induced rake, i.e. DC4383. An outline of the propellers is
seen in Figure 4.4. The input parameters are

Z = 5, R = 3.0m, r̂h = 0.2, U0 = 10.0m/s, J = 0.889, CTh = 0.662.

The input pressure distribution to xdisk is found either from the distribution of thrust and
Equation (5.62) or from the distribution of circulation and Equation (5.67). The distributions
of thrust and circulation are found by xlift, by use of linear theory.

Figures 5.6 and 5.7 show the induced velocities for the two propellers at the propeller plane
and far downstream of it. The input load distributions are also given. From the figures it
is seen that the input load distributions are almost identical for the two propellers, whereas
there are larger differences in the axial velocities at the propeller plane. This is caused by
the different geometry of the two propellers. As propeller DC4381 has no skew or rake the
radial component of the normal is zero. Hence, the duct term in the expressions for the axial
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Figure 5.5: Comparison of ua and ur for xdisk and analytical results. The results for the duct
are from Küchemann & Weber (1953) and the propeller results are from Hough & Ordway
(1965).
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Figure 5.6: Comparison of the induced velocities with the input distribution of pressure
based on either the distribution of circulation or the distribution of thrust. The calculations
are made with the propeller without skew or skew-induced rake, i.e. DC4381. Z = 5,
R = 3.0m, r̂h = 0.2, U0 = 10.0m/s, J = 0.889 and CTh = 0.662.
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Figure 5.7: Comparison of the induced velocities with the input distribution of pressure
based on either the distribution of circulation or the distribution of thrust. The calculations
are made with the propeller with 72o skew and skew-induced rake, i.e. DC4383. Z = 5,
R = 3.0m, r̂h = 0.2, U0 = 10.0m/s, J = 0.889 and CTh = 0.662.
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and radial velocities, see Equations (5.31) and (5.44), is zero and the expressions correspond
to the expressions for an actuator disk. Therefore, the axial velocities far downstream are
twice as big as the velocities at the propeller plane, see Figure 5.6. Due to the skew and the
skew-induced rake, propeller DC4383 has a radial normal component, hence there will be a
contribution from the duct term in the axial and radial velocities. Furthermore, the disk will
have an extension in the axial direction. From Figure 5.7 it is seen that this has a relatively
large influence on the axial velocities, as the velocities at the propeller plane are almost
as high as far downstream. A comparison of the axially induced velocities far downstream
for the two propellers shows that the velocities from DC4381 are almost identical to the
velocities from DC4383, when the input pressure distribution is based on the distribution
of thrust for DC4383. This is because the influence from the integral term in Equation
(5.31) vanishes downstream and because the distributions of thrust for the two propellers
are almost identical. For the radial velocity the difference between the results for DC4381
and DC4383 is small, but the induced velocities for the DC4383 propeller are a little higher
and the velocities are negative over a larger part of the blade. The wrinkled shape of the
radial velocities is caused by the used numerical procedures. The tangential velocities are
for both propellers twice as high far downstream as at the propeller plane. This is as they
should be according to the expression for the tangential velocity, see Equation (5.23). A
comparison of the tangential velocities for the two propellers shows that the velocities from
DC4381 and DC4383 are almost identical, when the input pressure distribution is based on
the distribution of thrust. This is because the pitch distributions for the two propellers are
identical and the distributions of thrust are almost identical.

It is furthermore seen in Figure 5.6 that for propeller DC4381 the influence from the input
load distribution on the velocities is small. For propeller DC4383 the results depend on
the input load distribution, see Figure 5.7. The figure shows that the axial and tangential
velocities calculated by the input pressure distribution on the basis of the distribution of
circulation are higher and the maximum value is located closer to the hub. It is believed
that these differences are caused by neglect of the induced velocities in the calculation of the
input pressure distribution based on a given distribution of circulation, see Section 5.1.3. The
effect of the induced tangential velocity has been investigated by calculating the tangential
velocities by use of Lord Kelvin’s theorem, see Section 2.1. But the effect was negligible.
Hence, the differences may be caused by neglect of the radially induced velocity.

5.3 Results for a Kappel Propeller

The velocities for the Kappel propeller K1 have been calculated by xdisk for

Z = 6, R = 3.727m, U0 = 9.28m/s, J = 0.7472, CTh = 1.0126.

The calculations are performed with both the distribution of thrust, dKT , and the distribu-
tion of circulation, Γ, as input. The two different distributions of loadings are presented in
Figure 5.8. These distributions correspond to the optimum distribution in a wake. The
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Figure 5.8: The induced velocities and input load distributions for the Kappel propeller K1,
with Z = 6, R = 3.727m, U0 = 9.28m/s, J = 0.7472 and CTh = 1.0126.
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calculated velocities are also shown in this figure. The normal distribution for the propeller
is given in Figure 5.4. From the figure it is seen that also the results for the Kappel propeller
depend on the input distribution of loading. This is again caused by the neglect of the
induced velocities in the expression for the input pressure distribution, see Equation (5.67),
when the distribution of circulation is used as input. As for DC4383 the maximum induced
velocities are higher when the circulation is used as input, except for the axial velocities at
the propeller plane and the radial velocities. The induced tangential velocities show that the
loading is moved toward the tip when dKT is used as input. This results in the higher axial
and radial velocities on the outer part of the blade when the thrust is used as input. As for
the propeller DC4383 the induced axial velocities at the propeller plane are relatively high
and are almost as high as the velocities downstream.

5.4 Summary

In this chapter the linear Euler equations are solved including all three components of the
applied force. The solution of the equations is the sum of the solution for the general actua-
tor disk, see e.g. Hough and Ordway (1965), and the solution for a duct, see e.g. Küchemann
and Weber (1953). The expressions for the axial and radial velocities contain removable sin-
gularities when the velocities are calculated on the disk. The agreement between the present
results obtained by xdisk and the results from Hough and Ordway (1965) and Küchemann
and Weber (1953) is good, which proves that the singularities are removed satisfactorily.
The results for the two DTNSRDC propellers, DC4381, i.e. the reference propeller, and
DC4383, i.e. the propeller with 72o skew and skew-induced rake, and the Kappel propeller
K1 turn out to depend on which parameter is used as input load distribution. The results
indicate that neglect of the induced velocities in the calculation of the pressure jump when
the circulation is given as input may be too rough an approximation. The results also show
that the induced axial velocities at the propeller plane for DC4383 and K1 are almost as
high as far downstream. If this is a physical effect should be further investigated but it
is believed that the relatively high velocities are caused by the linearisation of the Euler
equations. Thus, linear theory may be too coarse an approximation when propellers with
skew and unconventional geometry are analysed.



Chapter 6

Energy Coefficients

Normally, the propeller efficiency is used to compare different propellers. This method,
however, gives no details about the reasons why one propeller is superior to another. A better
insight into the differences between propellers can be achieved by comparing the different
energy losses for the propellers. Propulsion is always connected with a loss of energy. This
loss can be divided into three main components, i.e. the axial loss, the rotational loss and
the frictional loss. The axial loss is inevitable as it is the increased axial momentum of the
fluid which results in the propeller thrust. In order for the propeller to be as efficient as
possible the rotational and frictional losses should be minimised, and it is clear that the
highest possible efficiency is obtained for a propeller with no slipstream rotation and no
frictional loss. This maximum efficiency, which is only theoretically achievable, corresponds
to the ideal efficiency.

Glauert (1963) was one of the first to examine the energy loss of the propeller. He calculates
the propeller efficiency as a product of three efficiencies related to the three energy losses.
The momentum theory for propellers is used to calculate the efficiencies. Glover (1987)
gave the energy losses for a conventional propeller for different thrust loadings, the results
are reproduced in Table 1.1. However, the method by which these results were obtained is
not described. Andersen et al. (1992) made a comparison of a conventional and a Kappel
propeller designed for the open water condition. The propellers are designed for the same
thrust loading of CTh = 1.5, with the same diameter, number of blades and expanded
blade area ratio in order to make a comparison valid. The advance ratio of both propellers is
J = 0.62. The frictional forces were not included in the optimisation of the radial distribution
of loading. The comparison is based on four partial efficiencies related to the losses caused
by slipstream contraction, rotation and inhomogeneity of the slipstream, induced drag and
viscous effects. The obtained results are reproduced in Table 6.1. From the table it is seen
that all four efficiencies were improved by applying a tip-fin. The total efficiency is improved
by approximately 3.1 per cent by applying the tip-fin. Unfortunately, it is not described in
detail how the partial efficiencies were obtained. The derivation of the energy coefficients
is, however, treated thoroughly by Dyne (1993) and Dyne (1995). In Dyne (1993) the open

95
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Table 6.1: Energy coefficients for a conventional and a Kappel propeller from Andersen et al.
(1992). Both propellers are designed for the open water condition, with the same diameter,
the same expanded blade area ratio and Z = 4, J = 0.62 and CTh = 1.5. The total propeller
efficiency is η = ηaηbηcηdηideal.

Origin Partial efficiency Kappel propeller Conventional propeller

Slipstream contraction ηa 0.971 0.967

Rotation and inhomogeneity ηb 0.964 0.957

Induced drag ηc 0.948 0.939

Viscosity ηd 0.906 0.896

Ideal efficiency ηideal 0.799 0.799

Total efficiency η 0.642 0.623

water efficiency is calculated as a sum of four energy coefficients related to the axial loss, the
rotational loss, the frictional loss and finally a loss due to the finite number of blades for the
propeller. These coefficients will be used in the following to compare different propellers.

It should be remembered that the following coefficients are related to the energy loss for
the propeller only. The propeller-hull interaction, which is important to the total propul-
sive efficiency, is not considered. Furthermore, there is no information about the unsteady
properties, such as cavitation and vibrations, in the energy coefficients.

6.1 Derivation of the Energy Coefficients

Figure 6.1: Stream tube for the derivation of the energy coefficients.
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The derivation of the energy coefficients follows the outline in Dyne (1993), but as the present
coefficients are extended to include a radially varying onset flow the derivation is described
in detail.

