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Abstract—Image-Based Control (IBC) systems have a long
sample period. Sensing in these systems consists of compute-
intensive image processing algorithms whose response times
are dependent on image workload. IBC systems are typically
designed for the worst-case workload that results in a long
sample period and hence suboptimal quality-of-control (QoC).
This worst-case based design is further considered for mapping
of controller tasks and allocating platform resources, resulting
in significant resource over-provisioning. Our design philosophy
is to sample as fast as possible to optimise QoC for a given
platform allocation, and for this, we present a structured design
flow. Workload variations determine how fast we can sample
and we model this dynamic behaviour using the concept of
workload scenarios. Our choice of scenario-aware dataflow as the
formal model for our application enables us to: i) model dynamic
behaviour, analyse timing, and optimally map application tasks to
the platform for maximising the effective utilisation of allocated
resources, ii) relate throughput of the dataflow graph to the
sample period, and thus combine dataflow analysis and mapping
with control design parameters and QoC to identify system
scenarios, and iii) to efficiently implement a run-time mechanism
that manages necessary dynamic reconfiguration between system
scenarios. Our results show that our design approach outper-
forms the worst-case based design with respect to optimising
QoC and maximising effective resource utilisation.

I. INTRODUCTION

Image-Based Control (IBC) systems are a class of data-
intensive feedback control systems whose feedback is pro-
vided by image-based sensing using a camera. Data-intensive
feedback control systems are common nowadays due to de-
velopments in cyber-physical systems (CPS) [1]. IBC have
become popular with the advent of efficient image processing
algorithms and low-cost CMOS cameras with high resolu-
tion [2]. The combination of the camera and image processing
algorithm gives necessary information on parameters such as
relative position, geometry, relative distance, depth perception
and tracking of the object-of-interest. Applications of IBC
are found in robotics [2–4], autonomous vehicles [5, 6],
advanced driver assistance systems (ADAS) [7], electron mi-
croscopes [8] and visual navigation [9].

The state-of-the-art design for IBC systems does not con-
sider workload variations in the processing of the incoming
image stream. They are designed for the worst-case response
time (WCRT) of all tasks [1]. To design a controller, we
consider sequential execution of the sensing task, control
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Fig. 1: Worst-case based design. Ts - sensing task, Tc -
compute task, Ta - actuating task, hwc - the sampling period
with worst-case image workload

compute task and actuating task. Execution time for the
sensing task is dependent on image workload variations.
The sampling period is the time between the start of two
consecutive sensing tasks. A typical control design assumes
that we always have worst-case image workload. This further
leads to a long sampling period. Fig. 1 illustrates the worst-
case scenario where the camera input frame rate is 30 frames
per second (fps) and the sampling period with worst-case
image workload (hwc) is 100 ms. Frame rate determines the
number of image frames that arrive per time unit. Due to a
long sampling period, we see that multiple image frames will
arrive before the next Ts task can execute. In Fig. 1, we see
that 3 image frames arrive within one sampling period. Thus, a
long sampling period results in degraded control performance
and conservative design solutions [1]. Control performance is
generally quantified using a QoC metric such as settling time.

In a real world situation, the worst-case image workload
is rarely encountered and the response time distribution due
to workload variations can be statistically analysed (e.g. as a
PERT distribution) [10]. Such a distribution helps the designer
to classify frequently occurring workload scenarios and almost
all the times we see that these frequent scenarios do not
include the worst case. Intuitively, control performance can
be improved if we take this into account. We can also avoid
inefficient resource utilisation due to idling in a worst-case
design, as shown in Fig. 1.

