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Optimising Efficiency and Gain of Small Meander Line RFID
Antennas using Ant Colony System

Andrew Lewis, Gerhard Weis, Marcus Randall, Amir Galehdar and David Thiel

Abstract— Radio Frequency IDentification (RFID) technology
is increasingly being used to uniquely identify objects. An
important component of RFID systems is the design of the
antenna - which usually takes the form of a compacted meander
line. This task becomes an optimisation problem as different
designs will have different efficiencies and resonant frequencies.
In this paper, we explore the use of a multi-objective version of
ant colony system. This constructive meta-heuristic, as shown, is
highly suitable for this problem.

Keywords: ant colony system optimisation, muti-objective
optimisation, RFID antenna design.

I. INTRODUCTION

THE automated design of meander line RFID (radio fre-

quency identification) antennas is relatively new. Tra-

ditionally, design engineers would create these manually in

a time-consuming, iterative process. However, this is only

practicable for small and relatively simple antennas. Recent

work has shown that heuristic search techniques are capable

of producing very efficient antenna designs for larger prob-

lems [23], [28]. This paper extends that work by considering

the simultaneous optimisation of two objectives, namely max-

imising antenna efficiency and minimising resonant frequency.

One approach to design of the general meander line antenna

is to confine the antenna to a Cartesian grid. For a particular

grid defining the meander line, a number of design choices are

possible. By its very nature, this is a constructive task, as grid

points are successively connected. Ant colony system (ACS)

is a constructive meta-heuristic search algorithm and is one

of the family of ant colony optimisation (ACO) techniques.

Generating a meander line on a grid is a combinatorial problem

that is a restricted and constrained form of the travelling

salesman problem (TSP) - hence it is NP hard [23]. There

is a vast amount of literature covering ACO for the TSP (see

Dorigo and Stützle [8] for an overiew). However, its use for

antenna design has been limited to self structuring antennas [3]

rather than the application presented in this paper.

The remainder of this paper is organised as follows. Sec-

tion II gives a brief summary of RFID and meander line

antennas while Section III describes ACS in general and how

it is applied to this problem for the single objective case. Sec-

tion IV extends this to show that ACS can effectively optimise
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both efficiency and resonant frequency. The computational

results of the new system are given in Section V and finally,

the conclusions and future research directions are presented in

Section VI.

II. RFID ANTENNAS

The idea of RFID was first developed in 1948 [26]. Recently

there have been many enhancements to this basic idea and the

concept has found applications in many areas. One suggestion

is the replacement of the universal price code (UPC) barcode

system. Practical considerations have driven a need for smaller

tags with longer reading range. The read range can be defined

as “the maximum distance at which an RFID reader can detect

the backscattered signal from the tag” [24]. This vital factor

can be increased by designing antennas with higher gain which

is directly related to the antenna efficiency. Design engineers

seek the smallest, most efficient antenna structures for their

RFID tags.

As mentioned above, one of the key features of RFID tag

is antenna design. Traditionally, design engineers predict the

performance of the antenna based on electromagnetic calcu-

lations which approximate real antenna performance. More

recently, computers and accurate numerical modelling soft-

ware applications have become available to explore antenna

performance before construction. These codes are improved

using mathematical optimisation techniques to produce the

best possible solution. Many different optimisation techniques

for antenna design are reported in the Special Issue of IEEE

Transactions on Antennas and Propagation vol. 55 (3), March

2007. Meander line antennas are a subset of particular interest.

An RFID system consists of two components:

• A transponder or tag - this has a small microchip and an

antenna.

• A reader or scanner - this communicates with the tag and

a host system which has the information of the identified

tag item.

RFID tags are categorised into active and passive tags.

Active tags have their own power source and passive tags

harvest their’s from the reader signal. Usually active and

passive tags use different operating frequencies. Passive tags

operating up to 100 MHz work in the near field of the

reader which means the range can be extended using lower

frequencies. Since it is a near field operation, there are limits

to the reading range.

Higher frequency tags operate beyond the near field of the

reader and hence a longer reading can be achieved. Such tags

use radio frequency backscatter which means the tag changes

1486978-1-4244-2959-2/09/$25.00 c© 2009 IEEE
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the antenna impedance by reflecting back some of the incident

RF energy to the reader.

The antenna is the most crucial element for an RFID tag,

because it is the power source, which makes good antenna

gain essential in achieving a large transceiver range [15].

