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Abstract In contrast to ever increasing volumes of automatically generated data, human
annotation capacities remain limited. Thus, fast active learning approaches that allow the
efficient allocation of annotation efforts gain in importance. Furthermore, cost-sensitive
applications such as fraud detection pose the additional challenge of differing misclassi-
fication costs between classes. Unfortunately, the few existing cost-sensitive active learning
approaches rely on time-consuming steps, such as performing self-labelling or tedious eval-
uations over samples. We propose a fast, non-myopic, and cost-sensitive probabilistic active
learning approach for binary classification. Our approach computes the expected reduction in
misclassification loss in a labelling candidate’s neighbourhood. We derive and use a closed-
form solution for this expectation, which considers the possible values of the true posterior
of the positive class at the candidate’s position, its possible label realisations, and the given
labelling budget. The resulting myopic algorithm runs in the same linear asymptotic time
as uncertainty sampling, while its non-myopic counterpart requires an additional factor of
O(m · log m) in the budget size. The experimental evaluation on several synthetic and real-
world data sets shows competitive or better classification performance and runtime, compared
to several uncertainty sampling- and error-reduction-based active learning strategies, both in
cost-sensitive and cost-insensitive settings.

Keywords Active learning · Non-myopic · Cost-sensitive · Unequal misclassification
costs · Misclassification loss · Imbalanced data · Uncertainty sampling · Error reduction
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1 Introduction

The volume of automatically generated data increases constantly (Gantz and Reinsel 2012)
but human annotation capacities remain limited. Learning from large pools or fast streams of
unlabelled data, yet scarce and expensive labelled data, requires the development of fast and
efficient active learning algorithms (Gopalkrishnan et al. 2012; Krempl et al. 2014). Such
algorithms actively construct a training set, rather than passively processing a given one. Their
objective is to select among the unlabelled instances (candidates) the ones for labelling that
are deemed to maximise the classification performance the most (Settles 2012), thus focusing
annotation efforts to the most valuable candidates. While fast active learning itself poses a
challenge, an even bigger one is cost-sensitivity1 (Liu et al. 2009), where misclassification
costs differ between classes, as for example in the diagnosis of rare but dangerous ailments
in patients (Attenberg and Ertekin 2013), where classifying a sick patient as healthy incurs
more severe consequences than classifying a healthy one as sick.

We address these challenges by presenting a novel, fast probabilistic active learning
approach, which is suitable for binary classification, both under equal and non-equal misclas-
sification costs. This probabilistic (Krempl et al. 2014a, b) active learning approach computes
the expected performance gain, thereby considering both a candidate’s label realisation and
the true posterior of the positive class in the candidate’s neighbourhood. The latter directly
incorporates the likelihoods of different possible posteriors under the already labelled data.
This advances most state-of-the-art decision-theoretic active learning literature (e.g. Freytag
et al. 2013; Garnett et al. 2012), which considers solely the most likely (or most pessimistic)
posterior.

We make three important contributions beyond (Krempl et al. 2014a, b) and other works:
First, we optimise label selection for the minimisation of misclassification loss, a cost-

sensitive performance measure (Hand 2009). Second, we derive a fast, closed-form solution

for calculating the probabilistic gain of an instance. We show that this yields a myopic
active learning approach with the same linear asymptotic computational time as uncertainty
sampling, which is one of the fastest available approaches (Settles 2012, p. 64). Third, we pro-
pose a non-myopic extension of our optimised probabilistic active learning (OPAL) approach,
where the myopic, isolated view on the value of each label is exchanged for considering the
possible remaining number of similar label acquisitions under a given budget. We show that
this provides an advantage in particular in cost-sensitive settings, while it requires solely
additional time of a factor O(m · log m) of the budget size. In practical applications, neither
this budget size, which for example results from limited human annotation capacities, nor
the misclassification costs, which for example are determined by economic consequences as
in the German Credit dataset (Elkan 2001), do constitute tunable parameters. Our approach
is simple to implement, and neither requires maintaining an evaluation set, nor self-labelling.
Experimental evaluation shows its competitiveness in classification performance and speed,
compared to other cost-sensitive and cost-insensitive active learning approaches.

The rest of this paper is organised as follows: first, Sect. 2 provides the necessary back-
ground and discusses the related work. Our OPAL-approach is presented in Sect. 3. The results
of its experimental evaluation are reported in Sect. 4, comparing it to several active learn-
ing strategies, including error-reduction and uncertainty sampling approaches specialised for
cost-sensitive settings.

1 Some authors use cost-sensitive for differing label acquisition costs between candidates (Liu et al. 2009).
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2 Background and related work

Our work addresses cost-sensitive active learning for binary classification. Given the exist-
ing overviews on the various existing cost-insensitive approaches in recent surveys such
as Settles (2012), Fu et al. (2012), Cohn (2010) and Settles (2009), we focus on the most
related approaches and start with cost-insensitive approaches before moving to cost-sensitive
ones.

In expected error reduction (ER) (Roy and McCallum 2001; Cohn et al. 1996), the expected
error upon incorporating a candidate into the training set is calculated. This is done by
simulating for each of its possible label realisations the classifier update, and calculating
the resulting error on an evaluation set (e.g. using the set of already labelled instances). In
contrast to earlier work (Cohn et al. 1996), the error reduction approach in Roy and McCallum
(2001) is usable with any classifier, and directly optimises a user-specified classification
performance measure. Nevertheless, ER requires reliable estimates for the true posteriors
(Chapelle 2005), which are difficult to obtain in early learning stages, where solely few
labels are available. Therefore, several regularisation approaches, such as Beta priors, have
been explored (Chapelle 2005). This family of approaches is known (see e.g. Settles 2012)
to yield good results, but it is slow, requiring an asymptotic runtime of O(|V| · |U |), where
V is the evaluation set and U the pool of candidates.

A fast active learning approach is uncertainty sampling (US) (Lewis and Gale 1994), which
has an asymptotic time complexity of O(|U |) and is usable on fast data streams (Zliobaitė
et al. 2013). It employs so-called uncertainty measures as proxies for a candidate’s impact on
the classification performance, and the candidate with the highest uncertainty is selected for
labelling. In the seminal work of Lewis and Gale (1994), a probabilistic classifier is used on
a candidate to compute the posterior of its most likely class. The absolute difference between
this posterior estimate and 0.5 is used as uncertainty measure (lower values denoting higher
uncertainty). In addition to this confidence-based uncertainty measure, other measures are
common as well (Settles 2012), like entropy or the margin between a candidate and the
decision boundary. Similar to the issue of the true posterior above, a known drawback (Zhu
et al. 2010) of US is that these proxies do not consider the number of similar instances on which
the posterior estimates are made or the decision boundaries are drawn. The reported results
of empirical evaluations are somewhat inconclusive, with some authors [e.g. Chapelle (2005)
or Schein and Ungar (2007)] reporting for US on some data sets even worse performance
than random sampling.

Our recently (Krempl et al. 2014a, b) proposed probabilistic active learning (PAL)
approach combines the qualities of uncertainty sampling and error reduction, namely being
fast and optimising directly a performance measure. Following a smoothness assumption
(Chapelle et al. 2006), our approach uses probabilistic estimates for summarising the labelled
information in a candidate’s neighbourhood and evaluating the impact of acquiring a label
therein. This impact is expressed by the expected performance gain (the so-called proba-
bilistic gain), measured in terms of an user-defined point classification performance measure
(Parker 2011) like accuracy. Expectation is not only done over the possible realisations of
a candidate’s label as in error reduction, but also over the true posterior in the candidate’s
neighbourhood. PAL then selects the candidate that in expectation improves the classifica-
tion performance the most within its neighbourhood. PAL runs in the same asymptotic time
O(|U |) as uncertainty sampling and showed good results in cost-insensitive classification
experiments (Krempl et al. 2014b), yet its suitability for cost-sensitive applications is an
open question.
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Cost-sensitive learning (Liu et al. 2009) is a particular challenging task for active learning
algorithms, where misclassification costs are not equal among different classes. This occurs
for example in fraud detection (Elkan 2001), where positives are rare, but misclassifying
them (i.e. producing a false negative) is more costly than misclassifying a negative instance
as positive. The objective is then to minimise the misclassification loss (Hand 2009), i.e. the
cost-weighted sum of false positives and false negatives. A related, yet different problem is
that of skewed or imbalanced class prior distributions (see He and Ma (2013) for an overview),
where one class is far less frequent than the other. This latter problem is addressed in pas-
sive classification (where labels are known) by resampling (Chawla et al. 2002; Attenberg
and Ertekin 2013), i.e. oversampling the minority or undersampling the majority class. In
Attenberg and Ertekin (2013), active-learning-based approaches for resampling are reviewed.
However, while resampling strategies are useful for creating a balanced training sample, they
do not directly address the former problem of cost-sensitive classification itself. Furthermore,
the reported empirical results in Elkan (2001), Liu (2009) suggest that their suitability for
cost-sensitive classification is highly classifier dependent. Thus, we focus on approaches that
directly address cost-sensitive classification.