Our main contribution is a structured (co-)design flow for
IBC systems to optimise QoC by sampling as fast as possible
for a given platform allocation. Further, our method enables
us to relate throughput, a parameter relevant for embedded
systems engineers, to sample period, relevant for control
engineer. This helps to design, analyse and optimise the IBC
systems jointly from both embedded and control perspective.
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Fig. 2: Approach: Scenario- and Platform-Aware Design
(SPADe) for IBC

The key idea is to characterize and model workload vari-
ations to identify a set of workload scenarios. For a given
platform allocation, for each scenario, we find the optimal
mapping configuration that maximises the effective resource
utilization. Each workload scenario leads to a sampling pe-
riod of the IBC system. A controller is designed for each
sampling period optimising the QoC and ensuring switching
stability of the overall system. The combination of a sampling
period and the corresponding controller defines a controller
configuration. The combination of controller and mapping
configuration is a system configuration. At runtime, the IBC
system switches (using a reconfiguration mechanism) between
the system configurations depending on the actual image work-
load. As opposed to operating under the worst-case design with
sampling period hwc, the IBC system most of the time runs
in system scenarios [11] with a shorter sampling period. A
system scenario abstracts multiple workload scenarios having
the same sampling period either due to platform constraints or
due to our design choice. This reduces the average sampling
period for the IBC system and improves its QoC.

Our Scenario and Platform-Aware Design (SPADe) flow is
illustrated in Fig. 2.

SPADe involves the following design aspects:
1) Formal Modelling: i) identify and model the parameters

that characterise workload variations, and ii) model ap-
plication considering workload variations and platform
considering platform constraints.

2) Analysis and Design: Analyse application and platform
models to design system configurations.

3) Reconfiguration mechanism for run-time implementation.
This paper is organised as follows: related work is briefly

discussed in Section II. We explain our problem setting in
Section III. Background and preliminaries required to under-
stand SPADe are detailed in Section IV. SPADe approach is
explained in Sections V and VI. Section V explains formal
modelling in SPADe and Section VI explains the analysis,
design and implementation. Section VII presents the results
of validation of our approach. Conclusion and future work are
summarised in Section VIII.
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Fig. 3: Problem Setting

II. RELATED WORK

Our SPADe approach models and explicitly considers the
image processing in the sensing algorithm. One main chal-
lenge of IBC is the delay of the sensor data to reach
the controller [2][9]. Generally, the analysis of the image
processing step is limited to a measurement or estimate of
the computational delay and is assumed to be negligible
compared to other delays in the control loop [2][3][20].
Control engineers tackle a long sample period of IBC systems
using state estimation [12], robust design [13], predictive
control [14], observer-based [1], multi-rate sampling [26] and
reconfigurable pipelining methods [15]. However, these ap-
proaches do not model and consider platform constraints like
resource availability and mapping, and/or workload variations
in image processing [1]. SPADe can explicitly handle these
constraints using the proposed co-design approach. In [11], a
system-scenario-based design approach is introduced from an
embedded systems engineering perspective. However, control
performance and long sample period are not explicitly consid-
ered. The SPADe approach bridges the design gap between
a control engineer and an embedded systems engineer by
relating image processing workloads and platform mappings
to sample periods and quality of control.

III. PROBLEM SETTING

We consider a setting for an IBC system as shown in Fig. 3.
A camera module captures the image stream and does pre-
processing. This image stream is then fed to a multiprocessor
platform, e.g a multiprocessor system-on-chip (MPSoC), at a
fixed frame rate per second (fps), e.g. 30 fps. The control tasks
run on this MPSoC. In this section, we present our problem
setting.

A. Application Model

Our application is modelled using a model-of-computation
(MoC) or a programming model that allows timing analysis.
Our model should capture dynamic behaviour and scenario-
awareness. This enables us to model and analyse workload
variations that happen at run-time. We assume that the worst-
case execution times (WCET) of task workloads are given
for a platform or can be computed, and the information on



parameters that relate to workload is known early on during
the frame processing, e.g. from the frame header.

Our application is abstracted as sensing (Ts), control com-
pute (Tc) and actuating (Ta) tasks. The execution sequence
of the tasks is always Ts → Tc → Ta. The sampling period
is then the time between the start of two consecutive sensing
tasks. We define worst- and best-case sampling periods as sam-
pling periods computed for maximal and minimal workloads.
The best-case sampling period takes into account the WCET
of the minimal (best-case) workload.

