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ABSTRACT Traffic light control falls into two main categories: Agnostic systems that do not exploit

knowledge of the current traffic state, e.g., the positions and velocities of vehicles approaching intersections,

and holistic systems that exploit knowledge of the current traffic state. Emerging fifth generation (5G)

wireless networks enable Vehicle-to-Infrastructure (V2I) communication to reliably and quickly collect the

current traffic state. However, to the best of our knowledge, the optimized traffic light management without

and with current traffic state information has not been compared in detail. This study fills this gap in the

literature by designing representative Deep Reinforcement Learning (DRL) agents that learn the control

of multiple traffic lights without and with current traffic state information. Our agnostic agent considers

mainly the current phase of all traffic lights and the expired times since the last change. In addition,

our holistic agent considers the positions and velocities of the vehicles approaching the intersections. We

compare the agnostic and holistic agents for simulated traffic scenarios, including a road network from

Barcelona, Spain. We find that the holistic system substantially increases average vehicle velocities and

flow rates, while reducing CO2 emissions, average wait and trip times, as well as a driver stress metric.

INDEX TERMS Deep reinforcement learning (DRL), intelligent transportation system (ITS), intersection

control, vehicle-to-infrastructure communication (V2I).

I. INTRODUCTION

A. MOTIVATION

E FFECTIVE transportation systems are a key requirement

for economic competitiveness and environmental sustain-

ability. Inefficiencies in traffic regulation lead to congestion,

causing high costs and commuter delays. In the European

Union (EU), the cost of congestion was estimated to amount

to 1% of the annual GDP in 2017 [1]. In 2019, the cost of

congestion in the U.S. amounted to 88 Billion Dollars (0.41%

of GDP) [2]. Especially in dense metropolises, commuters

The review of this article was arranged by Associate Editor Jiaqi Ma.

annually spend up to 200 hours stuck in traffic [2]. In addition

to the economic burden, increased emissions due to congestion

have undesirable environmental and social repercussions [3],

[4]. Mitigating congestion is of paramount importance to

transportation authorities and different solution strategies have

been proposed, many requiring expensive and time-consuming

construction work on the road network. Especially in dense

city centers, these measures are often obstructed by exist-

ing infrastructures. Therefore, a compelling approach is the

more efficient control of traffic through intelligent traffic

light systems [5]–[9], which requires no expansion of the road

infrastructure and is comparably cheap and easy to implement.
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In recent years, fast and reliable wireless technology has

given rise to an increased interest in so-called Vehicle-

to-Infrastructure (V2I) communication and its applications.

Current and upcoming standards, such as IEEE 802.11p,

LTE-V, and 5G, allow the exchange of information between

individual vehicles and the traffic infrastructure, eventually

providing the infrastructure with holistic knowledge of the

current state of the traffic system. This should, in the-

ory, enable highly informed control decisions and facilitate

congestion mitigation. However, traditional traffic control

paradigms are unfit to leverage the dense stream of state

information towards making better control decisions. Novel

algorithms are therefore required to cope with the staggering

complexity of traffic control, under consideration of detailed

state information.

Throughout the last decade, increasing computational

capabilities and large datasets enabled the effective train-

ing of Deep Neural Networks (DNNs) and led to the

advent of the field of Machine Learning (ML). Some of the

most impressive ML achievements stem from the subfield

of Reinforcement Learning (RL), that addresses complex

control problems with learning-based approaches. In par-

ticular, the combination of Reinforcement Learning and

Deep Neural Networks, referred to as Deep Reinforcement

Learning (DRL), showed to be able to solve many intricate

control problems, ranging from Atari arcade games [10] and

the ancient board game of Go [11] to robotic control [12].

B. CONTRIBUTIONS AND STRUCTURE OF THIS

ARTICLE

The main contribution of this study is to provide a detailed

comparison of a representative state-of-the-art agnostic DRL

agent that is oblivious to the current traffic state with a

representative state-of-the-art holistic DRL agent that has

knowledge of the current traffic state. We also compare

a reward function that considers only the average vehicle

velocity with a composite reward function that considers

a weighted combination of the average vehicle velocity,

vehicle flow rate, CO2 emissions, and driver stress level.

Importantly, we conduct these comparisons for road networks

with multiple intersections, including a network with one

main arterial road and several side roads, a network with a

3 × 3 grid of intersections, and a patch of the road network

in Barcelona, Spain. The traffic state includes the posi-

tions and velocities of the vehicles approaching the various

intersections as well as the numbers of vehicles on the var-

ious roads, which can be readily collected in real-time with

5G V2I communication.

We find that compared to the agnostic agent, the holistic

agent achieves significantly higher average vehicle veloci-

ties and flow rates, as well as significantly shorter average

trip times through the road networks. Moreover, the holis-

tic agent significantly reduces the average wait times at

traffic lights. Also, the holistic agent reduces the CO2 emis-

sions and a driver stress metric. Generally, the performance

improvements with the holistic agent are more pronounced

FIGURE 1. Two popular phase schemes. Each phase contains only compatible

streams, which ensures safe operation.

for relatively low traffic demands and for complex road

networks. For high traffic demands at a single intersection,

the holistic agent increases the average vehicle velocities

only slightly compared to the agnostic agent. However, if

there is low traffic at a single intersection, or multiple

intersections are considered (for any traffic demand), then the

holistic agent performs significantly better than the agnostic

agent.

This article is structured as follows. In Section II, we

review the background of our problem. In Section III, we

discuss related work. In Section IV, we introduce the designs

of the representative agnostic and holistic DRL agents. In

Section V, we describe the set-up of the simulation exper-

iments and the detailed agnostic vs. holistic DRL agent

comparison results. Finally, in Sections VI and VII, we

summarize the obtained results and outline further research

directions.

II. BACKGROUND

This section explains the relevant background of the related

fields, namely, intersection control, V2I communication,

and RL.