In the derivation of the coefficients the usual assumptions about a potential flow are applied
and the propeller is modelled as an actuator disk. As the slipstream contraction is ignored
the coefficients are only valid for lightly and moderately loaded propellers. If the propeller
is modelled as an actuator disk the inviscid part of the thrust is given by an integration
over the disk of the pressure jump, ∆p(r), across it and the inviscid part of the torque is
found from the ideal delivered power PD, which is given by an integration over the disk of
the product of the volume flow per time unit and the increase in total head, ∆H, over the
disk, hence

T∞ = 2π

∫ R

rh

∆p(r)rdr − ∆Tfr (6.1)

Q∞ = − PD

2πn
+ ∆Qfr =

−1

n

∫ R

rh

∆H(r)
[

ua,0(r) − U(r)
]

rdr + ∆Qfr (6.2)

where ∆Tfr and ∆Qfr are the contributions due to friction. The torque is assumed to be
positive for a right-hand propeller. The subscript ∞ indicates that the value is related to
the disk.

If it is assumed that the total head is preserved ahead of and behind the disk, the ∆p(r)
and ∆H(r) can be found by applying the Bernoulli equation, see Equation (2.7), ahead of
and abaft the disk to the stream tube shown in Figure 6.1. In front of the disk the Bernoulli
equation is

p0 + 1
2ρU2(r) = p+(r) + 1

2ρ

{

[

ua,0+(r) − U(r)
]2

+ u2
r,0+(r)

}

(6.3)

and behind the disk it is

p−(r) + 1
2ρ

{

[

ua,0−(r) − U(r)
]2

+ u2
r,0−(r) + u2

t,0−(r)

}

= p−∞(r) + 1
2ρ

{

[

ua,−∞(r) − U(r)
]2

+ u2
t,−∞(r)

}

(6.4)

The pressure jump across the disk is defined as

∆p(r) = p−(r) − p+(r) ⇔ p−(r) = ∆p(r) + p+(r)

Insert this in Equation (6.4):

∆p(r) = p−∞(r) − p+(r) + 1
2ρ

{

[

ua,−∞(r) − U(r)
]2

+ u2
t,−∞(r)

−
[

ua,0−(r) − U(r)]2 − u2
r,0−(r) − u2

t,0−(r)

}
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Equation (6.3) gives an expression for p+(r), which is inserted in the above equation:

∆p(r) = p−∞(r) − p0(r) + 1
2ρ

{

[

ua,−∞(r) − U(r)
]2

+ u2
t,−∞(r) −

[

ua,0−(r) − U(r)
]2

−u2
r,0−(r) − u2

t,0−(r) +
[

ua,0+(r) − U(r)
]2

+ u2
r,0+(r) − U2(r)

}

∆p(r) = p−∞(r) − p0 + 1
2ρ

{

−2U(r)ua,−∞(r) + u2
a,−∞(r)

+u2
t,−∞(r) − u2

t,0−(r)

}

(6.5)

where it is used that ua and ur are continuous through the disk.

The increase in total head is found by subtracting the left side of Equation (6.3) from the
right side of Equation (6.4):

∆H(r) = p−∞(r) − p0 + 1
2ρ

{

−2U(r)ua,−∞(r) + u2
a,−∞(r) + u2

t,−∞(r)

}

∆H(r) = ∆p(r) + 1
2ρu2

t,0−(r) (6.6)

Due to the rotation of the slipstream the pressure in the stream tube far downstream will
be lower than the undisturbed pressure. As the pressure must balance the centrifugal force
on the stream tube, the pressure infinitely downstream is

p−∞(r) = p0 − ρ

∫ R

r

u2
t,−∞(r)

r
dr

The above derivations make it possible to calculate the thrust and torque if the axial and
tangential velocities are known on the disk and infinitely downstream of it.

The efficiency for the propeller is given by

η =
UAT

ωQ

If Equation (6.1) is inserted for the thrust, the efficiency for a propeller with an infinite
number of blades is

η∞ =
(1 − w)Us2π

∫ R

rh
∆p(r)rdr − (1 − w)Us∆Tfr

2πnQ∞

(6.7)

where w is the wake fraction. In order to derive the energy coefficients, an expression for the
inviscid part of the thrust, the ∆p integration in Equation (6.1), is found from the equation
for the torque, see Equation (6.2), where ∆H is expressed by Equation (6.6). By adding and
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subtracting the ship speed, Us, in the volume flow term, [ua,0(r) − U(r)], the inviscid part
of the thrust can be expressed as

2πUs

∫ R

rh

∆p(r)rdr

= 2πnQ∞ + ρU3
s R2π

∫ 1

r̂h

[

1 − U(r̂)

Us

+
ua,0(r̂)

Us

][

−2
U(r̂)

Us

ua,−∞(r̂)

Us

+
(ua,−∞(r̂)

Us

)2
]

r̂dr̂

+ ρU3
s R2π

∫ 1

r̂h

{[

ua,0(r̂)

Us

− U(r̂)

Us

][

∆Cprot(r̂) +
(ut,−∞(r̂)

Us

)2
]

+ ∆Cprot(r̂)

}

r̂dr̂

− 2πn∆Qfr

(6.8)

where

∆Cprot(r̂) = −2

∫ 1

r̂

(

ut,−∞(r̂)

Us

)2
1

r̂
dr̂ (6.9)

It is furthermore used that ut,−∞(r) = ut,0−(r) for an actuator disk. If Equation (6.8) is
inserted in Equation (6.7) the efficiency for the actuator disk can be expressed as

η∞ = (1 − w){1 − AXL + AXG − ROTL − FRL}

where the energy coefficients are defined as

AXL = −ρU3
s R2

2nQ∞

∫ 1

r̂h

ua,0(r̂)

Us

[

−2
U(r̂)

Us

ua,−∞(r̂)

Us

+
(ua,−∞(r̂)

Us

)2
]

r̂dr̂ (6.10)

AXG =
ρU3

s R2

2nQ∞

∫ 1

r̂h

[

1 − U(r̂)

Us

][

−2
U(r̂)

Us

ua,−∞(r̂)

Us

+
(ua,−∞(r̂)

Us

)2
]

r̂dr̂ (6.11)

ROTL = −ρU3
s R2

2nQ∞

∫ 1

r̂h

{

[

ua,0(r̂)

Us

− U(r̂)

Us

]

[

∆Cprot(r̂) +
(ut,−∞(r̂)

Us

)2
]

+ ∆Cprot(r̂)

}

r̂dr̂ (6.12)

FRL =
∆Qfr

Q∞

+
Us∆Tfr

2πnQ∞

(6.13)

AXL is the loss of energy due to the induced axial velocities. If it is used that ua,0(r) =
1
2ua,−∞(r), which is true for the normal actuator disk, the axial loss can be expressed as

AXL = −ρU3
s R2

2nQ∞

∫ 1

r̂h

(ua,−∞(r̂)

Us

)2
[

ua,0(r̂)

Us

− U(r̂)

Us

]

r̂dr̂

Thus, it is seen that the AXL is related to the kinetic energy left in the slipstream due to
the action of the propeller. AXG is the axial gain, where the term gain is used as AXG
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increases the efficiency. The AXG is zero for a propeller in uniform inflow. ROTL is the
loss of energy due to the rotation of the slipstream. It is seen that the term

−ρU3
s R2

2nQ∞

∫ 1

r̂h

[

ua,0(r̂)

Us

− U(r̂)

Us

]

(ut,−∞(r̂)

Us

)2

r̂dr̂

corresponds to the lost kinetic energy due to the rotation of the slipstream. The terms
including ∆Cprot are the losses due to the lower pressure in the slipstream. FRL is the
frictional loss.

For the same thrust the necessary torque will be higher for a propeller with a finite number
of blades than for the actuator disk. This additional loss is included through the finite blade
number loss

FBNL = η∞

(

1 − Q∞

QZ

)

(6.14)

where QZ is the torque for a propeller with a finite number of blades. Hence, the efficiency
for a propeller with a finite number of blades is

η = (1 − w){1 − AXL + AXG − ROTL − FRL} − FBNL

For a propeller in uniform inflow the above coefficients reduce to the ones obtained by Dyne
(1993).

In calculations of the energy coefficients it is necessary to know the averaged induced axial
and tangential velocities at the propeller plane and infinitely abaft it. These velocities are
either calculated by xdisk, see Chapter 5, or found from xlift, as will be explained in Section
6.3. Before the energy coefficients can be calculated it is necessary that the thrust for the
actuator disk, T∞, is equal to the given propeller thrust, T , for a propeller with a finite
number of blades. The thrust T∞ is calculated by the averaged induced velocities, see
Equations (6.1) and (6.5), and in order to achieve T∞ = T it is normally necessary that the
induced velocities are scaled. Here this is done by a constant factor along the radii.

6.2 Validation of the Energy Coefficients

For validation of the energy coefficients, the AXL and ROTL, see Equations (6.10) and
(6.12), are compared to the two corresponding coefficients proposed by Glauert (1963). He
derives a coefficient related to the axial loss of energy and another related to the rotational
loss in a way similar to that for the above coefficients. The derivation of these two coefficients
is outlined after the calculations of the AXL and ROTL.
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6.2.1 The AXL and ROTL Coefficients

For the validation the propeller is modelled as an actuator disk with uniform onset flow for
which Hough and Ordway (1965) give closed-form solutions for the induced velocities:

ua,0(r̂)

U0

=
−Zω

4πU2
0

Γ(r̂)
ua,−∞(r̂)

U0

=
−Zω

2πU2
0

Γ(r̂)

ut,0(r̂)

U0

=
Z

4πU0R

Γ(r̂)

r̂

ut,−∞(r̂)

U0

=
Z

2πU0R

Γ(r̂)

r̂

where a representative distribution of circulation is

Γ(r̂) = U0RA(r̂ − r̂h)
√

1 − r̂ (6.15)

where A is a constant which depends on the CTh.