B. Platform Model

Our application runs on a multiprocessor platform with a
tile-based architecture [19]. Each tile has a processor, a mem-
ory, a communication assist and a network interface. Tasks
mapped onto the platform execute in a data-driven fashion for
Ts and Tc, and in a time-triggered fashion for Ta, (e.g. as
shown in Fig. 1). We assume that the WCET of a task can
be bounded, i.e. the platform is predictable. A scheduler can
do (re)configuration of the platform and time-triggered task
execution. A mapping configuration determines the binding
of application to the platform and its execution schedule.
A controller configuration determines the time-triggered ex-
ecution of Ta and the choice of controller gain for Tc. A
system configuration refers to a combination of a mapping
and a controller configuration. A reconfiguration mechanism
realises runtime switching between system configurations with
an overhead.

C. Platform Allocation

A platform allocation determines the resources that are
allocated for a task or for an application. Resources that are
allocated include: i) number of processors (could also be a
part of a processor, e.g. slots in a time-division multiplexing
(TDM) frame); ii) memory size - for local memory in a tile
and/or shared memory, e.g. DDRAM; and iii) communication
bandwidth. An application can have multiple binding options
for a given platform allocation.

D. Design Questions

For a given application and a platform allocation, design
1) mapping configurations (bindings of application on the

platform and execution schedules),
2) controller configurations (sampling periods and corre-

sponding controller gains), and
3) a run-time reconfiguration mechanism,

such that we
• optimise QoC and
• maximise effective resource utilisation.

E. Running Example

We explain our SPADe approach using an example of a
vision-based lateral control of a vehicle [20] where we want
our vehicle to follow a lane autonomously (lane-keeping). A
camera installed on the vehicle is our sensor. The camera
sensor captures and pre-processes image frames at 30 fps.
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Fig. 4: Application model for platform with 2 processor tiles

An image processing algorithm then processes the frames
and computes the lateral deviation (yL) at a set look-ahead
distance. Our controller takes yL as the sensor input, computes
the steering angle and actuates the steering to follow the lane.

IV. BACKGROUND AND PRELIMINARIES

A. Synchronous DataFlow (SDF) Graphs

An SDF [22] is a directed graph (A, C). A node a ∈ A,
called actor, models a task of the application and a platform-
dependent time required for its execution. An edge c ∈ C,
called channel, captures (data) dependencies between actors.
Tokens represent data communicated through channels. Chan-
nels may contain initial tokens, depicted with a solid dot.
Initial tokens represent the availability of data in a channel
at the start of analysis. Tokens on each channel also have a
memory requirement.

An example SDF graph with 6 actors, 7 channels and
1 initial token is illustrated in Fig. 4 and is explained in
Section V-B. A simulation of an SDF graph involves firing
(execution) of actors. An actor executes for a fixed time
specified by its execution time, e.g. in Fig. 4, ep is the WCET
for actor RoIP (Region-of-Interest Processing). An actor can
fire iff sufficient tokens are available on all its input channels.
These amounts are called the rates, indicated next to the
channel ends (omitted if 1). For an SDF, rates (y1, y2, z2
in Fig. 4) should be a constant (e.g. y1 = y2 = z2 = 1).

An essential property of SDFs is that every time an actor
fires, it consumes the same number of tokens from its input
channels and produces the same number of tokens on its output
channels, as modelled by the rates. Fixed rates allow iterative
execution of an SDF, where the initial token distribution occurs
after each iteration. The number of actor firings required
for one iteration is captured in the repetition vector [23].
Consistency (i.e., existence of a repetition vector) and absence
of deadlock are practically, necessary conditions for analysis
of SDFs which can be verified efficiently [22, 23].

Throughput is an important design constraint for streaming
applications such as image processing [19]. Throughput of an
SDF refers to how often an actor produces an output token.
For our analysis, we use the throughput computation method
from [25].