In passive classification, unequal misclassification costs are addressed by using classi-
fication rules that minimise the conditional risk (Domingos 1999). A corresponding active

learning strategy is to use cost-sensitive measures for label selection. This is done in the cost-
sensitive variant of ER (Margineantu 2005), where misclassification loss is used as error
measure, and varying label acquisition costs between instances are considered. Neverthe-
less, it inherits the slow runtime of ER and its issues associated with the ignorance of the
true posterior. For query-by-committee approaches, which use the disagreement between an
ensemble of classifiers as a proxy for a candidate’s value, Tomanek and Hahn (2009) pro-
poses a class-weighted, vote entropy-based measure as disagreement metric. However, this
approach is specific for natural language processing, where active selection is between given
conglomerates of labels.

Uncertainty measures can be made cost-sensitive by weighting posterior estimates with
class-specific misclassification costs (Liu et al. 2009). However, an active learning component
might induce a sampling bias, such that with additional labels the posterior estimates deviate
further from the true posterior (Liu et al. 2009). This poses a problem especially in cost-
sensitive classification tasks, where reliable posterior estimates are required to determine the
misclassification-loss optimal decision boundary. Liu et al. (2009) addresses this by propos-
ing a so-called cost-sensitive uncertainty sampling approach that performs self-labelling
of all remaining unlabelled instances after each label request. This aims at de-biasing the
training sample for a cost-sensitive classifier, but also increases the asymptotic time com-
plexity to O(|U |2). To the best of our knowledge, no direct empirical comparison between
the approaches of Margineantu (2005) and Liu et al. (2009) has been published yet. Fur-
thermore, they share another shortcoming in addition to requiring time-consuming steps:
they are myopic, as they evaluate the impact of the next label acquisition without con-
sidering the remaining labelling budget. Nevertheless, as already stated in early works on
active learning (Roy and McCallum 2001), the optimal query may very well depend on
this remaining budget, which defines how many additional label requests will follow. Thus,
extending active learning approaches to become non-myopic (also called far-sighted) is
considered relevant (Zhao et al. 2012; Vijayanarasimhan et al. 2010). Vijayanarasimhan
et al. (2010) proposed a far-sighted cost-sensitive active learning method for support vec-
tor machines that chooses a set of instances out of the pool of unlabelled candidates
incorporating the individual labelling costs into the SVM’s objective function. Zhao et al.
(2012) select a set of instances greedily based on expected entropy reduction. They fur-
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thermore suggest to be near-optimal and define a stopping criterion for the active learning
process.

3 Optimised probabilistic active learning (OPAL)

We address fast active learning for binary classification in a cost-sensitive environment, where
the costs τ of a false positive classification potentially differ from that of a false negative one
(1 − τ ). The objective of our approach is to select from the pool of unlabelled candidates
the one that reduces the misclassification loss (Hand 2009) the most, once it is labelled and
incorporated into the training set.

In the next Sect. 3.1, we provide the detailed modelling and derivation of our probabilis-
tic performance gain estimate (GOPAL), the pseudo-code2 and a numeric example. This is
followed by a discussion of OPAL’s properties (Sect. 3.2), in particular under varying mis-
classification cost ratios and budgets. For convenience, we summarise in Table 1 the notation
that is subsequently used.

3.1 Modelling and derivation of GOPAL

Our approach follows a smoothness assumption [see ch. 1.2.1, p. 7 in Chapelle et al. (2006)],
such that neighbouring positions in the feature space are assumed to have similar posteriors.
Given a labelling candidate (x, ·) from a pool of unlabelled instances U , and a set L of
already labelled instances (x, y), our approach needs to assess how well its neighbourhood
has been explored, i.e. to count the number of already labelled instances that are similar
to the candidate, in order to further assess the value of additional labels therein. Estimates
on the posterior probabilities Pr(y|x) are not sufficient, as their normalisation cancels out
the absolute number of labels, keeping solely information on the proportion of each class.
Therefore, we resort to the unnormalised values. That is, we use the absolute frequencies for
the number of labels of each class in the candidate’s neighbourhood.

We differentiate between two neighbourhood concepts: The first, disjoint one applies to
categorical or pre-clustered data. Such data allows to count the number LC(x, L) of labelled
instances that are similar to the candidate w.r.t. their features (or assigned cluster). These label
counts for x are summarised by its label statistics ls = (n, p̂), a tuple consisting of the absolute
number n of labels in a candidate’s neighbourhood, and the share p̂ of positives therein. The
second concept of smooth, continuous neighbourhoods corresponds for example to numerical
data, where the influence of instances increases with the similarity of their features. In analogy
to counts in the first case, we use frequency estimates in this second case. Using probabilistic
classifiers that are modified to return unnormalised estimates for the absolute frequencies is
one option. We recommend to use generative probabilistic classifiers like Naive Bayes rather
than discriminiative ones like logistic regression. The information on the labelled data kept by
the former by modelling Pr(X, Y ) and Pr(X) allows to compute the label statistics directly.
Furthermore, generative classifiers converge with fewer labels, as shown in Ng and Jordan
(2001), which is important in active learning contexts. If these classifiers are not available,
we propose to use Gaussian kernel frequency estimation (here, Σ is the bandwidth matrix):

LC(x, L) ≈ KFE(x, L) =
∑

xi ∈L

exp

(

−
1

2
· (x − xi )

′Σ−1(x − xi )

)

(1)

2 Implementations are available on our companion website: http://kmd.cs.ovgu.de/res/opal.
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Table 1 Used symbols and notation

Symbol Description Reference

Input data

x Feature vector of an instance p. 5

y ∈ {0, 1} Class label of an instance (0 = neg., 1 = pos.) p. 5

U = {(x, ·)} Pool of unlabelled instances p. 5

L = {(x, y)} Pool of labelled instances p. 5

Variables imposed by the application domain

τ ∈ [0, 1] Cost of each false positive classification p. 5, p. 9, Eq. 16

m ≥ 0 Budget for the candidate’s neighbourhood p. 7

Variables within the neighbourhood of a candidate (x, ·)

dx ≥ 0 Density weight (w.r.t. all instances in U ∪ L) p. 6, Eq. 2

gx Density weighted optimised probabilistic gain p. 11

ls = (n, p̂) Label statistics with: p. 5

n Total number of already obtained labels

p̂ Share of positives therein (a posterior estimate)

k ∈ {0, . . . , m} Number of positives among future label realisations p. 7

p ∈ [0, 1] True posterior probability of the positive class p. 7

Functions

L(p|ls) Likelihood of a possible true posterior p. 7, Eq. 7

ωp(Slabel) ∈ [0, 1] Normalised likelihood of a possible true posterior p. 8, Eqs. 10–12

Γ (z) Legendre’s gamma function, see pp. 206–208 in Press
et al. (1992)

p. 7

IM L (n, p̂, τ, m, k) Integral, proportional to the expected performance p. 11, Eq. 32

GOPAL(n, p̂, τ, m) Optimised probabilistic gain, i.e. a candidate’s p. 11, Eq. 35

∈ [−1, 1] Exp. average misclassification loss reduction

Based on this, we derive the total number of labels n = LC(x, L) and the share of positives
therein p̂ = LC(x, L+)/LC(x, L), where L+ is the subset of labelled positive instances.
The tuple ls = (n, p̂) constitutes the label statistics of x’s neighbourhood. Using Eq. 1, we
also derive the density in the candidate’s neighbourhood

dx =
LC(x, L ∪ U)

|L ∪ U |
(2)

This serves as a weight for the importance of the classification performance within this
neighbourhood, as compared to other regions in feature space. Therefore, we later weight the
average misclassification loss reduction by this density-weight. It is useful to precompute dx

for all candidates in the pool, as L ∪ U is static in the pool-based active learning scenario.