By means of the induced velocities given by the above equations it is possible to derive ana-
lytical expressions for the AXL and ROTL coefficients. These calculations are algebraically
straightforward to perform but the final expressions are very long and therefore only the
results will be given here. The complete expressions are given in Appendix A.

The efficiency and energy coefficients are calculated for three different thrust loadings, CTh =
0.1, 0.2 and 0.5, with the following input parameters:

Z = 5, U0 = 12.0 m/s, R = 3.0 m, r̂h = 0.2, J = 1.596.

The low thrust loadings are used as the velocities are derived for linear theory. The results
are shown in Table 6.2. From the table it is seen that the axial loss AXL corresponds to the
ideal efficiency. This implies that the magnitude of AXL is right since the ideal efficiency is
the efficiency of a disk with only an axial loss. As the slipstream rotation is included in the
derivation of the coefficients, it is expected that this loss is higher than the loss for an ideal
propeller. From the table this is seen to be true. Furthermore, it is proved that the highest
loss of energy is the axial loss, which is almost twice the rotational loss.

6.2.2 Glauert’s Coefficients

According to Glauert (1963) the thrust and torque for an actuator disk are given by

T∞ = 4πρω2R4

∫ 1

r̂h

(1 − a′)a′r̂3dr̂

Q∞ = 4πρU0ωR4

∫ 1

r̂h

(1 + a)a′r̂3dr̂

(6.16)
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Table 6.2: Comparison of AXL and ROTL with Glauert’s coefficients. ηDyne = 1−AXL−
ROTL, ηGlauert = η1η2 and ηideal = 2/(1 +

√
1 + CTh).

CTh AXL ROTL ηDyne η1 η2 ηGlauert ηideal

0.100 0.02764 0.01619 0.9562 0.9764 0.9798 0.9567 0.9762

0.200 0.05307 0.03053 0.9164 0.9530 0.9589 0.9138 0.9545

0.500 0.11851 0.06493 0.8166 0.8839 0.8905 0.7871 0.8990

where a and a′ are the so called interference factors for the axial and tangential velocities,
respectively, given by

a =
|ua,0|
U0

a′ =
J

π

ut,0

U0

1

r̂

Glauert (1963) assumes that the pressure far downstream is equal to the free-stream pressure
p0. Thus, the pressure difference in the slipstream due to the rotation has been neglected.

The efficiency without friction is

η∞ =
U0T∞

ωQ∞

=
4πρU0ω

2R4
∫ 1

r̂h
(1 − a′)a′r̂3dr̂

4πρU0ω2R4
∫ 1

r̂h
(1 + a)a′r̂3dr̂

≈ 1 − a′

1 + a

where the last approximation follows because it is assumed that the interference factors (a
and a′) are constants over the radius. Hence, the efficiency can be expressed as a product of
two efficiencies:

η∞ = η1η2

where

η1 =
1

1 + a

η2 = 1 − a′
(6.17)

The η1 is related to the loss of energy from the induced axial velocity in the slipstream
and the η2 is related to the energy loss caused by the induced tangential velocity in the
slipstream.

η1 and η2 have been calculated by the same input parameters and for the same thrust
loadings as before. In calculations of the efficiencies, η1 and η2, the values used for a and a′

correspond to the averaged values over the disk, see Appendix A. The results are presented
in Table 6.2. The table shows that the η1 is approximately equal to the ideal efficiency and
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the agreement with the AXL coefficient is good. It is furthermore seen that the agreement
between the two methods for the rotational loss is good for the two lowest thrust loadings,
but for CTh = 0.5 there is a difference of approximately four per cent, which is due to the
different approximations applied in the two methods.

As the agreement between the results from Glover (1987), see Table 1.1, and Table 6.2 is
reasonable, it is concluded that using the present energy coefficients is a reliable way of
estimating the loss components for a propeller. In Sections 6.4 and 6.5 the coefficients will
be used for a study of the efficiency for different propellers.

6.3 Averaged Velocities from xlift

The lifting-surface optimisation program xlift is used to calculate the energy coefficients.
Therefore, the averaged induced velocities at the propeller plane and infinitely downstream
of it should be calculated by this program.

The averaged velocity is given by

ūj(r) =
1

n − 1

n−1
∑

i=1

uj,i(r) (6.18)

where j is either the axial or the tangential component and uj,i(r) is the induced velocity
at n − 1 points along an arc with the radius r. The arc is located between two following
blades either at the propeller plane or infinitely downstream. The space between the two
blades is divided into n equal intervals, but the velocities are only calculated at n−1 points.
This is because the two points on the blades have been neglected in order to avoid numerical
problems.

Figure 6.2: Example of a midchord line and the location of the points on the arc between
the blades where the velocity is calculated.



104 Chapter 6. Energy Coefficients

-1.20

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

0
o

10
o

20
o

30
o

40
o

50
o

60
o

70
o

80
o

90
o

u
a
/U

0

φ

r/R=0.333

r/R=0.713

r/R=0.943

n=4
n=10
n=24

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0
o

10
o

20
o

30
o

40
o

50
o

60
o

70
o

80
o

90
o

u
t/
U

0

φ

r/R=0.333

r/R=0.713

r/R=0.943

n=4
n=10
n=24

Velocity between two blades for three different radii.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.10

r/
R

ua/U0

Propeller plane

Downstream

n=4
n=10
n=24

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.05 0.10 0.15 0.20 0.25

r/
R

ut/U0

Propeller plane

Downstream

n=4
n=10
n=24

Averaged velocities at the propeller plane.

Figure 6.3: Comparison of results for different numbers of n. For a lifting line with Z =
4, R = 3m, U0 = 10.0 m/s, T = 959.712 kN, ω = 11.7795, Msp = 10, Nch = 4, c = 0.001 m.

The propeller plane is here defined as the plane spanned by a rotation of the midchord line
around the propeller axis. If the number of panels is even the midchord line is given by
the control point at panel number Nch/2 + 1 + (j − 1)Nch, where j = 1, 2, ...,Msp. See the
example in Figure 6.2. The radius of the arc is the radius of the control point of that panel.

In order to find a usable value for the number of intervals between the blades, n, the averaged
velocities are calculated for three different numbers of n for a propeller with a small constant
chord length, so that it is similar to a lifting line, by means of the following input parameters:

Z = 4, R = 3m,U0 = 10.0m/s, T = 959.712kN, ω = 11.7795, Msp = 10, Nch = 4, c = 0.001m

Figure 6.3 shows the variation of the induced velocities between two blades and the averaged
velocities along the radii for different numbers of n. From the figure it is seen that the results
for the induced velocities between the blades are almost identical for the different numbers
of n. Furthermore, it is seen that the difference between the results for the radial variation
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Figure 6.4: Comparison of velocities obtained by xlift and xdisk for the DTNSRDC propeller
with 720 skew and skew-induced rake, i.e. DC4383. For Z = 5, R = 3.0m, r̂h = 0.2, U0 =
10.0m/s, J = 0.889 and CTh = 0.662.

of the averaged velocities is reasonably small along most of the blade, but at the tip there
are some differences. However, the overall shapes of the averaged velocities are almost the
same. Therefore, n is chosen to be small in order to lower the computational time and will
in further calculations be equal to ten. This can be done without lack of accuracy as the
velocities are corrected, as explained on page 100, in calculations of the energy coefficients.

Figure 6.4 shows a comparison of the averaged induced velocities obtained by xlift and
xdisk for the DTNSRDC propeller with 720 skew and skew-induced rake, i.e. propeller
DC4383. The input parameters are

Z = 5, R = 3.0m, r̂h = 0.2, U0 = 10.0m/s, J = 0.889, CTh = 0.662.
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The input pressure distribution in xdisk is based on the distribution of thrust obtained by
xlift by application of linear theory, which is seen in Figure 5.7.

The figure shows that the agreement between the two methods is reasonably good far down-
stream, but there are some differences as regards the propeller plane. For the axial velocities
at the propeller plane the results from xdisk are a bit higher. Which of the two methods
predicts the most realistic results should be further investigated but it is believed that the
velocities predicted by xlift are the most realistic ones, as the difference between the results
for the propeller plane and far downstream is larger. The figure shows that the tangential
velocities at the propeller plane predicted by xlift have an unusual shape. It is seen that the
tangential velocities are increasing on the outer part of the blade and the maximum value
is reached at the point closest to the tip. The reason for this shape is not known in detail
and should be further investigated. But an examination of the induced velocities from the
trailers and from the blade separately shows that the trailers cause the higher velocities at
the tip. The tangential velocity at the propeller plane is not used for the calculation of the
energy coefficients and therefore the remarkable shape does not influence the coefficients.
It should be noted that the agreement between results from xdisk and xlift is good for the
reference propeller, i.e. DC4381, as can be seen in Figures 6.6 and 6.7.

6.3.1 Comparison of Results from xlift and xdisk

In order to compare the results from xlift and xdisk the energy coefficients have been calcu-
lated by xlift and xdisk for the same distribution of loading and propeller geometry. xlift is
used to find the distribution of loading for a propeller geometry and this loading is then
used, together with the propeller geometry, as input to xdisk.

For the comparison xlift is used to find the optimum distribution of circulation for a propeller
in uniform inflow without rake and skew and with a very small constant chord length. Thus,
the propeller is comparable with a lifting line. The calculations are done for three thrust
loadings, CTh = 0.1, 0.2 and 0.5, with the following parameters:

Z = 5, R = 3.0m, r̂h = 0.2, U0 = 12.0m/s, J = 1.596, c = 0.001m.

The distribution of circulation determined by xlift is given as input to xdisk and the energy
coefficients are calculated, see Appendix A for the input distributions of circulation. For the
calculation of the normals in xdisk the blade pitch angle is assumed to be equal to the pitch
angle of the onset flow. As the onset flow is uniform the AXG will be zero. The calculation
of the FBNL is based on the torque for the propeller with a finite blade number obtained
from the optimisation by xlift, see Table 6.3.