A. INTERSECTION CONTROL

Traditionally, traffic lights at an intersection sequentially go

through different phases in which the right of way is granted

to the different streams in a predefined sequence of individual

phases, called the phase scheme [5]–[9]. A stream is defined

as an allowed trajectory from an approach to an exit of the

intersection [13]. Streams are called compatible if vehicles

of two or more streams can cross the intersection without

interfering; otherwise they are called antagonistic [14]. Fig. 1

shows two popular phase schemes, that both consist of only

compatible streams.

Phase durations can either be computed in advance, using

historical traffic statistics, or can be adapted according to

the current traffic state that is measured through induc-

tive loop sensors in the road pavement. As choosing the

optimal phase times is not trivial and traffic systems are

subject to tight real-time constraints, the utilization of the

current traffic state often leads to suboptimal phase dura-

tions. Furthermore, in a dense traffic network, the signaling

of one traffic light strongly affects the efficacy of the signal-

ing of its surrounding traffic lights. For an optimal control
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FIGURE 2. Popular traditional control strategies categorized along the coordination

and the responsiveness axes.

policy, we consequently cannot merely optimize isolated

intersections but need to jointly consider the parameters

of multiple intersections to find a well-coordinated solu-

tion [14]. However, the complexity of the optimization

problem increases exponentially with the number of con-

sidered traffic lights. Therefore, most existing traffic lights

are optimized in isolation or in coordination with only

a few nearby intersections. Traditional control methods

can therefore roughly be categorized alongside two axes:

Responsiveness to the current traffic situation and coordina-

tion between the individual intersections [14]. Fig. 2 shows

some traditional control algorithms, categorized along the

two axes. To ensure safe operation, phases cannot be changed

arbitrarily. Rather, traffic lights have to undergo an amber

period, which allows vehicles of those streams that lose

the right of way to brake, and an all-red period, in that

the intersection can be fully cleared as no further vehicles

are allowed to enter. The lengths of the amber and the all-

red periods depend on the speed limits of the approaches

and the dimensions of the intersection and are typically not

parameters of a traffic optimization algorithm [22].

B. VEHICLE TO INFRASTRUCTURE COMMUNICATION

Vehicle to Infrastructure (V2I) communication technologies

enable a bidirectional exchange of information between indi-

vidual vehicles and the traffic infrastructure [23]–[26]. The

high safety-relevance and tight real-time constraints of traffic

systems demand a reliable high-performance communication

interface that provides very low latency and high throughput

in conditions of high mobility and vehicular density. The

IEEE 802.11p Wi-Fi standard [27] was introduced for local

wireless access in Intelligent Transportation Systems [28].

IEEE 802.11p Wi-Fi enables data rates between 6 Mbps

and 27 Mbps at a relatively short transmission range around

300 m [23]. Unfortunately, it suffers from scalability issues,

unbounded delays, and lack of deterministic quality of

service (QoS) guarantees [29].

Cellular technology provides an alternative that can over-

come the limitations of the IEEE 802.11p Wi-Fi standard.

In 2016, the Third Generation Partnership Project (3GPP)

published the first version of Release 14, which features sup-

port for V2X communications [30]. This standard, referred

to as LTE-V, offers increased reliability with respect to IEEE

802.11p. In the absence of a cellular connection (e.g., in rural

areas), LTE-V can use the PC5 sidelink4 interface for direct

device-to-device communication without the need for base

stations. 3GPP Release 15 features V2X using the emerg-

ing 5G mobile Internet [30] which improves on LTE-V in

every aspect. 5G is expected to achieve latencies as short as

one millisecond and throughput of up 10 Gbit/s for up to

100 billion independent devices as well as greatly increased

capacity [31]–[34]. 5G in combination with emerging low-

latency multi-access edge computing [35]–[37] appears thus

well suited to enable intricate real-time control decisions in

V2X scenarios.

C. REINFORCEMENT LEARNING

The Reinforcement Learning (RL) framework deals with

autonomous agents that navigate and explore their environ-

ment. The environments are framed as so-called Markov

Decision Processes (MDPs). An agent’s interactions with

the environment are executed in discrete timesteps. In every

timestep t, the agent observes the state st of its environ-

ment and takes an action at to influence its environment,

resulting in a new state st+1. The mapping from states to

actions is called the agent’s policy π(at|st), which may be

deterministic or stochastic. The agent’s behavior is evalu-

ated by some numerical reward signal rt. The agent thus

strives to maximize a weighted sum of future rewards

gt =
∑∞

i=0 γ i · rt+i+1, called the (discounted) return. The

discount factor γ ∈ [0, 1) defines how much the agent

prefers rewards in the near future over those in the distant

future.

Arguably the most popular RL algorithm is

Q-Learning [38]. With Q-Learning, the agent esti-

mates the return that it will obtain if it currently is in

some particular state s, executes some action a, and always

executes the action with the highest Q-value thereafter.

This estimate is called the action-value or Q-value Q(s, a)

of the state-action tuple (s, a). If all Q-values are known,

selecting the optimal decision is as simple as taking the

action with the highest value. However, since the correct

Q-values are usually unknown, their estimates are adapted

after every timestep, to better account for the obtained

reward [38].

For a finite number of discrete states and actions, the

Q-values can be represented as a table. On the other hand,

for continuous state spaces, we require function approxima-

tors, such as Deep Neural Networks (DNNs), to represent

the Q-values. This combination of RL techniques and DNNs

for function approximation is termed Deep Reinforcement

Learning (DRL). For example, in the Deep-Q-Learning

(DQL) algorithm, a DNN maps from the continuous state

space to the Q-values of a set of actions [10]. For the DQL

algorithm, the Q-values of all available actions have to be

predicted. This prohibits very large or continuous action

spaces. An alternative class of algorithms are the so-called

Policy Gradient (PG) methods, which support the utilization
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of continuous action spaces. Popular PG algorithms include

A3C [39] and DDPG [40].