B. Scenario-Aware DataFlow (SADF) Graphs

An SADF graph [24] models the dynamic behaviour of
an application using the concept of scenarios. A scenario
represents an abstraction of a set of run-time behaviours.
Each scenario is modelled using an SDF graph. Fig. 4 is an
example of an SADF graph where scenarios use the same



SDF graph structure with different actor execution times and
channel rates. The initial tokens in the SDF graphs capture the
dependencies between subsequent scenarios. In our example
(Fig. 4), RoID (Regions-of-Interest Detection) detects the
workload, w. Scenarios are defined based on w. Scenario Sbc
for minimal workload w = wmin = 1, has rates y1 = 1,
y2 = z2 = 0 and execution time of actor RoIM (Regions-of-
Interest Merging) = em. Scenario Swc for maximal workload
w = wmax = 6, has rates y1 = 3, y2 = 3, z2 = 1
and execution time of actor RoIM = 6 ∗ em. The model
captures the division of best-case and worst-case workload
over two parallel processor tiles. More workload scenarios can
be added, as explained in Section V-A.

C. Control Design

Image-based control (IBC) is a control application that is
responsible for controlling a continuous-time plant defined by:

ẋ(t) = Acx(t) +Bcu(t)

y(t) = Ccx(t) (1)

where x(t) is the state of the plant, y(t) is the output of
the plant, and u(t) is the control input that is computed by
a control algorithm or controller. Ac, Bc, and Cc are the
state, input, and output matrices, respectively. These matrices
model the behaviour of the system dynamics. For our running
example, we consider the bicycle vehicle model in [20],
where

Ac =


− cf+crmvx

−mv2x+crlr−cf lf
mvx

0 0 0
−lf cf+lrcr

Iψvx
− l

2
f cf+l

2
rcr

Iψvx
0 0 0

−1 −L 0 vx 0
0 −1 0 0 vx
0 0 0 0 0

 , Bc =


cf
m
lf cf
Iψ

0
0
0

 ,
where vx: longitudinal velocity; vy: lateral velocity; δf : front
wheel steering angle; ψ̇: the yaw rate of vehicle; lf , lr:
distance of the front and rear axles from center of gravity
(CoG); Iψ: the total inertia of the vehicle around CoG; cf ,
cr: cornering stiffness of the front and rear tires; m: the
total mass of the vehicle; L: the look-ahead distance of the
camera; yL: the lateral deviation from the desired centerline
point at look-ahead distance; KL: the curvature of the road
at look-ahead distance; εL: the angle between the tangent to
the road and the vehicle orientation;

The state vector x(t) = [vy, ψ̇, yL, εL,KL]T , y(t) is yL,
u(t) is δf and Cc = [0 0 1 0 0].

IBC is a feedback control loop and the control objective is
to design u(t) such that y(t) → 0 (or a constant reference,
r) with time (regulation problem). The time it takes for the
system output y(t) to reach and stay in a closed region (e.g.,
< 2%) around the reference value is the settling time of IBC.
We define QoC (denoted by Φ) as inverse of the settling time,

Φ =
1

settling time
(2)

Thus, a higher QoC Φ implies a shorter settling time and a
better control performance.

1) Platform implementation: Implementation of IBC in-
volves three sequential tasks: sensing (Ts), computing (Tc) and

actuating (Ta). These tasks repeat; let the start and finish times
of the k-th instance be given by ts(.) and tf (.), respectively.
The execution times of T ks , T kc and T ka (the k-th instance) are
given by,

ekt = tf (T kt )− ts(T kt ) (3)

where t ∈ {s, c, a}. The interval between two consecutive
executions of sensing tasks T ks and T k+1

s is then the sampling
period hk:

hk = ts(T
k+1
s )− ts(T ks ) (4)

and hk ∈ H , where H is the set of realisable sampling periods.
Within each sampling period hk, the control operations are
executed sequentially (i.e., T ks → T kc → T ka ). In addition, the
time interval between the starting time of T ks and finishing
time of T ka is known as the sensor-to-actuator delay τk,

τk = tf (T ka )− ts(T ks ). (5)