Figure 6.5 shows a comparison of the velocities, from xlift and xdisk , which are used to cal-
culate the energy coefficients. The velocities from xlift correspond to the averaged velocities
calculated as explained in Section 6.3. The energy coefficients are listed in Table 6.4.
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Table 6.3: Torque coefficient for the propeller with finite blade number from xlift and ideal
efficiency for Z = 5, R = 3.0 m, r̂h = 0.2, U0 = 12.0 m/s, J = 1.596 and c = 0.001 m.

CTh 10KQ,Z ηideal

0.1 0.2706 0.9762

0.2 0.5772 0.9545

0.5 1.7840 0.8990

Table 6.4: Comparison of energy coefficients for xlift and xdisk for Z = 5, R = 3.0m, r̂h = 0.2,
U0 = 12.0 m/s, J = 1.596 and c = 0.001 m.

CTh KT,∞ 10KQ,∞ η∞ AXL ROTL FBNL η

xdisk 0.1 0.1000 0.2664 0.9539 0.02803 0.01803 0.01459 0.9394

xlift 0.1001 0.2665 0.9539 0.02781 0.01830 0.01443 0.9395

xdisk 0.2 0.2001 0.5568 0.9127 0.05389 0.03343 0.03215 0.8805

xlift 0.2001 0.5570 0.9126 0.05348 0.03397 0.03194 0.8806

xdisk 0.5 0.5001 1.5655 0.8115 0.12085 0.06763 0.09927 0.7123

xlift 0.5003 1.5666 0.8112 0.11990 0.06891 0.09885 0.7123

From the figure it is seen that there is good agreement between the velocities from xlift and
xdisk. Thus, there is also good agreement for the energy coefficients, see Table 6.4. The
differences are below two per cent for all the coefficients. The agreement with the axial and
the rotational losses from Glover (1987), see Table 1.1, is again satisfactory.

6.4 Energy Coefficients for the DTNSRDC Propeller

Series

The energy coefficients for the propellers from the DTNSRDC propeller series used in Chap-
ter 4 are calculated both by xdisk and xlift. An outline of the propellers is given in Figure 4.4.
xlift is used to find the optimum distribution of loading for the propellers and the optimised
torque for the propeller with the finite number of blades is used as reference for the FBNL.
The results for the optimum distribution of loading and the torque from xlift are given to
xdisk as input together with the geometry of the propeller. The input parameters for the
optimisation by xlift are

Z = 5, R = 3.0m, r̂h = 0.2, U0 = 10.0m/s, J = 0.889, CTh = 0.662.
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Figure 6.5: Comparison of velocities for xlift and xdisk. For a lifting line with Z = 5, R =
3.0 m, r̂h = 0.2, U0 = 12.0 m/s, J = 1.596, c = 0.001 m.
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Table 6.5: Energy coefficients for the DTNSRDC propellers calculated by xlift. For Z =
5, R = 3.0m, r̂h = 0.2, U0 = 10.0m/s, J = 0.889, CTh = 0.662 and ηideal = 0.874.

Prop. Skew Skew-indu. AXL ROTL FBNL η∞ η

rake

DC4381 0o no 0.15062 0.02700 0.03547 0.8224 0.7869

DC4382 36o yes 0.15699 0.02684 0.02395 0.8162 0.7922

DC4383 72o yes 0.16652 0.02648 0.00804 0.8070 0.7990

DC4497 36o no 0.16172 0.02665 0.01866 0.8116 0.7930

DC4498 72o no 0.17298 0.02615 -0.00005 0.8009 0.8009

Table 6.6: Energy coefficients for the DTNSRDC propellers calculated by xdisk. For Z =
5, R = 3.0m, r̂h = 0.2, U0 = 10.0m/s, J = 0.889, CTh = 0.662 and ηideal = 0.874.

Prop. Skew Skew-indu. AXL ROTL FBNL η∞ η

rake

DC4381.ci 0o no 0.14447 0.02712 0.04151 0.8284 0.7869

DC4381.kt 0.14429 0.02600 0.04281 0.8297 0.7869

DC4382.ci 36o yes 0.16524 0.03020 0.01235 0.8046 0.7922

DC4382.kt 0.16457 0.02490 0.01831 0.8105 0.7922

DC4383.ci 72o yes 0.20129 0.03291 -0.03316 0.7658 0.7990

DC4383.kt 0.20240 0.02336 -0.02472 0.7742 0.7990

DC4497.ci 36o no 0.17182 0.03058 0.00463 0.7976 0.7930

DC4497.kt 0.16949 0.02483 0.01271 0.8057 0.7930

DC4498.ci 72o no 0.21753 0.03441 -0.05286 0.7481 0.8009

DC4498.kt 0.21068 0.02308 -0.03468 0.7662 0.8009

The energy coefficients obtained by xlift are given in Table 6.5 and the energy coefficients
from xdisk in Table 6.6. The input loading distribution to xdisk is both the distribution of
circulation and the distribution of thrust obtained by xlift. The velocities used by xlift and
xdisk for the calculations of the coefficients are shown in Figures 6.6 to 6.9.

From the figures it is seen that the velocities from xdisk depend on which parameter (Γ or
dKT ) is used as input for the distribution of loading. This phenomenon was discussed at
some length in Chapter 5. The only exception is the propeller without rake or skew, i.e.
propeller DC4381, where the agreement between the results is reasonable. The results with a
given distribution of circulation move the location of the maximum velocity closer to the hub
and increase the maximum value. This is true for both ua and ut. The difference between
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Figure 6.6: Comparison of velocities at the propeller plane for xlift and xdisk for the
DTNSRDC propeller series. For Z = 5, R = 3.0m, r̂h = 0.2, U0 = 10.0m/s, J =
0.889 and CTh = 0.662.
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Figure 6.7: Comparison of velocities far downstream for xlift and xdisk for the DTNSRDC
propeller series. For Z = 5, R = 3.0m, r̂h = 0.2, U0 = 10.0m/s, J = 0.889 and CTh = 0.662.



112 Chapter 6. Energy Coefficients

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-0.50 -0.40 -0.30 -0.20 -0.10 0.00

r/
R

ua/U0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.05 0.10 0.15 0.20

r/
R

ut/U0

Propeller DC4497, 36o skew and no skew-induced rake

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-0.50 -0.40 -0.30 -0.20 -0.10 0.00

r/
R

ua/U0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.05 0.10 0.15 0.20

r/
R

ut/U0

Propeller DC4498, 72o skew and no skew-induced rake

Figure 6.8: Comparison of velocities at the propeller plane for xlift and xdisk for the
DTNSRDC propeller series. For Z = 5, R = 3.0m, r̂h = 0.2, U0 = 10.0m/s, J =
0.889 and CTh = 0.662.

using the thrust or the circulation as input is increasing with increasing skew, whereas the
skew-induced rake has a minor influence.

From the comparison of the velocities from xlift and xdisk , see also Section 6.3, it is observed
that the agreement is reasonable for the axial velocities at the propeller plane for the propeller
without skew or skew-induced rake, i.e. DC4381. For the two propellers with 36o skew, i.e.
DC4382 and DC4497, the magnitude of the maximum velocity agrees well but the shape
of the axial velocity distributions at the propeller plane differs. For the propellers with 72o

skew, i.e. DC4383 and DC4498, the differences in both shape and magnitude are large for
the axial velocities at the propeller plane. For the axially induced velocities far downstream
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Figure 6.9: Comparison of velocities far downstream for xlift and xdisk for the DTNSRDC
propeller series. For Z = 5, R = 3.0m, r̂h = 0.2, U0 = 10.0m/s, J = 0.889 and CTh = 0.662.

the agreement is reasonable for all propellers, and the agreement is especially good between
the velocities calculated by xlift and xdisk with the distribution of loading given as dKT . For
the tangential velocity at the propeller plane the magnitude of the velocities is similar for
both xlift and xdisk , but there are large differences in the shape of the velocity distributions
for all five propellers, this effect was discussed in Section 6.3. As the tangential velocity at
the propeller plane is not used in the calculations of the energy coefficients these differences
have no influence on the coefficients. Far downstream the agreement between xdisk and
xlift is good for the propeller without skew and skew-induced rake, i.e. DC4381. For the
skewed and raked propellers the agreement between the tangential velocities for xlift and
xdisk based on dKT is reasonable, whereas the velocity from xdisk based on the distribution
of circulation differs.
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Due to the differences in the calculated velocities the obtained energy coefficients differ
as well. At first a few comments on the coefficients obtained by xlift should be made.
The coefficients are listed in Table 6.5. The table reveals that when the efficiency for the
propeller with the finite number of blades, η, is increasing the efficiency for the propeller
with an infinite number of blades, η∞, is decreasing. This results in a small negative FBNL
for the propeller with 72o skew and no skew-induced rake, i.e. propeller DC4498. The
decrease of η∞ is due to an increased AXL with increasing skew. The decrease of η∞ is only
slightly reduced by the decrease in ROTL with increasing skew. The effect of removing the
skew-induced rake is a further increase for the AXL and a smaller decrease for the ROTL.

The results from xdisk are listed in Table 6.6. Again it is seen that η∞ is decreasing when η is
increasing. This is also caused by an increase in the AXL with increasing skew. The results
from xdisk show that the ROTL is both increasing and decreasing but the variation in the
ROTL is not big enough to influence the decrease of η∞ with increasing skew. Again the
removal of the skew-induced rake enhances this tendency. Due to the higher axial velocities
at the propeller plane the AXL calculated by xdisk is higher than the coefficients from xlift.
The only exception is propeller DC4381, where the xdisk coefficients are slightly lower. For
the ROTL the results from xdisk are both higher and lower than the xlift coefficients. When
the velocities are calculated by the distribution of circulation the ROTL is higher, and when
the velocities are calculated by the distribution of dKT the ROTL is lower. This results in
an up to seven per cent lower η∞ for the xdisk calculations and a negative FBNL for the
two propellers with 72o skew, i.e. propeller DC4383 and DC4498.

From Glover (1987), see Table 1.1, the axial loss is approximately 0.163 and the rotational
loss is approximately 0.066 for a thrust loading of 0.662. Hence, the agreement for the axial
loss is reasonable for the xlift results, whereas the results from xdisk differ more and the
rotational loss predicted by xlift and xdisk is considerably lower.