In the Soft Actor-Critic (SAC) algorithm [41], one DNN—

called the critic—is trained to predict the Q-values for a

state-action tuple (as in [10]). A second DNN—called the

actor—is then used to approximate the Boltzmann distribu-

tion over the predicted Q-values of the available actions. At

inference time it is therefore sufficient to sample an action

from the distribution computed by the actor. In order to use

the backpropagation algorithm [42] for the training of the

actor, SAC uses a differentiable reparameterization of the

sampling operation [43].

III. RELATED WORK

The high relevance of the traffic control problem and the

proven ability of RL to solve complex control problems

led to a broad range of publications that combine the two

topics [44]. The emergence of connected automated vehicles

has led to a relatively new research field of traffic control

for connected automated vehicles, see, e.g., [45]–[50]. Our

study focuses on conventional (non-automated) vehicles.

Approaches differ in the implementation of the traffic

MDP—in terms of the utilized state and action space as

well as the reward function and the RL learning algo-

rithm. The MDPs differ greatly in terms of the utilized

state spaces, which define the knowledge upon which the

agent can base its control decisions. Some models assume

little information about the current traffic state. For exam-

ple, [13] uses information from inductive loop sensors in

the pavement and could therefore easily be implemented in

a contemporary traffic system. Other models assume intri-

cate knowledge of the whereabouts of individual vehicles

that could, for example, be inferred over a V2I communi-

cation interface. However, none of the existing studies has

compared the traffic light system performance for different

state spaces. To the best of our knowledge, our present study

is the first to quantify in detail the benefits of V2I commu-

nication for RL based traffic light control. In particular, our

study isolates the performance effects of V2I communica-

tion by employing exactly the same RL algorithm for both

the holistic agent and the agnostic agent (whereby the two

agents differ only in their state spaces).

There is no unique way of defining the action space

for controlling a traffic light. However, the framing of the

action space can strongly influence the speed of convergence.

In [51], for example, the agent can allocate the relative dura-

tions of phases while the phase sequence and full length of

a cycle are predefined. Such a narrow framing strongly lim-

its the range of behaviors that the system can exhibit, but

may speed up convergence, as the search space of the pol-

icy is relatively small. In [52] (and in similar variations

in [53], [54]), the agent decides in every timestep which

phase to show next. This leads to a broader spectrum of

behaviors (especially if the length of the interval between

timesteps is short) but may converge slowly.

The existing studies also have used distinct RL approaches

to solve the respective traffic control MDP. Besides differ-

ences in the utilized algorithm, they differ particularly in

terms of their use of DNNs as function approximators (DRL)

and the application of Multi-Agent Reinforcement Learning

(MARL). MARL approaches cope with the high complex-

ity of the simultaneous control of multiple intersections

by dividing the task across multiple agents so that, for

example, each intersection is controlled by an individual

learning agent. In a simple setting, the agents optimize

some local reward function of the intersection, e.g., [55].

In more complex settings, higher-order coordination algo-

rithms, such as coordination-graphs and game-theoretic

methods, e.g., max-plus, coordinate the actions of multiple

agents, e.g., [56]. Building on the seminal MARL stud-

ies [13], [52], [55], [57]–[61], recent studies have further

substantially advanced MARL computational and decision

making strategies, see [62]–[67]. General related computa-

tional frameworks for RL control applications have been

explored for multi-objective decision modeling in [68] and

for a hybrid fuzzy and RL control in [69].

The different utilized reward functions encapsulate the

agents’ diverse goals. Popular goals are the maximization

of velocities, e.g., [51], or the throughput at an intersection,

e.g., [13], and the minimization of delays, e.g., [70]–[72]. In

MARL approaches, an important distinction is between local

and global reward functions. In a local approach, every agent

optimizes the performance at its own intersection. In contrast, a

global reward function includes metrics from all intersections

so that every agent is concerned with the performance across

the entire network. This encourages cooperation between

agents, especially if good performance of one agent diminishes

the performances of nearby agents. For example, an agent

using a local reward function could send vehicles to an already

overcrowded neighboring intersection, minimizing its delays

locally, but deteriorating global performance.

Conceptually, our study is closely related to the recent

study [73] on traffic signal control with varying portions of

V2I enabled vehicles (ranging from 0 to 100%) at a single

intersection. (The related study [74] examined the estimation

of traffic state with probe vehicles.) Complementary to [73],

we examine the performance impact of traffic state information

collected via V2I communication for road networks consisting

of multiple intersections. Essentially, we consider the extreme

cases of 0%ofV2I enabled vehicles in [73] (roughly equivalent

to our agnostic agent) and 100%ofV2I enabled vehicles in [73]

(roughly equivalent to our holistic agent). We rigorously

evaluate these two extreme cases for a variety of multi-

intersection road networks ranging from an arterial main road

with side roads to a 15-intersection patch of the Barcelona,

Spain, road network.

For completeness, we note that V2I control in non-

lane based heterogeneous traffic scenarios has been studied

in [75]; in contrast, we consider lane-based traffic. Bus hold-

ing time control has been examined in [76]; we focus on

conventional automobile traffic.
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TABLE 1. State spaces of agnostic and holistic agents.

IV. DRL FOR TRAFFIC CONTROL

In theory, the ability of a traffic system to obtain

detailed information about individual vehicles through a V2I

communication link should enable better control decisions

and mitigate congestion in the traffic network while uphold-

ing high safety standards. In practice however, distilling this

large data stream into sensible control decisions is highly

complex and traditional traffic control algorithms are unfit

to do so. DRL offers a possible solution to the challenges

posed by the flood of real-time traffic data. Its proven abil-

ity to learn approximate solutions to complex problems from

data can enable intelligent traffic control under the knowl-

edge of detailed state information (see Section III). This

section introduces the MDP that we developed in this study,

including states, actions, and rewards, as well as the DRL

algorithm to learn the control of the traffic environment.

A. STATE SPACE

The scope of this study is to evaluate the benefit of pro-

viding the traffic infrastructure with detailed traffic state

information. The state space of an RL agent defines the

knowledge on which it can base its decisions. We therefore

compare the performance of two agents with two different

state spaces: a state space that is agnostic to the current

traffic situation and a state space that is able to observe

individual vehicles in the traffic network through V2I com-

munication and thus has a holistic view of the current traffic

state. Table 1 summarizes the features included in the state

spaces of the two agents.