Other essential properties for an RFID antenna are size,

robustness and manufacturing costs. The read range is directly

proportional to the wavelength used. Lower frequencies or

longer wavelengths tend to increase the read range, but also

need larger antennas. The design goals for an RFID antenna

is to make it small, efficient and with long reading distance.

Meander line antennas [27] are folded dipole antennas

which increase radiation resistance without decreasing an-

tenna bandwidth. They offer good radiation efficiency with

considerable size reduction compared to conventional half or

quarter wavelength antennas. Meander line antennas are of

particular interest for RFID, due to their compactness and low

manufacturing cost.

There is no generally applicable analytic design methodol-

ogy for meander line antennas. So there is a need for com-

putational methods for design optimisation. There have been

some approaches using genetic algorithms to optimise RFID

antennas [16], [20], however, they have concentrated on simple

serpentine configurations or on very specific application areas.

To date there have been little or no investigations of general

configurations or computational optimisation has not been

applied [9], [10].

III. ANT COLONY SYSTEM

Ant Colony Optimisation [6] is family of population opti-

misation paradigm encompassing a range of meta-heuristics

based on the evolutionary mechanics of natural ant colonies.

One of these variants is named Ant Colony System. These

techniques have been applied extensively to benchmark prob-

lems such as the travelling salesman problem, the job sequenc-

ing problem and the quadratic assignment problem. Work

on more complex problems, that have difficult constraints in

such areas as transportation and telecommunications, has also

been undertaken [6]. Like genetic algorithms, populations of

solutions evolve over time. The major difference is that ACO

represents a set of constructive techniques, i.e., each ant at

each step of the generalised algorithm adds a component (such

as the next city for the TSP) to its solution. Using simulated

chemical or pheromone markers (conventionally denoted as

τ ) as a collective form of self adaptation, populations produce

increasingly better solutions.

The general operation of ant colony system may be de-

scribed thus. Initially, a population of empty solutions is cre-

ated. Each solution is referred to as an ant. The colony of ants

proceeds to create solutions to a given problem by progres-

sively adding solution component values (such as cities for the

travelling salesman problem, or segments to neighbouring grid

points in this problem) until each ant’s solution is complete.

The way that solution component values for ACS are selected

is by the use of the pseudo-proportional rule [7]. Every time a

solution component value is added, pheromone evaporation

takes place to discourage other members to strictly follow

another ant’s path. This is referred to as local pheromone

updating. At the end of this iteration of construction, the

best solution is rewarded by having the pheromone levels

associated with its solution components increased, while others

are decayed. Over a number of such iterations, the quality of

solutions will increase, until stagnation occurs.

The above description assumes only one objective function

is to be optimised. The application described in this paper,

and many other real-world tasks, requires the use of more

than one objective. There has been much research undertaken

to extend ACO metaphor to multi-objective optimisation. A

brief summary of these researches follows.

Garcia-Martinez, Cordon and Herrera [12] compare a

number of published multi-objective ant colony optimisation

(MOACO) methods on a single set of bi-criteria TSPs. These

methods are from Mariano and Morales [19], Iredi, Merkle and

Middendorf [14], Gambardella, Taillard and Agazzi [11] and

Doerner, Gutjahr, Hartl and Strauss [5]. For the first of these

(named MOAQ), families of ants are used to optimise each

objective. Each ant of the family learns from its same number

in the preceding family. Additionally, infeasible solutions

are penalised. Iredi et al. [14] propose two methods they

entitle BicriterionAnt and BicriterionMC. Both use different

pheromone repositories for the two objective functions. The

main difference is that the former allows its ants to update both

repositories while the latter will update one or the other (at

each step of an iteration). Doerner et al. [5] use a variation on

the idea of separate colonies in a scheme called COMPETants.

After each iteration of the algorithm, the better performing

colony gets a greater number of ants for the next generation.

In contrast, the multiple ant colony system of Gambardella et

al [11] uses a single pheromone matrix for the each colony,

but uses multiple visibility heuristics.

Population ACO (PACO)1 has also been used to solve

multiple objective optimisation problems [13], [1]. Rather than

keeping separate colonies of ants for each objective function,

PACO creates different sub-populations to update each of the

pheromone matrices (one for each objective). A variation of

this is Crowding PACO (CPACO) [1] in which a population,

without sub-populations, is maintained. Each solution of the

current population of ants is compared (in terms of solution

quality) to a subset of the population. Given that two solutions

are approximately similar, the old population member will be

replaced if the other dominates it. Using a set of bi-criteria

TSPs, it was shown that that CPACO was able to outperform

PACO.

