
Optimising Quality-of-Service

for the Composition of Electronic Services

vorgelegt von

Diplom-Ingenieur

Michael C. Jäger

Von der Fakultät IV – Elektrotechnik und Informatik –

der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

– Dr.-Ing. –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Professor Dr. Hans-Ulrich Heiß

Gutachter: Professor Dr. Bernd Mahr

Professor Dr. Robert Tolksdorf

Tag der wissenschaftlichen Aussprache:

1. Dezember 2006

Berlin 2007

D 83

ii

.

iii

.

iv

Zusammenfassung

Kompositionen aus elektronischen Diensten finden in Softwaresystemen Verwen-

dung, die bei der Umsetzung von prozess-orientierten Vorgängen in Unterneh-

men, so-genannten Geschäftsprozessen, zum Einsatz kommen. Dies begründet

sich darin, dass Kompositionen aus elektronischen Diensten und Geschäftsprozesse

gemeinsame Charakteristiken besitzen. Daher sind Dienstkompositionen für die

Realisierung von Geschäftsprozessen besonders geeignet.

Um eine Komposition aus individuellen Diensten zusammen zu stellen, wer-

den Dienstvermittler herangezogen, die anhand von Anforderungsbeschreibungen

geeignete Dienste identifizieren. Dabei können Optimierungskriterien berücksich-

tigt werden, um die Eigenschaften der Komposition zu verbessern. Als Opti-

mierungskriterien dienen in dem berücksichtigten Anwendungsszenario quantifi-

zierbare Dienstgüteigenschaften. Sollen mehrere Kriterien gleichzeitig berück-

sichtigt werden, entsteht ein Optimierungsproblem, das in einem unpraktikablen

Aufwand resultieren kann. Für dieses Problem soll die Anwendbarkeit von heuris-

tischen Algorithmen untersucht werden. Der Ansatz heuristische Algorithmen auf

dieses Problem anzuwenden ist neu und bedarf daher einer Untersuchung: Heu-

ristische Verfahren können die optimale Lösung nicht garantieren. Eine zu beant-

wortende Frage ist daher, welche Eigenschaften Annäherungen im Vergleich zu

einer optimalen Lösung aufweisen.

Zunächst wird ein Verfahren entwickelt, um die Dienstgüteeigenschaften einer

Dienstkomposition zu berechnen. Für die Problemstellung ist dieses Verfahren

notwendig, um bei der Auswahl eines einzelnen Dienstes die Auswirkungen auf

die Komposition zu bestimmen. Basierend auf diesem Verfahren wird ein Modell

für das Problem definiert. Anhand dieses Modells wird der Bezug zu verwandten

Problemstellungen verdeutlicht und der resultierende Aufwand zur Lösung des

Problems diskutiert. Darüber hinaus wird anhand des Problemmodells die An-

wendung der heuristischen Algorithmen erklärt.

Mit der Implementierung einer Simulation wird die Leistungsfähigkeit der heu-

ristischen Algorithmen untersucht. Der Begriff der Leistungsfähigkeit bezieht sich

hierbei auf die Berechnungsdauer und auf die Dienstgüteeigenschaften der Kom-

position resultierend aus der jeweilig ermittelten Lösung bzw. Annährung. Die

Ergebnisse durchgeführter Simulationen ermöglichen eine quantitative Bewertung

der implementierten Algorithmen im Vergleich zueinander als auch den Vergleich

zu einem Verfahren, das die optimale Lösung garantiert.

v

vi

Summary

Electronic services and their composition gain a growing interest from businesses

that intend to implement their processes with software systems. The general char-

acteristics of electronic services resemble the idea of process-orientation as pro-

posed by the business process re-engineering initiative introduced in the 90s. Thus,

the software industry promotes developing service compositions in order to effi-

ciently implement business processes.

The development of service compositions involves service brokers. These bro-

kers implement a trading functionality in order to identify the suitable services

based on requirement descriptions. The trading functionality can also consider dif-

ferent optimisation criteria in order to optimise the resulting composition. In the

proposed application scenario, numerical Quality-of-Service (QoS) characteristics

usually serve as optimisation criteria. When multiple criteria have to be considered

at once, an optimisation problem arises that can result in an unfeasible computa-

tional effort. A novel approach for this problem is to apply heuristic algorithms.

This approach requires a discussion, because heuristic algorithms do not guarantee

to find the optimal solution. The question is how well the approximations compare

with the optimal solution referring to the resulting QoS of the composition.

Based on the characteristics of the application scenario a method is developed

for computing the QoS of compositions based on the QoS statements of the in-

volved services. A QoS-based selection must use such a method in order to deter-

mine the QoS of the entire composition when selecting individual services. Based

on this method, a model for the problem of QoS-based selection is defined. The

model enables the understanding about the problem and it also serves as the refer-

ence for the discussion about the relations to other combinatorial problems. More-

over, the problem model is used for the explanation of the heuristic algorithms

applied to the selection problem.

Based on the problem model and the relevant QoS concepts, the implemen-

tation of a simulation provides the evaluation of the performance of the heuristic

algorithms. The simulation presents measures based on the resulting QoS of the

composition and the computation time. The results from conducted simulation runs

allow the comparison among the algorithms and with a method that always finds

the optimal solution.

vii

viii

Contents

1 Introduction 1

1.1 Service Trading . 4

1.1.1 Trading to Form Compositions 7

1.2 Problem Statement . 10

1.2.1 Research Issues . 11

1.3 Structure of the Thesis . 12

2 Workflows, Business Processes

and Service Compositions 15

2.1 Business Processes . 15

2.1.1 Definition of Business Processes 17

2.1.2 Modelling Business Processes 18

2.2 Workflow Management . 20

2.2.1 Modelling Workflows 22

2.3 Workflows versus Business Processes 24

2.4 Realising Business Processes and Workflows 26

2.4.1 Modelling Service Compositions 27

3 Quality-of-Service in Service Compositions 33

3.1 Exchange of Quality-of-Service Information 35

3.1.1 Quality-of-Service in a Service-Oriented Architecture . . 36

3.1.2 The Role of the Retailer 39

3.2 Quality-of-Service Characteristics 44

3.2.1 Quality-of-Service Characteristics for Web Services . . . 46

3.2.2 Summary of Quality-of-Service Characteristics 49

4 Aggregation of the Quality-of-Service

in Service Compositions 51

4.1 The Business Process Execution Language 52

4.2 Workflow Patterns . 53

4.3 Structural Model of Service Compositions 57

4.4 A Method for Quality-of-Service Aggregation 64

4.4.1 Aggregation of Throughput 66

ix

Contents

4.4.2 Aggregation of Response Time 66

4.4.3 Aggregation of Cost . 67

4.4.4 Aggregation of Availability and Reliability 68

4.4.5 Aggregation of Reputation and Fidelity 69

4.4.6 Aggregation of Encryption Grade 70

4.5 Support of Un-Structured Models 71

4.5.1 Open Elements . 72

4.5.2 Arbitrary Loops . 73

4.5.3 Nested Patterns . 74

4.5.4 Transformations to Structured Workflow Models 74

4.6 Related Methods for Quality-of-Service Aggregation 79

4.7 Aggregation for Quality-of-Service Monitoring 81

4.7.1 Aggregation of Mean Values 83

5 Quality-of-Service-based Selection of Services 85

5.1 Introduction to the Selection Problem 85

5.2 The Problem Model . 91

5.2.1 The Selection Criteria 93

5.2.2 Modelling the Structure 93

5.2.3 Problem Model Summary 94

5.2.4 Aggregation of Multiple Optimisation Criteria 95

5.3 Relations to Other Combinatorial Problems 96

5.3.1 The Knapsack Problem 97

5.3.2 The Project Scheduling Problem 103

5.3.3 Query Planning based on Quality-of-Service 105

5.3.4 Routing in the Internet based on Quality-of-Service 107

5.3.5 Computational Complexity 109

5.4 Heuristic Algorithms . 112

5.4.1 Greedy-based Selection 112

5.4.2 Discarding Subsets . 113

5.4.3 Bottom-Up Approximation 116

5.4.4 Pattern-wise Selection 117

5.4.5 Comparison of the Algorithms 119

6 Evaluation 121

6.1 Simulation Model . 121

6.2 Evaluation Methods and Metrics 123

6.2.1 Statistical Measures . 124

6.3 Parameters and Implementation 125

6.3.1 Quality-of-Service Parameters 126

6.3.2 Implementation . 127

6.3.3 Technical Details . 129

6.4 Simulation Campaigns and their Results 130

6.4.1 Increasing Number of Tasks without Constraint (C1) . . . 131

x

Contents

6.4.2 Increasing Number of Tasks with One Constraint (C2) . . 134

6.4.3 Increasing Number of Service Candidates (C3) 138

6.4.4 Volatility of the Quality-of-Service (C4) 142

6.4.5 Parallel vs. Sequential Composition Structures (C5) . . . 146

6.5 Evaluation Conclusions . 149

7 Developing Service Compositions 153

7.1 Introduction to the Model Driven Architecture 154

7.1.1 Model Driven Development of Web Service Compositions 157

7.2 Model-Driven Development of Service Compositions 158

7.2.1 Modelling the Composition 160

7.2.2 Trading: Matchmaking 163

7.2.3 Trading: Quality-of-Service-based Selection of Candidates 166

7.2.4 Advertisement and Deployment 167

7.2.5 Development as an Iterative Process 169

8 Conclusions 173

8.1 Summary of Main Contributions 175

8.2 Outlook and Future Work . 176

A Specification of the

Hard- and Software Platform 179

B List of Abbreviations 181

xi

Contents

xii

List of Figures

1.1 Service-Oriented Architecture - The RM-ODP view [50] and its

Web service counterparts (shown in grey boxes, cf. WSA [11]). . . 5

1.2 The business roles in the TINA [27] and roles in the domain of

Web service compositions (shown in grey boxes). 8

1.3 A simple example of the QoS-based selection problem. 9

2.1 The roles of a business process model. 18

2.2 The roles of business process and workflow models. 25

2.3 The relation between business process, workflow and service com-

position models. 30

2.4 Release dates of service composition languages. 31

2.5 The role of the service composition model. 32

3.1 Flow of QoS information without involving a broker. 40

3.2 Flow of QoS information involving a broker. 41

3.3 Flow of QoS information involving dedicated brokers. 42

4.1 Composition patterns. 60

4.2 Example of join-relevant aggregation of response time. 61

4.3 Collapsing the graph step by step. 64

4.4 Examples of open parallel structures. 73

4.5 Examples of loops. 74

4.6 Examples of nested patterns. 75

4.7 Open parallel and arbitrary loop structures and possible transfor-

mations. 76

4.8 Structures that contain nested parallelism. 77

4.9 Structures that contain nested parallelism and possible transforma-

tions. 78

4.10 Example for the aggregation based on a critical path. 80

5.1 Relation between the MCKP and the selection problem. 87

5.2 Relation between the MCKP and the integer linear and non-linear

variant of the selection problem. 88

5.3 Composition structure that contains parallelism. 89

xiii

List of Figures

5.4 Relation between the MCKP and the selection problem involving

the number of constraints. 90

5.5 Summary of relations between the MCKP and the selection problem. 91

5.6 Relation between the MCKP, the MMKP and the selection problem. 99

5.7 Graphical representation of the example selection problem (with

candidates in rectangular boxes). 102

5.8 Relation between the RCPSP and the selection problem. 105

5.9 Relation between the QoS-based evaluation of queries and the se-

lection problem. 107

5.10 Reduction of the MCKP to the selection problem. 111

5.11 Example processing order of bottomup heuristic. 116

6.1 Main steps of performing a simulation run. 123

6.2 Relative QoS to constraint selection (C1, with 5 candidates). . . . 132

6.3 Computation times of selection methods (C1, with 5 candidates). . 132

6.4 Histogram of computation times of the pattern method (C1, setup

with 12 tasks). 133

6.5 Histogram of computation times of the global method (C1, setup

with 12 tasks). 133

6.6 Relative QoS to constraint selection (C2, with 5 candidates). . . . 135

6.7 Computation times (C2 with 5 candidates). 135

6.8 Histogram of computation times of the discarding method (C2,

with 12 tasks). 137

6.9 Histogram of computation times of the bottomup method (C2, with

12 tasks). 137

6.10 Relative QoS to constraint selection of optimisation-only methods

(C3). 139

6.11 Relative QoS to constraint selection of constraint-aware methods

(C3). 139

6.12 Computation duration of optimisation-only methods (C3). 139

6.13 Computation duration of constraint-aware methods (C3). 139

6.14 Histogram of computation times for the local method (C3, 11 can-

didates). 141

6.15 Histogram of computation times for the pattern method (C3, 11
candidates). 141

6.16 Rel. QoS to constr. selection: optimisation-only methods (C4). . . 144

6.17 Rel. QoS to constr. selection: constraint-aware methods (C4). . . 144

6.18 Rel. QoS to random selection: optimisation-only methods (C4). . 144

6.19 Rel. QoS to random selection: constraint-aware methods (C4). . . 144

6.20 Computation duration: optimisation-only methods (C4). 145

6.21 Computation duration: constraint-aware methods (C4). 145

6.22 Relative QoS to constr. selection: optimisation-only methods (C5). 148

6.23 Relative QoS to constr. selection: constraint-aware methods (C5). 148

6.24 Computation duration: optimisation-only methods (C5). 148

xiv

List of Figures

6.25 Computation duration: constraint-aware methods (C5). 148

7.1 Separation of the models in the MDA (based on OMG’s MDA doc-

ument [96, section 2.3]). 155

7.2 The evolution of the models in the MDA (based on Bézivin et al. [9]).156

7.3 Main steps of developing service compositions. 159

7.4 First step: modelling the composition. 161

7.5 Proposed taxonomy of service descriptions. 164

7.6 Second step: matchmaking. 166

7.7 Third step: QoS-based selection of candidates. 167

7.8 Fourth step: advertisement and deployment. 168

7.9 The iterative development process. 171

xv

List of Figures

xvi

List of Tables

2.1 Overview: Web service composition languages. 29

3.1 QoS-based trading in the domain of Web services. 38

3.2 QoS characteristics in the domain of Web services. 49

3.3 Summary of QoS characteristics 50

4.1 Workflow patterns [146] and their relevance for the QoS aggregation. 55

4.2 Aggregation rules for throughput. 67

4.3 Aggregation rules for the response time. 68

4.4 Aggregation rules for the cost. 68

4.5 Aggregation rules for the availability. 69

4.6 Aggregation rules for the mean reputation and the encryption level. 71

4.7 Aggregation rules for the mean response time and the mean cost. . 84

5.1 Array values resulting from dynamic programming approach. . . . 103

5.2 Summary of introduced heuristic algorithms. 119

6.1 Availability rates and resulting downtimes by Kenyon [72, p. 411]. 127

6.2 Parameter value ranges of the simulation. 128

6.3 QoS and times, setup with 12 tasks in C1. 132

6.4 QoS and times, setup with 12 tasks in C2. 136

6.5 QoS and times, setup with 11 candidates in C3. 140

6.6 Examples of generated QoS values at different qv. 142

6.7 QoS and times, setup with qv = 2 in C4. 146

6.8 QoS and times, setup with a parallel probability of 100% in C5. . 149

A.1 Specification of the host system. 179

xvii

List of Tables

xviii

Chapter 1

Introduction

The concept of a service covers many domains of application. In computer science,

a couple of attempts to define a service exist in the literature. Often such definitions

use assumed technical characteristics such as “defined interface” or “available in

a network”. However, services exist that are not available in a computer network

and, in general, software components also offer an interface. Such simple examples

make clear that it is difficult to define services by referencing to characteristics of

existing examples. The ISO 9004 standard offers a definition of services that is

free from such references [127, section 3.5]:

[A service represents] the results generated, by activities at the in-

terface between the supplier and the customer and by supplier-internal

activities to meet customer needs.

The title of this work contains electronic services (e-services) denoting a spe-

cial kind of services. The term refers to a service provided by a computer system.

Hull et al. also consider the idea that an e-service provides its operations referring

to a common purpose, meaning that the different operations of an e-service form a

set of interrelated functionality [48]. In addition to these basic characteristics, they

emphasise also the following application of e-services:

... [the goal of e-services is] to have a collection of network-

resident software services accessible via standardised protocols, whose

functionality can be automatically discovered and integrated into ap-

plications or composed to form more complex services.

According to this view, the development and application of e-services also an-

ticipate their composition. E-services and their compositions are supposed to pro-

vide their functionality in a computer network. The Internet represents such a

network or, in other cases, the network remains in an organisational domain, such

as a company. Regardless of organisational boundaries, e-services use protocols

and software compatible with the Internet (cf. Huhn et al. [47]).

1

In the field of service compositions, two main applications are considered: The

development of a component-oriented software system represents a first case. In

this scenario, a software developer arranges individual e-services to create more

complex software. Considering the provision over a network, this application pre-

sumes the ability to discover services in these networks or in the Internet. A soft-

ware developer can consider software components that reside outside his organisa-

tional scope or local facilities. Software developing companies can provide their

software in the Internet using an e-service infrastructure. Then, customers can in-

tegrate these e-services into their software systems. This setup establishes a new

market of e-services offered by service providers and new profit mechanisms. In

a broader sense, it provides customers with a wider range of products. This appli-

cation case represents the motivation for using the Web services proposal by the

World Wide Web Consortium (in short W3C) [11]. The W3C defines a Web service

as follows:

A Web service is a software system designed to support interoper-

able machine-to-machine interaction over a network. It has an inter-

face described in a machine-processable format (specifically WSDL).

Other systems interact with the Web service in a manner prescribed by

its description using SOAP messages, typically conveyed using HTTP

with an XML serialisation in conjunction with other Web-related stan-

dards.

The Web services from the W3C represent a proposal to develop e-services

using specific XML-based conventions, languages and using Internet protocols.

The second application case targets the software support of existing business

processes or the development of new business processes entirely performing within

computer systems. Business processes are often associated with workflows. In fact,

the Workflow Reference Model published by the Workflow Management Coalition

(WfMC) defines a workflow as the implementation of a business process with com-

puter systems: The goal of establishing workflows is the facilitation or automation

of business processes by using computer systems [45, section 2]. A workflow can

include the participation of humans, usually actors in a business process. This

work, however, will cover only workflows that do not include operations of users,

i.e. do not require human interactions, because e-services represent primarily a

technology aiming at the interoperation of software systems.

The use of e-services has already become reality in today’s businesses: Last

year, a Gartner Group study presented the average numbers of e-services in com-

panies and enterprises [107]. According to this study, an average small company

deploys about 25 e-services, while very large enterprises usually have more than

1000 of them. In such large enterprises, more than 100 clients access these e-

services more than one million times a day.

As one of the first, Bolcer and Kaiser have recognised the rising potential

and introduced a proposal to leverage e-services available in the Internet in or-

der to build workflows [10]. Since then, many publications have mentioned the

2

realisation of workflows as the motivating scenario to develop compositions of e-

services. Ganesarajah and Lupu have developed a workflow management system

based on compositions of Web services [36]. Hull et al. have discussed the theo-

retical foundation of e-service compositions including their application to develop

workflows [48]. Patel et al. have recently introduced their SemWebQ framework

which provides the automated discovery and composition of Web services based

on a approach using metadata about e-services to form workflows [105]. In sum-

mary, existing research work and the application of e-services in today’s businesses

indicate the consensus that software developers can use e-service compositions as

the technical foundation to implement workflows.

Considering the creation of business processes, the motivation arises to ex-

plore techniques to design and develop e-service compositions. For this purpose,

different solutions already exist. In most cases, the products and development en-

vironments cover the currently most popular service architecture: the Web services

architecture from the W3C. This thesis will consider e-services in general and will

mention at certain points available technologies in the Web services domain. In

order to build such e-service compositions, the following main steps are identified:

• Design of the composition. First, a software developer or workflow mod-

eller defines and arranges abstract tasks that provide the desired functionality

to form the composition. The outcome is an execution plan and a description

of the required e-services. For this step, research work and industry consortia

have already proposed composition languages.

• Discovery and selection of e-service candidates. Based on the description

of the required e-services, a discovery process must evaluate available e-

services in terms of their suitability for the composition. If more than one

e-service suits a particular task, a selection should be based on preference

criteria. The Reference Model for Open Distributed Processing (RM-ODP),

published by the ISO, names the entire process – consisting of discovery and

selection – trading [50, section 13]. The trading step results in an assignment

of one or more candidates to the tasks in the composition.

• Provision of the composition. Based on the composition description and

the assignment of available e-services to its tasks, an execution environment

provides the composition by executing the individual e-services in this pre-

defined way. In addition, the composition must be advertised to make future

trading efforts consider the new composed e-service.

This work focusses on the trading of e-services to form compositions. More

specifically, this work will discuss methods and algorithms to perform the selection

of discovered e-service candidates based on preference criteria. The discovery

process aims at identifying the functional suitability of candidates, whereas the

selection assigns the optimal candidates to the tasks of the composition based on

the preference criteria. As criteria the quality-of-service (QoS) is considered.

3

1.1. Service Trading

In general, the design of a system must be concerned with QoS in order to de-

liver dependable and consistent functionality. In a work about QoS in workflow

management systems, Weikum has explained the importance of this issue [138]:

After decades of development and research, database systems offer functionality

with such characteristics. Today, database systems are known for almost never

loosing data, offering uninterrupted availability and a sustained level of high per-

formance. At the time when Weikum has written his text, workflow management

systems did not offer this level of quality and neither do e-services today. This

thesis aims at covering one aspect of QoS of e-services in order to improve their

quality for future applications. A detailed discussion about what QoS represents in

service compositions will be presented in a dedicated chapter. Until then, the ISO

9004 standard also offers a definition that is considered as a starting point [127,

section 3.5]:

[The quality is] the totality of features and characteristics of a

product or service that bear on its ability to satisfy stated or implied

needs.

Another more mundane definition is that the QoS denotes how well a service

provides its functionality. In the remainder of this work e-services will simply be

called services. The reference to electronic services will be taken for granted.

1.1 Service Trading

As for trading of services, this work considers the trading specification of the RM-

ODP [53]. In general, the RM-ODP represents a model of distributed software

systems that is independent of particular technologies. The Web services, men-

tioned in the previous section, can be seen as an implementation of such a system.

Web services represent a popular and widely accepted technology for developing

a distributed system. The W3C has introduced different standards and recommen-

dations that cover the message exchange between the actors, the description of

interfaces, behaviour of actors and many further specific aspects of distributed sys-

tems, such as security, QoS or monitoring. This thesis takes into consideration

Web services in order to provide practical examples in addition to the theoretical

foundations of the RM-ODP.

Although the RM-ODP and the RM-ODP trading specification cover many as-

pects of open distributed systems and of trading services, they do not cover the

trading of different service types at once in order to build compositions of services.

Consequently, trading software referencing the RM-ODP did not focus on this par-

ticular form of trading (cf. Kutvonen [76, chapter 3 and chapter 8]). As the previous

section has explained, the idea to build service compositions came up later with the

development of the Web services idea and the propagation of process-orientation

in businesses.

4

1.1. Service Trading

However, regarding the basic concepts of an open distributed system, RM-

ODP and Web services identify three main actors in a setup that research work

describes as service-oriented architecture (SOA): (1) a service exporter is a party

that provides a service, (2) a service importer invokes a service and (3) a broker

trades services between ex- and importers. The basic procedures within this setup

are as follows:

1. An exporter exports his service description to the broker. A broker is a com-

ponent that implements a trading function and facilitates the matchmaking

between requirements of importers and advertisements of services. The Web

services corner uses the concept of a discovery service to provide a broker.

The service description usually covers the interface and the location of the

service.

2. An importer queries the broker whether a service is available by submitting

a description about his requirements. The broker compares the requirements

with his available service descriptions and – if available – returns the de-

scription and location of the matched services.

3. After receiving the interface and location of a service, the importer starts the

interaction with the matched service. This step is mentioned in the RM-ODP

as importing.

1. Service Export 2. Service Query

3. Service Import

Importer Service

Requester
Exporter Service

Provider

Broker Discovery

Service

Figure 1.1: Service-Oriented Architecture - The RM-ODP view [50] and its Web

service counterparts (shown in grey boxes, cf. WSA [11]).

Figure 1.1 illustrates this arrangement, with the three basic actors and their

relations. To facilitate steps 1 and 2, the proposal of the Web services movement

favours a specification called Universal Description Discovery and Integration pub-

lished by the OASIS (UDDI, [135]). The UDDI proposal represents the idea of a

centralised repository providing broker functionality. Although the UDDI spec-

ification has reached its third revision, software developers still do not use such

facilities. So far, no products or development methodologies utilise the discovery

of services over the Internet. The main problem lies in two aspects: The first aspect

includes an organisational problem. An organisation is not likely to use services

5

1.1. Service Trading

of other organisations revealed by an automated service discovery. Usually, busi-

ness relations need a contract or similar explicit agreement. This problem relates

to reputation, trust and contracting issues in this field.

The second problem is that current broker technologies cannot adequately pro-

cess the requirements of service importers. Different research groups have already

proposed extensions for supporting more sophisticated descriptions about the ser-

vice functionality by using semantic service descriptions (cf. Trastour et al. [134],

Paolucci et al. [102], Akkiraju et al. [1], or Srinivasan et al. [123]). Other work con-

siders QoS requirements as the necessary criteria to identify the suitability of avail-

able services. In the field of Web services, several authors, for example Ran [112]

or Benatallah et al. [6], have already proposed extending brokers with QoS support.

Regardless of currently evolving research to enhance the discovery of services,

the ISO has published a technology-independent foundation for service trading,

namely the trading specification as a part of the RM-ODP [53]. This specification

defines the process of trading as a chain of subsequent isolation operations applied

to the set of available services:

• At the beginning, the set N1 contains all services which the broker has listed.

Speaking of Web services, N1 would consist of all services that some UDDI

service contains.

• The first isolation is represented by the set of candidates N2. This set rep-

resents the result of a search for a keyword or similar search criteria among

N1. In the Web service domain, a UDDI repository could provide this func-

tionality.

• The second isolation is reached by matching functionality. This isolation

results in the third set N3. In this context, matching means comparing de-

scriptions from a service exporter with the requirements of an importer. This

description can cover the interface as well as other metadata like organi-

sational information. UDDI also covers this issue to some extent, and the

above-mentioned research work on semantic descriptions has the goal to im-

prove the efficiency of this step.

• In the third phase, the importer can apply preference criteria, not in order to

form a new subset, but to give an order to N3. Usually, statements about the

required QoS represent common preference criteria. Applying preference

criteria results in a candidate ranking. The outcome of this step is a tuple TO
4

defined by the order O applied to N3: TO
4 = (N3, O).

• The last isolation is the result of applying return policies. For example, a

return policy can restrict the answer to return only one candidate (e.g. the

best according to preference criteria). The result is a set N5 with an order,

which is based on a subset of N3. This can be also seen as a tuple TO
5 with

the same order O, applied to N5: TO
5 = (N5, O).

6

1.1. Service Trading

In summary, the trading specification defines that |N1| ≥ |N2| ≥ |N3| ≥ |N5|.
This definition of trading explains that the QoS-based selection must be performed

after a preceding matchmaking process has determined the functional suitability.

The QoS-based selection results in the decision about which service represents the

optimal choice according to the requirements of the service importer.

1.1.1 Trading to Form Compositions

So far, this introduction has discussed the trading of individual services. However,

in the case of forming a composition of services, the process requires a new ac-

tor. This actor forms the composition by importing services as an importer while

he is also offering the composed service as an exporter. The Telecommunications

Information Networking Architecture (TINA) by the TINA consortium (TINA-C)

provides an existing definition about the roles when composing services [27] and

describes this setup as the TINA Business Model. This model contains the follow-

ing roles:

• A Consumer. According to the TINA architecture, a consumer just imports

services provided by the TINA system. As a consequence, a consumer also

imports a composition of services.

• A Broker. A broker enables stakeholders of the TINA system to find other

stakeholders. In the domain of Web services, the discovery is mainly fo-

cussed on finding service providers or retailers.

• A Retailer. In the TINA sense, a retailer provides consumers the access

to services that are originally provided by 3rd party providers. Thus, a re-

tailer represents the role that provides consumers also with compositions of

individual services from 3rd party providers.

• A 3rd Party Service Provider. A 3rd party service provider offers his ser-

vices to a retailer or other 3rd party service providers. The self-relating link

from a 3rd party provider matches the idea of composing services: A com-

posed service may also integrate other composed services as a part of its

composition.

In addition, the TINA also defines relations among brokers. This relation im-

plies that a broker can contact other brokers to enhance the discovery of services.

Moreover, a retailer can access services provided by other retailers, which, in this

sense, would represent 3rd party providers. Figure 1.2 shows the TINA business

model and points out the analogies to an environment of service compositions.1

1The TINA business model mentions a connectivity provider. In the field of Web services, the

Internet provider represents the connectivity provider. However, the use of services usually does not

interfere with any aspects of the underlying network protocols in the Internet. Thus, the connectivity

provider is neglected in this discussion.

7

1.1. Service Trading

Broker
Broker or

Discovery

Service

Retailer Composition

Designer

3rd Party

Service

Provider

3rd Party

Service

Provider

Consumer Requester

service advertisements

service
query

service query

service
invocation

service
invocation

imports services from other
3rd party service providers

contacts other brokers

Figure 1.2: The business roles in the TINA [27] and roles in the domain of Web

service compositions (shown in grey boxes).

The retailer plays the central role in developing and providing compositions. The

retailer has the following characteristics:

• A retailer imports services from 3rd party service providers to integrate them

in his composition.

• A retailer queries a broker for discovering services. As for his composed ser-

vice, the retailer publishes his offerings of composed services to the broker

as well.

• A retailer provides the composed service to consumers. According to the

business model, the retailer also offers his composed service to other retailers

as a third party provider from their perspective. Considering this distinction,

a consumer represents the concept of an end customer in this setup.

The Special Role of the Retailer

The TINA business model does not mention any role that performs the entire cre-

ation process of a composition. Neither is it discussed which role takes which

responsibility when forming compositions. In this thesis, the creation process is

assigned to the retailer; the retailer represents the developer and provider of the

composition. The previous section has introduced the different steps of trading. A

broker could cover the complete trading functionality as described by these steps.

However, when forming a composition, the trading involves an acting party with

knowledge about the entire composition aiming at optimising the trading result.

The TINA business model provides two actors, the retailer and the broker, for this

trading process. It is clear that a broker is generally capable of trading individual

services.

8

1.1. Service Trading

However, the trading of multiple services to form a composition requires spe-

cial consideration. For example, a retailer can consider the requirement that the

execution of the integrated services will not exceed a given duration. From the lo-

cal perspective of the broker when trading individual services, such trading cannot

meet global requirements. Thus, the retailer must perform the trading of individual

services from a global perspective in order to ensure the desired result. Having

looked at the trading specification and the TINA, the topic of this thesis can be

narrowed down in the following way:

The QoS-based selection involves QoS as preference criteria as a

part of a trading process. If a retailer builds a composition, he can

perform a QoS-based selection on the service candidates in order to

optimise the resulting QoS of the composition.

One issue still remains open: where precisely lies the difficulty of the QoS-

based selection? The before-mentioned argumentation implies that an issue exists

with the trading of services and requires a global view on the composition. The

following example clarifies the difference between trading from a local and from a

global perspective: Figure 1.3 shows a model of an example composition.

Task A

Task D

Task CTask B

Candidate 1:

exec time: 160

cost: 8

Candidate 2:

exec time: 250

cost: 6

Candidate 3:

exec time: 210

cost: 5

Candidate 1:

exec time: 30

cost: 6

Candidate 2:

exec time: 70

cost: 5

Candidate 3:

exec time: 100

cost: 4

Figure 1.3: A simple example of the QoS-based selection problem.

This composition consists of four tasks. After executing the first task A, two

subsequent tasks B and C are executed simultaneously. Then, after both tasks are

finished, a fourth task D is executed. Considering the parallel arrangement of the

two tasks B and C, it is assumed that a preceding matchmaking process has iden-

tified three service candidates for each task, each providing different QoS. In ad-

dition, it is assumed that the optimisation goal is to form the quickest composition

with the lowest cost. In the given example, the quickest candidate for task C needs

longer than any candidate for task B. Consequently, the optimal assignment for

the task C is candidate 3. A selection from a local perspective, as performed by a

9

1.2. Problem Statement

broker without knowledge about the composition, would have identified candidate

2 for task C. Clearly, this would have resulted in a higher cost for the composition.