3.1.1 A non-myopic, cost-sensitive probabilistic gain

Following our recently (Krempl et al. 2014a, b) proposed probabilistic active learning
approach, we use a candidate’s label statistics ls to compute its probabilistic gain, which
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corresponds to the expected gain in classification performance from acquiring the candi-
date’s label. This is done by first modelling both, the candidate’s label realisation y and the
true posterior p of the positive class in its neighbourhood, as random variables, and com-
puting the expectation over both variables simultaneously, using the normalised likelihood
given the label statistics. The resulting probabilistic gain is weighted by the feature den-
sity dx at its position, and the candidate with highest density-weighted probabilistic gain is
selected.

However, in contrast to (Krempl et al. 2014a, b), our optimised probabilistic active learn-

ing (OPAL) offers three advantages for fast, cost-sensitive applications: first, it quantifies a
candidate’s probabilistic gain (its label’s value) in terms of misclassification loss reduction,
which is a cost-sensitive measure. Second, it uses a closed-form solution for computing the
probabilistic gain, making it faster. Third, it is non-myopic, considering the effect of more
than one label acquisition at once. Thus, given a budget that allows to acquire m labels at
once within the neighbourhood, we compute the expectation over a set y1, y2, . . . , ym of
label realisations, rather than on a single label realisation y. However, the ordering of labels
is irrelevant in this additional training set. By counting the number of positive realisations
k in the possible sets, m + 1 different cases (k = 0, 1, . . . , m) are distinguishable, and the
number of positive realisations is a binomial-distributed random variable K ∼ Binm,p . Thus,
we perform the expectation over its realisation k and over the true posterior p, rather than
over y and p as in Krempl et al. (2014b).

The true posterior in this neighbourhood is unknown, but for its possible values, the
likelihoods are calculable by using the frequency estimates from the label statistics. For this,
we model the unknown true posterior in this neighbourhood by a Beta-distributed random
variable P. Its realisation p is itself the parameter of the Bernoulli distribution that controls
the label realisation y ∈ {0, 1} of any instance within the neighbourhood. Consequently, for
any set of m label realisations in the neighbourhood, the number k of positives therein is the
realisation of a Binomial-distributed random variable K :

P ∼ Betan· p̂+1,n·(1− p̂)+1 (3)

Y ∼ Bernoullip = Ber p (4)

K ∼ Binomialm,p = Binm,p (5)

We will denote the probability (density) functions (pdf’s) of the above distributions by
Betaα,β(), Ber p(), and Binm,p(), respectively. For computing the binomial coefficient in

Binm,p(k) =

(

m

k

)

· pk · (1 − p)m−k , as well as in the subsequent equations below, we

use the generalised binomial coefficient for non-integer arguments, and the gamma function
Γ (z) as defined by Legendre3:

(

m

k

)

=
Γ (m + 1)

Γ (k + 1) · Γ (m − k + 1)
(6)

The true posterior’s Beta distribution above is the result of its normalised likelihood, given
the already observed labels, as we will show below. According to Eq. 5, the likelihood of a
true posterior p given the data summarised in ls corresponds to the probability mass function
Binn,p(n p̂):

3 See for example pages 206–208 in Press et al. (1992).
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L(p|ls) = L(p|(n, p̂)) = Binn,p(n p̂) (7)

=
Γ (n + 1) · pn· p̂ · (1 − p)n·(1− p̂)

Γ (n · p̂ + 1) · Γ (n · (1 − p̂) + 1)
(8)

Following a Bayesian approach, we consider a prior g(p) for P, and obtain the normalised
likelihood

ωls(p) =
L(p|ls)g(p)

∫ 1
0 L(ψ |ls)g(ψ)dψ

(9)

The choice of a suitable prior g(p) depends on our a priori information about the class prior
distribution Pr(Y = +) in the data. Without any a priori information, we chose a uniform
prior for P, i.e. g(p) ∼ U (0, 1). As a result, g(p) is a constant function, and the integral in
the denominator sums up to (1 + n)−1, yielding (1 + n) as normalising constant:

ωls(p) = (1 + n) · L(p|ls) (10)

Expanding this using Eq. 7, and setting (1 + n) · Γ (n + 1) = Γ (n + 2), we obtain precisely
the probability function of the Beta-distribution:

ωls(p) =
Γ (n + 2) · pn· p̂ · (1 − p)n·(1− p̂)

Γ (n · p̂ + 1) · Γ (n · (1 − p̂) + 1)
(11)

=
Γ (α + β)

Γ (α) · Γ (β)
· pα−1 · (1 − p)β−1 = Betaα,β(p) (12)

Here, we rewrite in the last step the arguments of the Γ -functions and obtain α = n · p̂ + 1
and β = n · (1 − p̂) + 1. These parameters for the Beta-distribution have a correspondence
in the positive and negative labels in the candidate’s neighbourhood: with each positive
label therein, α increases by one, while with each negative, β increases by one. Thus, the
normalised likelihood expressed by the Beta-distribution is a uniform distribution if no labels
are available. However, if labels are available, its peak around p̂ becomes more and more
distinct with an increase in the number of available labels.

In contrast to Krempl et al. (2014b), we do the expectation in OPAL over k and p, rather
than over y and p, yielding the candidate’s probabilistic gain (GOPAL), defining the expected
change of the performance measure for its neighbourhood in average per additional label:

GOPAL(ls, τ, m) =
1

m
· Ep

[

Ek

[

gainp(ls, k, m)
]

]

(13)

=
1

m
·

∫ 1

0
Betaα,β(p) ·

∑

0≤k≤m

Binm,p(k) · gainp(ls, k, m) d p (14)

Here, gainp(ls, k, m) is the performance gain within the neighbourhood with label statistics
ls and true posterior p, given that k among m additional label realisations are positive. Using
a point performance measure perf p( p̂) that calculates the classification performance under
a posterior estimate p̂ and a true posterior p, the performance gain is written as difference
between future and current performance:

gainp(ls, k, m) = perf p

(

n p̂ + k

n + m

)

− perf p( p̂) (15)

We address active learning for cost-sensitive binary classification tasks, where τ ∈ [0; 1]

indicates the cost for each false positive instance, and 1 − τ is the corresponding cost for
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each false negative one, assuming zero costs for correct classifications. A point performance
measure (Parker 2011) for this setting is misclassification loss (Hand 2009), which is the
product of the misclassification cost matrix and the confusion matrix. Within a neighbourhood
with true posterior p and a classification rule classifying a share of q instances therein as
positive,4 the misclassification loss is

M Loss(p, q) = p · (1 − q) · costF N + (1 − p) · q · costF P = (16)

p · (1 − q) · (1 − τ) + (1 − p) · q · τ = q · (τ − p) + p · (1 − τ) (17)

Thus, given p and τ , the misclassification loss is a linear function of q ∈ [0; 1]. It has a
positive slope for p < τ , and a negative for p > τ . Due to the positive slope, it is optimal to
set q = 0 in the former case (and q = 1 in the latter), in order to minimise the loss function.
Thus, the cost-optimal decision is:

q∗ =

⎧

⎨

⎩

0 p < τ

1 − τ p = τ

1 p > τ

(18)

One could argue that in the case τ = p the choice of q∗ is an arbitrary one, as the first factor
q · (τ − p) is zero, meaning equal loss of p2 = τ 2 for all choices of q∗. However, in order to
obtain a consistent classification rule, one should specify the assignment q∗ = 1 − τ at ties,
rather than simply replacing one strict inequality condition in Eq. 18 with a non-strict one.
This is illustrated when studying the classification under extreme values for τ . For example,
if τ = 0, false positives do not cost anything, while false negatives are very expensive. A
cost-optimal classification rule should thus classify every instance as positive, i.e. q∗ should
be one for all possible p. While cases of p ∈ ]0; 1] are covered by the third clause in Eq.
18, the second clause must return q∗ = 1 for cases of p = 0. Vice versa, if τ = 1 this
second clause must return q∗ = 0. Thus, it should be set to 1 − τ (or 1 − p, equivalently).
As the true posterior p is not directly observable, the counted observed share p̂ of posi-
tives is used as proxy instead. Thus, ties might occur frequently enough to consider this as
relevant.