1) AGNOSTIC AGENT

As the agnostic agent has no means to communicate

with vehicles in the traffic network, states are limited to

information that is internal to the traffic infrastructure. Most

importantly, this includes the signal that is currently shown

by the traffic lights. Every intersection has a number of

allowed phases which can be identified by a unique phase

ID. To further describe the current signal at an intersection,

the period ID shows whether the traffic lights currently show

the selected phase, the respective amber phase, or the all-

red phase. In addition, the agent features the time since

the last phase change and a trace for every phase, which

TABLE 2. Parameter values of the traffic environment. Numbers in brackets show

differing parameters of the l’Antiga Esquerra de l’Eixample scenario.

increases while the respective phase is activated and slowly

decays while it is not. This acts as a memory that lets the

agent have some notion of the recent history of activated

phases. Note that the traces could be dropped if the agent

would employ a model with a memory (such as a Recurrent

Neural Network [77]).

We note that our agnostic agent does not directly exploit

loop sensors in the road lanes. This is because most currently

deployed traffic control algorithms use the loop sensors not

to react to individual vehicles, but rather to compute traffic

statistics that are then the basis for the traffic signalling.

Since we trained the agnostic agent for a prescribed demand,

our agnostic agent implicitly uses these traffic statistics.

2) HOLISTIC AGENT

Through a V2I communication interface, the holistic agent

receives detailed information about the state of the traffic

network. In addition to the features of the agnostic agent,

the holistic agent therefore observes further information from

the environment. There are many parameters that an intelli-

gent traffic system could potentially leverage towards better

control decisions. For example, with information about the

fatigue levels of drivers the infrastructure could increase

the duration of the amber period or warn nearby drivers.

However, for this study, we limit the observation of the traf-

fic system to the positions and velocities of the approaching

vehicles. In particular, we observe all approaching vehicles

and represent the positions and velocities of a fixed number

(10 vehicles, see Table 2) of approaching vehicles per road

in individual entries in the state space (the rest is only repre-

sented through summary statistics, see below). The position

is encoded by the unique ID of the current road, the current

lane, and the distance between the vehicle and the next traf-

fic light; the velocity is the absolute speed along the current

road. As conventional DNNs need a fixed length input vec-

tor, the agent observes the exact location and velocity of a

fixed number of vehicles per intersection. If more vehicles

are approaching an intersection, the infrastructure observes

only the vehicles closest to the intersection. If there are fewer

vehicles, the vector is zero-padded. To account for not indi-

vidually observed vehicles, the state vector also features the
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number of approaching vehicles and their average velocity

for every road.

B. ACTION SPACE

We let the agent decide in every timestep (i) the phase to

show, and (ii) the display duration. One timestep is defined

as one second of simulated time. If the current phase has

already been shown longer than a chosen duration (at any

decision timestep while a given phase is displayed), then

the newly chosen (different) phase will be displayed next.

This allows for a broad range of different behaviors while

leading to faster convergence than other action spaces we

tested. We limit the green phase duration (green period)

to be between 5 and 100 seconds and set the amber and

all-red periods to fixed values, see Table 2. All available

phase options consist of only compatible streams, making

the agent’s actions inherently safe. Of course, before showing

the new phase, the traffic light has to go through an amber

phase and an all-red phase to comply with safety regulations.

An exemplary set from which an action can be sampled is

shown in the lower left of Fig. 3 for a scenario of two

controlled traffic lights.

C. REWARD FUNCTION

The reward function defines the goal that the agent strives

to achieve. In traffic management, objectives may be mani-

fold: safety, efficiency, environmental sustainability, comfort,

and fairness are just some of the possible measures to

optimize. Note that some features could be easier to quan-

tify than others and therefore make for a better reward

function.

In this study, we mostly use the average velocity of all

vehicles as the reward function, since it is a popular measure

to quantify the efficacy of a traffic network. Note that the

agnostic agent cannot know the average velocity of vehicles

in the network as it does not feature a V2I communication

interface. The agnostic system therefore would have to be

trained in simulations before deployment to the real world,

or an external estimator of the average velocity could provide

an approximate reward function to learn from a live system.

In the simulation experiments in Section V, the agnostic

agent is provided with the actual velocities, thus simulating

an external estimator. On the other hand, the holistic agent

can easily compute the average velocities of vehicles, which

are transmitted via a V2I interface, and can thus be trained

on a deployed system.

We also experiment with a composite reward function

that consists of the average velocity, the average flow rate

(the percentage of vehicles that are moving), CO2 emissions

in the traffic network, and stress level of drivers (which,

according to [60], is a quadratic function of the time that

drivers spent waiting in the recent history). These four factors

are weighted equally to form a composite reward function.

In one scenario, we study the influence of different reward

functions on the resulting policy.

D. LEARNING ALGORITHM

We employ the SAC algorithm with a mixed (discrete and

continuous) action space which we found to speed up con-

vergence of the RL agent learning of the traffic control

policy. As the original publication [41] intended the SAC

algorithm to be used to learn purely continuous control poli-

cies, we had to adapt it to be able to cope with our mixed

continuous-discrete action space. As suggested in [78], we

used the Gumbel-softmax distribution [79], [80] to reparame-

terize the discrete action choices. To provide better gradients

and stabilize learning, we used n-step bootstrapping (n = 5)

to train the critic and let it predict a distribution of possible

Q-values instead of a single Q-value, as proposed in [81]. As

the discrete distribution described in [81] requires the pre-

dicted Q-values to be bounded, we scale all rewards to be in

the range [0, 1]. We experimented with other modifications

to the original SAC, e.g., weight decay [82], target pol-

icy smoothing [83], and prioritized experience replay [84];

however, these modifications did not improve the learning

performance. As the utilized traffic simulator is rather slow,

we chose to decouple experience collection and learning.