A. Ant Colony System Applied to Meander Line Antennas with
a Single Objective

The canonical ACS algorithm needs to be adapted for the

problem of creating meander line antennas [23]. That study

and the work by Weis et al. [28] only consider efficiency as

1PACO uses a population of solutions to derive its pheromone matrix, rather
than directly from the solution components.
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the objective. Figure 1 (a) shows a 5 × 5 grid on which the

ACS algorithm operates and (b) a possible solution. The ACS

algorithm only solves one half of the antenna. The solution

is then mirrored on the other half of the antenna, with a

connecting 1 mm bridge. For the antennas used in this paper

(resonating at 433 MHz), each half area, or grid, contains

n × n points. The physical size of the grid remains constant

at 25 mm, despite different values of n. Each ant attempts to

construct a meander line that begins on a boundary point and

traverses all points on the grid.

Fig. 1. (a) defines the grid and numbering system and (b) shows a possible
meander line antenna. The latter is referred to as a “plough” structure.

The difficulty for the algorithm in constructing Hamiltonian

walks (as reported by Randall et al. [23]) is that each point is

only connected to at most four others. It is quite likely that an

ant will “trap” itself within the grid, as it has already visited

all the neighbouring points.

To minimise the potential of an ant becoming stuck, the

ACS algorithm for meander line antennas works in the fol-

lowing way. Each ant starts at a random chosen boundary

point and walks to the next chosen neighbour inside the

boundaries that are not already visited. The ants are guided

by the following three factors:

1) Pheromone - The pheromone matrix is an n2 × 4 struc-

ture. The latter dimension is direction. The pheromone

component of the characteristic pseudo-proportional

equations is given as τ(c, d) where c is the current grid

position and d is the direction.

2) Lookahead function - In order to move each ant, the

number of unused neighbours of each of the neighbours

of the current point is calculated. The greater this num-

ber, the higher the probability of choosing that direction.

3) Straight line segment function - Encouraging straight

line segments helps to ensure that all n2 points are

visited by the meander line. This is easily calculated

by comparing the current candidate direction with the

previous direction that the ant has taken.

If the number of unused neighbours for an ant is 0, then

the ant has become stuck and is considered dead (if not all

points are visited by this ant). Dead ants are disregarded for the

remainder of the iteration. At the end of each iteration, all ants

that have valid solutions have these evaluated by the NEC [2]

antenna suite. Therefore, the calculation of the efficiency of

the generated antennas is a black box to this algorithm, and

the ants can not use any incremental objective information as

guidance.

Another important issue in the automated design of meander

line antennas is that of structure refinement or local search to

a completed solution. ACS does not guarantee that an ant’s

solution will be locally optimal. Traditional ACS implementa-

tions use standard operators such as move and swap in order to

find better solutions - using an original ant solution as a base.

The difficulty in this application, as previously mentioned,

is that the objectives (efficiency and resonant frequency) are

black boxes. Thus, no guiding information is available. The

work by Weis et al [28] showed that the application of the

backbite operator [18], [25] could dramatically increase solu-

tion quality. The operator manipulates the end of the antenna,

changing the configuration slightly, but ensuring another valid

antennas is produced. Additionally, Weis et al. [28] extends

the metaphor so that a hierarchical group of backbite operators

could be performed that would cover all backbite configuration

possibilities. The depth of the search tree was set to three.

This ensured a good exploration of local space surrounding

an antenna, without overusing computational resources.

IV. A MULTIOBJECTIVE MODEL

Previous work by the authors [23], [28] has demonstrated

that heuristic search algorithms in general, and ACS in par-

ticular, can be used very effectively to improve the effi-

ciency of small, meander line RFID antennas. In most real-

world applications, however, an “optimal” solution involves

simultaneously satisfying several objectives. Another issue of

importance in the design of these antennas is that of the

resonant frequency of operation. High Frequency (HF) RFID,

which operates at 13.56 MHz, has been widely deployed for

item management applications but fails where read distances

of greater than 1m are required. More recently, Ultra High

Frequency (UHF) has been investigated, providing for smaller

antennas and longer read distances. UHF RFID has been

developed to operate at a number of different frequencies,

specifically, 433 MHz, 860 – 956 MHz and 2.45 GHz. In this

paper, we consider antennas in the 433 MHz band, as they are

commonly used in real-world applications.