Given p and τ , using negated misclassification loss (Eq. 16) under cost-optimal classifi-
cation (Eq. 18), we derive a performance measure suited for Eq. 15:

per f p,τ ( p̂) = −M L p,τ ( p̂) = −

⎧

⎨

⎩

p · (1 − τ) p̂ < τ

τ · (1 − τ) p̂ = τ

τ · (1 − p) p̂ > τ

(19)

Intentionally, we do not include the density of the neighbourhood here, to measure the effect of
this misclassification loss reduction for the whole data set, because we intend to separate data
set specific information from this value. Of course, M L p,τ ( p̂) should have been multiplied
with the neighbourhood’s density dx , but this factor can be delivered to the very left side of
the whole formula.

Plugging this into Eq. 13 yields the probabilistic misclassification loss reduction

GOPAL(ls, τ, m) =
1

m
·

∫ 1

0
Betaα,β (p)

m
∑

k=0

Binm,p(k)

(

M L p,τ ( p̂) − M L p,τ

(

n p̂ + k

n + m

))

d p (20)

4 Classification within a neighbourhood is assumed to be indifferently of the precise location within the
neighbourhood, i.e. we assume conditional independence of the posterior given the neighbourhood of an
instance.
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3.1.2 Derivation of the closed-form solution

For deriving a closed-form solution, we split Eq. 20 it into a term for to the expected current
performance Ecur and another for the expected future performance E f ut :

GOPAL(ls, τ, m) =
1

m
·
(

Ecur − E f ut

)

(21)

The first term Ecur , where m = k = 0 and Bin0,p(0) = 1, is simplified to:

Ecur =

∫ 1

0
Betaα,β(p) · M L p,τ ( p̂) d p (22)

Expanding the Beta-distributed probability Betaα,β(p) by Eq. 12 and the misclassification
loss by the case-by-case formula in Eq. 18, and integrating out yields:

Ecur =

∫ 1

0

Γ (n + 2) · pn· p̂ · (1 − p)n·(1− p̂)

Γ (n · p̂ + 1) · Γ (n · (1 − p̂) + 1)
·

⎧

⎨

⎩

p · (1 − τ) d p p̂ < τ

τ · (1 − τ) d p p̂ = τ

τ · (1 − p) d p p̂ > τ

(23)

= (n + 1) ·

(

n

n · p̂

)

·

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(1 − τ) ·
Γ (1+n−n p̂)Γ (2+n p̂)

Γ (3+n)
p̂ < τ

(τ − τ 2) ·
Γ (1+n−n p̂)Γ (1+n p̂)

Γ (2+n)
p̂ = τ

τ ·
Γ (2+n−n p̂)Γ (1+n p̂)

Γ (3+n)
p̂ > τ

(24)

The second term, E f ut , in Eq. 21 is:

E f ut =

∫ 1

0
Betaα,β(p)

m
∑

k=0

Binm,p(k) · M L p,τ

(

n p̂ + k

n + m

)

d p (25)

=

m
∑

k=0

·

∫ 1

0
Betaα,β(p) · Binm,p(k) · M L p,τ

(

n p̂ + k

n + m

)

d p (26)

As above, we expand the terms therein, which now include the Binomial-distributed

probability Binm,p(k) =

(

m

k

)

· pk · (1 − p)m−k :

E f ut =

m
∑

k=0

∫ 1

0

Γ (n + 2) · pn· p̂ · (1 − p)n·(1− p̂)

Γ (n · p̂ + 1) · Γ (n · (1 − p̂) + 1)
· (27)

·

(

m

k

)

· pk · (1 − p)m−k · M L p,τ

(

n p̂ + k

n + m

)

d p (28)

= (n + 1) ·

(

n

n · p̂

)

·

m
∑

k=0

·IM L(n, p̂, τ, m, k) (29)

where IM L is a function of n, p̂, τ , m, and k, containing the integral and proportional to the
expected performance, which is integrated out as follows:

123



Mach Learn (2015) 100:449–476 459

IM L(n, p̂, τ, m, k) =

∫ 1

0

(

m

k

)

· pn· p̂+k · (1 − p)n+m−n· p̂−k · M L p,τ

(

n p̂ + k

n + m

)

d p (30)

=

(

m

k

)

·

∫ 1

0
pn· p̂+k · (1− p)n+m−n· p̂−k ·

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

p · (1 − τ)dp
n p̂+k
n+m

< τ

(τ − τ 2)dp
n p̂+k
n+m

= τ

τ · (1 − p)dp
n p̂+k
n+m

> τ

(31)

=

(

m

k

)

·

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(1 − τ) ·
Γ (1−k+m+n−n p̂)Γ (2+k+n p̂)

Γ (3+m+n)
n p̂+k
n+m

< τ

(τ − τ 2) ·
Γ (1−k+m+n−n p̂)Γ (1+k+n p̂)

Γ (2+m+n)
n p̂+k
n+m

= τ

τ ·
Γ (2−k+m+n−n p̂)Γ (1+k+n p̂)

Γ (3+m+n)
n p̂+k
n+m

> τ

(32)

Using this in Eqs. 24 and 29, we obtain

Ecur = (n + 1) ·

(

n

n · p̂

)

· IM L(n, p̂, τ, 0, 0) (33)

E f ut = (n + 1) ·

(

n

n · p̂

)

·

m
∑

k=0

·IM L (n, p̂, τ, m, k) (34)

and Eq. 35 to compute the GOPAL in the candidate’s neighbourhood:

GOPAL(n, p̂, τ, m) =
(n + 1)

m
·

(

n

n · p̂

)

·

⎛

⎝IM L (n, p̂, τ, 0, 0) −

m
∑

k=0

IM L (n, p̂, τ, m, k)

⎞

⎠ (35)

3.1.3 Pseudocode and numeric examples

The pseudocode for OPAL in pool-based active learning is given in Fig. 1. Lines 2–7 iterate
over each labelling candidate (x, ·) in the pool U . First (line 3), a candidate’s label statistics
ls = (nx , px ) are computed according to Eq. 1. Second (line 4), the density weight dx is
estimated, i.e. the proportion of all labelled and unlabelled instances within the candidate’s
neighbourhood divided by those in all neighbourhoods, see Eq. 2. In line 5, the optimal m∗

x that
maximises the GOPAL (see Eq. 35) is found, using a logarithmic search over m′ = 1, 2, . . . , m.
Density-weighting this maximal GOPAL (line 6) yields gx . , and the candidate maximising
the density-weighted probabilistic gain is returned (line 8).