While one process can learn from the experience in a replay

buffer, several environments are simulated in parallel to col-

lect new experience and add it to the buffer. Fig. 3 shows

the agent-environment interaction loop for a simple traffic

network of two connected intersections. Note that we do not

display the target networks, that frequently copy the weights

of the three DNNs, nor the replay buffer for storing past

experience.

We train all DNNs with the Adam optimizer [85]. The

two critic networks are learned using a fixed learning rate. In

contrast to the two critics, we slowly adapt the learning rate

of the actor network so as to approximately constrain the D2

metric (the sum of the KL-divergence from the old to the

new policy and vice versa) of the probabilistic policy before

and after every learning step to some predefined value. This

mitigates the risk of excessive policy changes which can

lead to a sudden significant performance decrease, referred

to as policy-breaking. The combination of the second-order

gradient approximation of the ADAM optimizer, alongside

the after-the-fact adaption of the learning rate to match the

desired KL-divergence, could be considered a very coarse

approximation of a trust region approach, such as TRPO [86].

The full algorithm is shown in the Appendix.

This study focuses on the traffic engineering aspects rather

than the reinforcement learning aspects. Accordingly, we

report the results of the trained system (and not the training

process of the RL agent). We envision that our agents are

trained in simulation, and not in the real world. We trained all

agents in simulations until the total undiscounted reward per

episode as well as the two loss functions of the Q-function

and the policy plateaued.

V. PERFORMANCE COMPARISON

We compare the performance of the holistic agent, which

corresponds to the availability of the current traffic state via
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FIGURE 3. Full agent-environment interaction loop for a traffic setting of two connected intersections with eight distinct phase options each. The policy network computes a

probability distribution over actions, based on the agent’s state. In the reparameterization block, a concrete action is sampled, which is then executed in the environment. The

sampled action and the state are used by two Q-functions to predict two probability distributions over action-values. The more pessimistic of the two Q-functions is then used to

optimize the policy.

a V2I interface, to the agnostic agent, which corresponds to

the lack of the current traffic state, i.e., the absence of a V2I

interface. We conduct the performance comparison through

simulation experiments in the Urban MObility (SUMO) [87]

open-source traffic simulation environment. SUMO is a

microscopic simulator, meaning that the dynamics of indi-

vidual vehicles are explicitly modeled. This is necessary

as we want the holistic agent to observe the positions and

velocities of individual vehicles. We employed Dijkstra’s

routing algorithm with edge weights set to the moving

average of the travel times for the individual roads, the

Intelligent Driver (IDM) car-following [88], and the LC2013

lane-changing model [89]. We employed the default SUMO

emission model HBEFA3, simulating a gasoline driven Euro

norm 4 passenger car [90], to calculate the CO2 emissions.

To interface the SUMO simulation we use Flow [91]. The

Flow framework can be used to model a diverse range of

RL problems in the domain of traffic systems, ranging from

learned signaling of the traffic infrastructure to the control

of individual vehicles. For the RL implementation we use

ptan [92] and PyTorch [93] for the realization and training

of NNs.

As we want to control traffic lights in this study, we do

not make use of the possibility to control vehicles with RL.

Instead, all vehicles use SUMO’s default controllers for rout-

ing, car-following, and lane-changing, as outlined above. The

simulation can be entered and left through all roads on the

border of the simulated traffic system. Each combination of

entry and exit points (except for combinations with identical

entry and exit roads) is assigned a Poisson process that gen-

erates new vehicles with a predefined spawn rate. The sum

of all spawn rates, measured in vehicles per hour (vehs/h),

is called the demand or traffic volume. We acknowledge

that the assumption of Poisson distributed arrivals of vehi-

cles is a strong one, as vehicles would arrive in waves due

to the signaling of adjacent traffic lights in a real traffic

network. However, Poisson distributed vehicle arrivals are

a common assumption in traffic light control studies, see,

e.g., [8], [44], [73].

We do not explicitly model the V2I communication chan-

nel. In a more sophisticated approach, we could include

a network simulator to account for the dynamics of the

information transmission. However, the latency of modern

communication technology (on the scale of milliseconds) is

small compared to the timescale of traffic light systems with

a time-resolution of one second for traffic light phase deci-

sion making. A sophisticated communication model would

therefore not affect the outcome of the traffic simulations.
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FIGURE 4. Experimental setting of comparisons in Sections V-A–V-D. Colored boxes

show the road networks for the single intersection scenario (light blue, Section V-A),

the arterial road scenario (dark blue, Sections V-B and V-C), and the composite reward

scenario (green, Section V-D).

In the first four experiments, we consider a generic road

infrastructure, as depicted in Fig. 4. We use North-South

and East-West roads with three lanes per direction, whereby

the leftmost lane allows only left turns, the center lane

allows only straights and the rightmost lane allows straights

and right turns. At each intersection, the agent can choose

from the eight phase options in Fig. 1. In the first experi-

ment (Section V-A), only a single intersection is controlled;

whereas in the following two experiments (Sections V-B

and V-C), we consider an arterial road of four connected

intersections. In the fourth experiment (Section V-D), we

study a grid network of three by three intersections (see

Fig. 4). In the last experiment (Section V-E), we simulate a

patch of the l’Antiga Esquerra de l’Eixample neighborhood

in Barcelona, Spain; whereby, the available phase choices

correspond to the actual phases of the traffic lights. This

data is extracted from OpenStreetMap.org. Fig. 5 shows the

simulated road network and the location of the simulated

patch on a city map of Barcelona. The traffic environment

parameters are summarized in Table 2.

In ML—and particularly DRL—it is often hard to assess

the performance of the current policy and to verify that the

algorithm has converged to a good solution, as the optimal

performance is usually unknown. Longer training times, dif-

ferent hyperparameter choices, or other initial weights of an

NN may lead to a better solution. For the results we present

here, each learning process was run until the performance

of the respective policy did no longer change for a signifi-

cant amount of time. To mitigate the risk of having found an

inferior solution, we ran every learning process several times

with a varying set of hyperparameters. Table 3 summarizes

the values of the RL system parameters.