6.5 Energy Coefficients for the Kappel Propeller Series

In order to investigate how the linear actuator disk method performs for the Kappel pro-
pellers, xdisk is used to calculate the energy coefficients for the three wake adapted Kappel
propellers K1, K2 and K3 in open water with the following input parameters:

Z = 6, R = 3.727m, r̂h = 0.185, UA = 9.28m/s, J = 0.7472.

The rest of the input parameters are taken from the optimisation of the propellers, which are
provided by J.J. Kappel. The coefficients can only be obtained for open water as a uniform
inflow is assumed in xdisk.

Table 6.7 presents the calculated energy coefficients and Figure 6.10 the induced velocities
used for the calculations of the coefficients. From the figure it is seen that K2 and K3 have
the same differences in the induced velocities calculated by the distribution of circulation or
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Figure 6.10: Comparison of velocities for xdisk for the Kappel propellers. Z = 6, R =
3.727m, r̂h = 0.185, UA = 9.28m/s and J = 0.7472.
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Table 6.7: Energy coefficients for the Kappel propellers calculated by xdisk. Z = 6, R =
3.727m, r̂h = 0.185, UA = 9.28m/s and J = 0.7472.

Prop. KT,∞ 10KQ,∞ AXL ROTL FRL FBNL η∞ η

K1.ci 0.22201 0.4031 0.22118 0.05079 0.07304 -0.06500 0.6550 0.7200

K1.kt 0.22201 0.4137 0.25179 0.03891 0.07116 -0.08185 0.6381 0.7200

K2.ci 0.22203 0.4031 0.22113 0.05705 0.06684 -0.05811 0.6550 0.7131

K2.kt 0.22203 0.4042 0.23755 0.04262 0.06666 -0.05992 0.6532 0.7131

K3.ci 0.22010 0.4225 0.25659 0.05719 0.06677 -0.10293 0.6195 0.7224

K3.kt 0.22010 0.4201 0.26799 0.04175 0.06716 -0.09929 0.6231 0.7224

the distribution of thrust, as was observed for K1 in Section 5.3. The table shows that for
the Kappel propellers, as for the DTNSRDC propellers, the efficiency for the propeller with
an infinite number of blades, η∞, is decreasing when the efficiency for the propeller with
finite blade number, η, is increasing. This influences the FBNL, which is seen to have a
relatively large negative value for all three propellers. Hence, it seems that the used method
does not perform very well for the Kappel propellers. This is believed to be mainly due to
the use of xdisk to obtain the induced velocities.

6.6 Summary

The energy coefficients proposed by Dyne (1993) have been extended to include a radial
variation in the axial onset flow. A comparison between the AXL and ROTL coefficients
and the corresponding coefficients proposed by Glauert (1963) shows a satisfactory agreement
between the results when the propeller is modelled as an actuator disk in uniform onset flow.
The optimisation program xlift and the modified actuator disk program xdisk have been used
to calculate the energy coefficients for different propellers. A comparison of the coefficients
obtained by xdisk and xlift shows good results when the propeller in xlift is modelled as a
lifting line. A comparison of the coefficients for the five DTNSRDC propellers obtained by
xlift and xdisk gives more questionable results. The major concern is that the efficiency for
the propeller with an infinite number of blades, η∞, is decreasing while the efficiency for
the propeller with a finite blade number, η, is increasing for increasing skew. The decrease
of η∞ is mainly due to increased AXL whereas the changes in ROTL have a minor effect.
Furthermore, there is a difference of up to seven per cent between the η∞ obtained by
xdisk and xlift. An inspection of the induced velocities calculated by xlift shows that the
axially induced velocity at the propeller plane is increasing with increasing skew, whereas
the induced velocity downstream is almost equal for all the propellers. This will increase the
AXL and thus reduce the efficiency η∞. If this is a physical effect for the propellers with skew
or a consequence of the used numerical model should be further examined. An inspection of
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the induced axial velocities at the propeller plane calculated by xdisk shows that an increase
in skew results in a high increase in the velocity, so that the velocities for the propellers
with 72o skew are almost of the same magnitude as the velocity far abaft the propeller. This
indicates that xdisk may be too simple a method to calculate the velocities for propellers
with skew and skew-induced rake. xdisk is also used to calculate the open water energy
coefficients for three Kappel propellers originally designed for a ship wake. Here the results
show a relatively large negative FBNL and again η∞ is decreasing while η is increasing.
Again it is believed that xdisk is too simple a method to calculate the averaged velocities for
the Kappel propellers and a better method should be found before usable coefficients can be
obtained.



118 Chapter 6. Energy Coefficients

This page is intentionally left blank.



Chapter 7

Conclusions

The present study includes an extension of the classic theory for obtaining the radial distribu-
tion of thrust which gives the highest efficiency for the propeller. This problem is formulated
as a variational problem where the applied torque is minimised for a given thrust. In clas-
sic theory the problem is solved by an integral approach, which results in the Betz (1927)
or the Lerbs (1952) optimum criteria for the distribution of circulation. In classic theory
linearisation and application of the Munk displacement theorem (von Kármán and Burgers,
1963) are necessary in order to solve the problem, and the propeller is modelled by a lifting
line. If the problem is instead solved for a discrete distribution of circulation, Kerwin et al.
(1986) and Coney (1992) showed that the variational problem can be solved directly. For
sufficiently low thrust loading the results obtained by the discrete method fulfil the classic
optimum criteria. The discrete method is used in the present study and, as an extension to
the model, the contribution from the entire blade is included as the vortex-lattice method
is used to model the propeller. In the vortex-lattice method the propeller blade is replaced
by a lattice of quadrilateral panels with constant circulation and the shed horseshoe vortices
follow regular helices.

The method is first validated for a hydrofoil with elliptic planform in uniform inflow. Ac-
cording to Munk’s displacement theorem (von Kármán and Burgers, 1963) it is necessary
to impose constraints on the chordwise distribution of circulation in order to solve the vari-
ational problem. The obtained results are in good agreement with the analytical result
obtained by Prandtl for a lifting-line model of the hydrofoil. The optimisation for the hy-
drofoil is made with the trailers and the grid aligned parallel to the onset flow in accordance
with linear theory. Thus, the contribution to the lift will be concentrated at the trailing
edge on the side which combines the two trailers in the shed horseshoe vortex, as the con-
tributions from the panels will cancel. The drag calculation will, however depend on the
entire blade as the blade and the trailers will induce a varying vertical velocity on the blade.
The contribution to the drag from each panel is the difference in induced velocity on the
two sides of the panel which are perpendicular to the onset flow. This difference will be
small and again the largest contribution to the drag comes from the trailing edge where the
induced velocity is fully included.

119
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Subsequently, the method is applied to propellers. A validation of the developed computer
program xlift shows that the method converges for increasing number of panels, even for high
thrust loadings and propellers with high skew and skew-induced rake. The validation was
made by linear theory. For both the thrust and the torque calculations it is shown that the
contributions from the onset flow vanish at the panels and only contribute at the trailing edge,
where also the contribution from the induced velocity is fully included. The contributions
from the panels are only due to the difference in induced velocity on the panel sides, which
will be small. This explains why the shape of the chordwise distribution of circulation only
has a small influence on the optimisation, which is in accordance with Munk’s displacement
theorem (von Kármán and Burgers, 1963).

The reason for including the entire blade in the model is that the induced velocities, which
are used in the calculations of the thrust and the torque, depend on the distribution of
circulation on the entire blade and the geometry of the blade. Therefore, it is possible
to examine which effect the propeller geometry has on the optimisation. Five propellers
from the DTNSRDC propeller series have been optimised for the same design point. The
calculations show that the efficiency is increased for increasing skew. This effect is also noted
by Mishima and Kinnas (1997). The efficiency is further increased if the skew-induced rake
is removed. The radial distributions of circulation, thrust and torque have been compared
for the five propellers and this comparison shows that the distributions of thrust are almost
identical for all five propellers whereas the distributions of circulation and torque differ. It
is interesting that the distributions of thrust are identical for all five propellers, as it shows
that the optimum distribution of thrust is not influenced by the propeller geometry. The
reason for the higher efficiency for the skewed propellers is not known in detail and should
be further investigated. But an examination of the total velocity at the trailing edge proves
that the axial velocity is lower on the outer part of the blade and higher on the inner part for
the skewed propellers, whereas the tangential velocity is higher on the outer part and lower
on the inner part. This in combination with the radial distribution of circulation results in
the same distribution of thrust for all the propellers and a lower distribution of torque on
the outer part of the blade for the skewed propellers.

As a last example of the capabilities of the present method a Kappel propeller is optimised
in a radially varying wake, where both the axial and the radial components of the onset flow
are specified. A simple wake alignment procedure similar to the method for the moderately
loaded lifting line is applied. The agreement for the optimised torque coefficient is very
good for the present method and the normal optimisation method for the Kappel propellers.
The differences for the obtained distribution of circulation and for the final pitch angle for
the wake are reasonably small between the present method and the normal method for the
Kappel propellers.

The other main objective of this thesis is the comparison of the performances of different
propellers by use of energy coefficients. The energy coefficients proposed by Dyne (1993)
have been extended to include a radially varying axial onset flow. Thus, it is possible to
calculate the efficiency for a propeller as a sum of five energy coefficients related to the axial
loss, the rotational loss, the frictional loss and a finite blade number loss. If the propeller
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is located in a wake the fifth coefficient is included, which is an axial gain. The axial and
the rotational losses have been compared to the two corresponding coefficients derived by
Glauert (1963) for a simple propeller and the agreement is satisfactory.