1: function PoolBasedOPAL(U ,L,τ ,m)
2: for x ∈ U do

3: (nx, p̂x) ← labelstatistics(x, L)
4: dx ← densityweight(x, L ∪ U)
5: m∗

x
← arg max

m ∈1,2,··· ,m
GOPAL((nx, p̂x), τ, m )

6: gx ← GOPAL((nx, p̂x), τ, m∗
x
) · dx

7: end for

8: return arg max
x∈U (gx)

9: end function

Fig. 1 The OPAL algorithm
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Fig. 2 Visualisation of GOPAL-values for τ = 0.5 on a one-dimensional dataset with labelled (red resp. green

dots) and unlabelled (grey dots) data points. The upper plot shows the kernel frequency estimates (KFE) for
each class and the corresponding GOPAL-value (blue curve). The lower plot shows the density (grey area)
and the density-weighted GOPAL-values (blue curve). Additionally, the negative confidence values from the
Uncertainty Sampling approach are plotted for comparison. For exemplary data points (A–E) the corresponding
label statistics and the unweighted (·1) and density weighted (·dx ) GOPAL-values are given in the tables

The GOPAL, visualised in Fig. 2, corresponds to the expected average reduction in mis-
classification loss in each subsequent classification5 in the candidate’s neighbourhood. For
equal misclassification costs, the GOPAL is proportional to the expected average gain in accu-
racy and is highest for candidates close to the decision boundary (where p̂ ≈ τ ), like the
points D and E (compared to B and C) in Fig. 2. For a very small number n of already
obtained similar labels, GOPAL approximates random sampling as n → 0, corresponding to
the barely available information. Nevertheless, as n increases (compared to the remaining
budget m), the equations above are dominated by the observed posterior p̂. Thus, the differ-
ence between expected future IM L(n, p̂, τ, m, k) and current performance IM L(n, p̂, τ, 0, 0)

converges towards zero, making candidates in well-explored regions (e.g. A) less valuable
than those in unexplored ones (e.g. D, E). In the lower subplot in Fig. 2, the points (D, E)
show the importance of the density-weighting: Point E is in a less explored but also sparser
area than D, thus E has a higher GOPAL (0.0817 vs. 0.0737) but a 6.5-times lower density
weight, as improving the performance in its region will effect 6.5 times fewer future classifi-
cations. Thus, the density-weighted probabilistic gain of E (0.00164) is lower than that of D

(0.00982). In contrast, US neither incorporates the amount of available information (e.g. A vs.
D), nor the importance of neighbourhoods (e.g. D vs. E). Note that for unequal misclassifica-
tion costs, the GOPAL is not symmetric around τ , but rather favours sampling instances from
the regions where potentially a more costly error is made. That is, if false positive costs are
relatively low compared to false negative ones (e.g. τ = 0.1), misclassification of positives
(as false negatives) is expensive compared to the misclassification of negatives. Accordingly,
the probabilistic gain is higher in regions where currently instances are classified as negative,
as the possible error therein is more expensive. Therefore, our cost-sensitive approach will
favour sampling in these regions. A further discussion of the properties of GOPAL is provided
in Sect. 3.2.2, where Fig. 3 on page 14 illustrates the shape of this function.

3.2 Properties of GOPAL

We now briefly discuss the asymptotic (with respect to data set size) computational time
complexity of OPAL in Sect. 3.2.1, comparing it to related algorithms for active learning of

5 Assuming cost-optimal classification (Domingos 1999), see Eq. 18 in Sect. 3.1.
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binary, incremental classifiers, before illustrating the effect of the myopic extension on the
probabilistic gain in Sect. 3.2.2.

3.2.1 Computational complexity

For the non-myopic selection of a candidate from a pool U of labelling candidates, OPAL
iterates first over all candidates in the pool (lines 2–7). Each iteration consists of (1) querying
label statistics, (2) querying density weights, (3) determining the locally optimal budget,
and (4) computing the density-weighted probabilistic gain. The first step requires absolute
frequency estimates of labels in the candidate’s neighbourhood, similar to the relative fre-
quency estimates needed by entropy or confidence uncertainty measures. These are obtained
in constant time by probabilistic classifiers. The second step requires density estimates over
all instances, that is over labelled L and unlabelled U ones. Precomputing these density esti-
mates once for all later calls of OPAL leads to constant query time, as in the pool-based setting
the union L ∪ U is constant. The third step requires a logarithmic search over all possible
m′ ∈ 1, 2, . . . , m, where for each m′ the GOPAL is calculated. The latter is done in O(m) time,
due to the closed-form solution obtained for Eq. 35. Thus, the third step requires O(m log(m))

time. The fourth step computes the density-weighted probabilistic gain gx , requiring constant
time. For the subsequent selection of the best candidate in line 8, the maximum of gx as well
as the index of the corresponding candidate are kept. Thus, the iteration over the pool is
determining the overall asymptotic time complexity of O(|U | ·m log(m)) for the non-myopic

OPAL, where m is the remaining labelling budget that is in general much smaller than |U |.
OPAL’s myopic counterpart requires asymptotically linear time O(|U |), as m = 1.

In comparison, uncertainty sampling also requires asymptotically linear time O(|U |),
whereas error reduction as discussed in Settles (2012) requires O(|U | · |V|) time, where
|V| ≈ |U |, as V needs to be a representative sample of the data.

3.2.2 Effect of the non-myopic extension

Besides of being faster and cost-sensitive, OPAL extends PAL by adding the ability of acting
non-myopic. The first two properties are the result from using a closed-form solution and
misclassification loss as performance measure, and have already been discussed. Thus, we
will now focus on the third one, which allows OPAL to consider a budget m when computing
the probabilistic gain of a candidate.

We illustrate the usefulness and effect of this extension on the probabilistic gain function
in Fig. 3. In this figure, the first two columns of plots show the probabilistic gain function (in
terms of average misclassification loss reduction) for different label statistics, i.e. combina-
tions of different numbers of already obtained labels n and observed posteriors p̂ = P̂r(+|x).
The first column shows the myopic probabilistic gain (m = 1), the second the non-myopic
one (m = m∗), where m ∈ {1, 2, . . . , 21} is chosen such that the probabilistic gain is max-
imal. The third column corresponds to the difference (in a logarithmic scale) between the
two probabilistic gains. The three rows correspond to the different misclassification costs
τ = 0.1, 0.25, and 0.5. The plots for τ = 0.75 (and τ = 0.9) are not shown, as they are
reflection symmetric to those of τ = 0.25 (and τ = 0.1, respectively).

Given equal misclassification costs (τ = 0.5, third row) and a candidate in a neighbour-
hood, where already two labels (all positive) have been acquired (n = 2, p̂ = 1). In this
neighbourhood, a single additional label can not alter the classification decision, thus the
probabilistic gain in a myopic setting is zero. This is seen in the left-bottom plot, where the
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Fig. 3 Plots of the GOPAL as function of observed posterior p̂ = P̂r(+|x) and number of labels n for different
cost-rations τ = 0.1, 0.25, 0.5 (rows). The left column shows the myopic GOPAL , the centre column shows
the non-myopic GOPAL , and the right column shows the difference between the two (in logarithmic scale)

probabilistic gain is zero for n = 2, p̂ = 1 (the corner in the uttermost back). However,
if more than one label can be acquired in this neighbourhood, these labels might change
the classification. Thus, under a non-myopic setting and equal misclassification costs, the
probabilistic gain should be positive. Indeed, the probabilistic gain is GOPAL = 0.0274 for
the optimal acquisition of three labels (m∗ = 3). Correspondingly, the flanks in the centred
plots are flatter than in the left ones.

For unequal misclassification costs (e.g. in first row with τ = 0.1, meaning false positives
are cheap compared to false negatives), the expected gain from a single additional label
might even be negative. This corresponds to situations, where just sufficiently positive labels
were acquired within a neighbourhood to classify instances therein as positive (i.e. p̂ =

P̂r(+|x) > τ ). In the myopic setting, the realisation of the single additional label is binary.
If it is positive, it does not alter the classification. If it is negative, it inverts the classification.
The latter results in a wrong classification if the true posterior p is actually greater τ , which
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is very likely, given that the share of positives p̂ among the already seen labels was greater
τ . Therefore, in the left-upper plot, the myopic probabilistic gain is negative for n = 1 and
p̂ ∈ [0.1, 0.2], with a negative peak at GOPAL = −0.12 for p̂ = 0.199.

In contrast to the myopic setting with its binary label realisation, the non-myopic setting
uses a rational number: the share of positives among the realisation of additional labels.
Thus, the effect of this special case decreases with increasing m, as shown in the upper-
centre plot. Nevertheless, for extreme misclassification cost inequalities (e.g. τ = 0.1 or
τ = 0.9), the probabilistic gain remains non-positive for all neighbourhoods with p̂ > τ ,
which are therefore not selected for label requests. In contrast, for moderate misclassification
cost inequalities (e.g. τ = 0.25 or τ = 0.75), it becomes positive for some neighbourhoods
therein, namely those having an observed posterior p̂ close to τ . As a consequence, the effect
of the non-myopic extension might be more important for situations with moderate misclas-
sification cost inequalities, than for those with either equal misclassification costs or extreme
unequal ones. However, this requires empirical evaluation, which we provide in Sect. 4.3.