A. SINGLE INTERSECTION

In the first experiment, we tested the atomic setting of a

single isolated intersection. We let the spawn rates of the

Poisson processes be equal, meaning that average arrival

rates for all four approaches are equal and every spawned

TABLE 3. Parameter values of the RL algorithm in simulation experiments.

vehicle is equally likely to take a left turn, go straight, or

take a right turn at the intersection. Fig. 6 shows the aver-

age velocities of vehicles for the agnostic and the holistic

agents for different demands. We also plot the results of an

optimized fixed-cycle strategy, which gives the right of way

to the different afferent lanes in a round-robin fashion. The

optimal phase durations and the best phase cycle (of the two

cycles in Fig. 1) were deduced in a brute-force approach,

which is feasible for a single isolated intersection, but

becomes prohibitive for the larger road networks examined

in the subsequent sections.

The single intersection evaluation in Fig. 6 indicates that

the agnostic agent can find an equally good solution as the

optimal fixed-cycle strategy (within the constraints of the two

cycles in Fig. 1). This indicates that the DRL algorithm can

find equally good solutions as traditional optimization meth-

ods. In subsequent experiments, where finding the optimal

fixed-cycle solution is infeasible due to the exponentially

increasing number of possible solutions, we only consider

the agnostic agent as benchmark for evaluating the holistic

agent.

The holistic agent significantly outperforms its agnostic

counterpart for low demands. For high demands, however,

the advantage of V2I diminishes; for a demand of 3000

vehicles/hour, the holistic agent increases the average vehi-

cle velocity by only 7% compared to the agnostic agent.

Analysis of the resulting policies (which is not included due
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FIGURE 5. The map in part (a) shows the location of the simulated road network in Barcelona, Spain. Part (b) shows the corresponding 15-intersection road network of the

l’Antiga Esquerra de l’Eixample scenario.

FIGURE 6. Comparison of the average vehicle velocities for the holistic agent, the

agnostic agent, and the optimized fixed-cycle strategy for different demands in the

single intersection scenario. The holistic agent reliably outperforms the other

approaches. The advantage of V2I is especially pronounced for low demands. Shaded

areas show the 95% confidence intervals.

to space constraints) has indicated that the excellent holis-

tic agent performance in low-demand settings is due to the

ability of the holistic agent to react to individual vehicles

approaching the intersection. Many vehicles can therefore

cross the intersection without stopping, as the traffic light

system grants the right of way to the respective approaches

just in time. For very dense traffic, it is no longer possible to

react to individual vehicles, resulting in a decreased impact

of the holistic knowledge of the current traffic state.

Note that the agnostic agent needs to learn a separate

DNN for every demand setting. The holistic agent, on the

other hand, can learn a single DNN for all settings, as it

adapts to the current demand. Even though the holistic agent

was trained on the same demands as the different agnostic

agents (200, 800, 1400, 2200, and 3000 vehs/h), we chose to

evaluate the learned model also for other demands (400, 600,

1000, 1800, and 2600 vehs/h) to showcase the holistic agent’s

ability to generalize to previously unseen demand settings.

In a real-world setting, where demands are not steady and

hard to accurately quantify, the holistic agent may therefore

FIGURE 7. Comparison of the average vehicle velocities for the holistic and the

agnostic agent for different demands in the arterial scenario. The holistic agent

surpasses its agnostic counterpart for all demand settings. Candlewicks show the

95% confidence intervals.

outperform the other approaches by an even larger margin

due to its ability to seamlessly manage a wide range of

different demands with a single model.

B. ARTERIAL ROAD

Next, we simulated an arterial road of four connected

intersections, as shown in Fig. 4. In contrast to the previous

setting, the agent now needs to coordinate the signaling of

the traffic lights in order to ensure fluent traffic, making the

optimization problem harder. The long arterial road is con-

sidered to be a busy main road, whereas the other roads are

calm side roads. This is modeled by letting more vehicles

enter and leave the simulation on the main road than on

the side roads. Fig. 7 shows the average velocities for the

two different agents for different demands. The ability of

the holistic agent to observe vehicles in the traffic network

enables the holistic agent to significantly outperform the

agnostic agent. The performance gains of the holistic agent

are especially prominent for low demands (67% higher avg.

velocity for 200 vehs/h) and decrease for high demands (28%

higher avg. velocity for 2000 vehs/h).
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FIGURE 8. Average waiting times for every lane in the arterial scenario for the two

different agents and a demand of 200 vehs/h. The holistic agent strongly reduces

waiting times of vehicles that enter or leave the main road.

Fig. 8 shows the average time that vehicles spend waiting

for every lane of the traffic network for a demand of 200

vehs/h. The knowledge of individual approaching vehicles on

side roads allows the holistic agent to grant the right of way

to streams entering and leaving the main road when vehicles

are approaching and the current traffic situation on the main

road allows for a red light. Waiting times are therefore very

low on the main road and slightly longer on the side roads.

The agnostic agent, on the other hand, grants most green

time to the main road, creating “green waves”, but rarely

gives the right of way to the side roads. This results in

relatively fluent traffic on the main road but long waiting

times on side roads.

C. SUDDEN INFLOW

In this experiment, we study the effect of unsteady demands.

We once more consider the arterial road setup, however

instead of investigating the average velocities for different

steady demands, we analyze the average velocity (with aver-

aging over 100 independent simulation replications for each

1 second timestep) over time for fluctuating traffic. We sim-

ulated the traffic network for two hours, whereby the first 30

minutes have a moderately high demand of 1000 vehs/h, then

a very high 2000 vehs/h demand for 30 minutes, and finally

1000 vehs/h for the remaining hour. This setting could, for

example, simulate the sharply increased traffic volume after

an important sports event, such as a high-profile football

match. Fig. 9 shows the average velocity of vehicles over

time for the agnostic and the holistic agent.