2) Control task model: We consider a time-triggered imple-
mentation for Ta to guarantee constant τk. τk determines the
time to trigger task Ta. A data-driven implementation approach
is considered for Ts and Tc. Here, the sampling period can vary
depending on the workload variations, resource availability
and response times of individual tasks in different scenarios.
This sampling period variation results in a switched system
that could potentially destabilise the overall closed-loop sys-
tem [16]. The designer needs to take this into account. For the
data-driven implementation approach, the control input u(t)
is held (by a zero-order hold) until its next update. Using the
model presented in [17], we have

x[k + 1] = Ax[k] +B0(τk)u[k] +B1(τk)u[k − 1] (6)

where

A = eAchk , hk ∈ H

B0(hk) =

∫ hk−τk

0

eAcsds ·Bc, B1(hk) =

∫ hk

hk−τk
eAcsds ·Bc

In Eq. (6), we assume that u[−1] = 0 for k = 0. We define
new system states z[k] =

[
x[k] u[k − 1]

]T
with z[0] =[

x[0] 0
]T

obtaining the augmented higher order system

z[k + 1] = Aaug(hk)z[k] +Baug(hk)u[k] (7)

where

Aaug(hk) =

[
A B1(hk)
0 0

]
, Baug(hk) =

[
B0(hk)
I

]
and I is the identity matrix. A check for controllability [27]
is done for this augmented system. If the system is not
controllable, controllability decomposition is done to obtain
a controllable subsystem [28].

3) Control law: The control input u[k] is a state feedback
controller of the following form,

u[k] = Kkz[k] (8)

where Kk is the state feedback gain at the k-th sample having
period hk. The design of Kk can be done with existing design



methods such as Linear Quadratic Regulator (LQR) or a pole-
placement technique [27]. We define K = K1, . . . ,Kn, such
that Ki is the feedback gain for sampling period hi, hi ∈ H .
The closed-loop system using Eq. (7) is given by,

z[k + 1] = (Aaug(hk) +Baug(hk)Kk)z[k] (9)

D. Stability Analysis

We have now designed controllers for a system whose sam-
pling period switches between elements of H . This switching
behaviour, due to workload variations, can lead to system
instability. Therefore, we must guarantee stability of the
overall system while improving QoC.

Theorem 1. (Stability criterion [16][18]) Consider Ak to be
discrete-time LTI systems. V (z) = zTPz is the Common
Quadratic Lyapunov Function (CQLF) of the systems Ak if
there exist P = PT > 0, Q = QT > 0 and P is the
simultaneous solution of the discrete-time Lyapunov equations,

ATk PAk − P = −Q < 0 (10)

The existence of a CQLF is a necessary and sufficient condi-
tion for the stability of a system with switching subsystems.

V. FORMAL MODELLING

The first step in SPADe is to derive application and platform
models, as shown in Fig. 2. The application model should:
i) capture the dynamic behaviour of workload variations, ii)
support timing analysis, and iii) support optimal mapping of
tasks to the platform. We choose Scenario-Aware DataFlow
(SADF) graphs for modelling our application since it satisfies
our requirements for the MoC.

A. Capturing Workload Variations

Workload variations during run-time can be statistically
analysed and frequently occurring workload scenarios can
be classified. However, the exact sequence of occurrence of
workload scenarios cannot be determined and can only be
assumed to be arbitrary. Hence, it is important for our models
to capture workload variations so that we can analyse run-time
behaviour and efficiently design system configurations.

To capture workload variations, we need to first identify
the parameters in input data (the image frame) that relates
to workload. These parameters could be features that are
extracted from the image frame like motion vectors. We
assume that the information on these parameters is known
early on during the frame processing, e.g. from the frame
header. For our example, we consider image pre-processing
algorithms that define Regions-of-Interest (RoI) on the image
plane [21]. Further, we quantify workload, w, based on the
number of RoI, i.e. #RoI = w.