Concerning the probabilistic gain function’s mode, our numerical experiments indicate it
to be an unimodal function of m for a given combination of n, p̂ and τ .

4 Experimental evaluation

We expect our new cost-sensitive method OPAL to perform at least equally well in terms
of resulting classification performance as other (cost-sensitive) active learning approaches,
while being faster than other cost-sensitive approaches. Furthermore, we expect OPAL to be
better than PAL towards the end of the learning process, through its non-myopic extension.
Therefore, we designed a framework that ensures a fair evaluation of our contributions.

In the first subsection, we describe our evaluation setting, the active learning approaches
used in the comparison, the data sets and our framework. In the second subsection, we present
and discuss the results of the experimental evaluation. There, we first assess the usefulness
of our cost-sensitive extension. Then, we show that OPAL is in most cases superior, both to
its myopic counterpart PAL and to other active learning approaches, while having the same
asymptotic time complexity as uncertainty sampling.

4.1 Evaluation settings

4.1.1 Active learning algorithms

For experimental evaluation, we use the fast version of OPAL described in Sect. 3, which
applies a logarithmic search for determining the optimal budget. In pretests, there was no
significant difference in classification performance between this approach and another variant
of OPAL doing exhaustive search. In addition, we use a cost-sensitive, myopic PAL (Krempl
et al. 2014b) with the presented speed optimisation (here denoted as csPAL). This is the
equivalent to OPAL with a fixed budget of m = 1.

Furthermore, we use a cost-sensitive variant of Uncertainty Sampling (Liu et al. 2009)
(denoted as U.S.) and Certainty Sampling (Ferdowsi et al. 2011) (denoted as C.S.), which
both optimise confidence6 (posterior difference to 0.5). Here, the posterior probabilities are
calculated from a cost-weighted frequency estimation. Liu et al. (2009) proposed to use a

6 We tested confidence- and entropy-based uncertainty measures in pretests and used the one with the best
performance over all data sets for the final evaluation.
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self-training approach for uncertainty sampling, such that posterior estimates are optimised
for confidence calculation. We denote this extension as U.S. st.

For error reduction, we use the cost-sensitive algorithm proposed by Margineantu (2005)
(denoted as Marg) and the non-cost-sensitive version by Chapelle (2005) (denoted as Chap).
As a non-myopic representative, we use the method by Zhao et al. (2012) (denoted as Zhao).
As the latter originally needs initial labels, we use a beta-correction for the classifier predic-
tions of 0.001 (like for Chap). This simulates that in each evaluation neighbourhood an equal
number of positives and negatives has been seen. In our framework, we always use 40 labels
to be acquired by the active learners. Therefore, we disabled the automatic stopping crite-
rion (otherwise learning often stopped far too early). Furthermore, we use random selection
(denoted as Rand) as a baseline.

4.1.2 Data sets

In our experiments, we used 3 synthetic and 5 real data sets (from Asuncion and New-
man (2013)). Each attribute was scaled to a [0; 1]-range, because we use Gaussian Kernel
Frequency estimates with a fixed and pre-tuned bandwidth sigma (see Sect. 1). The main
characteristics (number of instances, number of attributes), such as training and test set size
and the bandwidth σ of the Gaussian Kernel, are given in Table 2.

Two of the synthetic data sets are based on the generator used in Chapelle (2005). They
consist of 4x4 clusters, arranged in a checker-board formation (on a 2 dimensional feature
space). While the clusters are low-density-separated in Che (as in Chapelle (2005)), they
are adjoined in Che2. The third synthetic data set (Sim) consists of two normal distributed,
overlapping clusters in a two dimensional space. We used this very simple example as a proof
of concept for active learning methods.

The real-world data sets are Seeds (See), Vertebral (Ver), Mammographic mass (Mam),
Yeast (YeaU) and Abalone (Aba), see Asuncion and Newman (2013). As show in Table 2,
balanced as well as unbalanced class distributions occur. Categorical features (as in Mam)
have been dichotomised into multiple binary features. In Mam, instances with missing values
have been removed. For the multi-class dataset See, we classified Kama and Canadian vs.
Rose; for Ver, we used normal vs. abnormal; for Aba, we used trees with rings <10 vs.

Table 2 Data set characteristics and parameters (number of instances, number of attributes (real-valued,
categorical), proportion of positive instances, training set size, test set size, bandwidth for Parzen window
classifier) in ascending training set size order

Data set Instances Attributes Pr(+) |Train| |Test| σ

Real Cat.

See 210 7 – 33 % 160 50 0.2

Che 308 2 – 44 % 200 108 0.08

Che2 392 2 – 49 % 250 142 0.08

Ver 310 6 – 32 % 260 50 0.08

Mam 830 2 2 51 % 630 200 0.7

Sim 1200 2 – 50 % 800 400 0.08

YeaU 1484 8 – 90 % 1000 484 0.1

Aba 4177 8 – 50 % 3500 677 0.25
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rings ≥10; for YeaU, we used MIT vs. the rest. For better comparison to Chapelle (2005) and
Krempl et al. (2014b), we used a Parzen window classifier, which is a generative probabilistic
classifier as discussed in Sect. 3.1. However, for some cost-ratios this classifier is not able
to discriminate in the data, thus it is classifying all instances into the more expensive class.
This is detectable in the bandwidth tuning curves (see Fig. 1), when the best σ -value (the
one with lowest misclassification loss) is the maximal, uttermost left one. We reported the
results on those data-set/cost-ratio-combinations for completeness, but emphasise that the
classification performance on such ill-posed learning problems is not meaningful.

4.1.3 Framework

Our framework decouples classification and active learning. All runs behave exactly the
same except for the active sampling component, which decides the instance whose label
should be acquired next. Thus, we use exactly the same frequency estimates (see Eq. 1)
and the same classification algorithm (a Parzen window classifier (Chapelle 2005)) with the
identical parameters for any active learning strategy during the calculation. Furthermore,
we decoupled the classification and evaluation process to ensure, that every active learning
method just differs in the set of labelled instances. To get more significant results, we used a
cross-validation with random sub-samplings in 100 runs. The training and test set sizes are
listed in Table 2.

Here, active learning starts without initial labels on the unlabelled training sample, and fin-
ishes after 40 label acquisitions (steps). We implemented the framework in Octave/MATLAB,
which was parallelised to run on a cluster. Every run uses the same pre-tuned, data set-specific
bandwidth, and each of the 40 steps is evaluated on the same, dedicated (labelled) test sample
with the same cost-sensitive Parzen window classifier, recording misclassification loss and
speed.

The presented learning curves show the arithmetic mean of the misclassification loss over
all 100 runs for a given combination of data set, algorithm and cost-ratio.

4.2 Relevance of the cost-sensitivity

From OPAL’s theoretical characteristics, we expect OPAL to choose the best instances, with
respect to a given cost-ratio τ . To evaluate the relevance of this cost-sensitivity empirically,
we run OPAL for its GOPAL calculation with 5 different τ values (τ ∈ {.1, .25, .5, .75, .9}),
and evaluate its misclassification loss regarding the true cost-ratio τ ∗. If the cost-sensitivity is
meaningful and relevant, the curve with τ = τ ∗ should have the best performance compared
to all other τ -values.

Figure 4 shows a selection of data sets (columns) and the evaluation cost-ratios τ ∗ (rows).
Each plot shows the learning curves with the classification performance in terms of mis-
classification loss on its y-axis and the steps of its learning process in the number of already
requested labels on the x-axis. The 5 different variants of OPAL with the varying τ are printed
in different colours while the correct one is plotted in bold. The results of the other data sets
are given in the appendix (see Sect. 1; Fig. 8).