An approach from a global perspective would consider this potential optimi-

sation. A naı̈ve algorithm simply evaluates all possible combinations. This thesis

explains that a combinatorial problem arises from this strategy. Using a naı̈ve

approach can result in unfeasible efforts. If the number of candidates increases

by one, the number of combinations to evaluate is doubled. More tasks in the

composition will result in a higher number of candidates as well. The quickly

rising computational effort poses a problem for the retailer when performing the

QoS-based selection for larger compositions. Thus, this thesis concentrates on

discussing the problem and on evaluating the application of heuristic algorithms.

Such approaches may identify the optimisation as outlined in the example and lead

to adequate results while showing lower computational efforts in comparison to a

naı̈ve approach.

1.2 Problem Statement

The previous sections explained the motivation of this thesis, narrowed down its

topic and explained the discussed problem. Based on these, a problem statement is

formulated:

A retailer that builds a service composition can improve the pro-

vided QoS of the composition by means of a QoS-based selection that

considers the QoS of the individual service candidates.

The QoS-based selection results in a combinatorial problem of quickly

rising computational efforts for a growing number of candidates. The

development of heuristic methods for solving this combinatorial prob-

lem represents a novel approach. In order to assess the feasibility of

this approach, the performance of the algorithms when applied to the

selection problem must be evaluated.

The foundation for the outlined discussion and assessment is a problem model

of the selection problem. Based on this model, the application heuristic algorithms

can be explained and their efforts can be discussed. The problem model can also

serve as the foundation for the implementation of a simulation for performance

evaluations. In conjunction with the definition of appropriate metrics, the per-

formance penalty of the heuristic approaches can be assessed. This discussion is

based on findings and techniques that require an explanation in advance. Thus, the

argumentation is divided into four steps building on each other:

1. Determining the QoS of Compositions. In order to evaluate the QoS op-

timisation performance of the considered heuristics, a method is presented

that determines the QoS of the composition based on the provided QoS of

the individual services. To ensure its applicability, this method must not be

10

1.2. Problem Statement

limited to specific QoS measures used in particular application cases. More-

over, it must be capable of processing different compositions, referring to

their structure and size.

2. Modelling the Problem of a QoS-based Selection of Services. A problem

model is presented that allows understanding the combinatorial issue with

the QoS-based selection. Based on the problem model, the relation to related

problems can be discussed in a more precise manner.

3. Explanation of the Heuristic Algorithms. Different heuristic algorithms

are proposed and their implementation is discussed. Some heuristic ap-

proaches exist for other combinatorial problems such as the knapsack prob-

lem. The goal of this discussion is the potential evaluation of existing heuris-

tics with regard to their suitability for the problem of QoS-based selection.

4. Evaluation of Heuristic Algorithms. An implementation of the simulation

performs the algorithms for their evaluation. A first part covers the setup of

the simulation and its set parameters. It is expected that the heuristics will

perform differently, depending on, for example, the structural characteristics

of the composition or on the variance of the provided QoS by the service

candidates. Based on this, different simulation campaigns are defined. By

varying parameters and setup, the simulation results indicate specific weak-

nesses or strengths of the heuristics.

1.2.1 Research Issues

The previously explained parts of the argumentation cover different open research

issues. In order to provide the argumentation as outlined, the following crucial

research questions must be covered:

• Aggregation Method. Different methods already exist for the aggregation

of QoS in service compositions. However, these methods either discuss spe-

cific QoS characteristics such as response time or cost (cf. Yu and Lin [158])

or they focus on compositions that consist of a sequential execution of ser-

vices (cf. Lee [78]).

Apart from the composition of services, aggregation methods exist that cover

the execution time of software in real-time environments (cf. Puschner and

Schedl [111]) or the aggregation of the QoS in workflows (cf. Cardoso [15]).

Based on the existing research work, the presented aggregation method sup-

ports different QoS characteristics and is tailored to the possible structures

as found in service compositions.

• Problem Model. Different research work also discusses the combinatorial

problem that arises when a QoS-based selection is performed to form com-

positions (cf. Lee [78], Zeng et al. [159], Yu and Lin [158]). But, similar

11

1.3. Structure of the Thesis

to the aggregation method, existing discussions consider only specific QoS

categories, i.e. response time and cost (cf. Lee [78], Yu and Lin [158]), or

they reduce the problem to a sequential execution of services (cf. Lee [78],

Yu and Lin [158]).

All three mentioned research efforts in this area define the problem of the

QoS-based selection as a variant of a knapsack problem, namely the multiple-

choice knapsack problem (MCKP, cf. Lee [78], Zeng et al. [159], Yu and

Lin [158]). Consequently, the approach is to apply existing solutions to the

MCKP in order to perform the QoS-based selection. This thesis explains,

why this represents a simplification that does not cover all problem cases:

very briefly, the MCKP-approach is tied to QoS characteristics that result in

an integer linear optimisation statements and also covers mainly a sequential

execution of services. In contrast to this, a problem model is defined that

is independent of particular QoS categories, covers different structural ele-

ments found in compositions and, thus, is not equivalent to the MCKP. Then,

existing solutions cannot be applied. As a consequence, the application of

heuristics is discussed as an approach to deliver near-optimal solutions while

requiring reduced efforts as compared to methods that guarantee optimal so-

lutions.

• Simulation Setup. Results from previous research about a simulation en-

vironment for the QoS-based selection have shown that the efficiency of

the applied heuristic algorithms depends on different simulation parameters

(cf. Jaeger and Goldmann [62]). Thus, the goal is to deduce from existing

studies the nature of the needed parameters in order to design realistic simu-

lation conditions.

Furthermore, this thesis identifies the impact of the simulation parameters on

the efficiency of the heuristic algorithms. For this, different simulation cam-

paigns will examine the particular impact of different parameters. Then, the

evaluation of the heuristic algorithms provides more precise findings about

their strengths and weaknesses.

1.3 Structure of the Thesis

The structure of this thesis follows the argumentation of the previous section. Be-

fore the argumentation starts, Chapter 2 clarifies in detail the origin of service

compositions and their main application, which is the implementation of business

processes. It also discusses the relation between workflow and business process

management. Then, different approaches of modelling business processes and

compositions are presented.

Chapter 3 discusses the QoS of service compositions in detail. It begins with

clarifications on the different concepts and on the used terms in this field. Then, it

explains how QoS needs to be processed in order to perform the QoS-based selec-

12

1.3. Structure of the Thesis

tion. Based on these clarifications, Chapter 4 presents the aggregation of QoS. The

chapter is divided into two parts: Its first part covers a structural model indepen-

dent of particular technologies. Its second part deals with the aggregation of QoS

based on this model.

Chapter 5 explains the problem of QoS-based selection and defines a problem

model. Furthermore, this chapter discusses the characteristics of the problem and

continues with the introduction of the heuristic approaches. Chapter 6 explains

the simulations, the different campaigns, and how the simulations are performed.

Then, the chapter also presents the results and discusses their interpretation. The

chapter ends with an analysis of the efficiency of the applied heuristic approaches.

After the discussion of the selection problem, Chapter 7 explains how the QoS-

based selection is integrated into the process of developing service compositions.

The chapter introduces different research works that discuss designing and creating

compositions. Based on the presented contributions, a basic development process

is presented that provides a description about its required activities and facilities.

Then, the chapter identifies at which points the QoS-based selection is performed.

In addition, it clarifies which information the process must provide in order to

perform the QoS-based selection as well as how the output of the selection is used

for subsequent tasks in the process.

Chapter 8 provides a summary of the research contributions provided by this

thesis and presents the conclusions. It also discusses possible improvements and

envisages future directions of this work.

13

1.3. Structure of the Thesis

14

Chapter 2

Workflows, Business Processes

and Service Compositions

This section will introduce background information of the application scenario that

is considered in this work: As briefly mentioned in the introduction, the goal is to

develop business processes and workflows by means of compositions of services.

In such a scenario, software components available as services perform individual

tasks of a business process or a workflow. Such a setup is often embedded into an IT

infrastructure that is tailored to the provision and utilisation of services, the SOA.

This chapter intends to clarify the terms business process and workflow, and their

relation to each other. Because the structure of processes will become important

for the subsequent chapters of this work, this chapter will also introduce different

modelling languages for business processes, workflows and service compositions.

2.1 Business Processes

In the mid-90s, the term “business process (re)engineering” drew attention to a

number of opportunities for optimising the efficiency of enterprises, companies

and other organisations. The work of Hammer and Champy, who promoted the

reengineering of business processes [43], drew the attention of the IT industry to

developing software systems that facilitate the creation and management of busi-

ness processes [86] [34, p. 230].

The basic idea of this initiative is to implement business processes in an ex-

isting organisation in the most modern and optimised way: The business process

reengineering should result in a new and optimal process without any legacy arte-

facts. The basic approach is to start with an evaluation and analysis of the activities

within an organisation. Based on the analysis, the goal is to redesign the activities

and to group them into defined processes. A business process should provide a

clear and unambiguous definition about what it does, what its output is and what

it needs as an input. This represents a clear analogy to computer programs: In

general, they also feature unambiguously defined in- and outputs, as well as a clear

15

2.1. Business Processes

definition about what they do, which is represented by the source code of a pro-

gram. In addition, every business process should have a dedicated customer –

either internal or external of the organisation – and thus, have a clear purpose. By

this way, a process can be clearly oriented to the needs of a customer. And it will

be the client of the process who will pay for the results of its execution. Besides

the consumer, a process should also have an owner, who is in charge and respon-

sible for a particular process, in order to provide customers with a defined point of

contact.

When the business process paradigm was introduced, just the opposite situation

was the reality in companies: Different organisational units where divided by their

functional responsibilities. As a consequence, a process typically crossed many

organisational parts and involved a number of responsible persons. In such con-

stellations, the average process duration slowed down. Thus, in case of problems or

inquiries it was hard to identify a responsible person. Among different motivations

and anticipated benefits from applying the business process reengineering idea, the

main drivers were (cf. Krallmann et al. [34, p. 230]):

• Optimisation of existing activities. The business process reengineering

gives the opportunity to re-evaluate the advantages and disadvantages of

what the actors in the business do and how they do it. The obvious goal is to

optimise existing activities. For example, it is possible to evaluate whether

sequentially performed tasks can be performed in parallel in order to save

time.

• Improved controlling. An organisation might perform many different in-

dividual activities. As a result, common metrics and comparison values are

hard to apply. This makes monitoring and benchmarking efforts more dif-

ficult. Based on the standardised processes, monitoring and benchmarking

the ongoing processes will results in values and findings that are more suit-

able for comparison and analysis. Moreover, controlling efforts to prevent

unintended activities can be reduced.

• Reducing overhead. What applies to the controlling, also applies to when

the process is performed. Based on a exact definition of the processes, mis-

taken activities or misunderstandings between involved actors are reduced

and thus the productivity is improved.

Apart from the evident advantages, analyses of the performed business process

reengineering efforts have also revealed problems that may occur. Most noticeable

is that applying too radical changes in order to establish more efficient processes

will lead to social problems in the organisation [34, p. 239]. Moreover, a strong

focus on the process optimisation also carries the risk of poor improvements on the

quality of the individual activities.

16

2.1. Business Processes

2.1.1 Definition of Business Processes

Like with many terms in the field of IT, there are many definitions available for

the term business process. The general definition of a process provided by the

ISO 9000 standard is that a process “is a transformation that adds value” [128,

section 4.6]. Hammer and Champy [43] define a business process as “a set of

activities that, taken together, produces a result of value to a customer”. Davenport

defines a business process as “an ordering of work activities across and place, with

a beginning, an end, and clearly identified inputs and output” [21]. There are many

more definitions available in various books. When considering the basic attributes

of business processes as discussed in the mentioned literature, they show some

similarities with service compositions:

• Input and output. A process has a defined input and output. This idea

has clear analogies to the compositions of services that provide a defined

input and output as well. A composed service starts and ends each with an

individual service. A service represents a software operation which has input

and output parameters as well.

• Purpose. A process should address at least one goal. This aspect is also

inherent to the composition of services, which must follow a goal as well.

• Responsibility. A process has one responsible person or unit. In the domain

of service compositions, the role of the retailer who provides the composed

service represents this function.

• Recipient. A process has at least one consumer. In this respect it is analo-

gous to the service composition, because the retailer would not provide the

composed service if there were not consumers using the service.

• Activities. A process consists of activities. The idea of activities that to-

gether form a process also resembles the nature of a service composition,

which consists of individual services.

Consumers or clients, i.e. responsible and acting individuals, play defined roles,

which are attached to a process. Besides the general attributes of a process, con-

straints can be also applied. For example, a constraint exists when a process must

generate a positive value or that the goal of the process is to serve a consumer with

a high performance. Furthermore, a business process can be divided among organ-

isations, which increases the efforts to establish and to run the process. The aspect

of covering business processes between organisations also matches the nature of

service compositions: The used techniques and technologies allow involving indi-

vidual services from different organisations as well.

17

2.1. Business Processes

2.1.2 Modelling Business Processes

A model of a business process models a set of activities and its relations. This set

can be described with inputs, outputs and a definition of the involved roles. The

basic idea of the modelling step for the software engineering side, as well as for

the business process engineering mentioned before, is to achieve a clear and com-

mon understanding of what a business process should do and what its benefits are.

A business process model thus can serve as the common point of understanding

between the management and the software developers that are supposed to de-

velop the service composition. Then, the realisation of the process can be planned

and the technical feasibility can be assessed. Business process models are also

the foundation of business process analysis aimed at identifying the potential for

improvements. Possible improvements are automation, elimination of unnecessary

media changes or the reduction of delays. A model can also help to verify processes

in order to prevent live- or deadlocks which prevent the process from terminating

properly. Figure 2.1 shows the basic two roles of a business process model with

respect to the business process and a service composition.

Business

Process Model

Service

Composition

Business

Process

Management Software Development

is a model of is a model for

Figure 2.1: The roles of a business process model.

Since this topic has gained reasonable attention from the industry, the number

of companies that offer products and services for business process (re)engineering

activities has increased. In addition, various languages and methodologies for mod-

elling, managing or performing business processes were introduced. For the mod-

elling, different graphical and textual languages and conventions exist, which can

be used to create diagrams or a description of a business process. Then these de-

scriptions can be interpreted by software systems. Graphical representations can

be flow diagrams, block diagrams, graphs or listings. Considering a basic graph,

a node represents an activity, an event or an entity where directed edges represent

the relations between the elements.

One early graphical language for the modelling of processes is the Event-

18

2.1. Business Processes

Driven Process Chain (EPC) [71]. As the name suggests, the basic element of

the event-driven process chain is the event, which is a defined condition and thus

can be the result of a process, a function or an external event. In addition, events

can also trigger a function. Because the events are not routing the flow, events are

regarded to be passive. Contrary to events, a function is an active element which

describe state changes. The events or functions can be combined with routing oper-

ators. With EPCs, conjunctive (AND), disjunctive (XOR) and adjunctive (AND-OR)

operators are supported. EPCs are suitable for the modelling of control flows that

define the order of occurring events and executed functions. To model the data flow

of a business process (or also the flow of goods) extensions are proposed that ap-

pear in literature as extended EPCs [34, p. 221]. However, modelling the data-flow

is not the focus of this work and therefore not subject to further investigations.

The Business Process Modelling Language (BPML, [29]) is a specification

of the Business Process Management Initiative (BPMI) and is a textual language

for describing business processes. The BPMI represents a non-profit organisation,

with the goal to support and coordinate the advances in business processes among

its members. The BPML is intended to serve as a comprehensive description of a

business process. It consists of different constructs to describe the control flow of a

business process as well as the data flows in it. The standard representation used for

BPML documents is XML. The BPMI has also released a graphical notation called

Business Process Modelling Notation (BPMN, [140]) to provide a set of graphical

symbols and layout conventions for drawing business process models. In addition

to the BPML, the BPMI has also discussed differences of business processes man-

agement when compared to the workflow management (cf. Smith at al. [121, 122]

and van der Aalst [141]). Very briefly, this discussion has revealed that differences

are hard to specify. Rather, business processes and workflow management show

many similarities, as the next section about workflows will point out as well.

Considering another modelling proposal in the field of business processes, the

Business Process Execution Language (BPEL), also named BPEL for Web Ser-

vices (BPEL4WS) and now being renamed to WS-BPEL, represents a special pro-

posal because it specifically covers Web services. Although its name, mentioning

execution, indicates a different scope than BPML, which carries the name mod-

elling in it, both proposals compete with each other. At the moment, a commit-

tee at the Organisation for the Advancement of Structured Information Standards

(OASIS) coordinates the development of BPEL. Before, BPEL was carried out by

a joint venture of mainly IBM, Microsoft and BEA.1 Originally BPEL was the

result of a merger of the Web Services Flow Language by IBM (WSFL, [80]),

which shows influences from IBM’s MQ Series workflow software [143], and

XLANG [129], which was intended to serve as the process modelling language

in Microsoft’s BizTalk middleware. All the three languages are designed for real-

ising the activities or tasks of a process by using Web services. Following the Web

1Today, additional main contributors to the development of the BPEL are the software companies

Siebel and SAP.

19

2.2. Workflow Management

services paradigm, all three proposals define an XML-based notation as well as

cover elements that a process modeller can use to directly refer to WSDL interface

descriptions of involved Web services.

The main difference between the two languages WSFL and XLANG is that

XLANG provides a block-structured flow description whilst a process description

using WSFL is oriented to an unrestricted graph. The main process element found

in XLANG can represent basic structural arrangements like a sequence or a con-

ditional branch. Contrary to that, WSFL covers activities that represent the nodes

in a process flow graph. Then, WSFL provides elements to define the edges in the

graph which denote the invocation order among the activities. Consequently, the

combination of both, BPEL4WS, features both ways to model a business process,

using block-structures as well as a flow-graph. For example, looking at the ele-

ments provided to describe the control flow structure in BPEL4WS: It can be seen

that the element all from XLANG meaning that all activities are supposed to be ex-

ecuted in parallel has been dropped. Contrary to that, the other parallel statements

(pick, while, switch) have survived in BPEL4WS. In addition, the element flow

replaces the element all from XLANG and also introduces the concept of control

links as originally found in WSFL.

Besides the mentioned EPC, BPML, BPEL, WSFL and XLANG, there are

many other approaches to model business processes. In addition, the literature

mentions WSFL, XLANG and BPEL4WS as languages for modelling composi-

tions of Web services, which also indicate that the border between business pro-

cesses and service compositions is becoming blurred. Another proposal for mod-

elling business processes is to use the Unified Modelling Language (UML) from

the OMG, for example by using activity diagrams [100, section 2.13.2.1]. Origi-

nally intended for “software-intensive” systems, as the foreword of the UML spec-

ification says, this approach is used by some software products. This is also pro-

posed in related research works, especially when it comes to the realisation of

business processes. Section 7.1.1 will introduce some efforts in more detail.

2.2 Workflow Management

The field of workflows has got a different origin and thus also a different history

than the field of business processes. Not following an application-independent ap-

proach as a general strategy for organisations, first workflow management systems

were applied for specific application cases. One of the systems mentioned as the

first steps in the workflow area is the OfficeTalk software, which came as a part

of the Xerox Star system [68]. The Xerox Palo Alto Research Center (PARC) de-

veloped this system in the 70s. It represented a computer system for working with

electronic documents of different kinds, like texts, memos, messages etc. in a typi-

cal office environment. Such a system does not represent a workflow management

system as it is understood today: Today, many works consider the definition of the

Workflow Management Coalition (WfMC) [45, section 2.1] which says that

20

2.2. Workflow Management

[A workflow represents] the computerised facilitation or automa-

tion of a business process, ...

The way OfficeTalk worked was trying to reflect the way humans would work on

documents without computers and thus it was covering a specific process. This

represented a workflow by realising real-world processes with a computer system.

Clearly, workflow has in this sense a strong relation to support collaboration and

document management.

Other systems that also focussed on the workflow around electronic documents

followed. The primary purpose was to support the creation of documents, to send

them around and to control the evolutions of these. The workflow management

controlled the order in which the users would work on a document. Also the sys-

tems tried to offer a seamless integration with e-mail systems, word processing

applications and input forms in order to standardise the user input. In summary,

workflow management systems optimised the handling of documents in the fol-

lowing ways:

• Prevention of media breaks. When dealing with documents and data, it

happens that the media, which transports the information, changes. E.g. a

document is printed out on paper from an electronic document and needs

to be entered in manually into another system. This is named media break.

It was the hope to reduce such media breaks with workflow management

systems and to come one step closer to the paperless office.

• Accelerated forwarding between tasks. Moving a document from one’s

desk to the next took time and relied on the motivation of the employees.

Workflow management systems can forward documents right after one party

has finished its tasks.

• Controlling. When workflow management systems facilitate or automate a

workflow, data can be derived that allows performance measurements. More-

over, such data can be used to predict future performance for controlling

purposes.

• Automation of tasks. Tasks that do not require an interactive handling can

be automatically executed by a workflow management system and thus ac-

celerate the workflow.

These early workflow management systems developed further. The systems be-

came more sophisticated and more compatible to external systems. An article by

Mahling et al. explains the evolution of workflow management systems by referring

to the Poise system which covers all the industry’s developments since its begin-

ning in the 70s. The first version of the Poise development represented an office

information system supporting tasks that occurred in the handling of documents,

such as entering information or realising static workflows [86]. In the mid-80s,

a subsequent development named Polymer took advantage of the lessons learned

21

2.2. Workflow Management

with Poise: Its main innovation was a more sophisticated concept of modelling

workflows that resulted in more flexible workflows as well as in better coverage

of different application scenarios. Based on the previous products, Polyflow was

introduced in 1995 as an application- and domain-independent workflow manage-

ment system.

Besides the early orientation of workflow management systems to document

management and collaboration, these systems became also more sophisticated in

other aspects. In the beginning, such products were installed in an office environ-

ment. Their architecture followed the classical client-server principle presuming

that clients and server reside within a local network. Today, workflow management

systems provide different versions of client software as well. And, they support dif-

ferent communication protocols to communicate beyond the local network. More-

over, different workflow management systems can interoperate with each other

to support federations of workflow management systems. This scenario becomes

useful, if different workflow management systems serve different organisational or

functional needs but still need to interoperate. The result of these developments is

that workflow management software today represent versatile systems that facili-

tate processes in various application cases.

Among the different products and developments, the WfMC has standardised

the characteristics of workflow management systems in a reference model [45].

The WfMC represents a non-profit organisation that tried to coordinate advances

and developments in the workflow area. Apart from the architectural advances, the

development made progress in the area of modelling workflows, which is the focus

of the next section.

2.2.1 Modelling Workflows

Since the development of workflow management systems begun, most vendors

have provided their own workflow modelling language. And up to today, the com-

munity has the choice between many proposals for workflow modelling by differ-

ent (industry) organisations, software vendors and research groups.

Van der Aalst et al. have introduced a set of product- and vendor-independent

patterns that discusses and compares the structural characteristics of the differ-

ent workflow modelling proposals [146]. Examples of such patterns are different

fork-conditions if the workflow splits into two sub-flows. Another example is the

capability of a workflow management system to process multiple instances of a

workflow at once. As for orientation, the analysis of workflow management sys-

tems conducted by van der Aalst et al. based on the workflow patterns covers about

15 different workflow management systems each with different workflow mod-

elling capabilities [146]. There are more products available, but those 15 can be

considered as the group of popular ones.

Besides workflow management software, vendor-independent approaches exist

as well. Such an effort is represented by the XML Process Definition Language

(XPDL, [87]) published by the WfMC. The XPDL did not convince many software

22

2.2. Workflow Management

vendors to be used [143]. However, contrary to other commercial proposals, the

XPDL represents an effort independent of a particular vendor.

The XPDL serves as a part of the workflow reference model of the WfMC,

because it represents a reference implementation for the process definitions. Based

on this interface, the authors of the XPDL have created a model process defini-

tion on a meta-level. The authors admit that this meta-model will likely not cover

every concept that is found in all the available workflow software products, mod-

elling methodologies and modelling languages. However, their hope is that all

the other players in the field of modelling workflows accept their model as the

minimum consensus. Based on the meta-model of XPDL, an XML representation

exists. The authors have chosen XML because of its wide support among dif-

ferent computing platforms. As a consequence, XPDL was intended to serve as a

platform-independent description language that allows sharing a workflow descrip-

tion between workflow modelling tools and workflow execution environments as

well as the interoperation of different workflow execution environments.

XPDL supports both workflows that require the interaction between human and

machines, as well as entirely automated processes, by supporting concepts for in-

voking external services and execute local software applications. As for the second

version of XPDL, which was released three years later in 2005, the authors propose

XPDL also as the XML notation format for serialising graphical models using the

BPMN [118]. Moreover, the WfMC has changed the used terminology and ex-

plains that XPDL serves as language for modelling business processes whilst the

term workflow slips into the background. These signs indicate that WfMC and

BPMI try to merge their efforts into one common consensus. Looking at the struc-

tural modelling elements, XPDL offers both elements to define block-like struc-

tures, a block-activity, as well as elements to define a graph of activities, using the

concept of an activity-map [118].

Besides these efforts, research work covers also the modelling and specifica-

tion of workflows. Most approaches in the research area consider the application of

event-driven process chains, or formal calculus or (high-level) Petri nets as a foun-

dation for modelling workflows. A Petri net, named after its inventor Petri, is a

convention for modelling and specifying discrete events of dynamic systems. Petri

nets, also named Place-/Transition-Nets (P/T-Nets) have been applied for different

scenarios such as the specification of telecommunication protocols, or in business

applications such as description of a logistic chain. Petri nets were introduced by

Petri in the year 1962. Since then, many extensions and applications were intro-

duced in literature. Today, the ISO covers Petri nets as an industry standard [56].

Janssens et al. have introduced an analysis of existing workflow modelling ef-

forts that use Petri nets [67]. Their analysis covers twelve different major contribu-

tions that have covered research issues of modelling workflows with Petri nets or

Petri net variants. The main reason for using Petri nets for modelling workflows is

that they offer, besides a graphical notation, a formally defined semantic descrip-

tion of the elements. This allows the application of formally proven analysis tech-

niques (cf. Janssen et al. [67] and van der Aalst [142]). Among these contributions,

23

2.3. Workflows versus Business Processes

van der Aalst et al. have defined a popular Petri net variant that they name Work-

flow Net. The workflow net represents a convention for modelling workflows with

Petri nets [148]. Based on this work and the workflow patterns analysis mentioned

at the beginning of this section, van der Aalst et al. have also introduced a work-

flow modelling language named Yet Another Workflow Language (YAWL, [149]).

YAWL represents a language proposal which extends the concepts of Petri nets in

order to support the workflow patterns to their full extend, while keeping a formal

foundation that allows the anticipated verification on modelled workflows.

2.3 Workflows versus Business Processes

The previous sections have introduced two concepts, namely business processes

and workflows, which seem to have many issues in common. Apart from their

origin and their purpose, which showed different roots in the beginning, both have

many research questions in common. For example, in order to specify either pro-

cesses or workflows, common approaches exist that use notation techniques based

on Petri nets or event-process-chains. Considering the execution side, both share

common challenges regarding distributed executions, fault-tolerance or optimisa-

tions. The resulting question is: In what aspects are these fields different? The

reference model of the WfMC defines a workflow as a business process facilitated

by computer systems. This definition, which has been stated in many research

works since 1995, says that any computer system processing business processes

represents in fact a workflow management system.

The two terms are used synonymously sometimes, and many publications do

not mention any difference between the two, suggesting that using either the one or

other is based on historic reasons. However, two main communities exist, one rep-

resenting the workflow side and the other representing the business process com-

munity: the WfMC and the BPMI. In a retroperspective of the workflow reference

model published by the WfMC, the authors acknowledge the growing momentum

of business process management [46]. The WfMC explains that the evolution of

the involved technologies and techniques of workflow management systems meet

today the concept of business process management: Business process management

is supposed to cover accounting issues and the management of resources. Business

processes include both machine and human activities. Consequently, the WfMC

proposes using their original reference model as the foundation for a future refer-

ence model that covers business process management.

Members from the BPMI promote a different view on the relation between the

management of workflows and business processes. Smith and Fingar have initi-

ated a discussion by publishing the statement that a workflow is purely concerned

with process description [122]. According to their view, a comparison between

workflow management systems on the one hand, and business process manage-

ment systems on the other hand, reveals that workflow management systems show

a number of disadvantages that make them less suitable for the new demands of

24

2.3. Workflows versus Business Processes

today’s enterprises. They explain that workflows are more static (i.e. application-

dependent) and do not support modifications of the business process. Common

workflow management systems do not cover the concepts needed for the majority

of business processes and workflow management systems do not refer to a common

model of workflow. This approach of the BMPI has received a response, which has

motivated the authors of the original article to publish clarification [121]. What re-

mains is that, according to the BPMI, workflow represents just one aspect of what

is covered by business process management. In addition to workflows, business

process management covers the integration of different computer systems as well

the non-computerised parts of business processes.

When it comes to the application of the terminology and the referring lan-

guages, the main disadvantage is that a clarification must be made between what

is different and what is only claimed to be different. Considering the presented

overview, the conclusion is that workflow and business processes move together to

become the same. Apparently, the difference between both as they have evolved

until today results from their different origins – on the one side stands a vision

about automating the paperwork in an office environment and on the other side

there is the optimisation of what happens in companies from a business perspec-

tive. The underlying problems, such as the expressiveness of the modelling lan-

guages, how verifications can be applied or which graphical modelling language is

the most efficient, appear to be similar for both fields. Considering the workflow

definition of the WfMC, Figure 2.1 is modified by considering the relation between

workflows and business processes as shown in Figure 2.2.

Service CompositionBusiness Process

Management Software Eingineering

is a model of is a model for

Business

Process Model
Workflow Model

is a

model for

is a

model for

Figure 2.2: The roles of business process and workflow models.

25

2.4. Realising Business Processes and Workflows

2.4 Realising Business Processes and Workflows

After the clarification of the relation between business processes and workflows,

this section summarises how these two fields can benefit from an SOA and the

composition of services. Different research work has analysed the characteristics

of business processes and workflows with regard to service compositions. These

research works also provide several proposals on how to create business process

(and workflows) in an SOA. The main points in favour of using services and com-

positions of them are:

• Technology Independence. (cf. Hunhs and Singh [47], Papazoglou [104],

and Yang [154]) The basic idea behind promoting the SOA architecture is

to establish a middleware that ties together functionality offered by differ-

ent systems, regardless of their hard- and software. Services should use

common interaction protocols as well as common interface descriptions and

platform-independent types. With Web services as an implementation of an

SOA, it appears that is becoming reality: Both, service consumer and service

provider can run on different hardware as well as be implemented in differ-

ent programming languages. However, to a certain extent all the different

players can interoperate.

The role of Web services as the middleware for integration goes even further:

Solutions exist that encapsulate other middleware platforms, which were

originally designed to provide independence from language and hardware as

well. Thus, software products exist that use Web service technologies to pro-

vide a common interface technology for existing technologies, e.g. CORBA,

mainframes, Java component frameworks etc. [109]. Heterogeneous IT sys-

tems are standard in large businesses, because these businesses have usually

started the integration of computer systems at early stages, when the interop-

eration of computer systems was not a major concern. Thus, these different

systems must be integrated into one common platform in a potential business

process reengineering effort.

• Implementation Neutrality. (cf. Dijkmann and Dumas [22], Hunhs and

Singh [47], and Yang [154]) One of the main differences between service-

oriented computing and distributed object computing [4] is that services usu-

ally provide one aggregated interface that might use objects. However, ser-

vices hide the structure of the software that provides the functionality behind

the interfaces. This leads to an encapsulation of underlying objects. As a

consequence, changes applied to the particular implementation do not nec-

essarily result in a change to the service interface and therefore do not require

changes when establishing the interoperation between service requester and

provider. The previous point and this point are covered by the concept of

access transparency defined by the RM-ODP (cf. [50, section 8.1.2]).

26

2.4. Realising Business Processes and Workflows

• Location Transparency. (cf. Bolcer and Kaiser [10], and Papazoglou [104])

Location transparency provides an abstraction of the physical location where

the service is provided in the sense of the RM-ODP (cf. [50, section 8.1.2]).