In order to calculate the energy coefficients it is necessary to know the averaged axially
induced velocity at the propeller plane and the averaged axial and tangential velocities far
downstream of it. These velocities are found by two methods. One is xlift. The other is
a modified actuator disk model of the propeller based on the linear Euler equations with
specification of all three force components. The radial force component has been included
in order to be able to calculate the induced velocities from propellers with skew and rake
and with unconventional geometries, such as the Kappel propellers. By solving the linear
Euler equations in cylindrical coordinates it is possible to obtain closed-form solutions for the
pressure and the induced velocities for a propeller in open water. This makes the calculation
of the induced velocities very fast. The obtained solutions for the velocities and the pressure
correspond to the weighted sum of the velocities from a linear actuator disk and a duct.

An examination of the induced velocities from the five DTNSRDC propellers and the three
Kappel propellers calculated by xdisk proves that the results are influenced by the parameter
given as input to the pressure distribution. Comparison of the induced axial and tangential
velocities far downstream calculated by xdisk and xlift shows reasonable agreement between
the results if the thrust is used as input to the pressure distribution in xdisk. This indicates
that neglect of the induced velocities in the calculation of the input pressure distribution,
when the circulation is used as input, is to coarse an approximation. At the propeller plane
there are larger differences between the results obtained by xlift and xdisk. For both methods
the axial velocity is increasing with increasing skew and a removal of the skew-induced rake
enhances this pattern. The axial velocities at the propeller plane for the propellers with
72o skew calculated by xdisk are almost as high as the velocities far downstream. If this is
realistic should be further investigated but it is believed that the results from xdisk are to
high. For the Kappel propellers xdisk also predicts relatively high velocities at the propeller
plane. Hence, it seems that the linear theory is too coarse an approximation to predict the
induced velocities from propellers with skew and skew-induced rake and with unconventional
geometries, such as the Kappel propellers. The tangential velocities at the propeller plane
calculated by xlift have an unusual shape as the velocity is increasing toward the tip. The
reason for this remarkable shape is not known in detail and should be further examined.
But an investigation of the velocities from the blade and the trailers separately shows that
the increasing velocity is caused by the trailers. As the tangential velocity at the propeller
plane is not used in the calculation of the energy coefficients these results will not influence
the coefficients.

The open water energy coefficients for the five DTNSRDC propellers have been calculated
both by xdisk and xlift. Unfortunately, the efficiency for a propeller with an infinite number
of blades calculated by the energy coefficients does not follow the efficiency found by the
optimisation. By the optimisation the efficiency is increasing with increasing skew, whereas
the efficiency for a propeller with an infinite number of blades based on the coefficients is
decreasing with increasing skew. The reason is that for both xlift and xdisk the induced axial
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velocity at the propeller plane is increasing with increasing skew, whereas the axial velocities
far downstream are almost identical for all five propellers. This results in an increased AXL
and thus a decrease in the efficiency. The ROTL calculated by xlift is decreasing whereas
the ROTL calculated by xdisk is both increasing and decreasing depending on the given
input loading distribution. The decrease in the ROTL is relatively small and therefore
the efficiency is decreasing. As mentioned above, it should be further investigated if the
predicted averaged velocities at the propeller plane are accurate. The open water energy
coefficients have been calculated by xdisk for the three Kappel propellers. Again the results
are questionable as the FBNL is relatively high and negative. The reasons for this should
be further investigated but two reasons which influence the results can be mentioned. One
is that the Kappel propellers are designed for a wake whereas the coefficients are obtained
in open water. Another reason is the predicted velocities from xdisk, which have been shown
to be questionable.
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Appendix A

Energy Coefficients

This appendix contains the analytical expressions for the Dyne coefficients and the Glauert
(1963) coefficients shown in Table 6.2. The energy coefficients are calculated for three dif-
ferent thrust loadings CTh = 0.1, CTh = 0.2 and CTh = 0.5 with

Z = 5, U0 = 12.0 m/s, R = 3.0 m, r̂h = 0.2, J = 1.596

The propeller is modelled as an actuator disk where the induced velocities are given by
(Hough and Ordway, 1965):

ua,0(r̂)

U0

=
−Zω

4πU2
0

Γ(r̂)
ua,−∞(r̂)

U0

=
−Zω

2πU2
0

Γ(r̂) (A.1)

ut,0(r̂)

U0

=
Z

4πU0R

Γ(r̂)

r̂

ut,−∞(r̂)

U0

=
Z

2πU0R

Γ(r̂)

r̂
(A.2)

where the circulation is

Γ(r̂) = U0RA(r̂ − r̂h)
√

1 − r̂ (A.3)

and where A is a constant which depends on the CTh.

By means of the above expressions it is possible to determine the energy coefficients ana-
lytically. The mathematical program Maple (Waterloo Maple, Inc., 2001) has been used to
solve the integrals.

A.1 Present Coefficients

The analytical solutions for the present energy coefficients from Equations (6.10) and (6.12)
are given in the following.
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Table A.1: A for the present coefficients.

CTh A

0.100 0.1571

0.200 0.3100

0.500 0.7471

The thrust is given by

T = 2π

∫ R

rh

∆p(r)rdr = 2π

∫ R

rh

(

p−∞(r) − p0 + 1
2ρ

(

{

−2U0ua,−∞(r) + u2
a,−∞(r)

}

)

)

rdr

= πρU2
0 R2

∫ 1

r̂h

[

−2

∫ 1

r̂−∞

(ut,−∞(r̂−∞)

U0

)2dr̂

r̂
− 2

ua,−∞(r̂)

U0

+
(ua,−∞(r̂)

U0

)2
]

r̂dr̂

=
ρR2ZA

1680π

((

700 r̂h
3 + 210 r̂ 4

h
− 70 + 420 r̂h − 840 r̂ 3

h
ln(r̂h) − 420 ln(1 +

√

1 − r̂h)

−420 ln(|
√

1 − r̂h − 1|) + 420 ln(r̂h) + 420 r̂ 2
h

ln(1 +
√

1 − r̂h)

−840 r̂h ln(1 +
√

1 − r̂h) − 420 ln(r̂h)r̂
2
h

+ 840 r̂h ln(r̂h)

+420 r̂ 2
h

ln(|
√

1 − r̂h − 1|) − 840 r̂h ln(|
√

1 − r̂h − 1|)
−1260 r̂ 2

h

)

ZAU0
2 +

(

192 r̂ 3
h

+ 256 − 320 r̂h − 128 r̂ 2
h

)
√

1 − r̂hπ ω RU0

+ZAω2R2
(

21 + 70 r̂ 2
h
− 70 r̂h + 14 r̂ 5

h
− 35 r̂ 4

h

))

where A, as the only unknown, is determined so that the thrust corresponds to the three
specified thrust loadings. The results are shown in Table A.1.
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The torque is given by

Q =
−1

n

∫ R

rh

∆H(r)
[

ua,0(r) − U(r)
]

rdr

=
−1

n

∫ R

rh

(

p−∞(r) − p0 + 1
2ρ

{

−2U(r)ua,−∞(r) + u2
a,−∞(r) + u2

t,−∞(r)
}

)

[

ua,0(r) − U(r)
]

rdr

=
−ρU3

0 R2

2n

∫ 1

r̂h

(

−2

∫ 1

r̂−∞

(ut,−∞(r̂−∞)

U0

)2 dr̂

r̂

− 2
U(r̂)

U0

ua,−∞(r̂)

U0

+
(ua,−∞(r̂)

U0

)2

+
(ut,−∞(r̂)

U0

)2
)[

ua,0(r̂)

U0

− U(r̂)

U0

]

r̂dr̂

=
R2ρZA

25225200π3n

(

−8400Z2A2ω3R3
√

1 − r̂h r̂
6
h

−
(

−28560Z2A2ω3R3
√

1 − r̂h − 210210ZAω2R2π U0 + 90090U0
2Z2A2ω R

√

1 − r̂h

)

r̂ 5
h

−
(

307164U0
2Z2A2ω R

√

1 − r̂h + 16800Z2A2ω3R3
√

1 − r̂h + 525525ZAω2R2π U0

−360360U0
2Z2A2ω R

√

1 − r̂h ln(r̂h) − 1576575U0
3ZAπ

)

r̂ 4
h

−
(

−6306300U0
3ZAπ + 50400Z2A2ω3R3

√

1 − r̂h + 60060U0
2Z2A2ω R

√

1 − r̂h ln(r̂h)

+6306300U0
3ZA ln(r̂h)π − 1441440U0

2ω R
√

1 − r̂hπ
2 − 801944U0

2Z2A2ω R
√

1 − r̂h

)

r̂ 3
h

−
(

−92400Z2A2ω3R3
√

1 − r̂h + 840840U0
2Z2A2ω R ln(1 +

√

1 − r̂h) + 7882875U0
3ZAπ

−840840U0
2Z2A2ω R ln(|

√

1 − r̂h − 1|) + 3153150U0
3ZA ln(r̂h)π

+960960U0
2ω R

√

1 − r̂hπ
2 − 1154868U0

2Z2A2ω R
√

1 − r̂h

+720720U0
2Z2A2ω R

√

1 − r̂h ln(r̂h) − 1051050ZAω2R2π U0

)

r̂ 2
h

−
(

153582U0
2Z2A2ω R

√

1 − r̂h + 58800Z2A2ω3R3
√

1 − r̂h

−6306300U0
3ZA ln(|

√

1 − r̂h − 1|)π + 6306300U0
3ZA ln(r̂h)π

+60060U0
2Z2A2ω R ln(|

√

1 − r̂h − 1|) + 1051050ZAω2R2π U0

−6306300U0
3ZA ln(1 +

√

1 − r̂h)π − 60060U0
2Z2A2ω R ln(1 +

√

1 − r̂h)

−180180U0
2Z2A2ω R

√

1 − r̂h ln(r̂h) + 2402400U0
2ω R

√

1 − r̂hπ
2
)

r̂h

+1921920U0
2ω R

√

1 − r̂hπ
2 + 240240U0

2Z2A2ω R ln(1 +
√

1 − r̂h)