The first interesting fact is that the correct usage of τ = τ ∗ leads to a converging curve,
while some wrong ones lead to diverging curves. Thus, ignoring the application-specific
cost-ratio results in a low classification performance on these data sets. Furthermore, the
curves for neighbouring τ -values behave similarly, especially the curves for τ = 0.25 and
τ = 0.1, respectively τ = 0.75 and τ = 0.9.
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Fig. 4 Misclassification loss curves for OPAL on a selection of data sets with different cost-ratios (τ ) for
active learning and true cost-ratios (τ∗) for evaluation; curves for correct cost-ratios (τ = τ∗) are plotted in
bold and should be superior; early convergence to very low values is best

Comparing the level and velocity of the misclassification curves, the bold ones are mostly
superior. The single exception occurs on Che, where OPAL selects optimal labels for τ = 0.5
(that is one instance of each cluster), so it performs very well for the other evaluation cost-
ratios too. This is due to the very special characteristics (well-separated clusters) of this data
set. When the separation between clusters is reduced, as in Che2, the effect vanishes. The
other exceptions, like in YeaU for τ ∗ = .1, occur all on ill-posed learning problems (see Fig.
1), where the results are not meaningful.
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Summarising the results, the use of the cost-sensitive extension is beneficial, although
there are some exceptional cases, where τ �= τ ∗ achieves better performance due to special
structure in the data. It is noteworthy that in a real-world application, τ is not a tunable
parameter but rather imposed by the application domain. The results show that ignoring
this application-specific cost-ratio will in most cases result in a non-optimal classification
performance.

4.3 Comparison between OPAL and other active learning strategies

This subsection assess whether (1) OPAL’s non-myopic extension is beneficial for a given
labelling budget, (2) OPAL’s performance is superior or at least equal to other active learning
approaches, and (3) its time complexity increases solely linearly with training set size (like
uncertainty sampling).

For comparison, we use learning curves measuring the performance in terms of misclas-
sification loss as before. The plots for all data sets and algorithms are given in Figs. 5 and
6. The best active learning method is the one, that has a fast-converging, low final misclas-
sification loss level. Furthermore, we give a numerical value (see Table 3) for comparing
two algorithms directly over all 8 data sets. It is computed as the portion of OPAL being
better than the compared algorithm on all 100 runs of all data sets (thus on 800 pairs) for
a given cost-ratio (τ ∗) and labelling step. We also report the results of one-sided Wilcoxon
signed-rank tests with significance level 0.001 on these pairs, by indicating a significantly
better performance of OPAL by ∗, and a significantly worse performance by †.

(1) OPAL’s non-myopic extension is beneficial Here, we compare the non-myopic OPAL and
the myopic csPAL. Both algorithms just differ in their available budget size. While OPAL
chooses the best GOPAL for a given m-vector, csPAL just considers the very next possible
label (m = 1).

As already discussed in Sect. 3.2.2, the learning curves for τ ∗ = 0.5 of both algorithms
are quite similar. Furthermore, the tables state that OPAL is at most in 4 % better than csPAL.
This value might confuse, but one must be reminded, that this is just the portion of OPAL
being better. Because there is no significance of being worse, we can derive that OPAL
and csPAL behave quite similar (have the same values). However, if the number of already
obtained labels is very high, the myopic GOPAL used in csPAL will get zero, resulting in
a random-sampling-like behaviour. In contrast, if m is sufficiently large, meaning that still
several more labels will be acquired, the non-myopic variant in OPAL is advantageous, as it
will still perform a differentiated selection.

For τ ∗ �= 0.5, the non-myopic variant is slightly advantageous in terms of final mis-
classification loss (e.g. Mam for τ ∗ = 0.75, YeaU for τ ∗ = 0.9 or See) or at least
performs equally well. Interestingly, while for extreme cost-ratios (τ = 0.1 or τ = 0.9)
the non-myopic variant is still advantageous over its myopic counterpart (in 44 or 48 % of
the cases, see Table 3), the difference is not as big as it is for moderately unequal cost-ratios
(τ = 0.25 or τ = 0.75). However, this is in accordance to the theoretical observations made in
Sect. 3.2.2, where a strongest effect for moderately unequal misclassification cost ratios was
predicted.

Furthermore, we observe that csPAL converges faster (see e.g. Table 3 for 10 label acqui-
sitions). However, this again matches with the theoretical discussion in Sect. 3.2.2, because
we set the budget initially to m = 40 (and not to 10), thus OPAL has optimised its learning
path for 40 label acquisitions. Evaluating its performance after less steps is therefore slightly
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Fig. 5 Misclassification loss curves for presented algorithms on all data sets with different evaluation cost-
ratios (τ∗); early convergence to very low values is best

malicious. However, the results indicate that (1) setting the budget correctly to the remaining
one is beneficial for final classification performance, and (2) a faster learning is achievable
by setting m to low values, if one is willing to forfeit long-term performance.

(2) OPAL’s performance is superior Measuring the overall performance of active learning
methods over different data sets and cost-ratios is complex, due to weighting and measuring
the characteristics of learning curves, which ideally converge fast to a low final misclassifica-
tion loss level. Therefore, Table 3 provides a summary of the total percentage of wins of OPAL
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Fig. 6 Continuation of Fig. 5 on additional data sets

against each other approach. The learning curves show that OPAL is better than U.S. (with
and without self-training) after 6 label requests (when learning becomes meaningful) in most
cases. Explanations according to Settles (2012, pp. 19–20) are that US (a) ignores the extend
of exploration in a neighbourhood, (b) relies on a hypothesis biased by its sampling, and (c)
is fairly myopic. We can not confirm a superiority of C.S. (Ferdowsi et al. 2011) compared
to any other (even random) active learning approach in our experiments. The cost-sensitive
error reduction method Marg performs worse than expected. It is outperformed by its cost-
insensitive counterpart Chap, maybe due to solely using labelled instances for evaluation, as
opposed to the self-labelling used by Chap. Chap and the non-myopic, cost-insensitive error

123



470 Mach Learn (2015) 100:449–476

Table 3 Percentages of runs over all data sets, where OPAL performs better than its competitor. Significantly
better performance is denoted by ∗, significantly worse performance by †

OPAL vs.

csPAL U.S. U.S. st C.S. Marg1 Chap1 Zhao1 Rand

10 Labels acquired

τ∗ = 0.10 38% † 51 % 52 %∗ 62%∗ 58%∗ 47 % 64%∗ 54%∗

τ∗ = 0.25 60%∗ 66%∗ 68%∗ 82%∗ 76%∗ 61%∗ 73%∗ 66%∗

τ∗ = 0.50 1 % 70%∗ 74%∗ 89%∗ 80%∗ 62%∗ 69%∗ 72%∗

τ∗ = 0.75 46 % 62%∗ 65%∗ 81%∗ 78%∗ 58%∗ 60%∗ 67%∗

τ∗ = 0.90 41% † 63%∗ 64%∗ 70%∗ 71%∗ 58%∗ 60%∗ 62%∗

20 Labels acquired

τ∗ = 0.10 47 % 62%∗ 70%∗ 72%∗ 66%∗ 56%∗ 72%∗ 62%∗

τ∗ = 0.25 51%∗ 63%∗ 75%∗ 88%∗ 81%∗ 62%∗ 70%∗ 65%∗

τ∗ = 0.50 1 % 64%∗ 72%∗ 92%∗ 87%∗ 63%∗ 69%∗ 68%∗

τ∗ = 0.75 53%∗ 60%∗ 67%∗ 86%∗ 80%∗ 50%∗ 48%∗ 58%∗

τ∗ = 0.90 42 % 61%∗ 66%∗ 77%∗ 75%∗ 53%∗ 57%∗ 62%∗

40 Labels acquired

τ∗ = 0.10 43 % 55%∗ 71%∗ 75%∗ 69%∗ 62%∗ 69%∗ 57%∗

τ∗ = 0.25 56%∗ 59%∗ 73%∗ 89%∗ 79%∗ 65%∗ 69%∗ 58%∗

τ∗ = 0.50 4 % 61%∗ 72%∗ 93%∗ 89%∗ 74%∗ 76%∗ 62%∗

τ∗ = 0.75 57%∗ 64%∗ 71%∗ 90%∗ 81%∗ 59%∗ 56%∗ 54%∗

τ∗ = 0.90 46 % 55%∗ 63%∗ 82%∗ 77%∗ 57%∗ 64%∗ 56%∗

The used significance level in the one-sided Wilcoxon signed-rank test was for both 0.001. Algorithms are
marked with 1 if not every data set could be used in the evaluation due to their long execution time

reduction method Zhao sometimes achieve competitive results (esp. on YeaU), but only at
very high computational costs, which prevented them to be completed on Aba. Using the
numbers of Table 3, Rand is surprisingly the best competitor. All in all, we can argue that
OPAL outperforms all other tested algorithms with high significance (see Table 3) and has a
good trade-off between fast convergence and low final misclassification loss value. Although
such an evaluation is not in the scope of this paper, the results on YeaU indicate that OPAL
is also suitable for unbalanced data sets.