Today’s SOA implementations support Internet protocols and consumers in

the Internet can invoke services across the local computer, the local network

or the local organisation. Although an organisation might not consider invok-

ing just any service that is available somewhere in the world, using Internet

protocols offers a greater level of flexibility than using runtime environments

that run on specific computers or a federation of computers.

• Loose Coupling. (cf. Hunhs and Singh [47], and Papazoglou [104]) A com-

mon definition for loose coupling does not exist. Usually, in an SOA, loose

coupling means that a service consumer knows what kind of service is re-

quired during design time. However, the binding (“coupling”) to a real avail-

able service takes place during run-time. This does not necessarily imply

that a service consumer will bind services only during run-time. However,

loose coupling enables service consumers to revise existing bindings during

run-time when necessary.

• Process Orientation. (cf. Bolcer and Kaiser [10], and Dijkmann and Du-

mas [22]) Modelling business processes also leads to a description of re-

quired tasks and a specification about the execution order of the tasks. A

composition of services can provide a business process using an SOA envi-

ronment when every task can be provided as a service. This presumes that,

for example, human interaction is not required. The orientation to the service

interfaces stands in contrast to what a set of objects would provide in a dis-

tributed object computing environment. The resulting implementation neu-

trality conforms to the business process paradigms: Like services, business

processes should have a defined input and output, whilst the implementation

of each task in the process becomes secondary.

This list of points represents the motivation that already a couple of products

have been introduced already be software vendors to develop business processes

with forming service compositions. Examples from the Software industry are the

Oracle BPEL Process Manager [117], or the WebSphere Integration Developer by

IBM [85].

2.4.1 Modelling Service Compositions

Based on the modelling languages for workflows and business processes that have

been used so far, different languages have been proposed (and also already been

mentioned) that directly model compositions of services. These languages do not

focus on user interactions and consider mainly automated processes. Most lan-

guages provide direct support for Web services as this represents the major SOA

implementation used today. In this context, support means that languages refer to

27

2.4. Realising Business Processes and Workflows

WSDL or SOAP or other specifications from the field of Web services. Currently,

many different proposals are available to describe compositions of Web services;

similar to what can be observed in the field of workflow or business process mod-

elling. To provide a clear view of the different languages, the following three

groups for these languages are proposed:

• Abstract level languages, Level 1. Languages that are primarily intended to

describe an abstract process with activities. In this case, services might pro-

vide these activities but the reference to concrete services is not mandatory to

make the description complete. If available particular services are not men-

tioned, such a description describes the composition on an abstract level and

handles the activities or involved services as black boxes with technology-

independent interface descriptions.2

• Concrete level languages, Level 3. On the concrete level, the description

involves particular services and a description of each particular service. The

main issue when talking about services is that a service does not represent

only an atomic, stateless operation, but provides a set of different operations.

Depending on the complexity of the service and the composition, a specifica-

tion of a composition must involve this aspect. These languages do not focus

on service compositions, because they can be also applied for describing the

interaction between individual parties on a technical level.

• Languages covering both levels, Level 2. Some proposals clearly focus on

defining the interoperation between service exporter and importer and other

proposals focus more on modelling the process and its activities. As a third

group, some languages are right in the middle of both, not showing a clear

process modelling focus and also not a clear interoperation focus.

It must be noted that this categorisation does not provide a formal basis nor

an argumentation like: If concept x is found in a language then it belongs to level

y. This categorisation only has the purpose of giving a rough orientation. The

two main levels 1 and 3 have their analogies to the items mentioned in Figure 2.2

which has shown the relation between the business process model and the service

composition. In accordance with this figure, an updated version 2.3 shows that

level 1 modelling languages refer to the business process model, while level 3
languages are used to express service composition models. The work of Ouyang

et al. discusses the transformation between process models and models of service

compositions by considering BPMN and UML activity diagrams on the process

side, and BPEL for modelling the service compositions [101].

Table 2.4.1 lists a selection of proposals that were mentioned in the literature

as Web service composition languages, with their acronyms and their proposed

2The term abstract is used in the same sense as in the ISO RM-ODP: The process of suppressing

irrelevant detail to establish a simplified model, or the result of that process [51, section 6.2]

28

2.4. Realising Business Processes and Workflows

categorisation. In addition, Figure 2.4 shows a chronological overview of their

introduction dates. The two BPEL proposals, WSFL and XLANG, were mentioned

already in the Section 2.1.2 about business process modelling. The focus of these

languages lies on the specification of a business process by using available Web

services. A specification using one of these languages forms a composition of

services that is ready for execution. Thus, these candidates can clearly be named

Web service composition languages and would fit into the second group.

Regarding the languages at the first level, Table 2.4.1 mentions XPDL, BPML,

and the Business Process Specification Schema (BPSS). All three offer language el-

ements to directly support the invocation of Web services. However, the invocation

of a Web service is not required in the XPDL for the realisation of an activity [118,

section 7.1.4.1]. The BPSS clearly has the smallest focus on supporting compo-

L. Acronym Full Name, Reference

Supporting Parties, Remarks

1 XPDL XML Process Definition Language [118]

WfMC, contributing authors were from Global 360, FileNet,

Staffware/TIBCO, Prozone and Fujitsu Software

1 BPML Business Process Modelling Language [29]

BPMI, the specification mentions only one contributing author from

Intalio

1 BPSS Business Process Specification Schema [29]

(Part of the ebXML Suite) UN/CEFACT, an United Nations Body

for Electronic Trade and an OASIS Technical Committee, includ-

ing members from Cyclone Commerce, Fujitsu, SAP AG and Sun

Microsystems

2 WSFL Web Services Flow Language [80]

IBM, moved into the BPEL4WS proposal

2 XLANG subtitled ”Web Services for Business Process Design” [129]

Microsoft, merged with the BPEL4WS proposal

2 BPEL4WS Business Process Execution Language for Web Services [31]

IBM, Microsoft and BEA, merged with the WS-BPEL proposal

2 WS-BPEL Web Services Business Process Execution Language [126]

An OASIS Technical Committee involving 18 industry parties,

among them BEA Systems, IBM, Microsoft, Oracle, Sun Microsys-

tems, SAP AG

3 WSCI Web Service Choreography Interface [30]

W3C Note submitted by BEA Systems, Intalio, SAP AG und Sun

Microsystems

3 WS-C Web Service Choreography [14]

W3C Working Group, continuing with the WSCI proposal

Table 2.1: Overview: Web service composition languages.

29

2.4. Realising Business Processes and Workflows

Business Process /

Workflow Model
e.g. using Level 1/2
modelling langauges

Service

Composition Model
e.g. using Level 2/3
modelling languages

Business Process

Management Software Eingineering

is a model of is a model for

Figure 2.3: The relation between business process, workflow and service compo-

sition models.

sitions of services. The BPSS is a part of the ebXML suite, which supports es-

tablishing agreements to facilitate electronic businesses on an inter-organisational

level. The motivation for this effort is to provide a specification for helping de-

veloping countries to participate in electronic commerce without being dependent

on technologies by particular vendors. The ebXML is maintained by the United

Nations Centre for Trade Facilitation and Electronic Business (UN/CEFACT) and

a Technical Committee at OASIS. The first release was submitted in 2001. At that

time, compositions of services or an SOA environment was not mentioned at all.

There are two reasons why this work considers BPSS as member in the circle

of the composition languages: At first, it has been mentioned in some publications

as a language for expressing compositions of services (cf. [120, 143, 152]), thus

it is useful to clarify its relation to service composition and the other languages.

However, considering the BPSS as a composition language must take into account

that the specification is independent from particular SOA technologies. To pro-

vide the ties to concrete SOA implementations like Web services, separate speci-

fications named Collaboration Protocol Profile (CPP) and Collaboration Protocol

Agreement (CPA) are proposed. A BPSS document may refer to a CPP or CPA

to provide a description of the involved services. For example, a BPSS document

could refer to a WSDL interface description of a Web service. However, since

the BPSS has clear a focus on enabling international electronic trade, it is not the

preferred candidate to develop business processes in an average company.

The Web Service Choreography Interface (WSCI) represents the foundation

for the third group. Considering a Web service, it usually does not provide atomic

single operations to be invoked but rather a set of operations in a specific order

while capturing the state of the invocation. The WSCI proposal directly focusses

on specifying the needed message flow between Web services resulting from their

offered operations [30]. Consequently, the authors of BPML mention explicitly

30

2.4. Realising Business Processes and Workflows

2

3

1

BPEL4WS

1.0: July 2002 1.1: May 2003

WSFL

1.0: May 2001

Pre-Release: April 2005XLANG

Work in Progress: June 2001

WS-BPEL ("2.0")

Draft: September 2005

20052004200320022001 2006

XPDL

2.0: May 20051.0: October 2002

BPML

Working Draft June 2002

Final 1.0 Novmeber 2002

BPSS

1.0.1: May 2001 1.0.5: July 2002 Public Draft 2.0: April 2005Draft of 1.10: August 2003

WSCI

1.0: August 2002

WS Choreography

Working Draft: March 2004

Figure 2.4: Release dates of service composition languages.

that WSCI and WSDL specification are complementary [29, section 1.2]. The

WSCI has been submitted to the W3C as a technical note in 2002. Since then, this

proposal has not received any further updates. In beginning of 2003, a W3C work-

ing group named Web Services Choreography has begun its work to take the WSCI

proposal as input. Based on the WSCI, the working group continues to work on

this topic [14]. By choreography, the working group refers to the “characteristic of

describing linkages and usage patterns between Web services”. The working group

uses the term choreography in a similar manner as other proposals use collabora-

tion, conversation, coordination or orchestration. Currently, the working group has

released several documents which are under further development.

A criterion for comparing the different languages is not only their application

but also their expressiveness. As expressiveness, not the expressive power but

the convenience to express particular aspects is considered. Such a comparison

has already been conducted by Wohed, van der Aalst et al. [151]. In their work,

they have presented a comprehensive analysis on the structural capabilities of lan-

guages to specify Web service compositions for BPEL4WS, XLANG, and WSFL.

Based on this research work, further work has been published covering BPML

and WSCI [150] and XPDL [143]. The general result of this work is an analy-

sis on which composition language directly supports which (structural) workflow

pattern. By using the patterns, Wohed, van der Aalst et al. give a detailed explana-

tion about the languages’ capabilities and problems and – more importantly – they

also explain how previously introduced workflow modelling languages have coped

with expressing specific aspects. Thus, their summarising conclusion is that Web

31

2.4. Realising Business Processes and Workflows

service composition languages do not offer a greater level of expressiveness when

compared to workflow modelling languages. However, it must be noted that their

primary purpose is to facilitate the development of service compositions. Conse-

quently, Figure 2.3 can be extended as shown in Figure 2.5: The business process

model represents the interface between the organisational side and the software

engineering side. On the software engineering side, the model of a service compo-

sition is used as a model for the required development tasks. The development of

compositions will be the topic of Chapter 7.

Service

Composition Model
e.g. using Level 2/3
modelling languages

Development of

Service

Composition

Business Process /

Workflow Model
e.g. using Level 1/2
modelling langauges

Management Software Eingineering

is a model for

is a model for

Figure 2.5: The role of the service composition model.

Despite of the clarifying statement of this particular research group, the de-

velopment of the different composition languages is ongoing. The OASIS-driven

WS-BPEL effort has currently the largest attention in the area of service composi-

tions. It considers the widely accepted Web services standards and gathers many

industry players providing SOA-based products, such as IBM, Microsoft, Oracle,

SAP AG and Sun Microsystems, together. Besides, the WS Coordination work-

ing group shows ongoing activities. Taking into account that existing documents

published so far have only draft status, they indicate that there is more to expect.

Apart from these languages, which directly focus on Web services, this chapter has

introduced other proposals that focus on different purposes but can be considered

for describing service compositions as well.

32

Chapter 3

Quality-of-Service in Service

Compositions

The introduction has already presented a general definition of the QoS which cites

the ISO 9004 standard [127, section 3.5]. Every system is designed to provide a

certain functionality which represents the functional behaviour of the system. For

example, if a service that performs a mathematical calculation on a given num-

ber is considered, the description and definition of this calculation would cover

the functional behaviour of the system. Nevertheless, a system shows also a non-

functional behaviour. If the example of the calculation service is considered, its

non-functional behaviour can cover the consumption of resources, the time needed

for an operation, or the precision or the delivered result. Such nun-functional is-

sues show a relation to the concept of QoS, which will be elaborated further in

Section 7.2.1 of the chapter that discusses the application of the QoS-based selec-

tion when developing service compositions.

In literature, the two, QoS and non-functional behaviour, sometimes appear

as synonyms (e.g. in the WSA from the W3C [11]), whereas other publications

mention them with clearly separated meanings. In this work, the concept of QoS

is subsumed by the concept of non-functional aspects, which is also the view of

the UML Profile for Modelling Quality of Service and Fault Tolerance Charac-

teristics and Mechanisms (the “UML QoS-Profile”, [99]). In accordance with this

recommendation, the QoS describes quantifiable non-functional characteristics of

a system.

The concept of QoS covers a wide area of aspects. Today, the QoS refers

mostly to the field of telecommunication networks. Besides the functionality that a

telecommunication network provides – the transmission of data – QoS characteris-

tics are inherent properties. Such characteristics can be the delay that occurs when

data is transmitted, or the bandwidth representing the amount of data that can be

transmitted within a given time. A telecommunication network can be seen as a

service that transports data from one point to the other. The concept of QoS can be

easily transferred to the field of the SOA. Looking at the RM-ODP, the standardisa-

33

tion efforts to define what QoS means in a open distributed processing system have

been published as a designated proposal [54], which represents the intended sixth

part of the RM-ODP. The currently available normative reference about QoS by the

ISO is the Quality of Service Framework published in the Information Technology

section [55]. From this reference, this work considers the following selection of

definitions:

QoS characteristic: A quantifiable aspect of QoS, which is defined

independent of the means by which it is represented or controlled.

QoS establishment: The use of QoS mechanisms to create the con-

ditions for some system activity, before that activity occurs, so that a

desired set of QoS characteristics is attained.

QoS mechanism: A specific mechanism that may use protocol ele-

ments, QoS parameters or QoS context, possibly in conjunction with

other QoS mechanisms, in order to support establishment, monitoring,

maintenance, control, or enquiry of QoS.

QoS data: QoS information other than QoS requirements, e.g. warn-

ings, QoS measures and information used in QoS enquiries.

QoS requirement: QoS information that expresses part or all of a

requirement to manage one or more QoS characteristics, e.g. a maxi-

mum value, a target, or a threshold; when conveyed between entities,

a QoS requirement is expressed in terms of QoS parameters.

QoS parameter: QoS information that is conveyed between entities

as part of a QoS mechanism; parameters are classified into require-

ment parameters and data parameters; the information conveyed may

relate to one or more QoS characteristics.

QoS information: Information related to QoS: [...] It is classified into

QoS requirements (if it expresses a requirement for QoS) and QoS data

(if it does not).

There are other recommendations and specifications from industry bodies and

non-profit organisations, such as the UML QoS-Profile [99], which was mentioned

already in this work. The authors have taken both documents from the ISO [55,

54] in account for the specification of this recommendation. In addition to the

documents of the ISO, the UML QoS-Profile provides also definitions for the terms

“QoS characteristic” and “QoS category”, which are considered as the basis for this

work [99, page 10]:

QoS characteristic: A QoS characteristic represents a quantifiable

characteristic of services. A QoS characteristics is specified indepen-

dently of the elements that they qualify. A QoS characteristic is the

constructor for the description of non-functional aspects like: latency,

34

3.1. Exchange of Quality-of-Service Information

throughput, capacity, scalability, availability, reliability, safety, confi-

dentiality, integrity, error probability, (...)

QoS dimension: QoS dimensions are dimensions for the quantifica-

tion of QoS characteristics. QoS characteristics can be quantified in

different ways (e.g., absolute values, maximum and minimum values,

statistical values). For example, the latency of a system can represent

an end-to-end delay of the invocation, the mean time of all invocations,

or the variance of time delay. (...)

QoS category: When the number of QoS characteristics is large, or

they are especially complex, some mechanisms for grouping are re-

quired. Some examples of general groupings of quality attributes are:

i) performance: performance references to the timeliness aspects of

how software systems behave. ii) dependability: (...)

3.1 Exchange of Quality-of-Service Information

Based on these definitions, a model is designed that covers the flow of QoS in-

formation when trading services. The first chapter has defined that the retailer

processes the QoS information covering compositions. However, it remained un-

clear how a retailer will obtain such information and which role is represented by

the broker in such a setup. Different methods exist to exchange QoS information

as introduced by the RM-ODP, the trading specification and the Business Model

of the TINA-C architecture [156]. The trading specification defines that a service

offer includes so-called service properties which subsume the concept of QoS in

this context [53, section 7.2]. The TINA-C Business Model defines a broker that

can involve (QoS) attributes about a service as well [156, section 2.3]. However,

the architecture description of the TINA defines that the QoS is negotiated between

the retailer and the 3rd party service [156, section 3.5]. Telecommunications ser-

vices are regarded as volatile and subject to change to every interoperation between

importer and exporters. Thus, a repeating re-negotiation between retailer and 3rd

party provider is preferred to better cope with this volatility.

The currently available proposals for processing QoS in open distributed pro-

cessing propose a separate, dedicated broker that only processes QoS information.

This is a QoS broker component that is added to the standard setup of an SOA. A

dedicated QoS broker has the advantage that such a software can also perform QoS

monitoring and dynamically trigger QoS improvements if necessary. Research

work in the mid 90s proposed broker architectures to provide a QoS-aware ser-

vice interoperation in the telecommunications domain. The work of Nahrstedt and

Smith represents an example of such an approach [94]. In their work, the QoS

broker is arranged as an “application subsystem”, a tier between the service im-

porter and the underlying communication tiers, to implement a QoS mechanism

and co-ordinate the flow of QoS information.

35

3.1. Exchange of Quality-of-Service Information

Frøhlund and Koistinen have discussed the QoS in open distributed processing

systems [35]. Their contribution is focussed on the specification of QoS infor-

mation and its representation during runtime. Then, a so-called QoS-based trader

establishes the interoperation between service exporter and importer. Apart from

their abstract specification, their work also explains the application of their find-

ings in a CORBA environment. A couple of other research groups have worked

on the QoS-based trading to the CORBA environment. Among them is the work

of Cardoso et al. [16] which covers the implementation of QoS-aware middleware

facilities to provide the optimisation of QoS in workflows.

Besides the workflow domain, the research in the mid-90s discusses multime-

dia applications in telecommunication networks. In this scenario, there is a strong

demand to provide real-time characteristics for the transmission of audio and video

data. Their transmission requires a constant data rate with minimum delays. Oth-

erwise, the service can become useless. For example a telephony service is useless

when the delay resulting from the transmission is too long. Aurrecoechea et al. [3]

have discussed the issues of such applications and their underlying QoS-aware in-

frastructure in a survey that summarises the different approaches in this field.

3.1.1 Quality-of-Service in a Service-Oriented Architecture

A software infrastructure that provides telecommunication services differs from an

SOA. Contrary to the telecommunication domain, the scenario is as such that exist-

ing software and components are integrated into one common invocation middle-

ware that allows to the interoperation of the different applications involved in this

middleware tier. The telecommunication domain is influenced by the ISO Open

System Interconnection Model (ISO-OSI, [57]) that denotes a tiered architecture

in which one tier offers its functionality as a service to the next upper tier.

The functionality of telecommunication services is concerned with the trans-

mission of data, while services in an SOA can provide different functionality that

include telecommunication aspects (e.g. a service that offers to send an e-mail).

The QoS that covers real-time characteristics is not as often considered in an SOA

as for telecommunication services. The main reason is that two of the SOA char-

acteristics imply just the opposite: a) the loose coupling and b) the use of Internet

protocols (cf. Jaeger and Mühl [60]). Because an SOA usually provides a loose

coupling characteristic, the binding operation requires an unpredictable amount of

time. Internet protocols are known for their robustness. However, they do not

guarantee that a connection can be established and can be hold with a constant

QoS level. Thus, for some soft real-time applications such as telephony and video-

broadcast, extensions to the Internet protocols are used which provide reservation

and signalling functionality. In summary, the support for QoS is not as present in

an SOA as it is for telecommunication systems.

36

3.1. Exchange of Quality-of-Service Information

Quality-of-Service with Web Services

Different research groups have worked on how to cover the QoS in an SOA or in

the field of Web service infrastructures. A topic in this field is the discussion about

QoS-based brokers specifically for trading Web services [88, 115, 116, 131, 136].

All works share the idea that a separate dedicated broker processes the QoS in-

formation. Either service providers must submit their QoS parameters as a part of

their advertisement, or the QoS broker obtains the QoS information from a moni-

toring process. The difference between the mentioned works lies in how the QoS

information is modelled and represented during run-time.

The mentioned research works have in common that a shared agreement about

the QoS information is required. This agreement is necessary to enable all involved

parties to exchange this information. Wang et al. and Tian et al. propose each a pro-

prietary XML-based language [136] for the specification of QoS information that

should be used when communicating with a QoS broker. The work of Maximilien

and Singh puts the standardisation of used QoS concepts into an abstract taxon-

omy that appears independent from notation formats such as XML or an XML

Schema [88].

In addition, some approaches exist that extend the common Web service repos-

itory specification UDDI with the capability to process the QoS rather than es-

tablishing separate facilities [2, 78, 112]. Besides the research work, the UDDI

implementation as a part of Microsoft’s server platform allows extensions in or-

der to support the processing of QoS information [93]. The common approach

regarding UDDI repositories is to extend the data model with custom definitions

of certain QoS characteristics. The specification allows extensions to the standard

data structure by supporting the addition of data models, so-called tModels, using

the standard API of a UDDI repository. When querying a service, the query can

include QoS requirements that refer to the added QoS concepts. In this scenario,

a UDDI repository represents the broker role that also processes QoS information.

Then, the broker is involved when establishing the interaction between importer

and exporter.

Besides the broker-oriented approaches, proposals exist for Web services to

negotiate the QoS directly between the importer and exporter. Such proposals con-

sist of a negotiation protocol and a QoS specification language. Menasce has dis-

cussed common issues of this setup in conjunction with Web services [90]; the

basic idea is that the importer negotiates a Service Level Agreement (SLA) with

the exporter. Both parties define in this SLA the QoS that the service exporter

must provide. Examples for SLA languages are the Web Service Level Agreement

Language by IBM (WSLA, [84]), the Web Service Offerings Language by Tosic et

al. (WSOL, [133]) or a similar proposal to express SLAs by Sahai et al. [113]. The

authors of the WSOL have also published a Web Service Offerings Infrastructure

(WSOI, [132]) which explains the use of the WSOL. Generally, the WSOI is not

concerned with the concept of trading services, but with monitoring and managing

services during the run-time. Consequently, the WSOI provides an extended server

37

3.1. Exchange of Quality-of-Service Information

infrastructure to support QoS parameters mainly residing at the service exporter. A

separate component for the QoS-based trading of services using the WSOL is not

offered by the WSOI.

Table 3.1 summarises the different main approaches which are grouped into

three main architectural characteristics: 1) the integration into existing service bro-

kers, 2) the provision of a separate broker architecture and 3) the direct and individ-

ual negotiation. Among these works, the problem exists that the service importer

must have the same understanding about the used QoS characteristics and as the

service importer and the broker.

Research Group Remarks

Integrated Broker, extending a UDDI repository

Ali et al., 2003 [2] Discussion about a general extension to UDDI that supports

properties of service advertisements. Such properties can be

used to denote QoS parameters.

Ran, 2003 [112] Discussion about a model for the integration of QoS information

into a UDDI repository.

Lee, 2003 [78] Discussion about the trading of Web services to form service

compositions; covers the QoS information by extending a UDDI

repository.

Dedicated Broker, separate from a UDDI repository

Wang et al., 2004 [136] Introduction of a framework that adds the support of QoS in an

SOA, as used in a large enterprise. Involves also QoS-based

trading.

Degwekar et al., Discussion about expression of (QoS) constraints using the

2004 [115] WSDL. Proposes to use a separate broker for querying QoS

parameters of services.

Tian et al., 2004 [131] Discussion about a framework that provides a QoS-based bro-

ker for the selection of Web services.

Maximilien, Discussion about issues of service selection

Singh, 2004 [88] performed by autonomous agents.

Yu, Lin, 2005 [157] Broker for dynamic integration of Web services and adaptation

to ensure the QoS during runtime.

Direct Negotiation

Tosic et al., 2002 [133] Language to specify QoS requirements and parameters; later

work covers also management issues.

IBM, WSLA, 2003 [84] Language to specify QoS requirements and parameters; spec-

ification covers also negotiation scenarios and strategies.

Menasce, 2004 [90] Discussion about general QoS and Web services topics while

promoting the SLA-oriented approach.

Table 3.1: QoS-based trading in the domain of Web services.

As mentioned above, Maximilien and Singh [88] propose covering this issue

38

3.1. Exchange of Quality-of-Service Information

with a QoS ontology to provide a common agreement when performing a QoS-

based trading. Their approach discusses two major ontologies: One is called “QoS

upper ontology” which covers general terms such as “Measurement” or “Attribute”.

A definition for such terms is also provided by the QoS-framework published by

the ISO [55] or the UML QoS-Profile from the OMG [99, section 8]. For a more

detailed view, a “QoS middle ontology” defines concrete QoS characteristics and

a hierarchy of QoS categories. A similar hierarchy is also covered by the work

of the ISO and the OMG [99, section 10]. A “QoS lower ontology” is foreseen

to include all application and domain specific details. Section 3.2 will discuss the

QoS characteristics that are relevant for such an ontology.

3.1.2 The Role of the Retailer

The previous section has introduced three basic patterns of processing QoS in the

field of Web services. These can be abstracted for general application in an SOA: a)

using a combined broker, b) using separate brokers or c) direct negotiation between

service importer and exporter. Based on these three main patterns, the processing

of QoS information from the view of the retailer can be discussed. The role of

the retailer is special because he acts as a service importer when importing the

services to form a composition and he acts as a service exporter when he provides

the composition to the consumer. All these patterns have in common that a service

exporter provides his QoS parameters while the submission of QoS requirements

by the service importer is regarded as optional. The three main patterns are as

follows:

• Direct negotiation. The first pattern reflects the proposal of the TINA,

where the QoS information is processed individually and decentrally. In

this scenario, a service importer agrees with the exporter on a service level

agreement. In this agreement a requirement from the importer is optional.

Regarding the QoS requirements, two different cases are possible:

– The retailer receives the requirements and then forms the composition,

i.e. he selects the set of services that result in a composition that meets

the given requirements.

– The retailer has formed a composition that meets internal QoS require-

ments. Then the retailer advertises the composition for export includ-

ing the corresponding QoS statements. Then a consumer can express

his requirements to see whether these requirements are met by retailer

or not.

This setup covers the optimisation of the QoS of the composition with re-

spect to the QoS requirements of the consumer. The retailer performs the

QoS-based selection which is a part of the trading process. Figure 3.1 sum-

marises this setup.

39

3.1. Exchange of Quality-of-Service Information

Retailer 3rd Party

Service Provider
Consumer

QoS
Requirements

(optional)

QoS
Parameters

contacts other brokers

contacts other 3rd
party service providers

service advertisements

service
query

service query

Retailer

imports

exports

imports

exports
QoS

Parameters

QoS
Requirements

(optional)

Broker

Figure 3.1: Flow of QoS information without involving a broker.

• Integrated broker. In the second pattern, a broker component is extended

to also process QoS information when trading services. In the field of Web

services, this setup represents the approaches which provide an extension

to existing UDDI repositories. Contrary to the first pattern, the broker pro-

cesses the QoS parameters provided by a service exporter who advertises

his service. When a trading process takes place, the broker can optionally

process QoS requirements by the service importer.

Since the retailer represents a service importer and exporter simultaneously,

he first queries the broker when forming compositions, optionally with given

QoS requirements. At this point, the QoS-based trading can be performed

by two parties:

– Retailer-sided. The retailer queries the broker for the individual ser-

vices and receives a set of candidate services from which he must per-

form the selection based on QoS criteria. In this case the trading pro-

cess is split between the broker and the retailer.

– Broker-sided. The retailer submits a description of the composition to

the broker. Then, the broker can perform the trading process and the

QoS-based selection of services. Then the broker would return a list of

selected services.

After the retailer has formed the composition, he can advertise the compo-

sition as a new service to export to the broker with the resulting QoS pa-

rameters. Then a consumer can query the broker to find appropriate services

that comply with given QoS requirements. This setup is represented in Fig-

ure 3.1.

• Separate QoS-broker. In the third pattern, a dedicated broker performs the

40

3.1. Exchange of Quality-of-Service Information

Retailer 3rd Party

Service Provider
Consumer

Broker
advertise

query

query

service invocation service invocation

advertise

Retailer

imports

exports

imports

exports

QoS
Requirements

QoS
Parameters

QoS
Requirements

QoS
Parameters

contacts other brokers

imports services from other 3rd
party service providers

Figure 3.2: Flow of QoS information involving a broker.

QoS-based selection of the trading process. From the research presented in

the previous section, there is no rule on when to extend an existing broker

facility and when to establish dedicated structures to process QoS informa-

tion for trading services. A motivation for establishing a separate broker

infrastructure exists, if monitoring and QoS-based optimisation during the

run-time are also required. Then, a service repository could focus on the

discovery part of the trading process while a QoS-broker can also monitor

the provided QoS to apply dynamic adaptations.

Figure 3.3 outlines such a setup with a dedicated broker. In this setup, the

service importer queries the general broker for the desired services and re-

ceives a set of candidates. As a second step, the service importer queries

the QoS of the candidates at the dedicated QoS-broker. Like in the previ-

ous case, either the retailer performs the QoS-based selection or he submits

a description of the composition to the QoS-broker. In the latter case, the

QoS-broker can entirely perform the trading process. After the retailer has

formed the composition, he can advertise the composition as a new service

at the general broker. Then he submits the referring QoS parameters to the

QoS-broker.

These three patterns outline the basic arrangements in a QoS-aware SOA. Of

course, other arrangements are possible. For example in a mixed configuration,

the retailer accepts the direct negotiation with a consumer but queries a dedicated

QoS-repository to search for the QoS parameters of the service candidates. These

mixed-variations were ignored because they would not lead to additional conclu-

sions besides those that are drawn in the remainder of this section. The following

41

3.1. Exchange of Quality-of-Service Information

Retailer 3rd Party

Service Provider
Consumer

General

Broker

advertise

query

query

Retailer

imports

exports

imports

exports

Dedicated

QoS Broker

query
advertise

queryadvertise

service invocation service invocation

QoS
Requirements

QoS
Parameters

QoS
Parameters

QoS
Requirements

contacts other brokers

imports services
from other 3rd party

service providers

Figure 3.3: Flow of QoS information involving dedicated brokers.

two characteristics are variable in these three processing patterns when performing

the QoS-based trading:

• Consumer-driven QoS-based trading. The first scenario, which describes

the direct negotiation, describes the case that the consumer submits QoS re-

quirements. Then, the retailer performs the selection that also involves the

requirements of the consumer. In the opposite case, which is the only case

supported when involving a broker, the retailer considers only own require-

ments and advertises the composition as a service with the resulting QoS

parameters.

In the case that QoS parameters are advertised at some party representing a

broker – regardless of whether dedicated for processing QoS information or

not – and no direct negotiation is supported, then the consumer-driven QoS-

based trading cannot be supported: The QoS requirements will be processed

at the broker and will not arrive at the retailer.

• Retailer-driven trading. In the first scenario, which describes the direct

negotiation, the retailer entirely performs the QoS-based trading. In the two

other processing patterns, either the broker or the retailer can perform the

trading. The problem was outlined in the first chapter: The broker would

require information about the composition in order to perform the trading.

From a technical viewpoint, the trading would perform in both cases in the

same way. However, from an organisational point of view two reasons could

42

3.1. Exchange of Quality-of-Service Information

prevent this setup:

1. Performing QoS-based selection to form compositions requires spe-

cial logic that is able of finding solutions for the resulting combinato-

rial problem. Because it is unclear whether existing and future broker

technologies will actually support this functionality, the retailer would

minimise his possibilities to find appropriate services.