An image processing algorithm (represented as Ts in Fig. 3)
that takes as input pre-processed image frames with RoI infor-
mation, usually has three main tasks: i) a RoI detection (RoID)
task to detect the #RoI; ii) a parallelisable RoI processing
(RoIP) task, e.g. a sobel filter to detect the edges in each
region; and iii) a RoI merging (RoIM) task to merge the
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Fig. 5: Scenario-Aware Data Flow (SADF) model of Ts for p
processor tiles

processed regions and compute the parameter of interest, e.g.
yL (as defined in Section IV-C). RoID detects the workload
w and initiates reconfiguration, if required. The time cost for
reconfiguration, c, is then abstracted along with the WCET, ed,
for RoID. ep and em are the WCETs for processing one RoI.
The WCET of RoIM is dependent on the image workload.
We define the minimum and maximum workload as (wmin,
wmax). For our example, wmin = 1 and wmax = 6.

The maximum possible number of concurrent parallel ex-
ecutions of RoIP is determined by the number of processing
tiles in the platform. For a platform with p processor tiles, we
can model Ts as shown in Fig. 5. Here, #RoIP actors = p,
yi represents workload distribution among the processor tiles
and zi represents whether the code is executed on a processor
tile i. For i = (1, . . . , p), w ∈ [wmin, wmax],

yi = {0, 1, . . . ,
⌈
w

p

⌉
}, s.t.

p∑
i=1

yi = w

zi =

{
0, if yi = 0;
1, otherwise. (11)

As an example, for a platform with 2 processor tiles, Ts is
shown in Fig. 4 and the corresponding parameters are

y1 = {1, . . . ,
⌈w

2

⌉
}

y2 = {0, 1, . . . ,
⌊w

2

⌋
}

w = y1 + y2,

;

z1 = 1

z2 =

{
0, if y2 = 0;
1, otherwise.

B. Application Model

Our application model is an SADF graph that captures
workload variations and models the sequential execution of
Ts, Tc and Ta tasks. The WCETs of tasks Tc and Ta (modelled
as actors in SADF, see Fig. 4) are ec and ea, respectively.
Our scenarios are defined based on the workload. A workload
scenario, S, is defined by #RoI, w, using Eq.(11). We model
the time-triggered execution of Ta by introducing a delay,
d(Si). d(Si) is abstracted along with actor Tc, as shown in
Fig. 4, and is computed during the analysis and design phase
of SPADe.

C. Platform Model

A platform is modelled as a platform graph as explained
in [19]. The image data input from the camera module is
available to the platform at a rate of 30 fps. Binding of
application to platform refers to the mapping of execution of
tasks to the processors, data to memory and communication
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to network interface [19]. A schedule refers to the sequence
of execution of tasks mapped on the same processor.

VI. ANALYSIS, DESIGN AND IMPLEMENTATION

The goal of this step in SPADe is to identify optimal
system scenarios and design the system configurations. We
cluster workload scenarios into system scenarios that take into
account the control aspect. The design flow to realise this is
illustrated in Fig. 6.

A. Compute Sampling Period

The first step in analysis is to compute the best-case and
worst-case sampling period (hbc, hwc) corresponding to min-
imum and maximum workload (wmin, wmax). Our sampling
period (hi) computation is based on the following two crucial
observations.

Observation 1: A workload scenario Si has a (worst-
case) sampling period hi for a chosen platform mapping. A
workload scenario sequence Si→ Sj → Sj implies a sampling
period sequence hi → hj → hj .

This observation follows from the fact that the tasks Ts,
Tc and Ta are executed sequentially. This helps us in com-
positional analysis of workload scenarios since we see that
the scenario sequence does not affect sampling periods of
individual workload scenarios.

Observation 2: For a workload scenario sequence (Si)
∗, i.e.

Si → Si → Si . . . , the sampling period hi of Si is

hi =
1

throughput(Si)
(12)

These observations help us to relate the dataflow techniques
such as throughput analysis with the control design parameter,
sampling period. The computation of the sampling period
hence reduces to a throughput analysis problem.

However, for each workload scenario, we can have multiple
binding options on the given platform. The throughput of each
of these binding options would be different. We want to im-
prove QoC which means shorter settling time (see Eq. 2) and
hence maximum throughput (Eq. 12). A shorter settling time
can be achieved by having smaller sampling periods [1, 26].

