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ABSTRACT

This paper investigates the profitability of a simple and very

common technical trading rule applied to the General Index of the Madrid

Stock Market. The optimal trading rule parameter values are found using a

genetic algorithm. The results suggest that, for reasonable trading costs, the

technical trading rule is always superior to a risk-adjusted buy-and-hold

strategy.

JEL classification numbers: G10, G14, C53

KEY WORDS: Technical trading rules, Genetic algorithms, Security
markets
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1. Introduction

A considerable amount of work has provided support for the view

that simple technical trading rules (TTRs) are capable of producing

valuable economic signals [see, Brock et al. (1992), Bessembinder and

Chan (1995), Mills (1997) and Fernández Rodríguez et al. (1999), among

others]. However, the majority of these studies have ignored the issue of

parameter optimisation, leaving them open to the criticism of data-

snooping and the possibility of a survivorship bias [see Lo and MacKinley

(1990) and Brown et al. (1995), respectively]. To avoid this criticism, a

more objective and valid approach consists in choosing TTRs based on an

optimisation procedure utilising in-sample data and testing the performance

of these rules out-of-sample. In this sense, a genetic algorithm is

appropriate method to discover TTRs, as shown in Allen and Karjalain

(1999).

The aim of this paper is to investigate the profitability of some

popular TTRs using genetic algorithm optimisation procedures. Section 2

describes the TTRs examined in this paper, while Section 3 presents the

genetic algorithms and. The empirical results are shown in Section 4.

2. Technical trading rules

The simplest and most common trading rules are moving averages

(MA). In particular, we consider a generalised MA (GMA) rule that can be

represented by the following binary indicator function:

( ) ( ) ( )( ) ( )1 1 3 21 1 2 tt t tS MA S MAθ θ θ−Θ = − + − (1)

where [ ]321 ,, θθθ=Θ  denotes the parameters associated to the GMA rule, and

MA(θ ) is a MA indicator defined as follows:
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The lengths of the short and long MA are given by 1θ  and 2θ , while

3θ  represents a filter parameter included to reduce the number of false buy

and sell signals generated by a MA rule when price movement is

nondirectional.

The GMA rule is used to indicate the trading position that should be

taken at time t. In particular, equation (1) returns either a one o zero,

corresponding to a buy or sell signal, respectively1.

3. Genetic algorithms

Genetic algorithms (GA), developed by Holland (1975), are a class

of adaptive search and optimisation technique. A GA starts with a

population of randomly generated solution candidates, which are evaluated

in terms of an objective function. This candidates are usually represented

by vectors consisting in binary digits. Promising candidates, as represented

by relatively better performing solutions, are then combined through a

process of binary recombination referred to as crossover. Finally, random

mutations are introduced to safeguard against the loss of genetic diversity,

avoiding local optima. Successive generations are created in the same

                                                          
1 Three different MA rules are nested within the GMA rule and can be derived
individually by imposing certain restrictions on equation (1):

1) Simple MA: 0,1,1 321 =>= θθθ
( ) ( )2tt tS P MA θΘ = −

2) Filtered MA: 0,1,1 321 >>= θθθ
( ) ( )( ) ( )1 3 21 1 2t tt tS P S MAθ θ−Θ = − + −

3) Double MA: 0,,1 3121 =>> θθθθ
( ) ( ) ( )1 2t t tS MA MAθ θΘ = −
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manner and evaluated using the objective function until a well-defined

criterion is satisfied.

In order to determine which solution candidates are allowed to

participate in the crossover and undergo possible mutation, we apply the

genitor selection method proposed by Whitley (1989). This approach

involves ranking all individuals according to performance and then

replacing the poorly performing individuals by copies of better performing

ones. In addition, we apply the commonly used single point crossover,

consisting in randomly pairing candidates surviving the selection process

and randomly selecting a break point at a particular position in the binary

representation of each candidate. This break point is used to separate each

vector into two subvectors. The two subvectors to the right of the break

point are exchanged between the two vectors, yielding two new candidates.

Finally, mutation occurs by randomly selecting a particular element in a

particular vector. If the element is a one it is mutated to zero, and viceversa.

This occurs with a very low probability in order not to destroy promising

areas of search space.

4. Empirical results

The data consists of daily closing prices of the General Index of the

Madrid Stock Exchange (IGBM)  and the daily 3-month rate in the

interbank deposits markets, covering the 2 January 1972-15 November

1997 period (4376 observations). The total period is split into an in-sample

optimisation period from 2 January 1972 to 16 December 1988 and an out-

of-sample test period from to 16 December 1988 to 15 November 1997

(2188 observations in each subperiod).
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The initial population was set at 150 candidates, while the maximum

number of both generation allowed and iterations without improvement

was fixed at 300. The maximum the probabilities associated with the

occurrence of crossover and mutation were set at 6% and 0.5%,

respectively. These choices were guided by previous studies (see, Bauer,

1994) and experimentation with different values.

The  signals from the trading rules are used to divide the total

number of trading days  ( N ) into either “in” the market (earning the market

return trm = 






−1

ln
t

t

P
P ) or “out” of the market (earning the risk-free rate of

return trf ). Therefore,  the objective function used to evaluate the trading

rules is given by the following expression:

          1 1
1 1

(1 ) *
N N

tr t t t t
t t

r S rm S rf T c− −
= =

= + − −∑ ∑ (2)

whereT  is the number of transactions and c  is the cost per transaction.

As an appropriate benchmark, we consider the return from a risk-

adjusted buy and hold strategy defined as

                     ( )∑ ∑
= =

−+=
N

t

N

t
ttbh rmrfr

1 1

1 αα - 2 c (3)

where α is the proportion of trading days that the rule is out of the market.

Table 1 summarises the results. As can be seen, the best GMA rules

are double MA rules, without a filter parameter (except for the case of 0

transaction costs). The Sharpe ratio and the annualised returns

corresponding to the best GMA rule are higher than those from the risk-

adjusted buy and hold strategy, both for the in-sample and out-of-sample
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periods2. It is interesting to note that this results holds for all transaction

costs examined.

Table 1: Performance statistics

GMA trading rule Risk-adjusted
buy and hold strategy

In-sample Out-of-sample In-sample Out-of-sampleTransaction
Costs

Parameter
Values r SR r SR r SR r SR

0.25% (207,242,0) 33.30 0.0072 14.63 0.0068 25.36 0.0068 10.86 0.0044
0.10% (1,20,0) 38.58 0.0105 16.89 0.0072 22.92 0.0072 9.95 0.0041
0 (1,2,3) 43.21 0.0122 13.36 0.0078 18.54 0.0078 10.18 0.0046

Notes: GMA trading rules are identified as (s,l,b), where s and l are the length of the
short and long period (in days) and b is the filter parameter. r  is the average annualised
return of the trading strategy and SR is the Sharpe ratio .

                                                          

2  The Sharpe ratio is a measure of risk-adjusted returns: rSR
Yσ

= , where r  is the

average annualised return of the trading strategy, σ is the standard deviation of daily
trading rule returns, and Y is equal to the number of trading days per year.
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