2. If the retailer submits information about the business process to the bro-

ker, he shares his intellectual property or information of some business

value. If broker and retailer do not belong to the same organisation,

organisational constraints might prevent such a disclosure of informa-

tion.

Based on this clarification, statements can be derived about how the given QoS

concepts relate to the retailer and the other roles. This model represents an ex-

tended version of the model given in Figure 1.2 of the first chapter. The previous

part has clarified why the retailer represents the predestined party to perform the

QoS-based selection. On the other side, several proposals exist that feature a QoS

broker – either a separate dedicated or extended existing brokers – for trading in-

dividual services. As a conclusion, the retailer processes the QoS information on

a macro-perspective; he processes the QoS-part of the trading in order to form the

composition. A potential dedicated QoS-broker processes the QoS on a micro-

perspective, because he processes individual queries. In summary, the characteris-

tics of the retailer are defined as follows:

The retailer

- performs the QoS establishment of the composition,

- features a QoS mechanism to support this establishment, and

- is capable of processing QoS information to support the QoS es-

tablishment. The QoS information are the QoS requirements of

the consumer and the QoS parameters of individual services pro-

vided either by a broker or directly by 3rd party service providers.

- In case a broker exists that processes the QoS parameters, the

retailer submits them when advertising the composition as a new

service.

The consumer, a broker and the 3rd party provider shall have the following

characteristics:

43

3.2. Quality-of-Service Characteristics

The client

- submits QoS requirements, and

- receives QoS parameters about the offered composition.

- In case a broker exists that processes the QoS parameters, the

QoS information is exchanged with the broker, otherwise the

client communicates directly with the retailer.

The 3rd party service provider

- submits QoS parameters.

- In case a broker exists that processes the QoS parameters the

QoS information is submitted to the broker, otherwise directly to

the retailer.

The broker

- performs the QoS establishment of individual services,

- features a QoS mechanism to support this establishment, and

- is capable of processing QoS information to support the QoS

establishment. The QoS information represents the QoS require-

ments of the client or the retailer, and the QoS parameters of in-

dividual services from 3rd party service providers or aggregated

services (taken as individual) from other retailers.

3.2 Quality-of-Service Characteristics

This section discusses the QoS characteristics in detail. It will explain which par-

ticular QoS characteristics are relevant in an SOA. More specifically – because

the topic of this thesis is QoS-based trading – the goal is to determine which QoS

characteristics are considered as selection criteria for the trading of services. The

first chapter stated that a requirement to the aggregation method is the indepen-

dence from particular QoS characteristics. However, it is still necessary to identify

the relevant characteristics to determine which the trading must support. The QoS

Framework published by the Information and Technology Section of the ISO [52]

presents a comprehensive set of QoS characteristics grouped into various QoS cat-

egories. This standard includes the following categories:

• Time-related. The first category mentioned in this standard covers all QoS

characteristics that use the time as measure, such as the execution time or

the time until the result of a service invocation arrives, which is the response

time. A related characteristic is the delay. The delay denotes the time in

which the request is transported over the network. In addition, the standard

44

3.2. Quality-of-Service Characteristics

mentions the notion of lifetime, which describes the time that a service re-

mains available.

• Coherence. The coherence describes how well a system maintains related

data over temporal or spatial distances. Data must be kept coherent if the

service actually provides various individual operations. In this case, the ex-

changed data must kept coherent during the individual invocations. Spatial

coherence is required in a distributed system, if related data is distributed

among different computers within this system.

• Capacity. The capacity subsumes different QoS categories that describe a

measure for how much data can be processed within a given period. QoS cat-

egories in this sense are for example data capacity, throughput, or process-

ing capacity. Throughput denotes how much data can be processed within a

given amount of time.

• Integrity. The integrity describes aspects of correctness when processing

information. It is related to the concept of accuracy which denotes how

much a result meets the expectations of the requester.

• Safety. The safety subsumes QoS characteristics that describe to which de-

gree the stability of an operation is ensured.

• Security. The security covers different aspects such as the protection of in-

formation which also involves a mechanism for access control, or the ability

to authenticate users of a system.

• Reliability. The term “reliability” subsumes a set of very related QoS char-

acteristics, namely availability, fault containment, fault tolerance, and main-

tainability. For services, the availability represents a measure for how often

a service can be invoked while the reliability describes how often the result

of a service invocation is correct.

This list of categories represents a general set of QoS categories in distributed

systems. Thus, the question rises if all these are relevant for the application in an

SOA, especially for the trading. The UML QoS-Profile of the OMG [99, section

10] provides a narrowed set of common QoS categories. The authors of the UML

QoS profile suggest reusing these for particular QoS modelling efforts. The UML

QoS-Profile considers also the ISO QoS framework as the main reference for the

selection of application-independent categories. Because the UML QoS-Profile

was published six years after the ISO framework, it also reflects, how the different

QoS categories have evolved. It considers the following QoS categories:

• Performance. The UML QoS-Profile does not feature the category “time-

related” as mentioned in the ISO standard. It rather uses the performance

to provide a category that includes the time. Mentioned are: throughput, la-

tency, efficiency, and demand. The latency denotes the time interval between

45

3.2. Quality-of-Service Characteristics

request and response. The efficiency indirectly denotes the consumption of

resources. The demand is a proposed measure for how many times a service

is requested.

• Dependability. In the UML QoS-Profile, the category of dependability is

related to the reliability in the ISO QoS framework. The dependability in-

cludes also the availability.

• Security. Compared with the ISO standard, this category includes in the

UML QoS-Profile the following aspects: the protection in terms of access

and protection against manipulation and the confidentiality of actors.

• Integrity. The integrity is used with the same meaning as presented in the

ISO standard.

• Coherence. Like in the case of the ISO QoS framework, the coherence in

this sense refers to the issue that in distributed systems, data might be locally

distributed and therefore must be kept coherent.

This list of QoS categories differs mainly from what the ISO standard proposes

by subsuming time-dependent and capacity-dependent categories under the main

concept of performance. Time and capacity are similar categories; their subsump-

tion under performance makes sense. However, similar to the categories mentioned

by the ISO standard, the UML QoS-Profile does not explicitly cover the applica-

tion in an SOA. Moreover, not all these categories and mentioned characteristics

are relevant for the trading process. An importer can presume that a service is ca-

pable of processing data coherently and of ensuring the integrity of data. Thus, this

thesis considers only the categories performance (time and capacity), dependabil-

ity (reliability) and security as suitable for trading services from the ISO standard

and the UML QoS-Profile.

3.2.1 Quality-of-Service Characteristics for Web Services

Regarding Web services, Menasce has presented different publications which dis-

cuss QoS issues in Web services. In his work he mentions as the relevant char-

acteristics response time, throughput, security and availability [90]. In further

work he also discusses the response time and the cost in compositions of Web

services in particular [91, 92]. Regarding the composition of Web services, Zeng

et al. have presented a framework for the QoS-aware composition of Web ser-

vices [159]. Their work is closely related to this thesis and therefore it will be

discussed in more detail in future sections. Their discussion covers the QoS char-

acteristics price, duration, reputation, success rate, and availability. The reputation

is a characteristic which is not specifically mentioned by the ISO framework or the

UML QoS-Profile. It represents a rating that is provided by an importer based on

his experience with using a service.

46

3.2. Quality-of-Service Characteristics

Patel et al. discussed the modelling of Web services and the creation of ser-

vice descriptions which involved also a discussion about different QoS character-

istics [105]. Their contribution focusses on a modelling structure for expressing

the QoS of a service. Their selection of QoS characteristics is divided into two

categories: The first category consists of the latency, which is used as a synonym

for response time, throughput, reliability, and cost. The other category is named

internet-specific and consists of availability, security, accessibility and regulatory.

The characteristic regulatory denotes a measure for how well the service complies

with given (organisational) regulations. In addition, Patel et al. define a separate

QoS characteristic named task-specific which denotes how well the returned an-

swer meets the expectations of the importer.

Section 3.1.2 has introduced different research work about processing QoS in

an SOA: One part covers the QoS negotiation based on contracting approaches,

another the extension of existing repositories with the ability to process QoS infor-

mation. A third part discussed dedicated broker architectures. The contributions

from Ludwig et al. (WSLA, [84]) and Tosic et al. (WSOL, [133]) discuss the nego-

tiation of QoS. They do not mention particular QoS categories or characteristics.

The WSOI, based on the WSOL that Tosic et al. have also presented, focusses on

the response time, which measures the time from the submission of the request

until the return of the result when invoking a service [132]. A similar contribution

by Ludwig also discusses how to ensure the negotiated QoS from the perspective

of the service exporter [83]. Regarding the considered QoS characteristics, he dis-

cusses those subsumed by the performance category in the UML QoS-Profile.

In the field of UDDI extensions, Ali et al. have introduced the UDDIe. They

give no particular discussion about QoS characteristics but mention bandwidth as

an example [2]. The bandwidth denotes how many requests a service can process

within a given time and is a synonym for the throughput. Lee, who has also dis-

cussed the approach to extend UDDI for processing QoS, discusses the cost, which

is a synonym for price as used by Zeng et al. [159], and the response time as the rel-

evant characteristics for Web services [78]. Ran provides the most detailed discus-

sion about relevant QoS categories when extending the UDDI specification [112].

He introduces a QoS model for Web services that provides the following four main

categories:

• Run-time related. In the group of run-time related characteristics, Ran sub-

sumes scalability, which describes a measure for transactions per second, and

capacity which denotes the number of concurrent requests. Moreover, Ran

puts performance into this main category, which contains the characteris-

tics response time, latency and throughput. According to his work, response

time denotes the time to process a request. Latency covers the situation that

a request is queued at the side of the provider. Throughput shows a strong

relation to scalability and capacity.

As a third sub-category, Ran introduces the reliability, which contains the

characteristics mean time between failure (MTBF), mean time to failure

47

3.2. Quality-of-Service Characteristics

(MTTF) and mean time to transition (MTTT), of which Ran admits that they

show a strong relation to the concept of availability. MTBF is usually used if

a failure denotes an exceptional state that can be recovered. MTTF refers to

a failure that, in general, cannot be recovered. MTTT represents an unusual

characteristic. It refers to the idea that an entity can show two general states:

a good state and a bad state. Then, the MTTT denotes a measure about how

often a change between the two states occurs [112]. In addition to these three

values, this category contains also the characteristics robustness, exception

handling and accuracy.

• Transaction supporting. With this category, Ran refers to the four main

properties that represent the standard characteristics of a transaction, which

are atomicity, consistency, isolation and durability, often abbreviated with

ACID. Since the characteristics of this category are hard to quantify with

numerical measures, this work interprets them as non-functional character-

istics.

• Configuration- and cost-related. This group of QoS characteristics relates

to organisational issues of the service and its development. These include

“regulatory”, which denotes the compliance with (governmental) regula-

tions, a degree for supporting technology standards, stability, which refers

to a description of how often the provided functionality is updated, as well

as cost, and completeness. This characteristic denotes the completeness of

provided functionality.

• Security. This category subsumes a set of standard security aspects which

include the provided authentication technique, the supported authorisation

mechanism, the facilities to ensure confidentiality, the support accountability

and auditability, the provided degree of data-encryption, and the provided

counter-measures to prevent repudiation after a service invocation.

Compared to the UML QoS-Profile, the set of security characteristics discussed

by Ran is more comprehensive and more specific regarding the SOA. Another dif-

ference is that the main category, named “run-time related”, subsumes also the

category performance along with different other categories like throughput. The

appropriateness of the category for configuration-related QoS characteristics is ar-

guable, because they partially cover functional aspects (e.g. the concept of com-

pleteness) which might not fit into the scenario of trading services: Would a ser-

vice importer query a broker with requirements such as the completeness of the

provided functionality? For this thesis this question is answered negative: Sec-

tion 7.2.2 will explain how a presumed matchmaking of functional suitability cov-

ers this point. As a conclusion, the characteristics found in Ran’s categories “trans-

action supporting” and “configuration”, excluding the cost, are considered not rel-

evant to the trading of services. In summary, the relevant QoS categories presented

by Ran are the run-time related, the cost and the security.

48

3.2. Quality-of-Service Characteristics

The third cluster of research work related to the QoS in an SOA is formed by the

works that propose dedicated brokers for the trading of services. Table 3.2 presents

an overview of the considered QoS characteristics in the field of research on bro-

kers for trading Web services. Regarding the work of Maximilien and Singh [88],

their list of QoS categories and characteristics provides more concepts than listed.

They have been omitted, because they were discussed in the work by Ran. The list-

ing has the purpose to identify the relevant QoS characteristics for the trading of

services as identified by other researchers. In summary, these publications mention

very similar QoS categories. Among the characteristics, the up time and availabil-

ity can be considered equal. The same applies to the pair of MTBF and reliability,

and the pair of timeliness and latency. If all QoS characteristics that were discussed

in at least two of the five mentioned publications are considered relevant, then the

list contains: response time, cost, availability, reliability, and throughput.

Research Group QoS Characteristic

Wang et al., 2004 [136] Categories: performance, reliability, timeliness and se-

curity, which each have one referring characteristic

assigned.

Degwekar, et al., 2004 [115] Response time, cost, and availability.

Maximilien, Response time, cost, latency, throughput,

Singh, 2004 [88] capacity, MTBF, and up time.

Yu, Lin, 2005 [157] Response time, cost, reliability, and availability.

Serhani et al., 2005 [116] Response time, cost, latency, throughput, and availability.

Table 3.2: QoS characteristics in the domain of Web services.

3.2.2 Summary of Quality-of-Service Characteristics

The different fields of research and standards have revealed many similar cate-

gories. From the research work mentioned above, the UML QoS-Profile, which

is based on the ISO QoS framework, the work of Ran and the five publications

mentioned give a broad set of QoS categories. In addition, the previous section

has identified the set of commonly discussed QoS characteristics used for Web ser-

vice brokers. The common QoS characteristics from these three areas are listed in

Table 3.3.

This table mentions the set of common QoS categories that are considered for

the use of service trading: the throughput, the response time, the cost and the

availability. The UML QoS-Profile and the QoS model of Ran also mention the se-

curity which can be considered for trading as well. This aspect has been discussed

by Wang et al. in detail [136]. In addition to the identified set, Zeng et al. consider

the reputation as relevant for trading [159]. As defined by them, the reputation

represents a measure for how well a service performs based on the experiences of

different importers. For this thesis, the reputation is also considered as a measure

49

3.2. Quality-of-Service Characteristics

UML QoS-Profile Ran’s QoS Model Research on Web Services

throughput throughput throughput

latency (response time) response time response time

efficiency (cost) cost cost

availability availability availability

reliability reliability reliability

security security reputation

Table 3.3: Summary of QoS characteristics

to capture non-functional service selection criteria that are usually not expressed

with quantifiable measures. For example, services can be also selected by their or-

ganisational affiliation, if a business would like to prefer selected partners, by the

country from which services are provided, if trade agreements are relevant, or by

an individual measure of how much a service provider is trusted. These examples

make clear that the term reputation is dependent on the view of the user or the party

that assigns reputation values to service providers (cf. Kalepu et al. [69]). The def-

inition of a measure that expresses reputation can involve many input parameters.

For this work, it is assumed that depending on the different mentioned factors, the

reputation results in a absolute value, which is free from a particular value range

(contrary to the repsonse time) or unit.

50

Chapter 4

Aggregation of the

Quality-of-Service

in Service Compositions

Prior to performing the QoS-based selection, a method that allows the aggregation

of the QoS in a composition of services must exist. Based on the given QoS char-

acteristics of the individual services, a statement must be derived that covers the

QoS characteristics of the composition. Otherwise, a selection algorithm could not

determine the result of choosing a particular candidate. In addition, if there are

requirements that the composition must meet, there has to be a method that proves

if the assigned services will provide the required QoS characteristics.

As the first chapter has explained, such an aggregation must involve the struc-

tural arrangement of the services in the composition. Thus, the first step of such a

method is a model that allows the description of the structure. For this model, two

main goals exist:

• Technology independence. The structural model should not rely on existing

languages to describe compositions. Although Section 2.4.1 has indicated

that WS-BPEL might play a more important role in the field of service com-

positions than similar other proposals, such a structural model should not be

limited to this particular proposal. On the other side, the existing composi-

tion languages must be considered to determine the relevant structures that

occur in service compositions.

• Focus on aggregation of QoS. The model must represent an abstraction

from all technical details and focus only on the information that is needed

for aggregating the QoS characteristics. Composition models might include

more than information relevant for designing and running the composition.

Examples are the names of interfaces, the order of exchanged messages

etc., which can be omitted for such a model.

51

4.1. The Business Process Execution Language

4.1 The Business Process Execution Language

WS-BPEL has gained most attention when it comes to the description of service

compositions. This language allows description of abstract service compositions –

or business processes – as well as concrete compositions with individual available

Web services. The basic element in this language is a process that consists of sub-

elements. A sub-element represents a description of a structural part of the process:

which services are involved, what information is exchanged, how the execution can

be compensated in case the invocation is cancelled etc.

The structure of the process is important for the aggregation of the QoS and

thus, where WS-BPEL is concerned, the structural sub-elements of the process

element are relevant. WS-BPEL supports two ways to describe the structure: One

is by using the link and flow elements; these elements allow the definition of a di-

rect precedence between two tasks or services. With the link element, the order of

invocations can be described as a directed graph. The second option supports dif-

ferent building blocks that allow the modeller to form a recursive graph to describe

the structure of the composition. In such a structure, each building block has one

in-going edge and one outgoing edge. Each building block defines an execution

structure (e.g. parallel, sequential etc.) and consists of further building blocks or

individual services. Within a building block, only one execution structure applies,

for example, in a building block denoting a sequence, all enclosed elements are

executed sequentially. In WS-BPEL, the building blocks are named “structured

activities” and support the following execution structures [126, section 12]:

sequence Executes all enclosed elements in a sequence.

if Executes a selection of the enclosed elements according to a

Boolean expression. Compared to the C programming language,

this is similar to an if-then-else statement.

while Executes the enclosed element while a given expression holds.

repeatUntil Executes the enclosed element until a given expression holds.

pick Executes enclosed activities when a defined triggering condition

occurs. Compared to the C programming language this is similar

to a switch statement.

flow Executes the enclosed activities concurrently. Optionally the exe-

cution structure of the enclosed elements can be altered by using

optional link elements, which can be used to define precedence re-

lations between the activities.

forEach Repeats the execution of the enclosed activities for a given num-

ber of times. This element can either execute the given amount of

executions in parallel or in sequential manner.

In addition, the WS-BPEL also provides special elements for interrupting the

52

4.2. Workflow Patterns

execution for a given amount of time (the wait element) and for just doing nothing

(the empty element), which is useful to put an execution on hold until an external

event occurs. The elements to define arbitrary links among the tasks or services

in the composition appear redundant to the building block elements. A modeller

can design a sequential execution of services by either using the sequence element

or by using the flow element with the corresponding link constructs. A sequence

is a very basic structure that a modeller might use often. Thus, the use of such

a basic building block offers a convenient way to describe simple task or service

executions. Another reason for the integration of these two basic ways is the fact

that the predecessor of WS-BPEL, namely BPEL4WS, represents the result of the

merge of the XLANG composition language by Microsoft and WSFL by IBM

(cf. Section 2.1.2). When comparing these two languages, WSFL provides a flow

element with link elements only [80]. Contrary to that, XLANG does not have such

a flow element but only provides basic building blocks (namely sequence, switch,

pick, all, while, empty) [129]. When the two languages were merged in order to

form the BPEL4WS language, obviously the authors have decided to keep both

ways for describing the composition structure.

Kiepuszewski et al. discuss these two different groups of structural modelling

elements for modelling workflows [73]. They distinguish between structured work-

flows, which is similar to what the XLANG represents, and arbitrary workflows,

which have some standardised routing elements (or- and and-split and join opera-

tors) and a defined beginning and ending activity each. Their work explains that the

arbitrary workflows have the advantage that they offer a more intuitive and suitable

way to model workflows to modellers. Structured workflows have the advantage

that less sophisticated verification mechanisms are needed and that they are eas-

ier to implement. The authors mention some examples of workflow management

systems being capable of processing only structured workflows for these reasons.

In addition, Kiepuszewski et al. discuss in their paper possible transformations

from arbitrary to structured workflows. A modeller can use such a transformation

to start the modelling of a composition with more intuitive arbitrary workflows

and then he can transform the model into a structured workflow. The discussion

covers transformations based on the duplication of nodes which represent either

tasks or routing elements and the use of auxiliary variables to decide on additional

branches. Their results show that not all structural occurrences found in an arbitrary

workflow can be transformed into a structured workflow.

4.2 Workflow Patterns

Section 2.1.2 has pointed out that the WS-BPEL represents a popular composition

language in the area of Web services. Thus, the discussion in the previous sec-

tion about the capabilities of WS-BPEL is useful to analyse the state-of-the-art in

composition languages. However, one requirement for the structural model is its

independence from particular languages or standards. An analysis is required that

53

4.2. Workflow Patterns

discusses the structural abilities of different languages available for this purpose.

Section 2.2.1 has already mentioned the work of van der Aalst on the common

structural elements found in composition modelling languages [143]. His work

refers to a prior work by him and his colleagues about common patterns found

in workflow management systems named workflow patterns [146]. The following

part introduces the workflow patterns and discusses which patterns are relevant for

a structural model for the aggregation of QoS.

The workflow patterns were created to define abstract capabilities for the com-

parison workflow management systems. They mainly describe the capability of

executing different workflow structures and the functional behaviour of these sys-

tems. A main benefit of these patterns lies in the ability to compare workflow man-

agement systems by their functional rather by their non-functional aspects (like

platform requirements or usage of hardware resources). Considering the workflow

patterns offers the following advantages for this work:

• Technology independence. The workflow patterns are independent from

particular technologies or composition languages. The workflow patterns

were designed to provide a uniform approach for the comparison of work-

flow management systems and their flow definition languages. Thus, the pat-

terns can be regarded as a comprehensive description of the structural char-

acteristics of different workflow management systems and flow languages.

• Matureness. The first version of the workflow patterns was published in

2000 [145] and were revised since then in 2003 [146]. Also, different re-

searchers and industrial efforts have taken up the patterns.1 Therefore, the

work about the workflow patterns can be regarded as often-reviewed re-

search.

• Service compositions. As pointed out in Section 2.3, the existing compo-

sition languages have their roots in the modelling languages for workflows.

As mentioned, a comparison of these languages based on the workflow pat-

terns already exists [143], as well as a detailed analysis of the flow language

BPEL4WS [151]. In these works, the authors explain the strong similarity

between characteristics of workflows and service compositions.

Regarding the second requirement, which is the focus on QoS aggregation, the

workflow patterns contain many elements that are not relevant for the aggregation

of QoS. For example, the Pattern 19 “Cancel Case” describes the ability to cancel

a running process. The application of the QoS aggregation to perform QoS-based

selection takes place at the design time (cf. Chapter 7); it is about the planning of

the composition. Consequently, the QoS aggregation is not concerned with capa-

bilities such as cancelling a running composition and thus this workflow pattern is

1The research group working on the workflow patterns has published a com-

prehensive overview about the impact and use of their patterns on the Internet at

http://is.tm.tue.nl/research/patterns/impact.htm.

54

4.2. Workflow Patterns

No. Workflow pattern Synonym(s) Rel. Abstraction

Basic control flow patterns

1 Sequence Sequential routing Y Sequence

2 Parallel split AND-split Y AND-split

3 Synchronisation AND-join Y AND-join

4 Exclusive choice XOR-split Y XOR-split

5 Simple merge XOR-join Y General join

Advanced branching and synchronisation patterns

6 Multi-choice OR-split Y OR-split

7 Synchronising merge Synchronising join Y OR-join

8 Multi-merge Y AND-split

with AND-join

9 Discriminator m-out-of-n, partial join Y m-out-of-n

Structural patterns

10 Arbitrary cycles Loop, iteration, cycle Y flow-link, loops

11 Implicit termination Nothing to do anymore N

Patterns involving multiple instances

12 M.I. without synchronisation Y AND-split

with AND-join

13 M.I. with a priori design time knowledge Y represented by

patterns 2-9

14 M.I. with a priori runtime knowledge N

15 M.I. without a priori runtime knowledge N

State-based patterns

16 Deferred choice External choice, Y XOR-split

deferred XOR-split

17 Interlv’d parallel routing Unordered sequence Y Sequence

18 Milestone Test arc, state condition, N

Withdraw message

Cancellation patterns

19 Cancel activity Withdraw activity (Y) Immediate End

20 Cancel case Withdraw case N

Table 4.1: Workflow patterns [146] and their relevance for the QoS aggregation.

ignored in the discussion about QoS aggregation. Regarding the basic control flow

patterns and the advanced branching and synchronisation patterns, these are also

relevant for a structural model to aggregate the QoS. From the section “structural

patterns”, the arbitrary cycles are considered relevant. From that the remaining

sections, starting with “Multiple Instances”, they require an additional discussion.

Table 4.1 summarises the described workflow patterns. In addition, the table

lists also the relevance of a pattern for the QoS aggregation as well as its proposed

structural abstraction. As a main rationale, only patterns are relevant that address

the structure at design time. The identification for some patterns is trivial (e.g. for

the a sequence). For the parallel and conditional routing constructs, basic abstrac-

tion is used: The interpretation of an AND-element is to involve all possible tasks,

55

4.2. Workflow Patterns

whereas the XOR-element involves exactly one possible task. The OR-element

involves less than all but more than one possible task. However, other patterns

require some discussion about the relevance for composition:

• Multi-merge. This pattern describes a specific join operation of parallel

executions in a workflow arriving at the joining point. At this point, for each

execution thread arriving in parallel, the execution environment starts one

following separate thread with execution of the following activities. These

patterns can be simulated in the modelling phase by using AND-splits and

AND-join operations for the QoS-aggregation.

• Arbitrary cycles. This pattern covers the ability to express precedence links

between tasks in the workflow that form a loop. It allows links that go outside

a building block, if a composition language provides the concept of building

blocks. As Kiepuszewski et al. have pointed out, this pattern separates the

structured workflow models from the arbitrary workflows [73]. The simple

loop can be found among the structured activities of WS-BPEL (i.e. while,

repeatUntil). However, the simple loop represents only a special case of what

is covered by this pattern. The support of arbitrary loops will be discussed

in detail in Section 4.5.

• Implicit termination. The implicit termination pattern denotes that an en-

gine is capable of terminating the flow, if no processable data is available

anymore. Whether an end is explicitly stated or ends implicitly does not

have an impact on the aggregation of QoS properties during design time.

Therefore, this pattern is not taken into account.

• Patterns involving multiple instances. This set of patterns generally targets

the run-time abilities of a workflow management system. Therefore, in the

modelling phase, each workflow or each composition can be seen as one

unit for property aggregation. If at design time, the number of instances is

already known, this results in a parallel split (for the workflow patterns 12

and 13) with an open end. If the number of instances is determined during

runtime (workflow patterns 14 and 15) the handling of QoS properties must

be processed by the run-time environment of the composition and therefore

is not taken into account in the modelling process. The result of the QoS

aggregation for this case would be a QoS statement covering one instance.

• Deferred choice. The difference between a deferred choice in workflow

context and the XOR-split is that, in the deferred choice, the split is per-

formed based on external input while the standard XOR-split relies on in-

formation being part of the workflow. In the description of the workflow

patterns, the deferred choice is referred to as a “state based pattern”. Conse-

quently, it is not regarded for having an impact on the modelling phase.

56

4.3. Structural Model of Service Compositions

• Interleaved parallel routing. This pattern describes that involved tasks are

sequentially executed in an arbitrary order. In case of the aggregation of

QoS, this pattern is subsumed by the concept of a plain sequence. The up-

coming Section 4.3 will explain why the order is not relevant for the QoS

aggregation of sequential tasks.

• Milestone. In the case of service compositions, this pattern is not relevant

because describes the ability of a workflow management system to trigger

an external activity once a particular point in the workflow has been reached.

Such a behaviour that does not affect the QoS of the workflow or of the

service composition itself. Furthermore this pattern is also not supported by

any of the flow languages analysed in [143].

• Cancel activity. This pattern describes the functionality to stop the workflow

execution at a given time. Since this pattern can occur at any place in the

workflow, no specific routing element or structural pattern can be given. A

possible solution for the QoS aggregation emulates this behaviour with an

XOR-split and a following link to the end of the workflow. The support of

such a pattern will be discussed in Section 4.5.1.

• Cancel case. This cancellation pattern describes the ability of workflow

management systems to cancel the execution of a workflow. Regarding the

QoS aggregation at design time, this is regarded as exceptional behaviour

and thus not considered relevant.

The abstraction results in three relevant sequential structural patterns: the triv-

ial sequence, an unordered sequence, and a basic loop. For the parallel and condi-

tional cases, the abstraction covers different split and join operations, which can be

summarised mainly in AND-, OR-, and XOR-split and -join operations. The next

section will discuss how these abstractions can be used to form a structural model

of the composition in order to perform the QoS aggregation.

4.3 Structural Model of Service Compositions

Based on the analysis of the workflow patterns in the previous section, a structural

model can be derived that provides the necessary structural elements for modelling

service compositions for the QoS aggregation. The approach transforms a descrip-

tion of a composition into such a model. Then, an algorithm performs the aggrega-

tion on this model. This approach for the aggregation has been already introduced

in previous work (cf. Jaeger et al. [59, 63, 64]).

The introduced model has been build upon on structural patterns rather than

a classification of QoS values. In the previous work, it has been explained that

classification approaches for QoS characteristics are not helpful to establish an ag-

gregation mechanism. Software can use the properties of different characteristics

to consider aspects such as the direction (i.e. either a larger or smaller value denotes

57

4.3. Structural Model of Service Compositions

better QoS), the definition (e.g. average, percentile, fixed value), or the value type

(e.g. relative, absolute). However, QoS characteristics show many different prop-

erties and thus cannot lead to a unified approach as the following points explain:

• A general differentiation between increasing or decreasing directions can be

applied for every QoS characteristic, because it is assumed that every QoS

characteristic provides the concept of better or worse. However, an aggre-

gation rule for one dimension still can be different depending on, whether

relative or absolute numerical values are processed.

• QoS characteristics might have a direction but show only discrete values.

As a consequence, the aggregation requires a different algorithm than for

continuous dimensions: Instead of a calculation particular rules must be per-

formed.

• QoS characteristics might refer to a statistical definition – like the variance,

the mean or percentiles. For example, considering percentiles, the aggrega-

tion must cover specific definitions for aggregation rules covering parallel

arrangements.

• Beyond the three mentioned points, QoS characteristics can have different

measures, making an aggregation also more complicated.

• The definition of QoS characteristics may vary depending on the environ-

ment. Thus, a classification of QoS characteristics for generalisation cannot

be established. Instead, a software environment that performs the aggrega-

tion must cover relevant QoS characteristics for a specific application case

and provide the exact definitions of the aggregation rules for the selected

categories.

Algorithms to aggregate the QoS in compositions already exist. For example,

Zeng et al. have discussed an algorithm which finds the shortest (or longest) path

in a graph in order to determine the maximum response time [159]. However, as

the five points mentioned above indicate, for the different properties that a QoS

characteristic can show, many different algorithms must be implemented in order

to cover the different kinds and facets.

The work of Puschner and Schedl about calculating maximum execution times

of computer programs [111] has already been mentioned as the work that inspired

the idea of aggregating QoS in compositions. In their work, the authors present

two main approaches: one works on the building blocks of a structured model to

calculate execution times and the other is oriented to find a path in a graph-based

structure. A particular graph-based approach by Puschner and Schedl expresses

the problem as an integer linear programming problem, which can be solved with

existing software tools. Besides, their work covers only the execution time and

thus other QoS characteristics are not supported.

58

4.3. Structural Model of Service Compositions

For this work, an approach is preferred that defines aggregation methods for the

basic building blocks found in compositions – depending on the relevant QoS char-

acteristics of the application case. For each of these structural elements – called

composition patterns in the remainder of this work – aggregation rules are defined

for each QoS characteristic. Then, an arrangement of composition patterns can be

used to represent a model of an existing composition. Based on the aggregated

QoS statement for a particular composition pattern, an algorithm can aggregate

each pattern by aggregating sub-patterns until the entire composition is covered. In

addition, such an aggregation method requires some basic assumptions to provide

useful QoS statements as a result (cf. Jaeger et al. [63]):

• Independence. It is assumed that the services in the composition do not

depend on each other regarding their successful execution. This assump-

tion presumes that the result of the execution or the delivered QoS of one

service does not affect the QoS characteristics of other services. Dependen-

cies would occur, for example, if a computer would host multiple services of

the composition and therefore have a common point potential failure which

would affect QoS characteristics, such as the reliability, in a specific way.