Our objective is then to find maximum throughput for a work-
load scenario, given the platform allocation and workload. Our
problem is then to find the optimal mapping of a workload
scenario to the platform that maximises throughput.

Any design flow that does optimal mapping of an applica-
tion to platform while maximising throughput can be used. We
use the SDF3 design flow [19, 25] as it optimises the resource
usage, memory load and communication load for mapping,
and embeds state-of-the-art throughput analysis techniques.
Algorithm 1 briefly explains the method used in SPADe.
Sampling period is then computed using Eq. 12. For our
example, we obtain hbc = 1/maxThr(wmin) = 0.030s and
hwc = 1/maxThr(wmax) = 0.078s.

Algorithm 1: maxThr(w)
input : w, application model, platform model
output: mapping configuration (mc) and its

throughput.
1 construct SDF graph for workload w, using Eq. 11;
2 run SDF3 flow [19, 25]:

input - SDF graph for w and platform model;
output - optimal mappings (bindings + schedules);

3 mc ← the mapping with maximum throughput;
4 throughput ← throughput of mc;

B. Compute Realisable Set H

The next step is to compute the set of realisable sampling
periods, H . The number of image frames that arrive within the
time interval (hbc, hwc) determines H . Algorithm 2 outlines
the computation of H . For our example, fps = 30; n = 3,
i = 1 and H = {0.033, 0.066, 0.100}.
Algorithm 2: compute H
input : hbc, hwc, fps - camera input rate

1 n← dhwc ∗ fpse;
2 find min(i), s.t. i ∈ N ∧ i

fps ≥ hbc;
3 H ← { i

fps ,
i+1
fps , . . . ,

n
fps};

C. Controller Design and Stability
After computing the realisable set H , we design stable

controllers for each sampling period in H as explained in Sec-
tion IV-C. Our system can switch between different sampling
periods in H due to workload variations and this can lead to
system instability. To guarantee stability of the overall system,
we derive the LMIs from the stabilisation condition (Eq. 10),
to analyse for the existence of a CQLF. The analysis equation,
Eq. 13, is obtained by performing some operations: i) substi-
tute Ak in Eq. 10 with Ak = Aaug(hk) +Baug(hk) ∗Kk, ii)
apply Schur complement, and iii) left- and right- multiplication
by diag(P−1, I) and set Q = P−1.[

−Q QAT∗ +QKT
k B

T
∗

A∗Q+B∗KkQ −Q

]
< 0, Q > 0 (13)

where A∗ = Aaug(hk), B∗ = Baug(hk) for hk ∈ H . If a
solution exists, then the switching subsystems are stable. If a
solution does not exist, then we need to find another (subset)
Hss that is stable. Algorithm 3 explains our method to choose
subset Hss, iteratively for the controller design flow in Fig. 7.
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Fig. 7: Controller design

When a CQLF solution does not exist, SPADe reduces to
worst-case based design. Thus, the worst-case solution for this
algorithm is the worst-case sampling period. For our running
example, Hss = {0.033, 0.066, 0.100}.

Algorithm 3: selectSubsetH(H)
input : H (sorted in ascending order)
output: Hss: subset of H with shortest average h

1 if computing for first time then
2 n←| H |, so that H = {h1, . . . , hn};
3 find all subsets of H having element hn, Hs :

Hs ⊆ H ∧ {hn ∈ Hsi, i∈(1,...,|Hs|) ∧Hsi ∈ Hs};

4 f(Hsi), havgi ←
∑|Hsi |
j=1 hj

|Hsi |
, hj ∈ Hsi ∧Hsi ∈ Hs;

5 sort Hs based on havgi in ascending order:
if havgi,j are equal, sort based on | Hsi,j |;

6 Hss ← Hs1 , first element of Hs

7 remove Hs1 from Hs, Hs ← {Hs −Hs1}

A controller configuration is a combination of sampling
period h, sensor-to-actuator delay τ and feedback gain K.