−324896U0
2Z2A2ω R

√

1 − r̂h − 3153150U0
3ZA ln(r̂h)π

−240240U0
2Z2A2ω R ln(|

√

1 − r̂h − 1|) + 315315ZAω2R2π U0

+13440Z2A2ω3R3
√

1 − r̂h + 3153150U0
3ZA ln(|

√

1 − r̂h − 1|)π
+240240U0

2Z2A2ω R
√

1 − r̂h ln(r̂h) + 3153150U0
3ZA ln(1 +

√

1 − r̂h)π
)
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The energy coefficients are

AXL = −ρU3
s R2

2nQ

∫ 1

r̂h

ua,0(r̂)

Us

[

−2
U(r̂)

Us

ua,−∞(r̂)

Us

+
(ua,−∞(r̂)

Us

)2
]

r̂dr̂

= − ρR4Z2ωA2

240240π2 Q

((

−10010 r̂ 2
h
− 3003 + 5005 r̂ 4

h
− 2002 r̂ 5

h
+ 10010 r̂h

)

π U0

+ RZω A
√

1 − r̂h

(

−256 − 1760 r̂ 2
h

+ 960 r̂ 3
h

+ 320 r̂ 4
h
− 544 r̂ 5

h
+ 160 r̂ 6

h
+ 1120 r̂h

)

)

ROTL = −ρU3
s R2

2nQ

∫ 1

r̂h

{

[

ua,0(r̂)

Us

− U(r̂)

Us

][

∆Cprot(r̂) +
(ut,−∞(r̂)

Us

)2
]

+ ∆Cprot(r̂)

}

r̂dr̂

= −ρR2Z2A2U0
2

88200ω Q π2

((

−3675 + 22050 r̂ 2
h

ln(|
√

1 − r̂h − 1|) − 7350 r̂ 3
h
− 11025 r̂ 2

h

+22050 r̂ 2
h

ln(1 +
√

1 − r̂h) + 22050 r̂h

)

π U0 + Zω RA
(

2272
√

1 − r̂h

+2148
√

1 − r̂h r̂
4
h

+ 1074
√

1 − r̂h r̂h + 630
√

1 − r̂h r̂
5
h
− 2520 r̂ 4

h

√

1 − r̂h ln(r̂h)

−1680
√

1 − r̂h ln(r̂h) − 5608
√

1 − r̂h r̂
3
h
− 8076

√

1 − r̂h r̂
2
h

−1260
√

1 − r̂h ln(r̂h)r̂h + 1680 ln(|
√

1 − r̂h − 1|) + 5040 r̂ 2
h

√

1 − r̂h ln(r̂h)

+420 r̂ 3
h

√

1 − r̂h ln(r̂h) + 420 r̂h ln(|
√

1 − r̂h − 1|)
−1680 ln(1 +

√

1 − r̂h) − 420 r̂h ln(1 +
√

1 − r̂h) + 5880 r̂ 2
h

ln(1 +
√

1 − r̂h)

−5880 r̂ 2
h

ln(|
√

1 − r̂h − 1|)
))

where

∆Cprot(r̂) = −2

∫ 1

r̂−∞

(

ut,−∞(r̂)

U0

)2
1

r̂
dr̂

=
Z2A2

4π2

(

−2 r̂ + 2 ln(r̂) (2 r̂h + 1) +
4 r̂h + 2 r̂ 2

h

r̂
− r̂ 2

h

r̂2
+ 2 − r̂ 2

h
− 4 r̂h

)

A.2 Glauert’s Coefficients

With reference to Equation (6.17), the coefficients are given by

η1 =
1

1 + ā

η2 = 1 − ā′



A.3 Comparison of Results from xlift and xdisk 131

Table A.2: A and the averaged interference factors for Glauert’s coefficients.

CTh A ā ā′

0.100 0.1620 0.0242 0.0202

0.200 0.3301 0.0493 0.0411

0.500 0.8794 0.1313 0.1095

where ā and ā′ are the averaged interference factors over the disk for the axial and the
tangential velocities, respectively, given by

ā =
1

1 − r̂h

∫ 1

r̂h

a(r̂)dr̂ =
1

1 − r̂h

∫ 1

r̂h

|ua,0|(r̂)
U0

dr̂ =
ω RZ

15 π U0

(1 − r̂h)
3/2 A

ā′ =
1

1 − r̂h

∫ 1

r̂h

a′(r̂)dr̂ =
1

1 − r̂h

∫ 1

r̂h

J

π

ut,0(r̂)

U0

dr̂

r̂

= −JZ

4π2

(

3
√

1 − r̂h − tanh−1 (
√

1 − r̂h)(2 + r̂h)
)

(1 − r̂h)
A

where the only unknown is the coefficient A, which is determined from the thrust. The trust
is given by

T = 4πρω2R4

∫ 1

r̂h

(1 − a′)a′r̂3dr̂

= 4πρω2R4

∫ 1

r̂h

(1 − J

π

ut,0(r̂)

U0

1

r̂
)
J

π

ut,0(r̂)

U0

r̂2dr̂

= − ρω2R4JZ

840

(

ZJ (35 − 210 r̂h + 105 r̂ 2
h

(1 − 2 ln(r̂h)) + 70 r̂ 3
h
) A

π3

+
112 (1 − r̂h)

5/2 (1 − 3r̂h) − 240 (1 − r̂h)
7/2

π

)

A

(A.4)

By specifying a required thrust A can be found. Table A.2 gives the A-values and the
averaged interference factors for the three thrust loadings.

A.3 Comparison of Results from xlift and xdisk

As the U0 and the rotational speed are kept constant for the three thrust loadings the input
geometry to xdisk is the same in all three cases.

The input distribution of circulation from xlift:
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100Γ/(πDU0)
s/R CTh = 0.1 CTh = 0.2 CTh = 0.5

0.20000 0.00000 0.00000 0.00000
0.23871 0.18486 0.36149 0.85049
0.29032 0.29106 0.57281 1.37170
0.34194 0.37808 0.74894 1.82701
0.39355 0.45366 0.90445 2.24803
0.44516 0.51956 1.04224 2.63852
0.49677 0.57597 1.16212 2.99445
0.54839 0.62249 1.26274 3.30866
0.60000 0.65835 1.34205 3.57207
0.65161 0.68239 1.39730 3.77365
0.70323 0.69296 1.42471 3.89966
0.75484 0.68767 1.41899 3.93210
0.80645 0.66286 1.37229 3.84571
0.85806 0.61259 1.27196 3.60129
0.90968 0.52567 1.09438 3.12757
0.96129 0.37414 0.78077 2.25033
1.00000 0.00000 0.00000 0.00000



Appendix B

Induced Velocities from the
Singularities

B.1 Biot-Savart

The induced velocity, �u, at the point �x, from a vortex along a panel side, is calculated by
the law of Biot-Savart:

�u(�x) =
Γ

4π

∫ sk

0

d�ξ × �R

|�R|3
(B.1)

where Γ is the circulation of the panel side and d�ξ is a length element along the panel side
of the length sk. �R is the vector from the vortex line element, d�ξ, to the point �x, see Figure
3.4.

As the panel sides are straight lines the solution of the integral is

�u(�x) =
Γ

4π

�a × �c

|�a × �c|
1

d
[cos α + cos β]

=
Γ

4π

�a × �c

|�a × �c|
1

d

[

a − e

b
+

e

c

] (B.2)

The explanation of the parameters is given in Figure B.1. The vector (�a × �c)/|�a × �c| corre-
sponds to a unit vector giving the direction of the induced velocity. The expressions for the
lengths are

a = |�a| =
√

(x2 − x1) + (y2 − y1) + (z2 − z1)

b =
√

(x2 − x) + (y2 − y) + (z2 − z)

c =
√

(x1 − x) + (y1 − y) + (z1 − z)

d =
√

c2 − e2

e = |�e| =
a2 + c2 − b2

2a

133
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Figure B.1: Parameters used for the numerical evaluation of the induced velocity from a
straight vortex.

Equation (B.2) is used for the numerical evaluation of the induced velocity from a panel
side. If the point is on the panel side the velocity is set to zero.

B.2 Induced Velocities from the Trailers

de Jong (1991) derives a very efficient way to calculate the induced velocity from an infinitely
long helix-shaped vortex in cylindrical coordinates. The induced velocity from the vortex
is calculated by the Biot-Savart law and it is assumed that the pitch and the radius of the
helix are constants. By a series expansion of the Biot-Savart law the velocity is calculated
as a sum of cosine and sine integrals. These integrals are efficiently calculated numerically.

The same method is used to calculate the induced velocity but, in contrast to de Jong, from
a semi-infinitely long helix-shaped vortex in Cartesian coordinates. These expressions are
used for the calculation of the induced velocity for the shed vortices.

The helix-shaped vortex is described by

�s = (x,−r sin(P ′x + φ), r cos(P ′x + φ)) (B.3)

where r is the radius of the helix, P ′ is related to the pitch P by P ′ = 2π/P and φ is the phase
angle. The vortex starts infinitely downstream and ends at point xTE, which corresponds to
the x-coordinate for the trailing edge of the blade.

The induced velocity from the vortex, with a unit circulation, is

�u =
1

4π

∫

helix

d�s × �R

|�R|3
(B.4)
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where

�R =





x − x′

y − y′

z − z′



 =





x − x′

y + r′ sin(P ′x′ + φ)
z − r′ cos(P ′x′ + φ)



 (B.5)

and d�s is obtained from the expression for the helix, see Equation (B.3):

d�s = (1,−P ′r′ cos(P ′x′ + φ),−P ′r′ sin(P ′x′ + φ))dx′ (B.6)

The vector product is

d�s × �R =





P ′r′2 + yP ′r′ sin(P ′x′ + φ) − zP ′r′ cos(P ′x′ + φ)
r′ cos(P ′x′ + φ) − z + (x′ − x)P ′r′ sin(P ′x′ + φ)
r′ sin(P ′x′ + φ) + y − (x′ − x)P ′r′ cos(P ′x′ + φ)



 dx′

=





A(x′)
B(x′) + (x′ − x)C(x′)
D(x′) + (x′ − x)E(x′)





(B.7)

and the denominator of Equation (B.4) is

|�R|3 = [(x − x′)2 + (y + r′ sin(P ′x′ + φ))2 + (z − r′ cos(P ′x′ + φ))2]3/2

= [(x − x′)2 + F (x′)]3/2
(B.8)

Hence, the x-component of the velocity is

ux(�x) =
1

4π

∫ xTE

−∞

A(x′)dx′

[(x − x′)2 + F (x′)]3/2

=
1

4π

∫ −l

−∞

+

∫ xTE

−l

A(x′)dx′

[(x − x′)2 + F (x′)]3/2

= u′
x(�x) + u′′

x(�x)

(B.9)

where l is sufficiently large to justify a series expansion of the denominator, so that the
integral can be solved. u′′

x(�x) is the part of the velocity induced by the vortex located
between the trailing edge and the point x = −l. u′′

x(�x) is calculated by approximating the
regular helix shape by straight line segments, then Equation (B.2) can be used to calculate
the velocity.