• Trust. For the aggregation of QoS it is assumed that the given values of a

service are correct. Trusting the correctness of QoS information represents

a separate issue from the algorithmic aggregation. For the discussion about

the aggregation, it is assumed that the QoS of individual services represents

an already negotiated and accepted agreement between service importer and

exporter.

• Uniformity. For the aggregation, it is assumed that the given values are

compatible to each other. All individual values must conform to a common

group of measures. For example, it is assumed that a property describing

the response time uses compatible measures such as milliseconds, seconds,

or minutes. Furthermore, it is assumed that all given values conform to the

same definition. For example, all services start and end from the same point

of measurements to define the response time, e.g. when the request has been

submitted and the response has been delivered completely.

• Equipartition. The aggregation of QoS for selection of services to form

a composition takes place at the design time. In this phase, it is assumed

that the execution environment executes services in conditional join and split

cases with equal probability. For example, if in the case of an XOR-split the

current flow chooses a service from a number of services, it is assumed that

the execution of the service follows an uniform distribution. The coverage

of other kinds of distributions represents a possible extension to the compo-

sition model.

Based on the workflow patterns and these considerations, a model consisting

of nine basic composition patterns can be derived. Figure 4.1 shows these patterns

59

4.3. Structural Model of Service Compositions

using a simple notation that indicates directed graphs. This notation uses rectangu-

lar boxes to denote a routing element and it uses circles to denote a task. Arrows

define the precedence relations between the tasks and routing elements. From these

patterns, two sequential patterns are defined (cf. Jaeger et al. [63]):

AND
SPLIT

AND
JOIN

(...)

AND
SPLIT

XOR
JOIN

(...)

XOR
SPLIT

XOR
JOIN

(...)

OR
SPLIT

OR
JOIN

(...)

OR
SPLIT

m/n
JOIN

(...)

LOOP
END

(...)

CP4

CP6

CP3

CP7 CP8

CP1
CP2

SEQ
START

SEQ
END

LOOP
START

AND
SPLIT

m/n
JOIN

(...)

CP5

OR
SPLIT

XOR
JOIN

(...)

CP9

Figure 4.1: Composition patterns.

• Sequence of service executions (CP1). A sequence can prescribe a spe-

cific order in which an execution environment executes the services. Al-

ternatively, the execution environment executes the services sequentially in

an arbitrary order. For the aggregation model, the order of the executions

is not relevant. The aggregation rules for the sequence of service execu-

tions, which will be introduced in a subsequent section, entirely operate on

unordered sets, or represent an addition or multiplication of the individual

values. Since a set contains elements without any applied order and the ad-

dition and multiplication shows commutativity, such aggregation rules can

be also applied to any order of execution.

• Simple Loop (CP2). The execution of a service or a sub-arrangement of

services and composition patterns is repeated for a certain amount of times.

For the parallel and conditional patterns, the relevant workflow patterns do not

fit directly into a model for aggregation. The reason is that for the algorithmic

aggregation of values, not only the split but also the join condition must be consid-

ered. This can be shown by the following example: In the example, the minimum

response time is subject for aggregation. If a flow splits into a number of parallel

flows, three join structures could be possible:

60

4.3. Structural Model of Service Compositions

a) joining with synchronisation of all parallel flows or

b) joining with synchronisation of one flow, and

c) allowing joining of more than one flow but less than all flows.

Figure 4.2 shows an example of the three setups with each three services showing a

minim execution of 3, 5 and 7 units. In case a), the minimum response time would

be the minimum response time of the greatest value (the slowest). In case b), the

smallest of the involved values represents the minimum response time possible.

For the case c), the relevant value depends on the number of considered flows for

synchronisation: For example, if two flows are relevant for synchronisation, the

second-smallest value denotes the minimum response time of this structure. It

must be noted that this example presumes that after the synchronising flow has

arrived the other flows are ignored.

AND
SPLIT

7 3

AND
JOIN

AND
SPLIT

7 3

XOR
JOIN

AND
SPLIT

7 3

2/3
JOIN

5 5

a) b) c)

5

Figure 4.2: Example of join-relevant aggregation of response time.

In addition, another reason exists for combining different split and join pat-

terns: A model that consists of composition patterns can be aggregated by a re-

cursively working algorithm. Then, an algorithm must identify independent, self-

contained atomic patterns in the composition. Consequently, each atomic structure

must show a defined start and end of service executions. In the first example, var-

ious combinations between split and join operations are possible. However, only

a part of them make sense in combination. For example, an XOR-split cannot

occur in combination with an AND-join. The following relevant composition pat-

terns were identified from the theoretically possible combinations (cf. Jaeger et

al. [63, 59]:

• XOR-split followed by an XOR-join (CP3). In a parallel arrangement only

one task is started. Thus, the synchronising operation synchronises only the

started task.

• AND-split followed by an AND-join (CP4). From a parallel arrangement

all tasks are started, and all tasks are required to finish for synchronisation.

61

4.3. Structural Model of Service Compositions

• AND-split followed by a m-out-of-n-join (CP5). From a parallel arrange-

ment all n tasks are started, but less m < n tasks are required to finish for

synchronisation.

• AND-split followed by an XOR-join (CP6). From a parallel arrangement

all n tasks are started, but just one task is required to finish for synchronisa-

tion. This pattern has been introduced by Ladner [77] as was then published

as an extension to the original model [63].

• OR-split followed by OR-join (CP7). In a parallel arrangement a subset of

the available tasks is started, and all of the started tasks are required to finish

for synchronisation. For example, from four available services, the run-time

environment starts always three of them which must also finish successfully.

• OR-split followed by a m-out-of-n-join (CP8). In a parallel arrangement

a subset of n tasks of all are started, and m < n tasks are required to finish

for synchronisation. For example, from four available services, the run-time

environment starts always three, of which two must finish successfully.

• OR-split followed by n XOR-join (CP9). In a parallel arrangement a sub-

set of n tasks of all are started, and only one task is required to finish for

synchronisation. This pattern has also been introduced by Ladner [77] as an

extension to the original model of composition patterns.

Based on these elements, a structural model of the composition can be created

that meets the following characteristics:

1. The structural model is a directed graph consisting of nodes which represent

tasks and nodes which represent routing elements.

2. The arrangement of the nodes and routing elements is as such that the entire

model can be collapsed into one node by applying the set of composition

patterns as shown in Figure 4.1. This implies the following points:

• This graph must not contain loops except those matching the loop pat-

tern.

• The routing elements must be used pair-wise as defined in Figure 4.1.

• The graph must start with a routing element that has only one or more

outgoing paths and end with a corresponding routing element that has

only one or more incoming paths.

• Within such pairs of routing elements, the number of outgoing paths of

a splitting or starting element must be equal to the number of incoming

paths of the corresponding joining or ending element.

62

4.3. Structural Model of Service Compositions

3. Besides “normal” tasks and services, empty tasks that do not perform any

functionality are possible. Empty tasks are necessary to form structures that

are not directly supported by the given nine patterns. The application of

these tasks will be explained further in the upcoming Section 4.5. Empty

tasks behave neutral in terms of the applied QoS characteristics, i.e. their

invocation costs nothing, does not take any time etc.

4. For drawing such structures by using the patterns as shown in Figure 4.1,

the sequential pattern elements will be simplified and thus, the starting and

ending element will not be shown. Moreover, empty tasks will not be drawn

but just represent a line between one starting routing element and the corre-

sponding finishing routing element.

The above mentioned description defines a structural model that preserves the

precedence among tasks in a composition structure while conforming to the struc-

tural elements represented by the composition patterns. However, for the aggrega-

tion method, which will be introduced in the next section, the precedence relations

between the elements in a sequence do not have an impact on the aggregation of

the QoS values. An order of the elements is not required for the aggregation, and

thus, the enclosed elements of a sequence can be represented by a set. Since prece-

dence relations do not exist between the elements of parallel structures, a set is

an adequate representation structure for these elements as well. The result from

these considerations is a data structure that represents the composition structure as

follows:

• A composition structure is represented by a set K1.

• The set K1 can contain tasks of the composition t1, . . . , ti or further sub-sets

K2, . . . , Kj .

• Each set Kx has a special type assigned, namely one of the composition

patterns CP1, . . . , CP9.

• Any set Kx can contain tasks or further sub-sets.

This model poses the requirement that a composition structure can be repre-

sented functionally equivalent by the recursive structure of task-pattern-sets. This

limitation prevents the direct application of this structural model to composition

models which allow the use of arbitrary links between the tasks or services. The

concept of flow and link elements found in WS-BPEL represents an example for

such structures. The limitations of such a structured model has been discussed by

Kiepuszewski et al. [73] and the upcoming Section 4.5 will give a further discus-

sion on these limitations.

63

4.4. A Method for Quality-of-Service Aggregation

4.4 A Method for Quality-of-Service Aggregation

The basic approach for the aggregation is to step-wisely collapse a graph represent-

ing the composition structure into a single node by alternately aggregating simple

sequences and parallel service executions. Figure 4.3 outlines this method: An al-

gorithm would identify composition patterns and subsequently perform the aggre-

gation on the level of each pattern until one statement remains. Thus, the algorithm

does not consider the entire graph at once from a global perspective, but rather only

local composition patterns.

}
AND

SPLIT

AND

JOIN

AND

SPLIT

m/n

JOIN

XOR

JOIN

XOR

SPLIT

}
AND

SPLIT

m/n

JOIN

XOR

JOIN

XOR

SPLIT

XOR

JOIN

XOR

SPLIT

}
XOR

JOIN

XOR

SPLIT

} }

Figure 4.3: Collapsing the graph step by step.

This approach builds on the aggregation of different QoS characteristics for

each set Kx, which is defined to refer to a particular composition pattern. There-

fore, for each characteristic and for each pattern type an aggregation rule must be

defined. A basic set of aggregation rules has already been discussed in previous

work (cf. Jaeger et al. [63, 64]. For this thesis, the discussion is extended and

covers the different QoS characteristics that were mentioned in Section 3.2.

In the following sub-sections, the aggregation of relevant QoS characteristics

is discussed and defined. For the definition, the following notation is used: k rep-

resents the number of services that the considered pattern contains, l represents the

assumed number of repetitions for the loop pattern, xi represents a given value for

each service with index i denoting a particular element, and K is the set containing

all xi. For the case that a set K contains one more sub-sets, the method presumes

that these have been aggregated first and thus are represented in K by a single value

as well. The variable xa represents the aggregated value. In the previous work, n
has been used as the variable that refers to the individual services which collided

with the “m-out-n-join”-constructs from the notation of the composition patterns.

This aggregation model requires two remarks: The first remark covers the loop

pattern and the second covers the OR-split patterns. For the case that the number of

64

4.4. A Method for Quality-of-Service Aggregation

loops will be determined at run-time, the model does not represent the loop pattern

sufficiently. For example in WS-BPEL, the condition of a loop statement is defined

with a Boolean expression (with a while-construct) and consequently the number

of loops can be determined at run-time only. However, an algorithm must know

the number of occurring loops for the aggregation of QoS. Otherwise, the model

represents an estimation about the number of loops. Generally, the aggregation rule

as proposed for the loop case would fit well in monitoring the QoS for analysis.

Nevertheless, it cannot serve as a decision support in the modelling process if the

aggregation task does not know the number of loops at the design time.

To address the OR-splits, an aggregation model must know which paths are

taken into account for this split. To determine the upper and lower bound for QoS

values all combinations of possible splits must be considered. The result is a set of

possible combinations. For example, if a 2-out-of-5-OR-structure has the following

elements K = {x1, x2, x3, x4, x5}, then the possible combinations would be:

KC = {{x1, x2}, {x1, x3}, {x1, x4}, . . . , {x4, x5}}

In general, the resulting set KC contains all relevant combinations of the tasks

depending on the OR-split and -join semantics. Then, an aggregation function can

evaluate the resulting QoS of individual combinations. To simplify the notation

in the tables, a notation is defined that a function fC is applied to the relevant

combinations of elements represented by individual sets in KC :

f(fC(KC)) := f
(

{fC(Ssub),∀Ssub ∈ KC}
)

where Ssub denotes an arbitrary combination in KC .

The introduced model presumes that a transformation transforms the flow de-

scription of a composition into this model of composition patterns. Upcoming

Section 4.5 will discuss such transformations further. Once such a representation

exists, a selection process can perform the aggregation of QoS categories based on

the QoS of the individual tasks.

Regarding the related work, other ideas and proposals for patterns exist to de-

scribe the structural arrangements of service compositions. Specifically for the

compositions of services, Yang et al. have proposed a set of structural patterns to

define the execution flow characteristics of a service composition [155]. Florescou

et al. have developed an XML-based programming language to define execution

statements to form characteristics of Web services [33]. WS-BPEL [126] can be

seen as a general purpose flow language which represents also a structural model

of a flow.

Besides the flow or workflow languages, the Object Management Group (OMG)

has proposed a Unified Modelling Language (UML) which also provides elements

for expressing a flow structure. The UML provides the activity diagram that ser-

vices this purpose [100]. Activity diagrams contain also the concepts of sequences,

parallel splits and joins. All these languages that were identified for describing

65

4.4. A Method for Quality-of-Service Aggregation

compositions have in common that they cover different purposes than the aggrega-

tion of QoS. Such purposes can be, for example, the definition of a control flow in

order to parameterise an execution environment. The composition patterns instead

represent a set of structural elements for modelling compositions specifically de-

signed for the aggregation of QoS values derived from the workflow patterns. The

next sections will explain the aggregation for a selection of QoS characteristics,

which were introduced in Section 3.2: throughput, response time, cost, availability

and encryption grade.

4.4.1 Aggregation of Throughput

The throughput of a service denotes the amount of processable data per time unit.

Usually, the throughput is given in requests per second and is interpreted as an

increasing dimension, which means that a higher value denotes a better quality.

The throughput can also denote the processable amount of data within a given

time. However, the request per time matches better the characteristics of a service

invocation and is thus preferred over the data per time. Otherwise the question rises

if all services with different functionality in the composition process the data in a

comparable way. Then, a detailed discussion for each case is necessary.

In a sequence, the node with the lowest value assigned determines the through-

put for the aggregated property. In a parallel arrangement, it is possible that

processable data splits among the parallel tasks. In this case, the aggregation of

throughput would result in addition of the throughput values of the individual ser-

vices. It is also possible that individual requests are split among the tasks. This

would result in an addition of the given values as well. However, such an arrange-

ment presumes that all the parallel services provide the same functionality. If the

scenario is to implement a business model, it can be presumed that such redundan-

cies are not taken into account on the level of the business model. Thus, such a

redundant arrangement can be considered on an optional basis.

For the aggregation of throughput in parallel cases, the set of starting services

is considered relevant. Otherwise, the server will refuse additional requests, if the

limit of maximum possible requests is exceeded. Therefore, to ensure the success-

ful execution of the composition, all services must be fully capable of accepting the

occurring invocations. The aggregation of throughput is shown in Table 4.2. The

given rules are based on the assumption that a service provider provides statements

about the guaranteed minimum and maximum throughput.

4.4.2 Aggregation of Response Time

Contrary to the throughput, the response time is a decreasing dimension, meaning

that a lower value is preferred. As mentioned in Section 3.2, the response time

and latency or the execution time are used as synonyms. The response time of a

service can be defined as the sum of time to transfer the request and response over

a network and the time for queuing the request on the provider side (latency), and

66

4.4. A Method for Quality-of-Service Aggregation

Comp. Pattern Maximum Throughput Minimum Throughput

1 Sequence xa = min{x1, . . . , xk} xa = min{x1, . . . , xk}

2 Loop xa = x xa = x

3 XOR-XOR xa = max{x1, . . . , xk} xa = min{x1, . . . , xk}

4 AND-AND xa = min{x1, . . . , xk} xa = min{x1, . . . , xk}

5 AND-N/M xa = min{x1, . . . , xk} xa = min{x1, . . . , xk}

6 AND-XOR xa = max{x1, . . . , xk} xa = min{x1, . . . , xk}

7 OR-OR xa = max
“

min(KC)
”

xa = min{x1, . . . , xk}

8 OR-N/M xa = max
“

min(KC)
”

xa = min{x1, . . . , xk}

9 OR-XOR xa = max{x1, . . . , xk} xa = min{x1, . . . , xk}

Table 4.2: Aggregation rules for throughput.

the time to process the request (cf. Ran, introduced in Section 3.2.1):

ttotal = ttransfer + tqueuing + tprocessing

The entire time needed to perform a task, i.e. ttotal, is considered for this work.

Applying the method to the aggregation, a definition for lower and upper bounds

is shown in Table 4.3. In a sequence and a loop, the time is determined by the

sum of the values of each service invocation. In a sequential case, the definitions

for lower and upper bounds are the same. Because the response time represents a

decreasing measure, the largest value in a parallel arrangement of services denotes

the worst case. The nature of the response time also demonstrates that considering

the same split operation (AND), different join operations result in different aggre-

gation rules. To determine the minimum response time in the AND-AND case, the

largest value of all involved services denotes the overall minimum value. However,

for the AND-XOR pattern, the smallest represents the relevant value.

4.4.3 Aggregation of Cost

The cost of a service represents a measure for the resources consumed by a service

execution. Therefore, the cost can be seen as a decreasing dimension, where a

lower value denotes better quality. For the cost, two main models are possible: For

example, Tosic et al. mention two payment methods: a pay-per-use use model that

considers the number of service invocations and a subscription model that allows

consumers to invoke a service on a flat-rate basis [133]. For the aggregation of

cost, it is important that all statements refer to the same payment model.

Table 4.4 shows the aggregation definitions for the upper and lower bounds of

the cost. Contrary to the response time, an aggregation rule must take all started

services into account, regardless of whether they are relevant for the join operation

or not. To cover the OR-split statements, the function sum(. . .) denotes to add the

elements in each of the sets in KC .

67

4.4. A Method for Quality-of-Service Aggregation

Comp. Pattern Maximum Response Time Minimum Response Time

1 Sequence xa =
Pk

i=1
xi xa =

Pk

i=1
xi

2 Loop xa = lx xa = lx

3 XOR-XOR xa = max{x1, . . . , xk} xa = min{x1, . . . , xk}

4 AND-AND xa = max{x1, . . . , xk} xa = max{x1, . . . , xk}

5 AND-N/M xa = max{x1, . . . , xk} xa = min{x1, . . . , xk}

6 AND-XOR xa = max{x1, . . . , xk} xa = min{x1, . . . , xk}

7 OR-OR xa = max{x1, . . . , xk} xa = min
“

max(KC)
”

1

8 OR-N/M xa = max{x1, . . . , xk} xa = min
“

max(KC)
”

1

9 OR-XOR xa = max{x1, . . . , xk} xa = min{x1, . . . , xk}

1For example, considering three tasks out of five, the min of the 3rd quickest is relevant.

Table 4.3: Aggregation rules for the response time.

Pattern Maximum Cost Minimum Cost

1 Sequence xa =
Pk

i=1
xi xa =

Pk

i=1
xi

2 Loop xa = lx xa = lx

3 XOR-XOR xa = max{x1, . . . , xk} xa = min{x1, . . . , xk}

4 AND-AND xa =
Pk

i=1
xi xa =

Pk

i=1
xi

5 AND-N/M xa =
Pk

i=1
xi xa =

Pk

i=1
xi

6 AND-XOR xa =
Pk

i=1
xi xa =

Pk

i=1
xi

7 OR-OR xa = max

sum(KC)

ff

xa = min

sum(KC)

ff

8 OR-N/M xa = max

sum(KC)

ff

xa = min

sum(KC)

ff

8 OR-XOR xa = max

sum(KC)

ff

xa = min

sum(KC)

ff

Table 4.4: Aggregation rules for the cost.

4.4.4 Aggregation of Availability and Reliability

Also discussed in Section 3.2, the terms availability and reliability show similari-

ties. The UML QoS-Profile discusses both the reliability and the availability. The

author Ran discusses the availability as a characteristic denoting whether a ser-

vice is present and ready for immediate use (cf. Section 3.2.1). Then, the avail-

ability is defined by the quotient of the available time divided by the total time

considered [112]. For this discussion, the following definition of availability for

repairable systems is considered:

A =
MTTF

MTTF + MTTR

In this equation, MTTR denotes the mean time to repair and MTTF denotes

68

4.4. A Method for Quality-of-Service Aggregation

the mean to failure, defined as MTTF =
∫

∞

0 R(t)dt. In this definition the func-

tion R(t) defines the probability that a system fails against the time.

This concept of availability represents an increasing dimension and according

to this definition cannot, it exceed the value of 1. The availability is presented as a

probability, because a service exporter cannot predict whether a failure will happen

with the first or 1000th service invocation. As a consequence, for the aggregation,

the values are also taken as probabilities. For a sequence, this means that the ag-

gregated availability or reliability results from the multiplication of the individual

values. In parallel cases, all invoked services are relevant for the availability, while

for the reliability only the services required for the synchronising operation are

considered. Table 4.5 shows the aggregation rules for the availability. To cover

the OR-split statements, the function prod(. . .) denotes to multiply the elements in

each of the sets in KC .

Comp. Pattern Availability

1 Sequence xa =
Qk

i=1
xi

2 Loop xa = xl

3 XOR-XOR xa = min{x1, . . . , xk}

4 AND-AND xa =
Qk

i=1
xi

5 AND-N/M xa =
Qk

i=1
xi

6 AND-1 xa =
Qk

i=1
xi

7 OR-OR xa = max

prod(KC)

ff

8 OR-N/M xa = max

prod(KC)

ff

9 OR-N/M xa = max

prod(KC)

ff

Table 4.5: Aggregation rules for the availability.

4.4.5 Aggregation of Reputation and Fidelity

Zeng et al. have defined a reputation based on the idea of a user-given ranking, like

the online store Amazon allows ranking of products or the auction platform ebay

allows ranking of the users [159]. Furthermore, as mentioned in Section 3.2.2,

the reputation can be also considered as a measure to capture non-functional ser-

vice selection criteria that are usually not expressed with quantifiable measures.

One reason why the reputation is considered for this thesis is its characteristic:

The reputation represents an increasing dimension that might be an absolute value

(contrary to the availability) but an aggregation rule cannot summarise the values

in a sequential arrangement for example. Thus, it must be aggregated differently as

discussed for the other QoS categories. Kalepu et al. have discussed the reputation

in the sense of the fidelity concept in detail [69]. According to their discussion,

69

4.4. A Method for Quality-of-Service Aggregation

a general concept of reputation suffers from the fact that such a measure depends

on the subjective evaluation of individual users. Such a metric would benefit from

a comprehensive approach which eliminates subjective and counterproductive rat-

ings.

The fidelity denotes a measure for the overall quality of a service execution.

A formal, general definition of the fidelity is not given here, because the nature of

the fidelity depends on many aspects, such as the purpose of the composition, the

application domain, the nature of the output etc. Modelling and measuring the fi-

delity has been discussed for workflow applications (cf. Cardoso et al. [17]). Com-

pared with the reputation, the fidelity represents a more precisely defined measure

whereas the reputation asks for a plain judgement of individual consumers.

For the reputation, different aggregation rules are possible. For this thesis, the

idea has been considered that the reputation represents the mean average of the

ranks given by individual users. This is also the interpretation of Zeng at al. [159].

Consequently, the aggregation of reputation values should represent the average of

the individual services. It is assumed that such an aggregation rule would also suit

an aggregation of the fidelity. Other definitions can consider that the worst repu-

tation value is relevant. For example in ebay, users tend to focus on the negative

ratings while almost ignoring the positive ones. Thus, it is also possible to aggre-

gate reputation by considering the worst values. Table 4.6 shows the aggregation

rules based on the mean-value consideration.

4.4.6 Aggregation of Encryption Grade

The security can be interpreted in many different ways, as the UML QoS-Profile

has explained. Most of the characteristics show a binary nature: Either the service

supports a security characteristic (for example, an authentication method, facilities

to ensure confidentiality etc., as discussed by Ran [112]), or the service does not.

The aggregation of these binary characteristics does not require much convention

that would require a particular aggregation method: If a security characteristic is

required, each of the involved service candidates must provide this characteristic.

The only characteristic that can be described with numerical values is a mea-

sure that determines the length of a key that is used for encryption. Encryption

algorithms use a key either to encrypt data or to create an electronic signature. As

a rule of thumb, the longer an encryption key is the more difficult it is to break the

encryption or to damage the signature. Consequently, this characteristic shows an

increasing direction where a larger size denotes better quality.

For the aggregation of the encryption level in sequential patterns, the weakest

key is considered significant. In the parallel case, the encryption level is a non-

functional characteristic, which must be fulfilled by all significant parallel nodes

in the same manner. However, if the node does not fulfil a demanded level of

encryption, the execution would be worthless. Thus, this dimension is discrete and

the aggregation based on, for example, the average of involved services cannot be

applied. The aggregation for the encryption is listed in Table 4.6.

70

4.5. Support of Un-Structured Models

Comp. Pattern Reputation Encryption Grade

1 Sequence xa = 1

k

Pk

i=1
xi xa = min{x1, . . . , xk}

2 Loop xa = x xa = x

3 XOR-XOR xa = 1

k

Pk

i=1
xi xa = min{x1, . . . , xk}

4 AND-AND xa = 1

k

Pk

i=1
xi xa = min{x1, . . . , xk}

5 AND-N/M xa = 1

k

Pk

i=1
xi xa = min{x1, . . . , xk}

6 AND-1 xa = 1

k

Pk

i=1
xi xa = min{x1, . . . , xk}

7 OR-OR xa = 1

k

Pk

i=1
xi xa = min{x1, . . . , xk}

8 OR-N/M xa = 1

k

Pk

i=1
xi xa = min{x1, . . . , xk}

9 OR-1 xa = 1

k

Pk

i=1
xi xa = min{x1, . . . , xk}

Table 4.6: Aggregation rules for the mean reputation and the encryption level.

4.5 Support of Un-Structured Models

The structural model that is used by the aggregation method is not capable of ex-

pressing all possible structures of control flows. As mentioned in Section 4.2, the

structural model considered by the aggregation method is equivalent to a structured

workflow model (SWM), discussed by Kiepuszewski et al. [73]. However, flow

structures are possible that do not conform to SWMs. Kiepuszewski et al. name

them arbitrary workflow models and they define the following characteristics for

them:

1. An arbitrary workflow consists of sets of process elements (i.e. nodes in

a graph) and sets of transitions between process elements (i.e. edges in a

graph). Two types of process elements exist: tasks and a set of routing ele-

ments which are similar to the composition patterns.

2. Regarding the routing elements that split the flow, AND- and OR-splits are

considered. The AND-split has the same semantic as introduced for the com-

position patterns and the OR-split has the same semantic as the introduced

XOR-split.

3. Regarding the routing elements that join paths, AND- and OR-joins are con-

sidered analogously. The OR-join has a different semantic compared with

the XOR-join: For each incoming path, the routing element starts one in-

stance of the following flow. The AND-join has the same semantic as the

AND-join of the composition patterns.

4. Similarly to the composition patterns, process elements that do not have in-

coming paths represent initial items and process elements that do not have

outgoing paths represent final items.

71

4.5. Support of Un-Structured Models

5. Furthermore, Kiepuszewski et al. consider the following additional assump-

tions: For example, all initial activities are supposed to start concurrently,

and the workflow ends when all ending process elements have been reached,

following an “until there is nothing else to do”-idea.

The main characteristic of an arbitrary workflow model is that the process el-

ements that split and join different paths can be arranged with fewer restrictions

compared with an SWM. Considering WS-BPEL as an example, the flow and link

elements allow forming structures that cannot be expressed as an SWM. Contrary

to these two elements, WS-BPEL also includes elements named structured activi-

ties that comply with an SWM. Besides WS-BPEL, the workflow patterns by van

der Aalst et al. indicate that the arbitrary models are considered in the workflow

domain, for example, as indicated by the arbitrary loop pattern. The advantage of

allowing such arbitrary links between tasks and routing elements is obviously a bet-

ter expressiveness in terms of which structural arrangements can be modelled. The

downside of allowing such arbitrary models is that an invalid structural model can

lead to deadlocking situations when the workflow or the composition is executed.

The arguments used in discussion about arbitrary workflows versus SWMs is

related to the classic discussion on the use of go to-statements in program code.

The discussion has influenced the design of programming languages, because ar-

bitrary jumps in a program flow were considered “harmful” (cf. Djikstra [23] and

Knuth [74]): Allowing go to-statements would tempt programmers to write un-

structured, error-prone and hard-to-verify program code. Moreover, many cases

were identified for which programmers use go to-statements, but could have used

more appropriate structures to express an algorithm (e.g. a while-statement). Knuth

drew the conclusion that it depends on individual application cases whether go to-

statements are useful and offer advantages or they can be omitted by more appropri-

ate programming constructs [74]. The same considerations apply when discussing

advantages of SWMs over arbitrary workflow models.

This section will discuss examples that require the use of arbitrary workflow

models. In the following, three main example cases of arbitrary workflows are

presented that do not conform to an SWM: 1) a splitting or joining routing ele-

ment does not have a corresponding closing element, 2) arbitrary loops or go to-

statements and 3) nested patterns where the flow from one pattern is directed inside

another pattern.

4.5.1 Open Elements

The first case occurs if routing elements are not used in pairs or if corresponding

routing elements do not form pairs in terms of the number of outgoing and incom-

ing paths. The graph (a) shown in Figure 4.4 represents such a constellation: An

AND-split element has two outgoing paths and no corresponding join element is

provided. In a similar case, the open AND-split has a number of outgoing paths,

but a corresponding AND-join element has less incoming paths. Because of the

72

4.5. Support of Un-Structured Models

missing joining element or path in this example, the pattern-wise aggregation can-

not be performed.

It must be noted that the diagram (b) shown in Figure 4.4 has the same pattern

of an open AND-split. In this case the solution would be to add the two missing

joining elements. This modification is possible, because a part of the definition for

arbitrary workflows presumes that all final activities must end, in order to deter-

mine the end of the entire flow. Thus, adding the corresponding AND-splits would

not change the operational behaviour. Obviously, the problem of open AND-splits

occurs if this element is placed within another parallel element. In addition, the

problem can occur with open parallel joining elements in the way that the compo-

sition starts at different at once. For these cases it is assumed that all starting nodes

will be invoked at the same time. A corresponding example is shown in graph (c)
of Figure 4.4.

AND
SPLIT

AND
SPLIT

AND
JOIN

AND
SPLIT

AND
SPLIT

1

2

3 75

4 6

(a) (b)

AND
SPLIT

AND
SPLIT

1

2

3 7

5

4

6

AND
JOIN

AND
JOIN

AND
SPLIT

AND
JOIN

AND
JOIN

(c)

Figure 4.4: Examples of open parallel structures.

4.5.2 Arbitrary Loops

In a second case, loops are used in an unstructured manner. Such loops can point

from inside of one pattern element into another pattern element. The diagram (a)
shown in Figure 4.5 has a loop coming from a parallel structure pointing back

to a place outside this structure. The pattern-wise aggregation cannot take place

because of the open AND-split and the open XOR-join structure.

Contrary to that, a loop that occurs inside another pattern still conforms to an

SWM. The graph (b) in Figure 4.5 shows such a structure. A possible transforma-

tion into a structured model can be obtained by replacing the split and join routing

elements with the loop pattern. This case shows that a loop only becomes prob-

lematic for structured models if the enclosing pattern is left.

73

4.5. Support of Un-Structured Models

AND
SPLIT

AND
SPLIT

AND
JOIN

XOR
JOIN

AND
SPLIT

XOR
JOIN

(a) (b)

LOOP
END

LOOP
START

Figure 4.5: Examples of loops.

4.5.3 Nested Patterns

As the third case, a path can leave “its” pattern and point to a joining element of

another pattern. Figure 4.6 shows an example of such a structure with three models

(a), (b) and (c). The example given in (a) has been discussed by Kiepuszewski et

al. [73] and by van der Aalst [144] and it serves as the classic case when it comes

to the discussion of expressiveness among workflow or composition languages.