It should be noted that evaluation is just a part, perhaps the

lesser part, of the optimisation task. Designing a candidate

antenna structure is a significant part of the problem, for

which the constructive nature of the ACO path planning

method is particularly appropriate. Attempting to use another

optimisation algorithm, such as a Genetic Algorithm (GA) or

Particle Swarm Optimisation (PSO) still leaves the antenna

designer with the problem of how to construct a feasible

structure for the antenna in order to evaluate it. In addition,

the local permutation operations of such algorithms are highly

likely to overwhelmingly generate infeasible solutions, even

given a feasible starting structure. Because of these difficulties,

there is very little reported in the literature on the applica-

tion of optimisation algorithms to the automated design of

meander line antennas, with the exception of some work on

1488 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Authorized licensed use limited to: GRIFFITH UNIVERSITY. Downloaded on September 16, 2009 at 01:16 from IEEE Xplore.  Restrictions apply. 



the optimisation of specific, limited forms, such as serpentine

antennas [21].

For the antenna design problem being considered maximis-

ing the antenna efficiency, η, and minimising the resonant

frequency, f0, are the two design objectives. In order to be

able to process these objectives the ACO algorithm had to be

modified. When optimising for a single design objective, it is

simple to determine which ant has achieved the best solution,

and should thus be allowed to globally update the pheromone

matrix; it is the ant whose solution has the best value for the

objective. However, when more than one objective is involved,

the question of what is the “best” solution can be difficult

to answer, particularly if objectives conflict. What is ideally

required in this case is a method that delivers information on

the trade-off between objectives.

Our multi-objective implementation is simpler and requires

fewer computational resources than those papers outlined in

the previous section, as only one ant colony is used. To

determine whether one solution is more attractive than another,

a domination relation is used. For solution vectors �x1 and �x2,

when the following conditions are met:

• �x1 is at least as good as �x2 for all the objectives, and

• �x1 is strictly better than �x2 for at least one objective

then �x1 is said to “dominate” �x2 (denoted �x1 ≺ �x2). In the

case where �x1 and �x2 dominate other solution vectors but

not each other they are deemed mutually optimal solutions

and referred to as Pareto-optimal. The set of Pareto-optimal

solutions reflects the trade-off surfaces between the different

objectives and is kept in a data structure referred to as the

archive. This set of Pareto-optimal solutions is referred to as

the Pareto-front.

This approach to the optimisation of multiple objectives

delivers not just a single solution but a set of (Pareto-optimal)

solutions. Design engineers must still make some decision as

to which particular solution is most fit for the requirements of

a specific application. To do this they must choose between

Pareto-optimal solutions based on some set of preferences

ranking the different objectives. This choice can be generally

be made in one of three ways [4]:

• a priori - a set of weights is determined for the different

objectives and they are aggregated, usually by a simple

algebraic sum. This aggregated objective function is then

used to drive a single-objective optimisation algorithm.

It is well known, however, that this approach commonly

experiences difficulties finding solutions on Pareto-fronts

of particular shapes [17] and can thus fail to deliver

adequate solutions.

• progressive - the designer interactively supplies infor-

mation about design preferences as the optimisation

progresses. This is well-suited to problems where the

objectives cannot easily be expressed in simple, numerical

terms but tends to be laborious and time-consuming.

• a posteriori - the optimisation algorithm makes no at-

tempt at ranking Pareto-optimal solutions but delivers

the whole set to the designer for a decision to be made

Algorithm 1 A single iteration of the multi-objective ACS

algorithm.

1: A population of ants begin construction of the walks

(antennas) on a Cartesian grid of specified size

2: while each ant has not completed construction of an

antenna do
3: for each ant, from a starting node on the edge of the

grid do
4: Add next node to a directed graph, according to the

probabilistic selection rules outlined in Section III,

coupled with next neighbour lookahead and straight

line weighting, if appropriate

5: If the ant cannot find a feasible next node, terminate

the ant for this iteration

6: end for
7: Update local pheromone data for all ants

8: end while
9: Apply the backbite operator to degree three to each

solution/antenna

10: Determine if any of the population of solutions should be

added to the Archive

11: For those solutions entering the archive, update the global

pheromone

12: end

after the algorithm terminates. This can provide insight

into the behaviour of systems in response to design

parameters in addition to delivering particular solutions.

The experiments described in this work use this approach.