(3) OPAL’s runtime in comparison with training set size To experimentally verify OPAL’s
time complexity (cmp. Sect. 3.2.1), we measured the time in seconds per run used by each
active learning process and summed it over all 40 label acquisitions in Table 4 (all differences
w.r.t. OPAL are significant at level 0.001). Obviously, Rand is fastest, followed by U.S., C.S.,
csPAL and OPAL, which slow down constantly with increasing training set size. Our myopic
approach csPAL is just slightly slower than U.S., due to its more complex value calculation.
OPAL takes about 7 times longer than csPAL, because it computes the GOPAL more often
when searching for the optimal budget over m = 1, 2, . . . , 40. In contrast, the execution
times of Marg, Chap, and Zhao explode on bigger data sets, taking for a single cost ratio
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Table 4 Average execution time (in s), rows ordered in ascending data set size

Data OPAL csPAL U.S. U.S. st C.S. Marg Chap Zhao Rand

See 1.867 0.254 0.206 0.468 0.162 43.535 51.87 254.8 0.015

Che 1.905 0.249 0.201 0.452 0.183 54.897 56.60 319.9 0.016

Che2 1.968 0.261 0.199 0.510 0.198 66.282 69.68 440.7 0.015

Ver 1.987 0.269 0.202 0.653 0.207 71.126 78.66 451.7 0.015

Mam 2.580 0.353 0.268 3.913 0.277 192.86 280.1 1577 0.016

Sim 2.827 0.335 0.239 2.422 0.202 242.98 302.6 1641 0.016

YeaU 2.993 0.379 0.272 9.318 0.260 285.51 499.9 3050 0.017

Aba 7.000 1.001 0.703 136.1 0.706 NaN NaN NaN 0.023

All differences w.r.t. OPAL are significant (level 0.001, one-sided Wilcoxon signed-rank test)

more than 8 (Marg), 13 (Chap), or 84 (Zhao) hours. Their calculations on Aba were aborted
after one week.

5 Conclusion

In this paper, we addressed the problem of fast, non-myopic active learning for binary clas-
sification in cost-sensitive applications. In such applications, unlabelled data is abundant but
annotation capacities are limited and require an efficient allocation between labelling candi-
dates. Furthermore, the costs of misclassifications differ between classes, and ultimately the
optimal candidate given a remaining labelling budget should be chosen.

We proposed a novel approach, OPAL, that optimises probabilistic active learning for
such situations. Given the misclassification cost ratio and remaining budget, which are pre-
determined by the application, our approach follows a smoothness assumption and computes
the expected misclassification loss reduction within a candidate’s neighbourhood. For this
expectation over the true posterior in the neighbourhood and over the subsequent label real-
isations therein, we derived a fast, closed-form solution. This allows to select the candidate
that reduces the expected misclassification loss in its neighbourhood the most. We have
shown that for a myopic setting, our approach runs in asymptotically linear time in the size
of the candidate pool. For the non-myopic setting, we have shown that an additional factor
that is solely O(m · log m) in the budget size is required. Furthermore, we have illustrated
the effect of the non-myopic extension, indicating its usefulness for unequal misclassifica-
tion costs. This is confirmed in experimental evaluations on several synthetic and real-world
data sets, where our approach has shown comparable or better classification performance
than several uncertainty sampling- or error-reduction-based active learning strategies, both
in cost-sensitive and cost-insensitive settings.

Our fast approach requires no tunable parameters, yet it is simple to implement, and it
neither requires an evaluation sample, nor self-labelling. Thus, its natural extension to data
streams has not missed our attention. However, this remains to be done in further research.
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Appendix

Bandwidth (σ ) tuning

The plots in Fig. 7 below show the misclassification loss (y-axis) on the test set, given full
label information on the training sets of size 40, for different σ -bandwidths of the Parzen
window classifier. The maximal bandwidth (leftmost values of the x-axis) corresponds to a
non-discriminating classifier, which simply classifies any instance into the class with higher
misclassification cost. Thus, ideally each cost-ratio/data-set-combination exhibits a unique
minimum that is smaller than this rightmost value. Combinations with monotonically decreas-
ing misclassification loss curves indicate ill-posed learning problems.

Fig. 7 Misclassification loss for different bandwidth (σ ) values of a Parzen window classifier
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Cost-sensitivity (cont.)

In Fig. 8, we continue the results from Fig. 4 on the relevance of the cost-sensitiveness, for
details see Sect. 4.2.

Fig. 8 Misclassification loss curves for OPAL on a selection of data sets with different cost-ratios (τ ) for
active learning and true cost-ratios (τ∗) for evaluation; curves for correct cost-ratios (τ = τ∗) are plotted
in bold and should be superior; early convergence to very high low values is best. Continuation of Fig. 4 on
additional data sets
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Detailed derivation of Eq. 24 from Eq. 22

Starting with Eq. 22, we apply Eq. 12, the misclassification loss def. from Eq. 16 and expand
the latter by the cost-optimal classification rule from Eq. 18:

Ecur =

∫ 1

0
Betaα,β(p) · M L p,τ ( p̂) d p (36)

=

∫ 1

0

Γ (α + β)

Γ (α)Γ (β)
pα−1(1 − p)β−1 · q(τ − p) + p(1 − τ) d p (37)

=

∫ 1

0

Γ (α + β)

Γ (α)Γ (β)
pα−1(1 − p)β−1 ·

⎧

⎨

⎩

0(τ − p) + p(1 − τ) p̂ < τ

(1 − τ)(τ − p) + p(1 − τ) p̂ = τ

1(τ − p) + p(1 − τ) p̂ > τ

d p

(38)

=

∫ 1

0

Γ (α + β)

Γ (α)Γ (β)
pα−1(1 − p)β−1 ·

⎧

⎨

⎩

p(1 − τ) p̂ < τ

(1 − τ)τ p̂ = τ

τ(1 − p) p̂ > τ

d p (39)

Following Eq. 12, we set α = n p̂ + 1 and β = n(1 − p̂) + 1, and obtain Eq. 24.

Detailed derivation of Eq. 32 from Eq. 31

Using the definition of the Beta Integral

∫ 1

0
xa(1 − x)b dx = Beta(a + 1, b + 1) =

Γ (a + 1)Γ (b + 1)

Γ (a + b + 2)
(40)

and setting

a =

⎧

⎨

⎩

n p̂ + k + 1 n p̂+k
n+m

< τ

n p̂ + k
n p̂+k
n+m

≥ τ
(41)

b =

⎧

⎨

⎩

n + m − n p̂ − k
n p̂+k
n+m

≤ τ

n + m − n p̂ − k + 1 n p̂+k
n+m

> τ
(42)

we can express the first factors in the integral in Eq. 31 and thus derive Eq. 32:

IM L(n, p̂, τ, m, k) =

(

m

k

)

·

∫ 1

0
pn· p̂+k · (1 − p)n+m−n· p̂−k ·

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

p · (1 − τ)dp
n p̂+k
n+m

< τ

(τ − τ 2)dp
n p̂+k
n+m

= τ

τ · (1 − p)dp
n p̂+k
n+m

> τ

(43)

=

(

m

k

)

·

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(1 − τ) ·
Γ (1−k+m+n−n p̂)Γ (2+k+n p̂)

Γ (3+m+n)
n p̂+k
n+m

< τ

(τ − τ 2) ·
Γ (1−k+m+n−n p̂)Γ (1+k+n p̂)

Γ (2+m+n)
n p̂+k
n+m

= τ

τ ·
Γ (2−k+m+n−n p̂)Γ (1+k+n p̂)

Γ (3+m+n)
n p̂+k
n+m

> τ

(44)
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