All splitting and joining routing elements have a corresponding counterpart and all

elements have two outgoing or incoming paths respectively.

The graph (b) also represents a special case, which Kiepuszewski et al. discuss

as a specific overlapping structure. The graph (c) gives also an example for an

occurring deadlock: The main two paths are never followed at the same time but

both are required when the flow arrives at the lower AND-join elements. As a

result, this structure results in a deadlocking situation. In all three cases, a pattern-

wise aggregation cannot be performed, because every pair of AND-split and -join

elements shows a dependency to an element outside of the pattern.

4.5.4 Transformations to Structured Workflow Models

The three cases introduced above represent structural arrangements that cannot be

modelled with SWMs. As a consequence, the proposed aggregation model cannot

be applied. Kiepuszewski et al. [73] have proposed transformations that convert ar-

bitrary workflows into equivalent SWMs in order to cope with this problem. Their

approach is to utilise node duplication and the use of auxiliary variables to form ad-

ditional conditional branches. With node duplication, the invocation of tasks in the

composition is duplicated. The authors have shown the equivalence of an arbitrary

workflow to a corresponding SWM by using a technique named bi-simulation. By

applying the bi-simulation technique, the equivalence of two graphs can be deter-

mined by a node-wise comparison of the possible states. Kiepuszewski et al. have

74

4.5. Support of Un-Structured Models

AND
SPLIT

XOR
JOIN

XOR
SPLIT

XOR
JOIN

AND
SPLIT

XOR
JOIN

AND
SPLIT

AND
JOIN

XOR
JOIN

AND
SPLIT

AND
JOIN

XOR
SPLIT

(b) (c)

AND
SPLIT

AND
JOIN

AND
SPLIT

AND
JOIN

(a)

Figure 4.6: Examples of nested patterns.

shown the following:

• A transformation is always possible if an arbitrary workflow model does

not contain any tasks executed in parallel. For this case, only splits are al-

lowed that branch into exactly one flow. The equivalent structure of the

composition patterns is the combination of XOR-split and -join elements.

Transformations can also applied to structural models that contain an arbi-

trary loop.

• A transformation is not always possible if a model contains a parallel split

or join element without its corresponding element or that contains nested

structures. The authors explain that only models that contain parallel struc-

tures and that overlap in a predefined way (as shown in graph (b) of Fig-

ure 4.6), or do not merge at some point (as shown in graph (b) of Figure 4.4)

can be transformed into an SWM.

Transforming Parallel Cases to Structured Workflow Models

Kiepuszewski et al. have distinguished six sub-cases of parallel flows. For each

it was discussed whether a transformation to an SWM is possible or not. From

these six cases, they have identified four which allow deadlocking flows. Such

structures cannot be transformed into an SWM until this deadlock potential has

been eliminated. The remaining two cases are named parallel exits (cf. Figure 4.4

(a)), and a synchronised entry into a parallel structure (cf. Figure 4.4 (c)). For

these two structures, Kiepuszewski et al. have shown that no transformations into

an SWM are possible.

The case of open parallel structures and the case of arbitrary loops represent

such parallel exits or synchronised entries. They can be modelled as a nested ar-

rangement of parallel structures. For the case of the open parallel structures, it is

75

4.5. Support of Un-Structured Models

assumed that all starting tasks start at the same time. For the ending tasks, it is as-

sumed that all need to end in order to finish the entire composition. Then, an AND-

split or an AND-join respectively can be added as it is shown in Figure 4.7 (a). The

result is a composition structure that shows nested parallel routing elements. This

nested structure is still not compatible with the proposed aggregation method and

thus, the aggregation cannot be performed.

In the case of occurring loops, a loop structure can be unrolled. This is also

named “loop unwinding”. By loop unrolling, the looped part of the execution flow

is written repeatedly for the amount of loops. Of course, this also presumes that

the amount of loops is known at design time or at least a maximum number of

loops can be guessed. In the previous section, it was explained that knowing the

number of occurring loops in advance is necessary to perform the QoS aggregation

in general. Therefore, only this case is considered for the aggregation model. If

the number of loops is known, then the loop can be unrolled: The repeated part

is added to the graph as shown in 4.7 (b). The loop case can also be seen as a

variant of the case of nested parallel routing elements. And as a consequence, the

aggregation cannot be applied as well.

AND
SPLIT

AND
SPLIT

AND
JOIN

(a)

AND
SPLIT

AND
SPLIT

AND
JOIN

XOR
JOIN

(b)

AND
SPLIT

AND
SPLIT

AND
JOIN

AND
JOIN

AND
SPLIT

AND
SPLIT

AND
JOIN

XOR
JOIN

AND
SPLIT

AND
SPLIT

AND
JOIN

AND
JOIN

(...)

Figure 4.7: Open parallel and arbitrary loop structures and possible transforma-

tions.

Kiepuszewski et al. discuss the classical example of nested parallel elements,

which is shown again in graph (a) of the Figure 4.8: In this graph, two pairs of

sequential tasks are executed in parallel. In addition, after the task 1 has been

finished it synchronises with the first task of the other path only. For this case,

Kiepuszewski et al. have proven that it is not possible to transform the arbitrary

workflow into an SWM with equivalent functional behaviour, because the parallel

paths have inter-relating dependencies.

It must be noted that conditional branches do not result in this difficulty: The

case shown in graph (b), without parallel but with conditional branches, can be

76

4.5. Support of Un-Structured Models

AND
SPLIT

3 4

AND
JOIN

AND
SPLIT

AND
JOIN

21

AND
SPLIT

3 4

XOR
JOIN

XOR
SPLIT

AND
JOIN

21

XOR
SPLIT

3 4

AND
JOIN

AND
SPLIT

XOR
JOIN

21

XOR
SPLIT

3 4

XOR
JOIN

XOR
SPLIT

XOR
JOIN

21

(a) (b) (c) (d)

XOR
SPLIT

3 XOR
JOIN

XOR
SPLIT

21

3*

XOR
JOIN

4

Figure 4.8: Structures that contain nested parallelism.

transformed into a structured model using node duplication: The first XOR-split

defines that only one of the outgoing paths is started. Thus, the first XOR-join

after task 1 always has only one possible incoming path. Then, the middle XOR-

join could be dropped and to the XOR-split element, a corresponding XOR-join

element with a duplicated node 3 can be added. Because the given aggregation

rules consider only the selection of a minimum or a maximum value, the additional

node will not change the result of the aggregated QoS as compared with a manual

inspection of the QoS, which would involve the paths (1,3), (2,3), (2,4).

The example shown in graph (c) represents a case which would result in a

deadlock, because the AND-join routing element would wait for both incoming

paths, but only one of them would have been started before. A similar example

is given by graph (d) where the given structure can result in a deadlock: It could

happen that the right path does not arrive at the bottom AND-join element. Both

examples do represent valid workflow models. However, their execution can result

in erratic behaviour. Both examples also show the disadvantage of using arbitrary

structures: It is possible that deadlocking flows can be defined while structured

models prevent any irregular behaviour.

Transforming Parallel Cases to Non-Equivalent SWMs

The goal of the discussion given by Kiepuszewski et al. is to provide transfor-

mations that result in functional equivalence compared with the original arbitrary

workflows. This is a different goal from what is required for the aggregation

method: For the aggregation, structural models are required that result in suit-

able QoS statements referring to the original arbitrary model. Thus, not the func-

tional equivalence is relevant for transformations between arbitrary workflows and

SWMs. The proposed transformation focusses on the main example given in Fig-

ure 4.8(a), because of its relevance for loop-unrolling and open parallel structures.

The proposed transformation is outlined in Figure 4.9 with two examples (a)

77

4.5. Support of Un-Structured Models

AND
SPLIT

3 4

AND
JOIN

AND
SPLIT

AND
JOIN

21

XOR
SPLIT

3 4

XOR
JOIN

AND
SPLIT

XOR
JOIN

21

3 4

AND
JOIN

AND
SPLIT

AND
JOIN

21

(a) (b)

2*

3

4

XOR
JOIN

AND
SPLIT

XOR
JOIN

21

2*

XOR
SPLIT

XOR
JOIN

AND
SPLIT

AND
SPLIT

Figure 4.9: Structures that contain nested parallelism and possible transformations.

and (b). The transformation is performed as follows: For each branch that defines

a dependency, concurrent paths are created that have duplicated nodes. Of course,

applying the aggregation method to the resulting SWM will result in a different

QoS, because the duplicated node also results in a duplicated QoS. For example,

if the cost is relevant, the corresponding QoS statement is counted twice and thus

the resulting cost is higher than in reality. Thus, for each QoS characteristic that

is based on an arithmetic operation (e.g. the addition or the multiplication), the ag-

gregated QoS statement must be corrected by neutralising the corresponding dupli-

cated node. The conclusion is that such a transformation is possible. Nevertheless,

performing the QoS aggregation by this way is more complex than considering

SWM-compatible structures only.

Conclusion

For cases where the composition structure does not conform to an SWM, Kie-

puszewski et al. have shown transformations from specific cases of arbitrary work-

flow models into SWMs. Consequently, the aggregation method can be also per-

formed for these cases. In summary, the introduced transformations allow the sup-

port of the following cases by the aggregation method:

• Arbitrary workflow models without parallelism. Flow models are sup-

ported that conform to the definition of arbitrary workflows and do not con-

tain any tasks that are executed in parallel. For these models, transformations

exist that result in an SWM.

• Arbitrary workflow models with structured parallelism only. If parallel

structures occur in a workflow model, they must form an independent sub-

78

4.6. Related Methods for Quality-of-Service Aggregation

part that conforms to the definition of an SWM. For these models, transfor-

mations can be also applied to achieve a model that can be entirely reduced

into one statement.

• Arbitrary workflow models with special cases of unstructured paral-

lelism. Special cases of parallel flows that do not conform to SWMs can be

transformed into an SWM. The work of Kiepuszewski et al. has discussed

such special cases of unstructured parallelism and showed corresponding

transformations [73].

Regarding the remaining structures, in particular the nested parallelism, a trans-

formation is possible that would result in a functionally different SWM. In addi-

tion, the aggregation method would also require a modification to process the QoS

on the resulting model. Such a method raises the efforts to perform the aggrega-

tion method. The decision that the aggregation method only covers SWMs and the

above mentioned three cases of arbitrary workflow models represents a compro-

mise between support of possible flow models and feasible QoS aggregation.

4.6 Related Methods for Quality-of-Service Aggregation

The work of Puschner and Schedl was already mentioned. Besides their own ap-

proach, the authors mention also a couple of related research efforts in the field

of software development for real-time environments [111]. Contributions to this

field either presume a structured model like SWMs to allow the computation of

response times or propose specific approaches that cover the response time and a

measure for reliability. Thus, these approaches were not regarded as feasible as a

foundation for an aggregation method that covers different QoS characteristics in

service compositions.

Lee discusses the problem of QoS-based selection to form compositions [78].

To achieve QoS statements for the composition, he proposes aggregating cost and

response time by the addition of individual values. This approach does not result in

wrong statements. However, a structure-aware model leads to a more appropriate

statement that will be closer to the delivered QoS during run-time. For example,

only one of the values in parallel XOR-structures is relevant instead of the added

total. An addition of all the response time values presumes that all tasks in the com-

position will be executed in a sequential manner. Thus the proposed aggregation

by forming a sum is limited to covering this case. Yu and Lin [158] also consider a

sequential structure, which includes either a sequence of tasks or, as they mention,

a service composition that shows a sequence of invocations that is considered to be

relevant for the composition. As explained for the aggregation method by Lee, the

resulting QoS statements might not be as close to the run-time QoS as the values

obtained by the pattern-based aggregation for parallel structures.

Zeng et al. present a framework that covers many aspects of forming compo-

sitions while considering the QoS as selection criteria [159]. In their work, they

79

4.6. Related Methods for Quality-of-Service Aggregation

use a more detailed method than the aggregation proposed by Lee. They discuss

a set of QoS characteristics, but they also make clear that their approach is not

limited to these. Their aggregation method specifically considers the execution du-

ration, which is equivalent to the response time mentioned in this thesis. In their

approach, an algorithm identifies a critical path that shows the longest time for the

given setup. Then, the addition of the individual QoS values is taken as the result

for the overall execution of the composition. For the other QoS characteristics, the

proposal is to consider the QoS values of the tasks that belong to the critical path.

For example, to aggregate values for availability, the product of the tasks of the

critical path is relevant. This approach is justified with the assumption that tasks

which do not belong to the critical path will also not affect the resulting QoS during

run-time.

Although this method might deliver appropriate results, an example can be

given where the pattern-based aggregation will lead to a more precise aggregated

statement. This example is shown in Figure 4.10: An arrangement of four tasks

is given from which only one will be invoked at a time (the XOR-split). In this

arrangement, a critical path algorithm considering the execution or response time

would identify the path with task 2. Consequently, the resulting availability for

this statement is 0.98. If it is assumed that the other paths will be taken with a

reasonable frequency, the resulting availability will be lower than 0.98. Thus, the

proposal to consider the average mean results in a statement which is more likely

to reflect the QoS during run-time.

XOR

JOIN

XOR

SPLIT

3

1

2

4

exec time: 170

availability: 0.99

exec time: 210

availability: 0.98

exec time: 40

availability: 0.90

exec time: 100

availability: 0.95

Figure 4.10: Example for the aggregation based on a critical path.

A possible extension to the proposed aggregation method by Zeng et al. would

be to apply the critical path algorithm not only to the execution or response time

but also to the other QoS characteristics. Based on the critical path found for each

QoS characteristic, the product or the sum of the individual values will also lead to

similar results as the pattern-based aggregation does. However, this approach leads

80

4.7. Aggregation for Quality-of-Service Monitoring

to the problem that, for each considered QoS characteristic, an algorithm must be

designed that identifies the critical path. This is considered to be more complex

than the definition of aggregation rules for structured patterns.

Cardoso discusses the aggregation of QoS in the context of workflows [15].

He proposes a structured model as well and accordingly the aggregation method

is based on defined sets of structural patterns. Their contribution also includes

the probability of invocations in conditional parallel structures, which is similar

to the monitoring approach discussed in the previous section. The approach of

Cardoso does not cover the m-out-of-n-joins (and splits) as mentioned among the

workflow patterns by van der Aalst et al. By using only AND- and XOR-elements,

the semantics of the m-out-of-n joins can be simulated as van der Aalst et al. have

shown [146]. However, this equivalent structure, achieved by using the simpler

routing elements, represents an arbitrary workflow model and cannot be covered by

the aggregation method that presumes an SWM. Thus, these additional structures

were added to cover also these patterns. Then, the resulting QoS statement for the

composition will be more precise.

4.7 Aggregation for Quality-of-Service Monitoring

The pattern-based aggregation method can be also applied to values that result

from monitoring the QoS of the composition during run-time. With monitoring

functionality, a retailer can capture the resulting QoS when the particular services

are invoked. For this monitoring process, a centralised, mediator-based structure is

presumed. Different setups of compositions are ignored for this discussion, such

as the brokered composition or a composition in a peer-to-peer environment as

described by Hull et al. [48]. The research conducted in the field of monitoring

workflows is also called workflow history management. Koksal et al. discussed the

motivations for monitoring workflows, and among the main reasons the following

apply as motivation in the field of service compositions [75]:

• Recovery and Balancing. Changes in the delivered QoS are inherent char-

acteristics of open distributed systems [35]. Service importers want to detect

QoS violations during the run-time and establish appropriate recovery activ-

ities. For example, a service invocation might take longer than guaranteed

and then compensation activities must be established. From the perspec-

tive of the service exporter, another motivation for monitoring the QoS is to

ensure different QoS parameters negotiated with different exporters. For ex-

ample, a service exporter must prioritise between different service importers

in case of shortages.

• QoS Analysis. If metrics about the response are captured, it is possible to

check whether services are delivered with the desired QoS or not. However,

monitoring the QoS only applies to metrics that can be directly derived from

the execution, such as response time or availability. For example, capturing

81

4.7. Aggregation for Quality-of-Service Monitoring

the cost during the execution depends on the payment method (flat-rate vs.

per-request).

The response time of the invocation of individual services can be used to

analyse the performance. Then, the main performance bottlenecks of the

composition can be identified. Regarding other QoS characteristics, the

monitored invocation frequency of particular tasks in conditional branches

can lead to a more precise aggregation of other QoS characteristics, such as

the availability.

• Controlling. The intended application of service compositions is the reali-

sation of an entire business process or parts of it. Financial controllers can

benefit from up-to-date information about the progress or running instances

of the composition. By the aggregation of the cost it can be determined, how

many resources were consumed and how many resources might be consumed

within a given time.

To establish recovery tasks when errors occur during the execution or to check

the delivered QoS of individual services, the aggregation of QoS values is not re-

quired. However, to analyse the performance of the composition, and to predict

future characteristics for controlling purposes, the proposed aggregation of QoS

values can be performed to deliver a more accurate estimation of the delivered

QoS.

In order to capture the delivered QoS in a Web service environment, different

approaches that share the mentioned motivations already exist. Then management

infrastructure WSOI developed by Tosic et al. provides the monitoring of the QoS

and that facilitates the exchange of services in case of unfavourable QoS [132].

This contribution targets the first motivation mentioned for monitoring. Techni-

cally, the functionality is achieved with an additional management tier on the side

of the service exporter. A retailer can use such a facility to adapt the QoS param-

eters delivered to the consumer. Erradi and Maheshwari propose a system with

similar objectives, but contrary to the work of Tosic et al., they promote a separate

broker-oriented infrastructure that can cover services of different exporters [28].

This approach results in a new role independent from the retailer and the 3rd party

service provider. Dogdu and Mamidenna specifically discuss such an independent

broker component that performs the invocation instead of the service importer [25].

With such an arrangement, this component can specifically monitor the QoS and

perform balancing among the pending requests, to provide an efficient scheduling

of invocations.

Baresi et al. have also discussed the monitoring of the QoS in service com-

positions [5]. They propose an infrastructure consisting of software components

that a retailer would use. In addition, they provide modules that 3rd party service

providers can integrate into their service infrastructure in order to stay compatible

with the monitoring environment of the retailer.

82

4.7. Aggregation for Quality-of-Service Monitoring

4.7.1 Aggregation of Mean Values

The difference between the aggregation during the modelling or the design time

and run-time lies in the nature of the computed values: The QoS aggregation dur-

ing design time provides proper upper and lower limits of a QoS characteristic,

like cost or response time. For QoS categories that require a mean-oriented aggre-

gation, the aggregation performed at design time represents an estimation. How-

ever, to properly calculate mean values from the given individual QoS statements,

the aggregation rule must know the distribution of task executions in conditional

branches in advance.

During run-time, monitoring facilities can also capture the distribution of ser-

vice executions in branching structures. Based on monitoring data, an aggregation

algorithm can consider the invocation occurrences to apply a weight to the indi-

vidual values. Then, the aggregation would result in an extrapolation of values in

parallel structures. For the given aggregation rules in Table 4.7, the weighted mean

for parallel patterns is considered. The definition distinguishes between the weight

of each value in the split operation gi and the weight of each value in the join op-

eration hi, where the index i refers to the individual service. The aggregation rules

for mean response time and mean cost are given in Table 4.7. To cover the OR-split

statements, the function sum(. . .) denotes to add the elements of the enclosed set,

if this set contains the values. Or it denotes to result in individual sums from the

enclosed set of sets (in the case of sum(KC)).
The aggregation of mean response time represents a special case: An appro-

priate approximation for all parallel patterns except the XOR-XOR combination

cannot be given. The following example explains the reason: A parallel AND-

AND arrangement contains three services. In this case, the distribution for the split

and join condition does not matter. It is assumed that all the services execute either

in 3 or in 7 seconds – each by a probability of 50%. The aggregation for this par-

allel arrangement would result in the value 5. Considering the setup, it is likely (at

a probability of 0, 875%) that at least one of the services would need 7 seconds, so

the mean for the aggregation should result in a value closer to 7 than the value 5.

This example shows that for characteristics that have aggregation rules depend-

ing on the join operation (as the response time), an aggregation method must take

the resulting distribution of the provided QoS into account or as an alternative, it

must capture the delivered QoS directly. This applies to all parallel arrangements

with a synchronising join involving more than one service. The average mean of

the given mean values would lead to a useless calculation. Thus, the proposed ag-

gregation rules can only refer to the upper and lower limits of response time. In

addition, the weighted mean must be interpreted as a statistical measure and thus

the aggregation does not make sense for just covering very few executions.

83

4.7. Aggregation for Quality-of-Service Monitoring

Pattern Mean Response Time Mean Cost

1 Sequence xa =
Pk

i=1
xi xa =

Pk

i=1
xi

2 Loop xa = lx xa = lx

3 XOR-XOR xa = 1

k

Pk

i=1
gixi xa =

Pk

i=1
gixi

4 AND-AND (see text) xa =
Pk

i=1
xi

5 AND-N/M (see text) xa =
Pk

i=1
xi

6 AND-1 (see text) xa =
Pk

i=1
xi

7 OR-OR (see text) xa = 1

|KC |
sum

“

sum(KC)
”

8 OR-N/M (see text) xa = 1

|KC |
sum

“

sum(KC)
”

9 OR-1 (see text) xa = 1

|KC |
sum

“

sum(KC)
”

Table 4.7: Aggregation rules for the mean response time and the mean cost.

84

Chapter 5

Quality-of-Service-based

Selection of Services

The introduction in Chapter 1 has presented the abstract parts of service trading

as specified by the RM-ODP. Performing these parts subsequently narrows down

the set of available services in order to identify the optimal selection of services

to perform the tasks of the composition. According to the trading specification,

these parts are as follows: 1) a keyword-based search among the available services

for a rough pre-filtering, 2) a matchmaking process identifying services that match

the required functionality to perform the according tasks, 3) a selection process

that assigns one candidate for each task in accordance with the selection criteria,

i.e. non-functional or QoS requirements, and 4) the application specific of trading

policies.

This chapter will discuss the third step of these four. It will discuss the selec-

tion process from a combinatorial point of view; the discussion will focus on the

abstract functionality of this process rather than refer to specific technologies. In

the process, the QoS serves as selection criteria and the resulting problem is named

the “QoS-based selection”.

In Section 5.1, an introduction to the selection problem is presented. Based on

the given description of this problem, a problem model will be defined in the subse-

quent Section 5.2. The problem model provides the basis to discuss several aspects

of the selection problem: a) it enables the comparison with other known combina-

torial problems (Section 5.3), b) it is used for the discussion about computational

efforts to solve the problem, given in Section 5.3.5, and c) it is the basis for the

explanation of different heuristics when applied to the problem. The application of

the heuristics will be discussed in Section 5.4 of this chapter.

5.1 Introduction to the Selection Problem

The trading specification provides the foundation for discussion on QoS-based se-

lection in this work. As one of the main presuppositions defined by this specifica-

85

5.1. Introduction to the Selection Problem

tion, it is presumed that the matchmaking process identifies functionally suitable

candidates and that this step results in more than one candidate for a particular

task. Otherwise, if the matchmaking has determined only one candidate for a task,

the selection is trivial and the only one identified service is assigned. Furthermore,

it is assumed that each task requires a different functionality and thus, the service

candidates each represent a candidate for a particular task.

If more than one candidate is available to be assigned to perform a particular

task, a selection must be made among them. As explained in Section 3.1.2, the re-

tailer sets different – at least more than one – QoS requirements that serve as selec-

tion criteria applied to the set of candidates. Two basic kinds of QoS requirements

are possible: Either the retailer sets one or more constraints that refer to a specific

QoS characteristic, or the retailer identifies one or more QoS characteristics that

are subject to optimisation. Chapter 3 has identified different QoS characteristics

relevant for the application in service compositions, which are therefore relevant

for the QoS-based selection. These characteristics are the throughput, the response

time, the cost, the reliability, the availability, security aspects and the reputation of

a service provider.

To explain the nature of the selection problem, the first chapter has presented

a simple example (cf. Section 1.3) of a composition that arranges two tasks in

parallel. In this example the optimisation of response time and cost represented

the selection criteria. The given example has suggested that a problem with the

selection arises in parallel structures with two or more selection criteria. However,

a composition that arranges all involved tasks in a sequence can also result in a

combinatorial problem when the QoS-based selection is applied: As an example, a

sequence of tasks can be considered. For each task, more than one candidate exists.

The optimisation goal is to achieve the lowest response time of the composition.

In addition, a constraint on the cost is set, denoting that the assignment of services

must not exceed a given cost limit.

The problem can be formulated as follows: a represents the number of tasks

and bi represents the number of candidates referring to a particular task denoted by

index i. Then, an integer programming formulation is as follows:

minimise tagg =

a
∑

i=1

bi
∑

j=1

pijtij

while keeping climit ≥
a

∑

i=1

bi
∑

j=1

pijcij

and 1 =

bi
∑

j=1

pij ∀i ∈ {1, . . . , a}, pij ∈ {0, 1}

In this formula, tij represents the given response time of a candidate and cij

the cost. The variable pij denotes whether a candidate is selected or not. These

86

5.1. Introduction to the Selection Problem

equations were discussed by Lee [78] and also by Yu and Lin [158]. In addition,

these equations are a common representation of the Multiple Choice Knapsack

Problem (MCKP), which is a popular optimisation problem. Section 5.3.1 will

discuss the family of knapsack problems in further detail. Since the problem for-

mulation represents a standard integer linear programming problem, Lee proposes

solving instances of the problem with the help of available off-the-shelf tools for

integer linear programming [78]. Yu and Lin propose performing the selection in

accordance with the given description based on an algorithm by Pisinger for the

MCKP which also builds on this integer programming formulation [158]. Without

formal proof, the described variant of the selection problem can be transformed

into an MCKP. Thus, the selection problem could be reduced to an MCKP and a

solution algorithm for MCKP can be successfully applied to the selection problem.

Figure 5.1 outlines this relation.

MCKP Selection Problem
(so far)

⊇

Figure 5.1: Relation between the MCKP and the selection problem.

However, when it comes to QoS characteristics like the reliability or the avail-

ability, the problem formulation does not result in a linear system of equations. The

aggregation rules given in Section 4.4 define a multiplication of the values and the

problem cannot be solved with linear programming techniques. Thus, Zeng et al.,

who also propose solving the selection problem with integer programming meth-

ods, transform the non-linear equation, resulting from constraints on availability or

reputation for example, into a linear one [159], i.e. that the used variables have an

exponent of 1. Applied to a sequential execution of services, an equation covering

the availability is:

minimise alimit =
a

∏

i=1

bi
∏

j=1

a
pij

ij

Identical to the equations given before, aij denotes the availability of a given

service and pij denotes whether a candidate is chosen or not. Then, the logarithm

function is applied in the following manner:

ln(alimit) =
a

∑

i=1

ln
(

bi
∏

j=1

a
pij

ij

)

ln(alimit) =

a
∑

i=1

bi
∑

j=1

pij ln(aij)

87

5.1. Introduction to the Selection Problem

and 1 =

bi
∑

j=1

pij ∀i ∈ {1, . . . , a}, pij ∈ {0, 1}

This is a linear equation again and thus can be considered with a integer program-

ming approach. Thus, the transformation as proposed by Zeng et al. makes it

possible to consider QoS characteristics that would normally result in a non-linear

equation. Lee [78] and Zeng et al. [159] have also discussed the hardness of the

problem in terms of its required effort to solve. The hardness will be discussed

further in Section 5.3.5. As for the application to the selection problem, both Lee’s

and Zeng et al.’s approaches propose using the IBM Optimization Solutions and

Library (OSL) which is a software tool for solving integer programming problems.

As a conclusion, non-linear optimisation and constraint statements resulting from

QoS characteristics that require a multiplication for their aggregation can also be

transformed into linear statements and thus be reduced to the linear formulation of

the MCKP. Figure 5.2 outlines this relation.

MCKP

Selection Problem
(so far)

⊇

Int. Lin. Non-Int. Lin.

⊇

Figure 5.2: Relation between the MCKP and the integer linear and non-linear vari-

ant of the selection problem.

However, the approach by Lee, Zeng et al., and Yu and Lin is to presume that

a composition can be represented by a sequential arrangement of relevant tasks.

Nevertheless, a composition can also contain parallel structures. In Section 4.6

of the previous chapter, an example has explained that the approach to consider a

single critical service leads to a problem when considering different QoS charac-

teristics. To discuss the impact on the problem formulation, Figure 5.3 shows an

example of a possible composition structure.

The composition structure shown in this figure contains two parallel arrange-

ments. The first defines that one of the parallel task is executed while the second

arrangement defines that all tasks are executed in parallel. The solution proposed

by the mentioned works is to determine the critical path of the execution. Zeng et

al. for example, propose considering the response time as the relevant QoS charac-

teristic to identify the relevant services that form the critical path. Then, as for the

QoS, its aggregation can be performed with one aggregation rule resulting in a lin-

ear or non-linear equation. However, the example makes clear that a more precise

formulation is possible. Regarding the first parallel statement, only one service

will be invoked at a time, but all are considered relevant. Consequently, a simple

multiplication of the value would predict a worse availability that actually deliv-

88

5.1. Introduction to the Selection Problem

XOR

JOIN

XOR

SPLIT

4

2

31 AND

JOIN

AND

SPLIT

8

6

75 9

Figure 5.3: Composition structure that contains parallelism.

ered. For this structure, the assignment that results in the average is considered

relevant.1 Besides statements about response time, cost or other QoS categories,

covering the aggregation of the availability of the first parallel structure results in:

ln(alimit1) =
1

3

∑

i=2,3,4

bi
∑

j=1

pij ln(aij)

with 1 =
∑

i=2,3,4

bi
∑

j=1

pij

Then, the remaining availability values could be expressed with a single multi-

plication. To provide a more structured form, a detailed expression for the second

parallel structure and the sequential arrangement would be as follows:

ln(alimit2) =
∑

i=6,7,8

bi
∑

j=1

pij ln(aij)

with 1 =

bi
∑

j=1

pij ∀i ∈ {6, 7, 8}, pij ∈ {0, 1}

ln(alimit3) =
∑

i=1,5,9

bi
∑

j=1

pij ln(aij)

with 1 =

bi
∑

j=1

pij ∀i ∈ {1, 5, 9}, pij ∈ {0, 1}

These equations do not define a global constraint, and therefore the following

equation must be added in order to express a constraint on the availability that

covers the entire composition:

1As explained in Section 4.3, for the model it is assumed that the services are invoked with equal

probabilities. If necessary, the model could be extended with individual invocation probabilities

which would result in a weighted average.

89

5.1. Introduction to the Selection Problem

maximise ln(alimit) = ln(alimit1) + ln(alimit2) + ln(alimit3)

This case demonstrates that a more precise problem formulation, with the goal

to express a problem instance as a integer programming problem, depends on the

given composition structure. If the selection problem is transferred into this for-

mulation, then this problem formulation does not conform to the MCKP anymore.

Figure 5.4 depicts this relation. In this figure, the selection problem is divided

into four variants resulting from whether a sequential structure is considered and

whether the problem involves non-linear statements which require a transforma-

tion.

Int. Pr. Problem Selection Problem

MCKP
Sequential

Selection Problem
⊇

Int. Lin. Non-Int. Lin.

⊇

⊇
⊇

Figure 5.4: Relation between the MCKP and the selection problem involving the

number of constraints.

The conclusion is that for each problem instance a new set of equations must

be formed. Thus, the approach of this thesis is to express a problem model which

captures the structural differences with their implications of the aggregation of

different QoS categories. Moreover, if multiple criteria are considered for a com-

bined goal function, the different criteria would require particular weights in order

to provide significant solutions. The setting of appropriate weight factors becomes

even more important, if non-linear QoS characteristics require a transformation

involving a logarithmic operation. Then a weight must also compensate the non-

linear operation applied to the QoS values. Because of this characteristic, different

heuristics are discussed as an alternative to the approach of using integer linear

programming. To summarise the discussion above and what has been presented in

previous chapters, the problem model must capture the following characteristics of

a service composition and possible instances of selection problems:

• Multiple Optimisation Criteria. The problem model must allow express-

ing multiple optimisation criteria. For example, a retailer can define two or

more QoS characteristics at once that are subject for optimisation.

90

5.2. The Problem Model

• Multiple Constraint Criteria. In a similar manner, multiple constraint cri-

teria must be possible, i.e. a retailer can define more than one QoS charac-

teristic as a constraint criterion.