The series expansion for the denominator is

[(x − x′)2 + F (x′)]−3/2 =
[

(x − x′)2
]−3/2

[

1 +
F (x′)

(x − x′)2

]−3/2

= |x − x′|−3

[

1 − 3

2

F (x′)

(x − x′)2
+ O(x′−4

)

]
(B.10)
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The absolute value can be removed as x > x′ always. Hence, if only the two first terms are
retained, the expansion becomes

[(x − x′)2 + F (x′)]−3/2 ≈ 1

(x − x′)3
− 3

2

F (x′)

(x − x′)5
(B.11)

Thus, u′
x(�x) is approximated by

u′
x(�x) ≈ 1

4π

∫ −l

−∞

[

A(x′)

(x − x′)3
− 3

2

A(x′)F (x′)

(x − x′)5

]

dx′ (B.12)

By inserting A(x′) from Equation (B.7) and F (x′) from Equation (B.8) the velocity is

u′
x(�x) ≈ 1

4π

∫ ∞

l

[

A(−x′)

(x′ + x)3
− 3

2

A(−x′)F (x′)

(x′ + x)5

]

dx′

=
1

4π

[

c0 + [c1 cos φ − c2 sin φ]

∫ ∞

P ′l

cos x′

(x′ + x̃)3
dx′

+[c1 sin φ + c2 cos φ]

∫ ∞

P ′l

sin x′

(x′ + x̃)3
dx′

+[c3 cos φ − c4 sin φ]

∫ ∞

P ′l

cos x′

(x′ + x̃)5
dx′

+[c3 sin φ + c4 cos φ]

∫ ∞

P ′l

sin x′

(x′ + x̃)5
dx′

+[c5 cos2 φ + c6 sin2 φ]

∫ ∞

P ′l

cos2 x′

(x′ + x̃)5
dx′

+[c5 sin2 φ + c6 cos2 φ]

∫ ∞

P ′l

sin2 x′

(x′ + x̃)5
dx′

+[8(c5 − c6) sin 2φ + c7 cos 2φ]

∫ ∞

2P ′l

sin x′

(x′ + 2x̃)5
dx′

−c7 sin 2φ

∫ ∞

2P ′l

cos x′

(x′ + 2x̃)5
dx′

]

where x̃ = P ′x. The limits of the integral are changed so that the expressions for the cosine
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and the sine integrals derived in de Jong (1991) can be used. The constants are

c0 =
−P

′3r2

2(P ′l + x̃)2
+

3

8

P
′5r2 (y2 + z2 + r2)

(P ′l + x̃)4

c1 = P
′3rz

c2 = P
′3ry

c3 = −3

2
P

′5rz
(

y2 + z2 + 3r2
)

c4 = −3

2
P

′5ry
(

y2 + z2 + 3r2
)

c5 = 3P
′5r2z2

c6 = 3P
′5r2y2

c7 = 48P
′5r2yz

By use of a similar procedure for uy(�x), this velocity component yields

u′
y(�x) ≈ 1

4π

∫ ∞

l

[

− C(−x′)

(x′ + x)2
+

B(−x′)

(x′ + x)3
+

3

2

C(−x′)F (x′)

(x′ + x)4
− 3

2

B(−x′)F (x′)

(x′ + x)5

]

dx′

=
1

4π

[

d0 + d1 cos φ

∫ ∞

P ′l

sin x′

(x′ + x̃)2
dx′ − d1 sin φ

∫ ∞

P ′l

cos x′

(x′ + x̃)2
dx′

+d1 sin φ

∫ ∞

P ′l

sin x′

(x′ + x̃)3
dx′ + d1 cos φ

∫ ∞

P ′l

cos x′

(x′ + x̃)3
dx′

−d3 sin φ

∫ ∞

P ′l

cos x′

(x′ + x̃)4
dx′ + d3 cos φ

∫ ∞

P ′l

sin x′

(x′ + x̃)4
dx′

+d5 cos2 φ

∫ ∞

P ′l

sin2 x′

(x′ + x̃)4
dx′ + d5 sin2 φ

∫ ∞

P ′l

cos2 x′

(x′ + x̃)4
dx′

+[d4 cos 2φ − 1
2d7 sin 2φ]

∫ ∞

2P ′l

sin x′

(x′ + 2x̃)4
dx′

−d4 sin 2φ

∫ ∞

2P ′l

cos x′

(x′ + 2x̃)4
dx′

+[d8 cos φ − d6 sin φ]

∫ ∞

P ′l

cos x′

(x′ + x̃)5
dx′

+[d8 sin φ + d6 cos φ]

∫ ∞

P ′l

sin x′

(x′ + x̃)5
dx′

+1
4d4 cos2 φ

∫ ∞

P ′l

cos2 x′

(x′ + x̃)5
dx′ + 1

4d4 sin2 φ

∫ ∞

P ′l

sin2 x′

(x′ + x̃)5
dx′

+[2d4 sin 2φ + 8d5 cos 2φ]

∫ ∞

2P ′l

sin x′

(x′ + 2x̃)5
dx′

−d7 sin 2φ

∫ ∞

2P ′l

cos x′

(x′ + 2x̃)5
dx′

]
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where the constants are

d0 =
P

′2z

2(P ′l + x̃)2
− 3

8

P
′4z (y2 + z2 + r2)

(P ′l + x̃)4

d1 = −P
′2r

d3 =
3

2
P

′4r
(

y2 + z2 + r2
)

d4 = −12P
′4r2z

d5 = −3P
′4r2y

d6 = 3P
′4ryz

d7 = −24P
′4r2y

d8 =
3

2
P

′4r
(

y2 + 3z2 + r2
)

and the uz(�x) velocity component is

uz(�x) ≈ 1

4π

∫ ∞

l

[

− E(−x′)

(x′ + x)2
+

D(−x′)

(x′ + x)3
+

3

2

E(−x′)F (x′)

(x′ + x)4
− 3

2

D(−x′)F (x′)

(x′ + x)5

]

dx′

=
1

4π

[

e0 + e1 sin φ

∫ ∞

P ′l

sin x′

(x′ + x̃)2
dx′ + e1 cos φ

∫ ∞

P ′l

cos x′

(x′ + x̃)2
dx′

−e1 cos φ

∫ ∞

P ′l

sin x′

(x′ + x̃)3
dx′ + e1 sin φ

∫ ∞

P ′l

cos x′

(x′ + x̃)3
dx′

+e3 cos φ

∫ ∞

P ′l

cos x′

(x′ + x̃)4
dx′ + e3 sin φ

∫ ∞

P ′l

sin x′

(x′ + x̃)4
dx′

+e5 sin2 φ

∫ ∞

P ′l

sin2 x′

(x′ + x̃)4
dx′ + e5 cos2 φ

∫ ∞

P ′l

cos2 x′

(x′ + x̃)4
dx′

+[e4 cos 2φ − 1
2e8 sin 2φ]

∫ ∞

2P ′l

sin x′

(x′ + 2x̃)4
dx′

−e4 sin 2φ

∫ ∞

2P ′l

cos x′

(x′ + 2x̃)4
dx′

+[e6 cos φ − e7 sin φ]

∫ ∞

P ′l

cos x′

(x′ + x̃)5
dx′

+[e6 sin φ + e7 cos φ]

∫ ∞

P ′l

sin x′

(x′ + x̃)5
dx′

+e9 sin2 φ

∫ ∞

P ′l

cos2 x′

(x′ + x̃)5
dx′ + e9 cos2 φ

∫ ∞

P ′l

sin2 x′

(x′ + x̃)5
dx′

+[2e4 sin 2φ + e8 cos 2φ]

∫ ∞

2P ′l

sin x′

(x′ + 2x̃)5
dx′

−e8 sin 2φ

∫ ∞

2P ′l

cos x′

(x′ + 2x̃)5
dx′

]
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where the constants are

e0 =
−P

′2y

2(P ′l + x̃)2
+

3

8

P
′4y (y2 + z2 + r2)

(P ′l + x̃)4

e1 = −P
′2r

e3 =
3

2
P

′4r
(

y2 + z2 + r2
)

e4 = −12P
′4r2y

e5 = −3P
′4r2z

e6 = −3P
′4ryz

e7 = −3

2
P

′4r
(

3y2 + z2 + r2
)

e8 = 24P
′4r2z

e9 = 3P
′4r2y

For the present calculations l = 4D.
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Appendix C

NACA Mean Line

The expression for the NACA rooftop mean lines (Abbott and von Doenhoff, 1959):

zf

c
=

CLi

2π(a + 1)

{

1

1 − a

[

1
2(a − 1

2 + t) ln |a − 1
2 + t| − 1

2(
1
2 + t)2 ln(1

2 + t) + 1
4(

1
2 + t)2

− 1
4(a − 1

2 + t)2

]

− (1
2 − t) ln(1

2 − t) + g − h(1
2 − t)

}

where

g =
−1

1 − a

[

a2(1
2 ln a − 1

4) + 1
4

]

h =
1

1 − a

[

1
2(1 − a)2 ln(1 − a) − 1

4(1 − a)2

]

+ g

and CLi is the ideal lift coefficient.
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