Antenna structures constructed by the ants, and refined using

the backbite operator [28], are now evaluated by the NEC

software and two objective values returned, for η and f0. The

Pareto dominance relationships between different solutions are

determined, and Pareto-optimal solutions accumulated in a

continuously-updated archive. In the modified ACS, all ants

that deliver Pareto-optimal solutions at an iteration are allowed

to contribute an update to the pheromone matrix, the amount

of their update being inversely proportional to the number

of contributing ants. This is slightly different to the PACO

approach where the whole population is used to derive the

pheromone matrix.

Algorithm 1 gives an overall mechanical description of the

multi-objective ACS implementation.

V. COMPUTATIONAL EXPERIMENTS AND RESULTS

As in Randall et al. [23] and Weis et al. [28] meander lines

on grids ranging from 5 × 5 to 10 × 10, running the ACS al-

gorithm ten times (by varying the random initial seed used for

the probabilistic operations of the algorithm) are solved. Each

search was permitted 1000 iterations. The structures obtained

by the ants were refined using the backbite operator, with a

fixed tree depth of three. An archive was maintained of all

Pareto-optimal solutions obtained for each run. Thus, the cache

of previously-computed results was converted to a persistent
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database reusable across experimental runs, to further reduce

the computational cost of performing the experiments.

In contrast to the previous works [23], [28], the relaxation

of the requirement that antenna elements be Hamiltonian

walks on the grid meant every ant was able to produce a

“feasible” solution requiring evaluation by the NEC software

in this study. The previous restriction was aimed at maximis-

ing the antenna length, in order to implicitly minimise the

resonant frequency since lower frequencies tend to increase

the antenna read range, but also need larger antennas. As

resonant frequency was now an explicit objective of the op-

timisation process, its “optimisation” via artificial constraints

was no longer necessary. With this relaxation, there was a

subsequent increase in the number of feasible solutions to

be evaluated. Thus the use of parallel computing resources

became a practical necessity. An ad hoc computational grid

was formed from a pool of about 20 computers, a mix of Intel

P4 and Athlon X64 dual-core-based machines. The computers

used were not dedicated to this task; jobs were distributed to

machines according to their instantaneous ability to process

them, taking into account machine load from other sources.

For some experimental runs a number of computers may not

have been available at all. The dual-core computers were

always issued two jobs, when they were used.

Our first experiments explored the effect of greediness in

the selection of the next solution component value an ant takes

on. The pseudo-proportional rule (as discussed in Section III)

consists of two branches; an ant may choose a value based on

greedy selection or a value chosen probabilistically (according

to the value’s fitness). The ACS parameter, q0, governs this

choice. Note that 0 ≤ q0 ≤ 1. A high value of q0 leads to

more greedy choices being made and vice versa. Experiments

for different values of q0 at each grid size were processed

sequentially, due to the limited computing resources available.

In Table I the difference between the number of structure

evaluations requested and the actual number computed is

attributable to the effect of caching the results; it may be seen

at each grid size that the number of unique solutions that need

be evaluated progressively decreases as the persistent cache

fills with each subsequent run. Very noticeable for the smaller

grid sizes, this effect diminishes as grid size increases and the

total search space the algorithm explores grows exponentially.

It may also be noticed this effect remains significant with

greater values of q0: as the algorithm becomes “greedier”

it tends to attempt to reuse paths already investigated. The

computational results of the experiments are given in Table I.

By inspection of the table, it may be noted that up to 68,372

structures were computed, for one of the 10 × 10 runs. That

would have taken over 112,000 seconds (31 hours) had these

all been computed sequentially. The elapsed time for the

run was only 13,926 seconds (about 4 hours), a significant

improvement.

Table I also reports structure evaluation times much lower

than those reported in the previous studies [23], [28]. This is

the result of a combination of two main factors:

• Relaxing the requirement that antenna paths be Hamil-

TABLE I

COMPUTATIONAL RESULTS FOR ANTENNAS IN THE 433 MHZ BAND. ALL

TIMES GIVEN IN SECONDS. AVERAGES ARE PER PROCESSOR CORE.