• Given Setup of Tasks and Candidates. A preceding matchmaking process

will result in a set of candidates for each task.

• Composition Structure. As the example of this section has shown, the

aggregation of the composition depends on the arrangement of the given

tasks and services. Thus, a problem model must also express these in order

to correctly aggregate the given QoS values.

The different characteristics indicate that a selection problem can also involve

more than one constraint and more than one optimisation goal. This aspect has

been ignored in the previous discussion. Consequently, Figure 5.5 also identifies

the case of one constraint and one optimisation goal as the special case that offers

the transformability to the MCKP.

Int. Pr. Problem Selection Problem

MCKP

Sequential

Selection Problem

⊇

Int. Lin Non-Int. Lin.

⊇⊇
⊇

Seq. Selection Problem

with 1 Constraint and 1 Goal

Figure 5.5: Summary of relations between the MCKP and the selection problem.

5.2 The Problem Model

Based on the requirements on the problem model from the previous section, this

section will introduce a model that allows expressing given instances of a selection

problem. Regarding the setup of the given composition case, this model contains

the following elements:

• Tasks. The model must contain a set of tasks T = {t1, t2, . . . , ta} where the

number a represents the total number of tasks in the composition.

91

5.2. The Problem Model

• Candidates. The output of the matchmaking process is a set of (service)

candidates S = {s1, s2, . . . , sb} where the variable b represents the number

of all candidates. It is presumed that a task potentially requires a different

type of functionality when compared to other tasks. Consequently, available

services will provide a particular functionality and thus may not be suitable

to perform different tasks. If the case occurs that a service can serve two

different types of functionality, a candidate identified for one and another

task is counted twice.

An entire set containing all candidates does not express the described condi-

tions. Therefore, the model is extended in the following way: The outcome

of a discovery process results in a set of candidate-sets U, each holding the

set of candidates Si for a particular task ti ∈ T.

U = {S1, S2, . . . , Sa}
Si = {si1, si2, . . . , sibi

}
i = 1, . . . , a

in this definition, bi denotes the number of candidates found for a particular

task.

• QoS characteristics. For identifying different QoS characteristics, which is

necessary when their values are used in optimisation statements, a number

from 1 to q is used, with q denoting the total number of QoS characteristics.

• QoS vector. If different QoS characteristics are considered, different QoS

values are assigned to the candidate services. Because more than one QoS

value can be assigned for each candidate, a vector is used to represent a can-

didate. This QoS-vector holds the different QoS values denoted by the index

n, n = 1, . . . , q. The index q represents the different QoS characteristics

that are taken into account. The result is a vector

~sij =

sij1
sij2

.

.

.

sijq

with index i = 1, . . . , a denoting the corresponding task and index j =
1, . . . , bi denoting the number of the according candidate at task i. This

resembles the indices as used in the previous section. In summary, the set U

represents a set of sets of vectors.

92

5.2. The Problem Model

5.2.1 The Selection Criteria

The selection of candidates involves the application of selection criteria. QoS char-

acteristics can serve as criteria in an optimisation function. If one or more QoS

characteristics are relevant for optimisation, the corresponding value of the QoS

vector is subject to an optimisation function. This function depends on the direc-

tion of the dimension. For characteristics with a decreasing dimension, meaning

that a lower value denotes a better QoS, such as response time or cost, the function

must minimise the aggregated value. For categories with an increasing dimension,

the function must maximise the value. Considering the aggregation rules that were

presented in the previous chapter, a general formulation of optimisation goals is

defined. The optimisation statement expresses either a minimisation of maximisa-

tion of the resulting QoS value, aggregated by function fn, n ∈ {1, . . . , q} where

n denotes the considered QoS characteristic:

{minimise|maximise}(f(Un)) Un = {s11np11, . . . , sabn
pab}

with pij =

{

1 if selected, and

0 otherwise.

By using this notation, it is assumed that a resulting 0 represents a neutral

element with respect to the aggregation function. For aggregation functions that

multiply the given values, the neutral element would be the value 1. The previous

section has given an example that has used the indices i and j in the same manner.

In addition to the optimisation criteria, one or more QoS categories can be

relevant for expressing a constraint on the composition. Depending on the direction

of the considered QoS characteristic with index n, the constraint denotes an upper

or lower bound for the resulting aggregated value:

{cn > |cn <}(f(Un)) Un = {s11np11, . . . , sabn
pab}

with pij =

{

1 if selected, and

0 otherwise.

In this definition, the neutral element has the same characteristics as given

above with respect to the considered aggregation operation and to the use of the

indices.

5.2.2 Modelling the Structure

In addition to the modelled sets of tasks and candidates, the discussion has sug-

gested that the structure of the given composition is also relevant for the proper

aggregation of different QoS characteristics. Thus, the problem model must in-

volve a model of the composition structure based on the composition patterns as

introduced in the previous chapter. The structural model is based on the model

used for the aggregation as introduced in Section 4.3. It is defined as follows:

93

5.2. The Problem Model

• A composition structure is represented by a set K1.

• The set K1 can contain tasks of the composition t1, . . . , ta or further sub-sets

K2, . . . , Kj .

• The aggregation method has explained that the precedence relations between

the elements in a sequence are not relevant for the aggregation of the QoS

values. Since, order of the elements is not required for the aggregation, the

enclosed elements of a sequence can be represented by a set Kx. Because

precedence relations do not exist between the elements of parallel structures,

a set is an adequate representation structure for these elements as well.

Consequently, each set Kx has a special type assigned, namely one of the

composition patterns CP1, . . . , CP9.

• In general, any set Kx can contain tasks or sub-sets.

For a formulation of a given selection problem, it is required that the composi-

tion is expressed by using the model as defined above based on the composition pat-

terns. Moreover, since the selection problem focusses on the QoS in a composition,

not required information, such as the precedence relation of tasks in a sequence,

is not covered by this model. If a composition shows elements that not conform

to the definition the above proposed model, the composition must be transformed

first as discussed in the Section 4.5. The definitions of the composition structure

together with the considered QoS characteristics also imply the application of the

aggregation rules as introduced in the previous chapter.

5.2.3 Problem Model Summary

Incorporating all the previously discussed aspects of the selection problem, this

problem can be defined by its following elements:

• T represents the set o tasks t1, . . . , ta, with “a” tasks in total.

• U represents the set of candidate sets S1, . . . , Sa, each containing the candi-

dates assigned to a particular task. Each candidate is represented by vector

of elements that consists of the considered QoS values.

• WO represents the set of optimisation goal functions, which can contain

none, one or more optimisation statements.

• WC represents the set of constraint statements, which can contain none, one

or more optimisation statements.

• A data structure Kx that represents the composition structure containing the

elements of the structural configuration as required for processing the QoS

of the involved services.

94

5.2. The Problem Model

• A valid solution is a list that contains one candidate for each task which

can be expressed as a tuple L, L = (~s1, . . . , ~sa). This tuple represents a

selection of service candidates for which a) the aggregated QoS complies

with the constraint statements of WC and b) the aggregated QoS represents

the optimal solution defined by goal functions in WO.

A valid solution can be also expressed as the an assignment of the integer

variables pij , when the problem is formulated as an integer linear optimisa-

tion problem.

This problem formulation does not presume the use of integer linear statements

to express an integer programming problem. Of course, their expression for a given

problem instance based on this model is possible. Such a formulation can be pro-

vided in the same manner as the aggregation rules are given in Section 4.4: for

each pair of QoS characteristic and structural pattern, a statement is derived. How-

ever, as the previous section has shown, each given instance of a selection problem

results in a different set of equations for expressing constraints and optimisation

statements. Moreover, the application of transformation involving a logarithmic

operation require the setting of appropriate weight factors.

This model does not capture any dependencies between the given QoS values.

Such dependencies can occur if different QoS characteristics form a trade-off cou-

ple. A common trade-off couple is response time and cost where a shorter response

time, i.e. a better quality, usually results in a higher cost. As for the QoS character-

istics discussed in the previous chapter, the cost can form a trade-off couple with

any of the remaining characteristics. A possible trade-off relation is not considered

relevant for the discussion of the model. Instead, algorithms that attempt to solve

a given selection problem can take advantage of such a dependency on an optional

basis.

5.2.4 Aggregation of Multiple Optimisation Criteria

Different QoS characteristics can be considered at once for optimisation. Then, an

aggregated goal function is required that allows to consider the different optimisa-

tion statements WO. When an algorithm tries to solve the problem, this results in

the comparison of different QoS vectors that represent the aggregated QoS of the

composition resulting from a particular assignment. For this comparison, the Sim-

ple Additive Weighting (SAW, [49]) method is proposed, which was introduced in

the context of Multiple Criteria Decision Making (MCDM). The SAW approach

normalises the individual value ranges from different QoS characteristics to value

ranges of values between 0 and 1. For applying the SAW, a QoS vector with in-

dividual QoS values sijn is considered, where n represents a QoS characteristic.

Then, each value sijn is replaced by the normalised value νijn :

95

5.3. Relations to Other Combinatorial Problems

νijn =

max(si1n ,...,sibin
)−sijn

max(si1n ,...,sibin
)−min(si1n ,...,sibin

) for decreasing QoS char., and

sijn−min(si1n ,...,sibin
)

max(si1n ,...,sibin
)−min(si1n ,...,sibin

) for increasing QoS char.,

The internal si1n , . . . , sibin
refers to all values from the considered QoS vectors

referring to the relevant QoS characteristic n. As an example, the following QoS

vectors are given:

200
5

0.99

250
6

0.98

150
8

0.95

220
4

0.955

This could represent the three QoS characteristics response time, cost and avail-

ability. However, the meaning of the values is not relevant for the application of the

SAW. Performing the SAW method replaces every value with a normalised one:

0.5
0.75
1.0

0.0
0.5

0.75

1.0
0.0
0.0

0.3
1.0

0.125

Based on the normalised values, a score σj can be applied to each candi-

date [49], defined as:

σj =
1

q

q
∑

n=1

wnνijn

The variable q represents the amount of considered QoS categories. The weight

wn is applied to a particular QoS characteristic by the user’s preference and could

be omitted. The result of this procedure is a score for each candidate service or

QoS vector. The result denotes the better QoS vector when two QoS vectors are

compared. In the example, the resulting scores are in the same order: 0.75, 0.42,

0.33, and 0.52. Thus, presuming a neutral weighting, the candidate or aggregated

QoS associated with the first QoS vector is considered as the best overall QoS.

5.3 Relations to Other Combinatorial Problems

If exactly one QoS characteristic is relevant for the optimisation, a selection algo-

rithm must choose the candidate that provides the optimal value for each task. The

effort for this operation is equivalent to a sort operation and therefore this speciali-

sation of the selection problem can be regarded trivial. If more than one QoS char-

acteristic is relevant for optimisation or for expressing a constraint, the selection

can be regarded as a combinatorial problem. This problem has similarities with

the knapsack problem, to a specific kind of a project scheduling problem (PSP),

the QoS-based routing of packets in the Internet and the QoS-based scheduling of

queries in the field of database systems. The upcoming subsection will explain

their differences to the selection problem.

96

5.3. Relations to Other Combinatorial Problems

5.3.1 The Knapsack Problem

At the beginning, this chapter has already mentioned the relation of the selection

problem with a member of the family of knapsack problems named multiple choice

knapsack problem (MCKP). In the following, this relation will be explained in

more detail. The core knapsack problem is about selecting a subset of available

items for putting them into a knapsack. This problem is based on the simpler

problem named “subset sum”. The subset sum problem is quickly explained: Con-

sidering a set of elements (numbers) s1, s2, . . . , sb ∈ N and a number c ∈ N, the

goal is to find a selection of elements that represents a subset I ⊆ {1, 2, . . . , b} that

fulfils:

∑

∀i∈I

si = c

The knapsack problem represents an optimisation variant of the subset sum

problem. In this problem, each element has two dimensions, a weight si1 and a

value si2 . Instead of the sum that must be identified, the knapsack problem has

got a weight capacity with the goal to select a set of elements while respecting the

given weight limit c. Considering the weight only, this represents a trivial problem:

A solution can be found by sorting all elements by their weight. Then, starting with

the lightest elements, they are added to the selection until the weight is reached.

The problem becomes hard if the additional goal is to maximise the value v of the

selected elements s12
, s22

, . . . , si2 . Then, the knapsack problem is about:

maximise v =
∑

i∈S

si2

while keeping c ≥
∑

i∈S

si1

In other words, the problem is about maximising the value of taken items while

the weight capability of the knapsack does not allow taking all items. Based on this

problem statement, the literature distinguishes the fractional knapsack problem and

the 0/1- or binary knapsack problem. The difference between both is that the 0/1-

knapsack problem defines that splitting the elements is not allowed. Otherwise, an

algorithm could sort all items by their value density si1/si2 and begin to pack the

knapsack starting with the highest value density. Then, if the algorithm meets the

element that would exceed the given limit, only a fraction of this element is taken

that still fits into the knapsack.

A further variant of the 0/1-knapsack problem is the Multiple Choice Knapsack

Problem (MCKP). In this problem, the items for selection are sorted into a ∈ N

classes and associated to each class is a set of items Si which has got bi = |Si|
number of elements. The goal of the MCKP is to select exactly one item of each

set while keeping the constraints and maximise or minimise the optimisation goals.

A model for problem would be as follows:

97

5.3. Relations to Other Combinatorial Problems

maximise vagg =
a

∑

i=1

bi
∑

j=1

pijtij

while keeping climit ≥
a

∑

i=1

bi
∑

j=1

pijcij

and 1 =

bi
∑

j=1

pij ∀i ∈ {1, . . . , a}, pij ∈ {0, 1}

These are the same equations as given at the beginning of this chapter, where it was

also mentioned that Lee [78] and Yu et al. [158] have already discussed the MCKP

in the context of the QoS-based selection of services to form compositions. The

only difference is that mostly the MCKP considers a value that is about to be max-

imised while the selection problem as discussed by Lee and Tao et al. considers a

time measure which is considered for minimisation. The difference between either

minimising or maximising a value is considered as irrelevant when discussing the

combinatorial issue.

To involve multiple constraints, the problem can be modelled as a Multiple

Dimension Knapsack Problem (MKP), where – literally spoken – the knapsack has

more than one limiting dimension. Such limiting dimensions could be the volume

and weight of a knapsack and can be denoted by an index 1, . . . , q. This represents

also a specific variant of the 0/1-knapsack problem. Then, the constraint to hold

can be expressed as:

a
∑

i=1

bi
∑

j=1

pijsijn ≤ cn ∀n ∈ 1, . . . , q

pij ∈ {0, 1} identifies the selected elements/candidates.

This combination between the MKP and the MCKP is known in the literature as

Multiple Choice Multiple Dimension Knapsack Problem (MMKP). In Figure 5.6

this relation is outlined. Contrary to previous figures, the distinction between in-

teger programming statements and non-linear statements that must be transformed

differently is not depicted.

The following discussion will explain why the structure of the selection prob-

lem cannot be ignored and consequently the application of algorithms for the

MCKP does not necessarily solve the selection problem: The example given in

Figure 5.3 has shown that the parallel structures require a different model than the

MCKP. From the interpretation of the problem formulation as given in the litera-

ture (e.g. Dudzinski and Walukiewicz [26], or Pisinger [108]), the MCKP covers

only the scenario of an (unordered) sequence of service executions. A composi-

tion consisting of services all arranged into a parallel AND-split with AND-join

98

5.3. Relations to Other Combinatorial Problems

Selection Problem

Sequential

Selection Problem

Seq. Selection Problem

with Mult. Constraint and 1 Goal

Int. Pr. Problem

MMKP

MCKP
⊇

⊇

⊇

Seq. Selection Problem

with 1 Constraint and 1 Goal

Figure 5.6: Relation between the MCKP, the MMKP and the selection problem.

arrangement is not covered. A solution denoting a selection of services found for

a parallel arrangement would be different than for an unordered sequence. More-

over, as the example has explained, a given selection problem would result in a

set of varying integer programming statements which puts the equivalence of the

selection problem to the MCKP into question. This issue allows the assumption

that the selection problem is at least as hard as the MCKP. However, considering

the structural arrangements and different QoS characteristics, it requires a differ-

ent problem model. Therefore, algorithms for finding or guessing solutions to a

MCKP will not result in the same level of performance when applied to the selec-

tion problem.

To discuss the difference, a popular solution algorithm to the MCKP will be

considered: A strategy for solving knapsack problems is known in literature as dy-

namic programming. The idea of dynamic programming is that a problem adheres

to a basic principle of optimality which has been introduced by the mathematician

Bellmann. This principle describes that the optimal solution to a problem can be

represented by the combination of the optimal solutions to its sub-problems. If the

determined partial solutions overlap and are stored, an algorithm can save efforts

from the overlapping partial solutions.

The solution approach for applying the dynamic programming algorithm to

the (basic) 0/1-knapsack problem is as follows: For a knapsack with given size

constraint c, there is a selection I ⊆ {s1, . . . , sm} that fulfils the constraint criteria.

Then, for each element, si ∈ I holds that a partial problem with a smaller knapsack

c′ = c− si1 has the solution I− si. In this case, si1 represents the weight and si2

the value of the element. Based on this idea, an algorithm can determine the value

v for a given set and sub-value as follows [114]:

f(si, c
′) =

0 if i = 0

f(si−1, c
′) if i > 0, si1 ≥ c′

max
{

f(si−1, c
′), f(si−1, c

′ − si1) + si2

}

else

99

5.3. Relations to Other Combinatorial Problems

By this definition, an algorithm can be derived. Such an algorithm operates on

a numbered set of elements and starts with the elements with index i, showing the

following behaviour:

• The first statement covers that no element is available for putting into the

knapsack. Then, a value of zero is returned.

• The second statement covers that an element exists but the weight of the cur-

rent element is larger than the remaining volume allows. Then, the function

is invoked recursively with the previous element.

• In all other cases, the function chooses the maximum resulting value of either

considering the actual element – and adding the value – or skipping the actual

element. In both cases, the function is invoked with the previous element.

Based on this procedure, the algorithm creates a two dimensional array [0..i, 0..c].
For each pair of item and weight (i, c′), the algorithms computes the value accord-

ing to this definition. The effort to create the array is just i by c′ resulting in the

worst-case effort of O(n2) added to the effort needed to perform the calculation of

v for each table entry. The entry that shows the highest value v represents the solu-

tion. Such an approach results in a so-called pseudo-polynomial effort: Counting

the computational steps results in a polynomial effort, while ignoring the effort to

process the calculation of a table entry. As a consequence, for small values of i and

c′, such an algorithm usually shows acceptable performance.

In order to apply the dynamic programming approach to the MCKP, this algo-

rithm must be modified to take at least one element of each class. The algorithm

must class-wisely process the selection of candidates. The basic structure of the

definition remains valid. However, it applies only to the selection of elements

belonging to a particular class i. Dudziński and Wolukiewicz have proposed a dy-

namic programming algorithm for a MCKP [26]. At first, for a partial MCKP with

a partial constraint cpt can be formulated as follows:

maximise vi(cpt) =
a

∑

i=1

bi
∑

j=1

pijtij

while keeping cpt ≥
a

∑

i=1

bi
∑

j=1

pijcij

and 1 =

bi
∑

j=1

pij ∀i ∈ {1, . . . , a}, pij ∈ {0, 1}

v0(cpt) = 0 for cpt ≥ 0

vi(cpt) = −∞ for

{

cpt ≤ 0 and i > 0, or

cpt < 0 and i = 0

100

5.3. Relations to Other Combinatorial Problems

then

vi(cpt) = max
∀j,j=1,...,bi

{

tj + vi−1(cpt − cj)
}

By this definition, a partial MCKP is defined in the same way as an entire

MCKP. For performing this algorithm, this definition also provides a statement that

covers the iteration through the classes: If the algorithm reaches the class with the

identifier “zero” but the constraint cpt is greater or equal zero – the knapsack has

some space left – then the resulting value is set to zero. If the resulting constraint

cpt is below zero, then the algorithm has encountered a class where all elements

would violate the constraint. Thus, in this case, the resulting value is set to an

infinite negative value denoting an invalid solution.

An algorithm based on this definition iterates through all elements of a class. It

starts with the last class. If all elements of this class were tested, it proceeds with

the previous class. The algorithm would calculate an array entry for each element.

Since the creation of the array still results in a quadratic effort, this represents a

pseudo-polynomial algorithm as well.

Applying this algorithm to a given selection problem can result in non-optimal

solutions, because – besides the idea that it does not consider the composition

structure – it presumes the same type of definition for aggregation of the QoS

values (addition and subtraction) regardless of the required aggregation method,

depending on the structure. Moreover, the structural requirements require the eval-

uation of several classes at once (for example, in a parallel arrangement), which

cannot be performed with a recursive approach. A simple example clarifies this

issue, considering a selection problem instance with the following characteristics:

• T = {t1, t2, t3}

• U =

S1 =
{

~s11 =

(

1
5

)

, ~s12 =

(

2
2

)

}

,

S2 =
{

~s21 =

(

6
4

)

, ~s22 =

(

7
1

)

}

,

S2 =
{

~s31 =

(

2
5

)

, ~s32 =

(

3
1

)

}

,

The upper value of each candidate can be seen as the response time and the

lower the cost.

• WO = {(min(f(Si2)) ∀ Si ∈ U)} which means that the cost, the sec-

ond value, is about to be minimised. it must be noted that in the domain

of knapsack problems, such an optimisation criterion is named “negative

value”. Accordingly, the recursive definition requires a function that seeks

the minimum instead of the maximum.

101

5.3. Relations to Other Combinatorial Problems

• WC = {(c = 10 ≥ f(Si1)) ∀ Si ∈ U)} which represents a constraint

statement about the response time, the first value, not being allowed to ex-

ceed the value of 10.

• G represents the graph consisting of pattern elements and tasks. The graph

consists of one parallel pattern element which holds all the three tasks. The

structure of this graph is depicted in Figure 5.7

AND

JOIN

AND

SPLIT

3

1

2

time: 1

cost: 5

time: 2

cost: 2

time: 6

cost: 4

time: 7

cost: 1

time: 2

cost: 5

time: 3

cost: 1

Figure 5.7: Graphical representation of the example selection problem (with can-

didates in rectangular boxes).

According to the definition of the algorithm for the MCKP, the algorithm would

create a two-dimensional array which has c-number columns and has
∑a

n=1 |Sn|
rows. Because the algorithm needs to keep the weight resulting from the selection,

each entry consists of a tuple of (cost, time). The algorithm fills out the table start-

ing from i = 1 and j = 0 and ends with i = 6 and j = 10 following the previously

given definitions. If the algorithm encounters an already computed value vij , this

is adopted from the table. Because the MCKP defines that one task needs to be

taken from each group, a solution is found only in the rows that represent the last

group involving a selection from the other group. Since the goal is to find the low-

est cost while not exceeding the response time of 10 units, the tuple for i = 6 and

j = 10 represents the optimal result. The combination resulting from this selection

is (s11, s21, s31).
With this result, it is clear that such an algorithm does not find the optimal

solution, because it ignores the parallel structure in which the tasks are arranged.

The optimal selection for this example would be the candidates (s12, s22, s32) with

a cost of 6 units and a response time of 7 units. In the example, the maximum

value is relevant for the response time in a parallel arrangement. Of course, the

definition of the recursive max{. . .} could be modified to cover the parallel case.

Consequently, sequential arrangements would not be possible. To solve this issue,

the definition could be conditionally adapted depending on whether a parallel struc-

ture or a sequential structure needs to be processed. However, this would not cover

102

5.3. Relations to Other Combinatorial Problems

i\j 0 1 2 3 4 5 6 7 8 9 10

1 −∞ (5,1) (5,1) (5,1) (5,1) (5,1) (5,1) (5,1) (5,1) (5,1) (5,1)

2 −∞ (5,1) (5,1) (2,2) (2,2) (2,2) (2,2) (2,2) (2,2) (2,2) (2,2)

3 −∞ −∞ −∞ −∞ −∞ −∞ −∞ (9,7) (6,8) (3,9) (3,9)

4 −∞ −∞ −∞ −∞ −∞ −∞ −∞ (9,7) (6,8) (6,8) (6,8)

5 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ (14,9) (13,10)

6 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ (10,10)

Table 5.1: Array values resulting from dynamic programming approach.

the case that parallel and sequential structures would occur in the same problem

instance.

The conclusion is that an algorithm known to find an optimal solution to any

MCKP, if a solution exists, does not guarantee finding an optimal solution to a

given selection problem. Thus, the MCKP is different from the selection problem.

It can be assumed that the principle of optimality does not apply to the selection

problem as it is modelled in this work. The structural characteristic of the selection

problem requires considering a selection of tasks at once for a decision. Thus, split-

ting the problem into sub-problems by classes or tasks does not cover the structural

characteristic of the given composition case.

5.3.2 The Project Scheduling Problem

If multiple QoS characteristics are subject to the optimisation or if they are con-

sidered to form a constraint, the selection problem is similar to a Resource Con-

strained Project Scheduling Problem (RCPSP). A project scheduling problem oc-

curs when resources (usually humans) must be distributed to jobs of a project. The

most common optimisation goal of the basic RCPSP is to reduce the duration of

the project while spending as few resources as possible. Two types of RCPSPs are

distinguished: One is named Single Mode RCPSP and the other is known as Multi-

Mode RCPSP (MRCPSP). The single mode RCPSP only deals with fixed values

for the duration and the cost of a task. In an MM-RCPSP, a job can be done by

using different modes which vary in cost and duration. Therefore, an MM-RCPSP

is primarily considered as relevant in comparison to the selection problem. In ad-

dition to its mode, an RCPSP can be classified by a couple of other characteristics.

Based on an overview about RCPSPs by Yang et al. a selection problem seen as

RCPSP has the following characteristics [153]:

• Objective. Objectives are distinguished by being regular or irregular. Reg-

ular objectives do not interfere with the goal to minimise the duration of the

project, while irregular objectives allow following another objective – for

example to equalise the consumed resources among involved parties [153].

103

5.3. Relations to Other Combinatorial Problems

Applied to the selection problem, the RCPSP has a non-regular objective be-

cause depending on the considered QoS categories and the applied weight; a

worse duration can be considered better if, for example, the cost is reduced

accordingly. The objective can be defined as an optimisation function, as

given in Section 5.2.1.

• Precedence Relation. Two types of precedence relations are discussed in

the literature. Either a task can be started with a specified time window after

a preceding task has finished or a succeeding task can start any time after

the preceding task has finished. Regarding a composition of services, the

common case is that a task is started immediately after the preceding task

finished.

The constraint for the precedence in service compositions can be defined as

follows: αibi+1 is the start time of a candidates sibi+1 ∈ Si of task i, i =
1, . . . , n, and ωibi

the finish time of a candidate sibi
∈ Si−1 for the preceding

task i− 1. Then, the precedence constraint is:

αibi+1qibi+1 ≥ ωibi
qibi

with qibi+1, qibi

{

1 if selected

0 otherwise

Between two tasks, a time delay might occur, because an execution environ-

ment cannot execute a task at exactly the same moment when another task

has finished. However, this technical issue is ignored in this discussion.

• Preemption. If preemption is allowed, the execution of a task can be sus-

pended in order to execute another task in the meantime. This is useful if

some resources are only available within a specific period and other tasks

can be suspended then. Since the invocation of services in the context of

a composition usually is an atomic operation, preemption is not considered

possible.

• Resource requirements per period. In the domain of project scheduling,

using resources at different times can result in different costs. For example,

performing a task at night results in higher payments for night shifts. For

computer systems, a similar idea can be applied: The execution of a service

gets more expensive at peak hours. However, since currently no such exam-

ple exists in the domain of electronic services, this aspect is ignored in the

further discussion.

• Trade-offs. In the context of RCPSPs, the trade-off is characterised by two

criteria, where an optimisation of the one means a change to the worse for

the other. An algorithm must find a counterbalanced solution. A usual trade-

off pair is formed by time and cost, whereas the cost and the time should be

kept both as low as possible. Possible trade-off couples can be formed for

the selection problem of cost vs. one of the other mentioned categories, in

104

5.3. Relations to Other Combinatorial Problems

the sense that a higher quality results in a higher cost. However, a trade-off

couple could be also time vs. availability, for example for a provider, where

services usually execute very quickly but may fail.

These points show that the selection problem can be transformed into an RCPSP

that resembles the precedence relations by the execution graph and does not allow

preemption. The relation between the two problems is outlined in Figure 5.8: With-

out giving a formal proof, the given description explains that the selection problem

can be reduced to an RCPSP. A large number of heuristics are already available

for RCPSPs [153]. Not every approach can be applied to the selection problem:

RCPSPs and service compositions cover the execution order of tasks differently.

In compositions, the order is in most cases pre-defined by a flow description, while

the tasks of a project are subject to precedence relations, which may allow to push

a particular task for- or backwards in order to optimise the utilisation of resources.

Selection Problem

PSP

RCPSP

SMPSP

⊇RCPSP without

Preemption

Figure 5.8: Relation between the RCPSP and the selection problem.

5.3.3 Query Planning based on Quality-of-Service

The work of Naumann and Leser discusses the optimisation of queries to a federa-

tion of data sources by using the QoS as criteria [95]. The authors have introduced

an approach to optimise the QoS of a set of queries by two steps: First, data sources

are sorted out which would result in a bad QoS in any case. Then, different com-

binations of querying data sources, which provide the same required information,

are compared in terms of their resulting QoS.

The basic setup is as follows: A mediator serves as a front-end to users. The

mediator represents a similar role as the retailer for the selection of services; a

mediator wraps different data sources for the end-user. These data sources can

either provide similar or different data and are all described with QoS characteris-

tics. Accordingly, a query by the user (user query, UQ) submitted to the mediator

is translated into queries to the wrapped data sources (wrapper queries, WQ). The

general approach is to define such translations between UQs and WQs with Query

Correspondence Assertions (QCA). Because the available data sources can provide

105

5.3. Relations to Other Combinatorial Problems

overlapping or similar data sets, a user query can result in different possible QCAs

and combinations of them. Then, each set of QCAs, which completely answers

the UQ, can be ranked based on the aggregated QoS provided by the involved data

sources.

The result of their approach is the identification of query plans that provide the

optimal QoS. Naumann and Leser present a set of QoS characteristics which are

tailored to the application of database systems. This set includes characteristics

which have been also discussed in Chapter 3 (e.g. response time, availability or

cost). Other characteristics hardly fit into the domain of services, which are “ease-

of-understanding” or “completeness”. The completeness denotes the level of how

well a data source meets the information required for a possible UQ. Nevertheless,

for a discussion of the combinatorial problem, the interpretation of the numerical

values does not have any impact on the hardness of the problem.

The combinatorial issue with this approach is the evaluation of possible query

plans, meaning that valid sets of QCAs must be determined. Naumann and Leser

explain that the theoretical effort to determine all resulting possible WQs is NP -

complete [95]. The number of possible queries to evaluate is reduced by grouping

WQ to the building blocks which refers to the concept of QCAs. Still, the number

of possible QCA-sets answering a UQ rises exponentially with a rising numbers of

QCAs.

To cope with this problem, the authors propose a three-staged approach. In the

first stage, an algorithm sorts out data sources that offer a generally bad quality.

In the second stage, Leser has discussed an algorithm that efficiently identifies

only those QCA-sets that would also answer the UQ [79]. In the third stage, a

comparison algorithm determines the QoS of all remaining queries and applies a

ranking that allows the identification of the optimal QCA-set.

Comparing this approach with the selection problem reveals that the basic prin-

ciple of the both is the same: First, a query or execution plan is determined and

then the QoS for this plan is aggregated. At third, the resulting QoS is put into

a ranking to identify which execution plan results in the optimal QoS. For both,

the combinatorial problem lies in the generation of valid query or execution plans.

However, the query optimisation is different in two points and these make clear

that the selection problem requires a different approach:

• Overlapping Data Sources. The algorithm that determines valid sets of

QCAs considers the case, for example, that a data source can deliver the

same information as two other data sources. This results in two different

QCAs and thus the algorithm evaluates one data source against two com-

posed others. The selection problem as discussed here does not consider this

case, because it is presumed that the decision about this would have been

taken in the matchmaking process of the composition (cf. Section 7.2).