D. System Scenario Identification

Once we obtain a stable switching subsystem, we have to
identify optimal system scenarios. For each sampling period,
hk (hk ∈ Hss), we should find the optimal mapping and
controller configurations. The controller configurations for
controllers in Hss are computed in Sec. VI-C. Sampling
periods of every workload scenarios are not necessarily real-
isable (see Sec. VI-B). System scenarios abstract and cluster
the workload scenarios with realisable and stable sampling
periods, Hss.

Identifying system scenarios involves searching for the max-
imal workload that fits each hk. This is derived from Eq. 11
and Eq. 12 that defines a workload scenario, Si, using work-
load, w, and computes hk for Si. Delay d(Si) is computed for
each workload scenario, Si, such that the closest realisable hk
is achieved. We also observe that | Hss | would preferably
be small as it is difficult to prove the existence of CQLF
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Fig. 8: Controller performance: comparison of switching sub-
systems with hwc

for a larger number of switching subsystems. Hence, in this
work, we do an exhaustive search to identify the maximally
fitting workloads, wk, for each hk using Algorithm 1. Here, we
compute hi for all workloads wi, wi ∈ (wmin, wmax). Then
we update W with the workloads that maximally fit Hss.

System scenarios, SS, are then the workload scenarios
defined by maximally fitting workloads, W . Mapping con-
figurations of SS are then the mapping configurations for
workload scenarios defined using W and can be obtained using
Algorithm 1. A system configuration defines the mapping and
controller configuration of a system scenario. For our example,
W = {2, 4, 6} for Hss = {0.033, 0.066, 0.100}, i.e. 2 RoI fit
the 0.033 sampling period and so on.

E. Reconfiguration Mechanism

During run-time, for every input image frame, we compute
the workload (image pre-processing) and choose the correct
system scenario, i.e. the system scenario with the closest
(maximal) workload. System configurations of system scenar-
ios are stored in a look-up table (LUT). A scheduler then
reconfigures the mapping, time-triggering of Ta and controller
parameters based on the chosen system scenario. The overhead
cost for this reconfiguration has already been considered in our
analysis model as a time cost, c, in the actor RoID of Fig. 5
(see Section V-A).

VII. RESULTS

The model we use for vision-based lateral control of a
vehicle is derived from [20]. The state-space representation
of the vehicle and the control objective are explained in
Sec. VI-C. We simulate the controller performance for dif-
ferent switching sequences of Hss = {h1, h2, , hwc} =
{0.033, 0.066, 0.100} as shown in Fig. 8. We observe
that our switching designs of SPADe (plot (h1h2hwc)

∗ and
(h2h2hwc)

∗) settle faster (and hence have better QoC) than
the worst-case sampling period based design (see plot (hwc)

∗)
in Fig. 8. An example switching sequence is illustrated in
Fig. 9 for W = {2, 4, 6}. We see that the effective resource
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Fig. 9: Switching sequence (h1h2hwc)
∗

utilisation for each sampling period is maximised with respect
to the worst-case based design in Fig. 1.

VIII. CONCLUSION

We presented a structured (co-)design flow that consid-
ers application dependencies, platform settings and control
parameters for an efficient design and implementation of
an IBC system. Our Scenario- and Platform-Aware Design
(SPADe) approach optimises QoC and maximises the effective
resource utilisation for a given platform allocation. Our SPADe
approach performs proficiently when the image processing
algorithm is known, i.e. it is a white/gray box approach. In
this case, SPADe assumes that information on parameters
that relate to workload is known or can be computed during
the frame pre-processing. We can then efficiently design
mapping and controller configurations and a reconfiguration
mechanism.

Future work is to study how we can extend our approach
when the image processing algorithm is a black box by
considering reconfigurable pipelined control, where multiple
image processing tasks are pipelined to hide the image pro-
cessing latency. Analysis is also required to evaluate whether
pipelining or parallelization like in SPADe or a combination
of both would be better for control performance. Further,
our current approach addresses a single application setting.
It is interesting to extend the SPADe approach for multiple
applications sharing a platform allocation.
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