Grid q0 Average CPU Elapsed Average Total Total
Size time per time structures structures structures

structure computed computed requested

5 0.1 0.58 1290 373 2394 20286
5 0.5 0.54 1296 213 2244 17248
5 0.9 0.55 498 54 534 12128

6 0.1 0.41 4673 712 13540 39420
6 0.5 0.59 3444 376 8573 25856
6 0.9 0.71 1711 183 3009 15190

7 0.1 0.86 14097 5856 44064 59522
7 0.5 0.87 5546 734 17900 38650
7 0.9 0.96 1711 202 3009 15190

8 0.1 1.06 9658 2737 56161 63620
8 0.5 1.31 7885 1566 37387 50267
8 0.9 1.48 5150 580 13223 29743

9 0.1 1.34 17533 1885 61596 64200
9 0.5 1.53 10215 1846 48966 55585
9 0.9 1.59 7313 971 23688 32497

10 0.1 1.65 13926 2535 68372 69268
10 0.5 1.76 21140 2373 64379 65925
10 0.9 2.21 7313 1350 23688 32497

tonian leads to a reduction in the average length and

complexity that must be simulated by the NEC software,

which reduces the computation and time required.

• With the anticipated increase in the number of evaluations

to be performed, the evaluation procedure was altered to

reduce the computational cost. In the earlier experiments

resonant frequency was determined by sweeping the

operating frequency across a band of interest, evaluat-

ing antenna performance at a large number of discrete

frequencies. This was modified to use a binary search

algorithm within the same band, greatly reducing the

number of discrete frequencies test ed, and the time taken.

To design an UHF antenna able to operate at a resonant

frequency in the 433 MHz band (commonly used in practical

applications), suitable construction parameters were: a track

width of 1mm, an antenna half-area to 25× 25 mm2 and the

bridge for the feed-point between the dipole arms of 6 mm.

Figure 2 shows the ηf0 attainment surface obtained for all

grid densities. The resonant frequency range was 350 MHz

< f0 < 1520 MHz and efficiency range was 70.7% < η <
99.8%. The standard operating frequency in this band is 433

MHz. From the figure it is evident that optimised antenna

structures have been obtained capable of operating at this

frequency.

Some measure of the quality of the attainment surface can

be inferred from the fact it includes a solution found, by

exhaustive enumeration, to be the globally best solution, in

terms of gain [9] for one of the grid sizes. It is evident from

consideration of the number of feasible solutions for larger

grid sizes (over 1013 for grids of 10×10) that similar validation

for the whole of the attainment surface is difficult to provide.

Figure 3 shows the structure of the antenna element with

resonant frequency closest to this desired operating frequency

(f0 = 430 MHz, η = 83.6%). This antenna was constructed

using a grid density of 10 × 10; inspection of Pareto-fronts

for other grid densities showed feasible structures could also
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Fig. 2. ηf0 attainment surface for the 25 × 25 mm2 antenna.

be obtained using grid densities of 9 × 9 and 8 × 8 but that

the minimum resonant frequency obtainable with 7 × 7 was

460 MHz and lower grid densities had correspondingly higher

minimum resonant frequencies. These results are summarised

in Table II. The resolution of the resonant frequency was 10

MHz.

0.430GHz

83.6%

Fig. 3. Structure of the 10 × 10 antenna element with resonant frequency,
f0 = 430 MHz.

VI. CONCLUSIONS

The experiments described in this paper have demonstrated

that the combination of ACO with the NEC antenna analysis

software is a practical and effective means of designing

electrically small, meander line, RFID antennas to meet real-

world design criteria. Antenna structures capable of operating

with high efficiency at standard frequencies were found rapidly

by an automatic process, an engineer only being required to

choose a specific antenna design from several Pareto-optimal

alternatives presented, according to preference.

For a standard, 433 MHz antenna designed to fit on a 25×
56 mm substrate, the longest elapsed time for a single ACO

run was a little under 6 hours, despite being constrained to use

of a reasonably small number of heterogeneous, commodity

TABLE II

PERFORMANCE OF ANTENNAS IN THE 433MHZ UHF BAND.

Grid Resonant Maximum
Size Frequency Efficiency%

(MHz)

5 570 92.8
6 510 89.5
7 460 85.7
8 430 82.8
9 430 83.5
10 430 83.6

computing resources of highly dynamic availability. While to

complete the experiment described took a further 17 runs (of

times ranging from under 10 minutes to a few hours) with

sufficient computers available the entire investigation could

have been completed in this 6 hour period, as each ACS

run was independent of all others and could be performed

concurrently.

Beyond this, we wish to investigate other constructive

heuristics with which to build meander lines as a basis of

comparison to ACS. In addition, it may be interesting to

investigate other local search operators suited to this problem

and ACO, such as multi-objective A* [22], and their impact

on the convergence behaviour of the algorithm.
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