As before, the holistic agent reliably outperforms its

agnostic counterpart. As expected, in the first 30 minutes,

the average velocities of both agents correspond to the aver-

age velocities of the previous experiment (compare Fig. 7).

The sudden increase in traffic volume results in a steady

decline of the average velocities, as queues fill up and traf-

fic becomes congested. Interestingly, the velocities fall to a

level that is even lower than the measured average velocities

FIGURE 9. Average velocities of vehicles for a sudden inflow in the arterial road

scenario, in that the demand is suddenly doubled for 30 minutes and then is reduced

back to its former value. The holistic agent reliably outperforms the agnostic agent

and recovers significantly faster from the unexpected inflow. Shaded areas show the

95% confidence intervals.

for a demand of 2000 vehs/h in the previous experiment.

After decreasing the demand back to a moderate level, con-

gestion dissolves and average velocities return to their former

levels. However, the ability of the holistic agent to observe

its surroundings leads to a significantly faster recovery.

D. COMPOSITE REWARD FUNCTIONS

An essential feature of the described RL methods is that they

do not require explicit modeling of the system dynamics. This

means that the RL agent can conveniently optimize any numer-

ical reward function, including a weighted combination of

several performance metrics. In contrast, most traditional traf-

fic optimization methods are explicitly designed to optimize

a single metric. In this experiment, we study the effects of

different reward functions. We compare the average velocity,

the flow rate (percentage of vehicles that are moving in the

road network), the CO2 emissions (total emissions in the road

network), and the stress level of drivers of a system that—as

in previous experiments–optimizes only the average velocity,

against a system that optimizes a weighted combination of

the four metrics. Both systems utilize a V2I communication

channel. Fig. 10 shows the distributions of the metrics as well

as their pairwise correlations obtained from 100 independent

simulation replications, each simulating the road network for

one hour with the same moderate traffic demand of 1000

vehicles per hour.

The composite reward function results in an agent that per-

forms on par or outperforms the single-metric agent for all

considered metrics. Through shorter green times, the number

and duration of full stops in the traffic network is reduced,

resulting in approximately 3% higher flow rate, lower stress

levels (reduced from a mean of 16.9% of the average stress

level down to a mean of 13.9%), and 3% lower CO2 emis-

sions. The average velocities for both reward functions differ

only marginally (approx. 1%). Also, all the variances are

reduced by the composite reward function.

RL clearly shows the potential to jointly optimize the man-

ifold objectives of modern traffic systems. However, due to

the strong correlations of the four performance metrics in this
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FIGURE 10. Comparison of different performance metrics for the composite reward function scenario, where two holistic agents are trained with different reward functions.

One reward function is based solely on the average velocity of the vehicles; the other is a weighted combination of the four metrics. The plot shows distributions of the four

metrics as well as their pairwise correlations. The RL approach successfully optimizes the composite reward function. However, the strong correlations of the four metrics

results in very similar outcomes for both rewards.

experiment, the resulting policies of the two reward func-

tions differ only slightly. Future research should therefore

investigate the joint optimization of conflicting performance

indicators, such as velocity and pedestrian safety, forcing

the agent to trade off the different objectives. For a real-

world implementation, the employed reward function should

be selected with the utmost care as an unsuitable quantifi-

cation of objectives may produce unexpected and possibly

dangerous results.

E. CENTRAL URBAN NEIGHBORHOOD EXAMPLE

In the last experiment, we replace the generic traffic network

of Fig. 4 with a patch of the l’Antiga Esquerra de l’Eixample

neighborhood in Barcelona, as shown in Fig. 5. This central

neighborhood consists mostly of residential buildings and

offices—with the exception of the large ‘Hospital Clinic’ on

the west end of the road network, giving rise to heavy com-

muter traffic, especially during the rush hours in the morning

and late afternoon. Spawn rates of streets that enter the sim-

ulation are proportional to their respective numbers of lanes.

Likewise, the probability of a street being the destination of a

vehicle is proportional to its number of lanes. As the utiliza-

tion of the composite reward function led to little difference

in the resulting policy, we again compare the performance

of the agnostic and the holistic agents that optimize only

the average velocity of vehicles (as in experiments A-C).

However, we here compare more performance metrics than

only the average velocity. Fig. 11 shows the average velocity

of vehicles, the average flow rate, average CO2 emissions in

the system, the average stress level of drivers, the average

time that vehicles need to traverse the traffic network, and

the average time that vehicles spent waiting at traffic lights

during their trip.

The holistic agent outperforms the agnostic agent in terms

of all metrics and for all demands. The higher amount of

coordination between the traffic lights, as performed by the

holistic agent, results in a pronounced advantage for all three

demand scenarios. For example, for all three demand sce-

narios, the holistic agent manages to allocate green time

more efficiently and to reduce waiting times by approxi-

mately 50%. The lower waiting times result in a higher

average velocity and flow rate as well as reduced stress

levels. Comparing the reductions of the average trip times

(25.36 s for 1000 vehs/h, 26.59 s for 2000 vehs/h, and 27.33 s

for 3000 vehs/h) and of the average waiting times (11.99 s

for 1000 vehs/h, 15.53 s for 2000 vehs/h, and 17.49 s for

3000 vehs/h), we observe that they are not equal. This dif-

ference in reduction of trip times and waiting times shows

that the holistic agent not only decreases the average waiting

time per stop but also the total number of stops, reducing the

need for deceleration and acceleration among vehicles and

resulting in more fluent traffic. The decreased acceleration
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FIGURE 11. Comparison of different performance metrics in the L’Antigua Esquerra de l’Eixample setting for the two agents. The holistic agent consistently outperforms the

agnostic agent in terms of all six metrics and for all tested demands. Candlewicks show the 95% confidence intervals.

among vehicles alongside the diminished time that vehicles

spend on the road result in a roughly 20% reduction of

CO2 emissions, mitigating the environmental repercussions

of congestion.

VI. DISCUSSION

We have developed a DRL system that controls one or several

traffic lights in a simulated traffic environment. This DRL

approach showed to be able to effectively learn the intelli-

gent control of traffic light signaling at multiple intersections

from interaction with its environment. We compared the

performance of an agnostic agent, that cannot communicate

with vehicles in the traffic network, with the performance of a

holistic agent, that features a V2I communication interface and

therefore knows the positions and velocities of all vehicles.

Our results show the enormous potential ofV2I technologies

in the mitigation of congestion. Across an extensive range of

multi-intersection road network simulations, we showed that

a holistic view of the state of the traffic network empowers the

traffic system to make highly informed control decisions. This

manifests, for example, in higher average velocities, shorter

waiting times, lower CO2 emissions, and reduced stress levels

in drivers. By training the holistic agent in scenarios of varying

traffic volumes, the holistic agent learns to seamlessly integrate

the broad range of behaviors that are needed to navigate the

different requirements. The advantage of communication with

nearby vehicles showed to be especially pronounced for low

traffic volumes, as the agent learns to react to individual

vehicles, often allowing cars to traverse the traffic network

without ever stopping. The advantage slowly decreases for

high traffic volumes since too many vehicles approach the

intersections to react to individual vehicles.

The use of composite reward functions enables the joint

optimization of multiple performance metrics. Through a

V2I interface, individual vehicles may transmit a plethora

of different metrics, enabling the design of reward functions

that accurately encapsulate the diverse objectives of traffic

systems. However, the traffic infrastructure cannot measure

most performance metrics directly but has to rely on col-

laborative information from individual vehicles to construct

meaningful reward functions. A further advantage of traffic

systems featuring V2I communication is thus the trans-

mission of these performance indicators, such as velocity,

waiting time, or CO2 emissions, from the individual vehicles

to the infrastructure.

VII. OUTLOOK

The weak performance guarantees of DRL methods are the

main reason for their rare implementation in safety-relevant

systems. As traffic light control systems can utilize an action

space that is safe by design, e.g., by using only compatible

streams for the available phases and enforcing appropriate

amber periods, they could be a suitable domain for first

pilot projects of DRL for safety-relevant applications. Such

a system could be trained in simulation until a reasonable

solution is found, and then be deployed into the real world,
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Algorithm 1: RL Algorithm for Learning Traffic Signal Control

Input: Batch size M; discount factor γ ; replay buffer size R; initial environment steps B; actor learning rate απ ; critic learning rate αQ; n-step
bootstrapping steps N; discrete entropy scaling factor εdisc; continuous entropy scaling factor εcont; target network update interval Ttarget;
parameters of the categorical action-value distribution: lower bound Qmin, upper bound Qmax and number of discrete bins L.

Initialize network weights (θ, ω1, ω2) using Kaiming initialization [95].

Initialize target network weights (θ ′, ω′
1
, ω′

2
) ← (θ, ω1, ω2).

Initialize replay buffer B.
Launch K agents and environments.
while True do

if len(B) ≥ B then
Sample minibatch of M transitions of length N from the replay buffer.

Sample for each transition a′i+N ∼ πθ ′ (si+N ).

Compute and store for each transition πold,i = πθ (si)

Compute ω′
min

= arg minω′
1
,ω′

2

(

avg
(

Q̂ω′
1
(si+N , a′i+N )

)

, avg
(

Q̂ω′
2

(

si+N , a′i+N )
)

)

.

Construct the target distributions Yi =
(
∑N−1

n=0
γ nri+n

)

+ γN Q̂ω′
min

(si+N , a′i+N )

(The target distribution Yi is constructed by moving the probability mass of each of the discrete bins of the categorical distribution
according to the Bellman equation (see [81])).

Compute actor and critic updates (H(π) is the entropy of the distribution π ):

θ ← θ − απ
1

M

M
∑

i=1

∇θ

(

− Q̂ω1

(

si, a
′
i ∼ πθ (si)

)

− εdiscH
(

πθ (si)
)

− εcontH
(

πθ (si)
)

)

ω1 ← ω1 − αQ
1

M

M
∑

i=1

∇ω1
DKL

(

Yi
∣

∣

∣

∣ Q̂ω1

(

si, ai
)

)

ω2 ← ω2 − αQ
1

M

M
∑

i=1

∇ω2
DKL

(

Yi
∣

∣

∣

∣ Q̂ω2

(

si, ai
)

)

if t % Ttarget = 0 then

Copy parameters to target networks (θ ′, ω′
1
, ω′

2
) ← (θ, ω1, ω2).

end

Adapt policy learning rate απ ← clip
[

απ − P ·
(

1
M

∑M
i=1 D2

(

πθ (si)||πold,i
)

− Dtarget

)

, αmin, αmax

]

end
end

Agent
while True do

Observe state s and sample action from policy a ∼ πθ (s)

Execute action a and observe reward r and new state s′.

Store tuple (s, a, r, s′) in replay buffer and delete old entries from the buffer if len(B) > R.
end

where it can keep on learning to further adapt to the actual

requirements of the system. For this continued learning, the

availability of a V2I interface is imperative as the reward

metrics from individual vehicles need to be communicated

to the infrastructure.

In this study, we optimized the average velocity of vehi-

cles in the network or a simple combination of a few

performance metrics. Such simple reward functions could

turn out to be short-sighted when using a more sophisti-

cated simulation or deploying the agent to the real world.

We may, for example, integrate additional goals, such as

pedestrian safety [67], [94], fairness among drivers, or noise

levels in residential areas. Further research needs to identify

tangible goals of traffic systems and appropriately quantify

and balance them.

Finally, another exciting research direction would be the

integration of the bilateral exchange of information between

the traffic infrastructure and individual vehicles. For exam-

ple, giving drivers suggestions on appropriate speed or routes

could enable the infrastructure to better handle and distribute

traffic and, therefore, use the given road infrastructure more

efficiently, further mitigating congestion.

APPENDIX

This appendix presents the RL algorithm for learning of the

traffic signal management in Algorithm 1.
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