• Parallel Queries. The mediator is allowed to execute different queries to the

data sources resulting from a QCA set entirely in parallel. As for the MCKP

106

5.3. Relations to Other Combinatorial Problems

which essentially handles all services executed sequentially, this would mean

that all services are executed in parallel. Considering that this problem could

be expressed as a integer programming problem, if the relevant QoS charac-

teristics allow, then, the problem expression would cover only one structural

case, namely the parallel arrangement. In other words, the problem model

given for the QoS-based query planning by Leser and Naumann does not

capture any specific structural arrangements as they occur in service compo-

sitions.

If an instance of a selection problem arranges all tasks in an AND-AND par-

allel pattern, then this instance can be transformed into the problem of finding the

optimal query set. In accordance with this special case, Figure 5.9 shows the re-

duction relation between the two problems. However, it must be noted that the

QoS-based query planning involves also the identification of feasible query sets in

advance. Thus, the selection can be reduced only to a part of the problem which is

described by Naumann and Leser.

Selection Problem

Selection Problem

with 1 Parallel Structure

QoS-based

Evaluation of Queries ⊇

Figure 5.9: Relation between the QoS-based evaluation of queries and the selection

problem.

5.3.4 Routing in the Internet based on Quality-of-Service

Routing in the Internet today has the goal to identify feasible paths for sending

packets among different networks from one location to another. The routing is

performed by routers that implement a routing algorithm. The routing in the Inter-

net follows in most cases a best-effort strategy, meaning that every router tries to

deliver the best service possible according to a single metric. As metrics, routing

algorithms can consider the cost for transferring the data or the number of routers

to pass, which is considered as the number of hops. The resulting algorithmic is-

sue is to identify the shortest path in a graph where nodes represent routers and

the edges represent their connection, weighted according to the considered metric.

This routing scheme has proven its reliability in the past. However, it does not

address the demands of QoS-dependent services, such as telephone applications or

video broadcasts over the Internet. Such applications require a routing mechanism

that is capable of ensuring a particular QoS level. For example, broadcasting video

data requires a constant amount of bandwidth on all connections between involved

107

5.3. Relations to Other Combinatorial Problems

routers in order to transmit a continuous amount of data. Otherwise, the user will

experience interruptions when watching the video and will likely reject the service.

The Internet Engineering Task Force (IETF) has published a document that dis-

cusses a general framework for the QoS-based routing (cf. RFC number 2386 [20]).

This documents defines the following primary goals: a) enhancing the standard

routing process by providing mechanisms to ensure the given requirements with

respect to different QoS characteristics, b) utilising the given resources more ef-

ficiently, and c) recognising QoS violations and establishing compensation activi-

ties. The QoS-based routing plays a complementary role to (signalling) protocols

that offer resource reservation in order to express demands for a particular QoS

level. While resource reservation covers static agreements between sender and

receiver, QoS-based routing dynamically determines feasible paths in order to pro-

vide the requested QoS.

Therefore, the combinatorial issue of QoS-based routing is to identify a feasible

path in a graph with involving multiple QoS constraints. In this field, the literature

distinguishes between additive QoS, where the individual values are added, and

multiplicative QoS, where the aggregation of values is performed by a multipli-

cation [139]. A QoS characteristic that is neither additive nor multiplicative but

requires identifying the lowest value is named concave, e.g. as for the bandwidth.

Wang and Crowcroft present a proof that finding feasible paths is NP -complete

when either two additive or two multiplicative constraints are considered [137].

In addition, they proof that a combination of one additive and multiplicative con-

straint is NP -complete as well. If the application of the logarithmic function to

multiplicative constraint statements is considered as discussed at the beginning

of this chapter, such constraints become also additive, which was pointed out by

Yang [139].

In addition, Wang and Crowcroft discuss the routing problem with one addi-

tive constraint in conjunction with the concave bandwidth [137]. For this con-

stellation, the authors propose an algorithm with quadratic worst-case effort that

finds the optimal solution. As Yang also has pointed out, an algorithm can cover

non-additive characteristics as the bandwidth by first sorting out unfeasible paths

in a pre-processing step. Then, the algorithm must optimise for only one QoS

constraint for which well-known finding-shortest-path algorithms can be applied.

Thus, the problem issue with QoS-based routing in IP network is similar to the

QoS-based selection of services: A combinatorial problem arises if multiple QoS

characteristics must be considered at once. However, the problem of multi-criteria

QoS-based routing shows different aspects when considering the following points:

• Sequences Only. One obvious difference lies in the considered structure for

IP networks. Contrary to a composition, at the beginning the relation be-

tween the nodes does not require a direction and thus no precedence relation

among the involved nodes is given. The algorithm has the goal to identify

precedence statements between the nodes that resemble a routing path. The

precedence relations of the selection problem are defined by a graph. Con-

108

5.3. Relations to Other Combinatorial Problems

sequently, the graph is a part of the problem formulation and not part of the

solution as with the QoS-based routing.

Moreover, if such a routing path is found, each involved node has exactly

one incoming path and one outgoing path, meaning that a solution is not

allowed to show any parallel forking and joining elements. In other words,

the considered structure for the routing does not cover the structure of service

compositions.

• Different Number of Hops. Like the MCKP, the QoS-based selection re-

quires that the number of selected services stays constant because of the pre-

defined number of tasks. The number of selected routers can vary depending

on the given QoS. An algorithm that attempts to solve a given MCKP or

QoS-based selection can presume from the beginning that, from certain sets

of services, at least one must be selected; an algorithm that identifies optimal

paths among the router candidates cannot make such presumptions.

As stated for the QoS-based query planning, the problem of the QoS-based

routing does not match the selection problem regarding the problem model and

solution strategies.

5.3.5 Computational Complexity

Considering the model introduced in Section 5.2.3, the possible combinations re-

sult from the Cartesian product of the candidate sets in U:

S1 × . . .× Sa

This product results in a set of a-tuples where the number of elements repre-

sents the number of possible combinations:

|S1 × . . .× Sa| = |S1| · . . . · |Sa| =
a

∏

i=1

|Si|

This indicates the resulting exponential effort for a rising number of tasks if an

algorithm potentially evaluates all possible combinations. Thus, the computational

complexity of the naive algorithm can be formulated using the big-O notation as

O(mn) where n represents the number of tasks and m denotes the maximal number

of candidates for a task.

The exponentially rising number of combinations poses the question whether

an algorithm is required to evaluate all combinations to find the optimal solution.

The resulting consequence would be that the selection problem requires an algo-

rithm that always shows an exponentially rising effort. For business processes

of 25 tasks with five candidates each, the resulting number of combinations is

525 ∼ 9 · 1013. Processes of 25 tasks seem to be exceptionally large. However, if

the structure must be transformed before, using the node duplication technique as

discussed in Section 4.5 of the previous chapter, such sizes are likely to occur.

109

5.3. Relations to Other Combinatorial Problems

NP-Hardness of the Selection Problem

For this discussion, the concept of a polynomial reduction between encoding alpha-

bets associated with a problem is used (cf. Garey and Johnson [37, section 2.5]).

Let two languages LA and LB represent the encoding schemes of the two prob-

lems A and B. If language LA can be transformed into LB then each instance of a

problem A can also be expressed as a problem instance of B. The conclusion from

a possible reduction is then that problems of LB are at least as hard as problems

of LA. The concept of the polynomial reduction requires that a transformation

between the two languages can be achieved by an additional machine which also

performs within a polynomial bounded amount of time. Problems with a poly-

nomial upper bound show the characteristic that combining them in sequence will

result in a new problem with a polynomial upper bound as well. Thus, if a language

LA associated with a polynomial problem A can be transformed with polynomial

effort into LB , B is a problem requiring at least polynomial worst case effort.

This relation applies also to problems that can be solved by a non-deterministic

touring machine in a polynomial bounded amount of time, so-called NP -problems.

Because of this argumentation it can be determined if a problem is NP -hard, mean-

ing at least as hard as another NP -problem. A language LB is named NP -hard,

if

LA ≤p LB for LA ∈ NP

where the relation ≤p denotes that LA transforms polynomial to LB and NP
denotes the class of NP -hard problems.

The polynomial transformability between the knapsack problem and an MCKP

has been discussed by Pisinger [108, pages 107-108]. Any knapsack problem rep-

resents a special case of an MCKP: Every knapsack problem instance can be trans-

formed into an MCKP instance by setting the number of elements within one class

to bi = 1. This can be easily understood by considering the formulation given for

the MCKP in the previous Section 5.3.1. If bi = 1 then the inner sum becomes

obsolete and the selection variable will be pij = 1 in all cases. As a result, the

MCKP-compliant formulation of the instance is equal to the formulation of the

knapsack problem. And regarding the knapsack problem, a proof exists that it is

a NP -hard problem (cf. Garey and Johnson [37, section A6]). A transformation

from an MCKP problem formulation to the formulation of the selection problem

can be given in the following way 5.2:

• The set of classes is modelled as T = {t1, . . . , ta} where a denotes the

number of items.

• Each Si representing the elements of a class in the MCKP sense is put into

the set U.

• The value of each item vij is set to one element of the referring candidate

110

5.3. Relations to Other Combinatorial Problems

vector ~sij , and the weight cij is analogously set to the other element:

~sij =

(

vij

cij

)

• The set WO of optimisation functions contains for the MCKP case just one

statement (|WO| = 1):

WO =
{

f(U1) =
a

∑

i=1

∑

~sij∈Si

pij~sij1

}

• The set WC of constraint functions also contains for the MCKP case just one

statement (|WC | = 1):

WC =
{

c2 ≥
a

∑

i=1

∑

~sij∈Si

pij~sij2

}

• The structure Kx that arranges all task nodes arbitrarily in a sequence.

• The solution is a selection which conforms to the optimisation function given

by WO and the constraint given by WC , which is the same integer program-

ming formulation as for the MCKP (cf. Section 5.3.1).

It is obvious that this transformation can be performed with polynomial bounded

effort. Then, any instance of an MCKP can be transformed into an instance that

conforms to the presented model of the selection problem. Contrary to the Fig-

ure 5.1 presented at the beginning of this chapter, the selection problem outlined

in this figure denotes all variants that were discussed so far. The conclusion of the

reducibility of the MCKP to the selection problem is that the selection problem is

NP -hard. The resulting direction of the reduction is depicted in Figure 5.10. Due

to this discussion, it becomes clear that the given model of the selection problem

generalises the MCKP with regard to two aspects: First, it covers not only se-

quences but also parallel, conditional or combined structures. In addition, it covers

multiple optimisation or constraint criteria.

MCKP Selection

Problem

⊆

Figure 5.10: Reduction of the MCKP to the selection problem.

111

5.4. Heuristic Algorithms

5.4 Heuristic Algorithms

In the selection process, an available candidate is assigned to each task. The sim-

plest approach represents an algorithm with a greedy behaviour which evaluates

the assignment from a local perspective: Such an algorithm determines each as-

signment for each task individually and thus ignores possible assignments of other

tasks in combination. However, the previous discussion has pointed out that such

an approach would not result in the optimal solution. The question is how much

worse such an approach would be when compared to an algorithm that always finds

the optimal solution.

Building onto the analogies between the combinatorial problems and the se-

lection problem as explained in the previous section, the approach of this work is

to discuss and evaluate the application of heuristics. In the following subsections,

different approaches are explained and compared. A representation in pseudo-code

notation of the discussed algorithms is given. The presentation of the algorithms

in pseudo-code provides a more transparent discussion about the resulting compu-

tational complexity. The used pseudo-code notation requires some remarks:

• The inputs and outputs of the algorithms are given only in a schematic way:

For each algorithm, the relevant data from a selection problem formulation

according to the model is given. An implementation would require particular

input and output parameters of potential operations, which are omitted if they

do not improve understanding of the algorithm.

• The variable a represents the number of tasks; the counters i, j have the same

meaning as used in the preceding discussion.

• The initialisation of variables as required in most programming languages is

omitted for the same reason as with the input and output parameters.

• Variables are not typed. Thus, integer or floating point numbers and other

data types share a common notation.

5.4.1 Greedy-based Selection

For a greedy selection, a value vij computed by function fsaw(~sij) represents the

selection criteria. This function can implement the SAW method to assign a score

for each candidate sij ∈ S. The QoS characteristics relevant for the SAW cal-

culation are denoted by the optimisation statements denoted by fn ∈ WO. The

algorithm starts with calculating the value for each candidate. Then it assigns the

candidate with the highest value for each task. Thus, the graph G is not considered.

The algorithm is described in listing 1.

The effort for this algorithm is O(n) + O(n log n) + O(n) = O(n log n). The

algorithm shows two for-loops which would indicate a quadratic effort, but in

fact, the algorithm just iterates through all candidates. Assuming that b denotes the

112

5.4. Heuristic Algorithms

Data: T, U, WO, WC

Result: array of candidates l[], |l[]| = a
begin

foreach Si ∈ U do1

foreach ~sij ∈ Si do2

v[i][j]← fsaw(~sij , Si)3

end

end

l[i]← ~sij , ~sij | fv(sij) == max(v[i][1], . . . , v[i][j])4

end

Algorithm 1: Greedy heuristic applied to the selection problem.

number of candidates, the effort is linear depending on the input size. The effort for

the sort operation is added and the effort for assigning the candidates is considered

linear. The sort results in the significant effort of O(n log n). For this greedy im-

plementation, the use of a sort algorithm with the worst-case effort of O(n log n)
is assumed. Such algorithms usually require extra memory to achieve this logarith-

mic class of effort, otherwise the worst case effort of common sorting algorithms is

O(n2). The best case effort is Ω(n log n) as well, because the algorithm performs

the sort in any case.

The clear downside of this approach is that it is not possible to consider a

global constraint while optimising the overall QoS. As an alternative, a greedy-

based algorithm can also support one constraint criteria without optimising for the

QoS. The algorithm starts sorting the candidates not by the score but by the relevant

constraint criteria denoted by a function in cn ∈ W. Then, the algorithm assigns,

for each task, the candidate that offers the best value of the constraint criteria.

If a solution exists that complies with the constraint, it is found with this step.

Clearly, this approach does not optimise the overall QoS of the compositions. In

the remainder of this work, the two resulting QoS optimising algorithms will be

named “Greedy” and the single-constraint aware algorithm “Constraint”.

5.4.2 Discarding Subsets

This algorithm represents a backtracking-based approach. It uses a search tree

which consists of nodes, each representing a possible pair of a candidate and a

task. Each level of the tree holds pairs of a particular task only, resulting in a tree

having the same number of levels as tasks. Each path, starting from the root and

ending at a leaf, represents a possible assignment of candidates. The advantage of

this algorithm, in comparison to a straight global selection, lies in the idea to cut

sub-trees representing unfavourable combinations to save computational efforts.

Such an approach normally identifies the optimal solution and therefore cannot

113

5.4. Heuristic Algorithms

be regarded as a heuristic. When applied to the selection problem, as described this

work, this approach results in a heuristic, because the cutting rule must be based

on an estimation. The reason is explained as follows: Considering the time, the

cutting rule is clear. If a complete combination has already been determined that

shows a lower (better) time as the partial combination processed at some moment,

the algorithm cuts the corresponding sub-tree. Each additional candidate would

worsen the time in any case.

Contrary to that, for categories where the aggregation calculates the arithmetic

mean, a rule cannot determine whether the QoS gets worse or better. The reputation

and the availability represent examples for such a QoS characteristic. Applied to

the selection problem, the discarding subsets algorithm considers two cutting rules:

1. A partially evaluated combination already violates a constraint. Thus, the

algorithm cuts the sub-tree.

2. The algorithm compares the aggregated QoS of the partial combination with

the aggregated QoS of already processed complete combinations. However,

for this comparison the QoS categories involving a mean-based aggregation

are ignored. This strategy does not find the optimal result necessarily, be-

cause the cutting rule represents an estimation.

The algorithm operates on a tree structure, which results from the structure Kx

that can contain tasks and further substructures. It performs the following steps as

given in the listing 2. The listing includes functions which represent the following

functionality: fcon tests a proposed solution to determine whether the required

constraints hold or not, fagg aggregates the QoS resulting from a proposed solution,

and fsaw performs a SAW-based comparison (cf. Section 5.2.4) with a number

as an output: If the number is greater than zero, the right argument represents a

better QoS, otherwise vice versa. It must be noted that the comparison could be

based either on one aggregated QoS characteristic or on many; either way this does

not require a modification to the algorithm. The same applies to the check if a

constraint is violated or not: This check can involve either one or more constraints.

The worst-case effort of this approach is the same as for the brute-force strategy

to evaluate all possible combinations, thus O(mn). The best-case effort occurs if

the first combination found represents the optimal combination and all other sub-

trees are cut. Then, the algorithm walks through all levels of the tree and evaluates

at least all tasks of the current level of the tree. The resulting effort for this would

be n resulting in the effort class of Ω(n2): On each task level, the algorithm would

evaluate combinations resulting from applying other candidates. The number of

task-candidate-pairs could be represented by a 2-dimensional matrix.

114

5.4. Heuristic Algorithms

Data: T, U, WO, WC , Kx

Result: array of candidates l[], |l[]| = a
initialisation: pos← 0
discarding(Kx, test[], pos)

begin

if | test[] | == a then1

if | l[] | == 0 then2

if fcon(test[]) then3

l[]← test[]4

end

else

y ← fagg(l[])5

x← fagg(test[])6

z ← fsaw(y, x)7

if z > 0 then8

l[]← test[]9

end

return10

end

end

foreach element ∈ Kx do11

if element == ti, ti ∈ T then12

foreach sij ∈ Si do13

test[]← test[] + sij14

y ← fagg(l[])15

x← fagg(test[])16

z ← fsaw(y, x)17

if z > 0 then18

if fcon(test[]) then19

discarding(Kx, test[], pos + 1)20

else

return21

end

end

end

else

discarding(Kx, test[], pos + 1)22

end

end

end

Algorithm 2: Discarding heuristic applied to the selection problem.

115

5.4. Heuristic Algorithms

5.4.3 Bottom-Up Approximation

Looking at the similarity of the selection problem to RCPSPs, it turned out that

several approaches for solving RCPSPs work on a precedence model which does

not allow the application to the selection problem. The resulting problem is that a

solution space is created which allows the rearrangement of tasks. The resulting

bounding rules cannot be applied efficiently to the selection problem.

In previous research work, the application of an heuristic algorithm for solving

a RCPSPs, which was introduced by Yang et al. [153], was discussed (cf. Jaeger

et al. [61]. The approach presumes that constraint and optimisation criteria form a

trade-off couple, i.e. the quicker a task is performed the more it will cost. More-

over, it supports only one constraint criteria. It will first sort the candidates by

the constraint criteria. Then it will improve the QoS of individual tasks by replac-

ing the original candidate with the candidate that offers the next worse constraint

value. Considering the trade-off relation, the idea is that the QoS is improved by

worsening the constraint value until it reaches the limit.

The algorithm is given in the listing 3. At first, it sorts the candidates by the

(one) constraint QoS characteristic. In other words, it performs a constraint-based

selection. Then, it assigns, for each task, the candidate with the next worse con-

straint. A proposed solution is kept, if the constraint still is not violated (cf. line

10). Figure 5.11 outlines how this algorithm proceeds, based on the tasks and

candidates of the example given in Section 5.3.1.

3

1

2

time: 1

cost: 5

time: 2

cost: 2

time: 6

cost: 4

time: 7

cost: 1

time: 2

cost: 5

time: 3

cost: 1

1

2

3

4

5

6

tasks
candidates

constraint-best

candidates

constraint-2nd-best

Figure 5.11: Example processing order of bottomup heuristic.

The algorithm tries to improve the QoS until it has gone through all tasks and

did not find any improvement, when the counter z has reached the number of tasks

(cf. line 13). Then, the algorithm stops the approximation to the optimum. Thus,

it does not necessarily find the optimal solution: It might have approached a lo-

cal maximum in this case. Theoretically, the algorithm has a worst case effort of

O(m · n), resulting in the effort class O(n2). In this case, it might evaluate all

combinations denoted by the two-dimensional matrix. The best case effort is at

116

5.4. Heuristic Algorithms

Data: T, U, WO, WC

Result: array of candidates l[], |l[]| = a
begin

m← 01

foreach Si ∈ U do2

candi[]← fsort(y, Si)3

l[i]← candi[m]4

end

repeat

m← m + 15

for i = 0 to a do

test[i]← candi[m]6

y ← fagg(l[])7

x← fagg(test[])8

x← fsaw(y, x)9

if x > 0 ∧ fc(test[]) then10

l[]← test[]11

z ← 012

else

z ← z + 113

end

end

until z == a

end

Algorithm 3: Bottomup heuristic applied to the selection problem.

Ω(n log n), because it at least performs a constraint-selection, which is basically a

greedy algorithm.

5.4.4 Pattern-wise Selection

To address the particular problem occurring in parallel arrangements as explained

at the beginning of this chapter, a selection algorithm is proposed that takes ad-

vantage of the fact that the composition can be modelled by using the composition

patterns. As explained before, the parallel cases in a composition are one aspect

of the selection problem. Thus, the proposed heuristic algorithm evaluates possi-

ble combinations for each identified parallel pattern. This algorithm has already

been introduced in previous work about the use of QoS when composing services

(cf. Grønmo and Jaeger [39]).

A pseudo-code implementation of the algorithm is given in the listing 4. This

algorithm acts from a pattern-perspective. It walks recursively into the structure

117

5.4. Heuristic Algorithms

and identifies pattern elements that do not contain any sub-patterns (cf. line 5).

For all tasks within this element, all sets of candidate assignments are evaluated.

If the optimal solution for a particular pattern is determined (cf. line 8), the algo-

rithm walks one level upwards to evaluate the assignment within the super-pattern.

The aggregated QoS of contained sub-patterns is taken as a fixed value (cf. lines

5 to 7). The pattern-wise optimisation and aggregation are performed until the

entire composition is covered and one aggregated QoS is returned. For determin-

ing the optimal solution, the listing mentions the function doGlobalSearch which

performs a naive evaluation of all possible combinations.

Data: T, U, WO, WC , Kx

Result: array of candidates l[], |l[]| = a
pattern(Kx, WO, WC)

begin

m = |E|1

foreach Ky ∈ Kx do2

if fsym(e) == ti, ti ∈ T then3

U
′ ← Si4

else

xk ← pattern(Ky, WO, WC)5

S
′
k ← xk6

U
′ ← S

′
k7

end

end

l[]← doGlobalSearch(T, U′, WO, WC)8

end

Algorithm 4: Pattern heuristic applied to the selection problem.

Since this algorithm operates on each pattern element, this approach cannot

guarantee to meet global constraints. Furthermore, the fact that the algorithm takes

previously aggregated sub-patterns as fixed values also decreases the potential for

optimisation for these cases. Thus, this algorithm can only be regarded as heuristic.

The main motivation for the algorithm lies in the assumption that the number of

tasks within a pattern element will grow more slowly with an increasing total num-

ber of tasks. It is assumed that larger compositions will rather likely contain more

pattern elements. Therefore, the algorithm might scale better than a brute-force

approach, which will be analysed in an evaluation presented in the next chapter.

However, the resulting worst-case effort for this algorithm is O(mn) as well.

The example given in Figure 5.3 of Section 5.1 shows a composition of nine tasks:

Assuming that for each task 5 candidates have been found, the number of com-

binations that the algorithm will evaluate is 53 + 53 + 53 = 375 vs. all possible

combinations which is 59 = 1, 953, 125. The effort is basically reduced to the

118

5.4. Heuristic Algorithms

sub-element containing the highest number of tasks: O(mnsub−max), which has

not effect on the worst case effort.

The best case for this algorithm occurs, if each pattern element consists of a sin-

gle task. The pattern-wise selection would perform a comparison of the candidates

by their overall QoS and assign the resulting best candidate. Then, the theoreti-

cally lowest effort possible is equivalent to a sort operation which is considered

O(n log n).

5.4.5 Comparison of the Algorithms

Table 5.2 lists the basic attributes of the proposed heuristic algorithms from the

previous section. These basic attributes are: whether it supports one or many global

constraints, the best and worst case computational complexity and if it always finds

the optimal solution.

Algorithm Supports Effort Effort Guaratees

Name Constraint Best case Worst case Optimum

Greedy Selection No Ω(n log n) O(n log n) no

Constraint Selection Yes, 1 Ω(n log n) O(n log n) no

Discarding Subsets Yes, ≥ 1 Ω(n2) O(mn) no

Bottom-Up Approx. Yes, ≥ 1 Ω(n log n) O(m · n) no

Pattern-wise Selection No Ω(n log n) O(mn) no

Table 5.2: Summary of introduced heuristic algorithms.

119

5.4. Heuristic Algorithms

120

Chapter 6

Evaluation

The model of the selection problem and the algorithms as given in the previous

chapters provide the basis for an implementation that simulates the QoS-based se-

lection by the heuristic algorithms. Based on the simulation software and its setup,

different simulation campaigns are introduced. These campaigns are designed to

evaluate particular aspects of the simulated QoS-based selection. The campaigns

will give the opportunity to explore the strengths and weaknesses of the considered

heuristics under special conditions.

To determine the simulation parameters, related research work and publica-

tions in the field of service compositions are considered sources for common value

ranges of the involved QoS characteristics, as well as sources for the setup of the

simulated example compositions. Based on a summary of the related work, this

chapter will explain how the basic parameters for the simulation are set. At the

end, the results from the simulation campaigns will be presented and discussed.

6.1 Simulation Model

The basic idea of the simulation is to generate problem instances of the previously

presented problem and then let the implementation of the heuristic algorithms solve

these instances. In this simulation, a solution is an assignment of the chosen candi-

dates to the tasks. The simulation will capture the time taken to compute a solution

and the aggregated QoS resulting from the assignment. While best and worst case

efforts of the proposed heuristic algorithms are given in Section 5.4.5, a simulation

of real world conditions reveals the typical required effort. In order to evaluate

the implemented algorithms under different influences, “the” simulation consists

of several elements:

• Campaigns. The entire simulation is divided into simulation campaigns.

Each campaign investigates the influence of a particular parameter on the

performance of the algorithms. For example, a simulation campaign tests

how the performance of the algorithms develops, if the number of tasks is

increased while the other parameters are kept constant.

121

6.1. Simulation Model

• Setups. Each campaign is divided into a number of setups. While one or

more parameters are varied in a campaign in order to investigate their effect

on the algorithms, a setup denotes a particular setting of parameters.

• Runs. A setup consists of runs. A particular setup is repeated for a number

of runs. The repetition is necessary for the analysis of the results, because

some parameters require a stochastic parameterisation.

For all simulations, the parameters cover the generation of the problem in-

stances; no parameters are set for the implemented algorithms. Depending on the

simulation setup, some of them are fixed, some are step-wisely increased and some

are randomly set. Considering the problem model, the elements of a problem in-

stance are generated in the following way:

• Tasks and candidates. If a problem instance is generated, only the amount

of tasks and candidates is relevant. The simulation ignores particular func-

tionality of possible tasks or possible composition goals, because the focus

on this evaluation is the QoS of the candidates only. In the simulation, the

amount of tasks and candidates is either step-wisely increased or set to fixed

value.

• Quality-of-Service. The QoS values of the candidates are stochastically

generated. Section 6.3.2 explains the generation mechanism and the value

ranges.

• Optimisation goals. In the entire simulation, the optimisation goals remain

the same and all generated problem instances have the requirement to opti-

mise four QoS characteristics. These characteristics will be discussed further

in Section 6.3.1.

• Constraints. Since the simulation evaluates the optimisation capabilities,

a fixed constraint is set on an optional basis for the evaluation of heuristic

algorithms that are capable of meeting constraints.

• Structure. The structure of a composition is generated stochastically. How-

ever, to evaluate the influence of the structural arrangement, the likeliness of

generating particular structural elements (i.e. parallel vs. sequential) can be

varied.

In summary, performing the simulation, i.e. performing a run, is divided into

three main steps. First, a problem instance is generated, then the implemented

heuristic algorithms try to solve the given problem and then the taken computation

time and the resulting QoS are evaluated. Figure 6.1 outlines these steps.

122

6.2. Evaluation Methods and Metrics

generate problem

instance, depending

on setup

problem

instance

time and

chosen

candidates

run heuristic

algorithms to solve

given instance

evaluate

results

Figure 6.1: Main steps of performing a simulation run.

6.2 Evaluation Methods and Metrics

Besides capturing the computation time of the algorithms, the simulation also com-

pares the aggregated QoS of the composition resulting from the task-candidate as-

signments. A comparison makes sense, because the proposed heuristics do not

guarantee finding the optimal solution. Then, a quantitative analysis of the result-

ing QoS shows how much worse a heuristic algorithm is as compared to others. A

quantitative statement is achieved by computing a score for the resulting QoS of

each selection method. For this score the SAW method is used, which has been

introduced in the previous chapter (cf. Section 5.2.4). By this method, one se-

lection method serves as a reference and resulting scores for the other methods

indicate their relative QoS improvement or relative loss. For example, if the re-

sults in the upcoming sections will present a QoS ratio of 1.20 this means that a

method has resulted in a “20%” better QoS when compared to the reference selec-

tion. For this comparison, the different QoS categories are aggregated considering

equal weights. In summary, the concept of performance covers two measures:

the computation time of the performed algorithm and resulting aggregated quality

compared to a reference method.

The simulation implements the presented simulation model and performs the

introduced heuristics on randomly generated problem instances. In order to com-

pute a QoS ratio independent from a heuristic method, the simulation provides

additional methods to provide references to an optimal solution and to a non-

optimised result:

• Constraint-based. This method implements the simple case of optimising

with regard to a single QoS characteristic. The algorithm shows a greedy

behaviour: For each individual task, it chooses the candidate offering the best

QoS with respect to the considered constraint characteristic. This algorithm

can be used to meet a constraint based on a single QoS characteristic while

ignoring other characteristics for optimisation.

• Random selection. By this selection, a candidate is randomly assigned to a

task. Thus, this method completely ignores the QoS. It simulates the case in

123

6.2. Evaluation Methods and Metrics

which the candidates are chosen by other criteria, such as by their organisa-

tional affiliation or by a first-found policy.

• Global search. The global selection evaluates all possible combinations and

then determines the best resulting assignment. This method shows the worst

result in terms of its computation time. However, it determines the best

QoS result possible. Therefore, this method serves as a reference for how

closely the heuristic algorithms approach the optimal result. This method can

optimise different QoS values and it can additionally consider constraints.

In addition to these methods, the discarding subsets method has been imple-

mented in two ways: One variant optimises for different QoS categories and an-

other can take one or more constraints into account. In summary, considering the

selection methods for reference and the heuristics as mentioned in the previous

chapter, the software simulation implements the following methods:

Algorithm, constraint capability

Constraint (yes) Random (no)

Global Constraint (yes) Global Optimisation (no)

Discarding Constraint (yes) Discarding Optimisation (no)

Bottom-Up Approach (yes) Pattern-based Selection (no)

Local (no)

6.2.1 Statistical Measures

As mentioned in the previous section, the simulation software captures two main

measures of each run: the score of the aggregated QoS relative to a reference QoS,

the QoS ratio, and the computation time. The result of the simulation will be sets of

samples that represent a population of these two values (QoS ratio and computation

time) for each selection method. Because this work cannot list all the generated

and captured data of all campaigns, the results of each campaign are presented in

the following way: For each campaign, diagrams will show the average QoS and

computation time of each selection method captured for each setup.

In addition to the diagrams, a table will list the results for one particular setup

that represents a typical output of other setups within a campaign. For example, if a

campaign tests for different setups with an increasing numbers of tasks, a separate

table will present the results of one setup with a particular number of tasks. The

tables will present following statistical measures derived from the captured data:1

• Arithmetic mean. The arithmetic mean is interpreted as the average of a

set of values. The used definition for the arithmetic mean x is as follows:

x = 1
n

∑n
i=1 xi

1The definitions that follow represent basic knowledge in the field of statistics; the Handbook of

Mathematics by Bronstein et al. serves as a reference [13].

124

6.3. Parameters and Implementation

• Standard deviation. Besides the arithmetic mean, the standard deviation

is a measure for how far or how close the individual values occur around

the arithmetic mean. For this work, the following definition for the standard

deviation s is considered: s =
√

1
n

∑n
i=1(xi − x)2 with xi representing an

individual sample, n the count, and x the arithmetic mean of the samples.

In addition, the simulator performs a simple test to determine if the samples

are distributed around the given arithmetic mean. For this test, the software

determines the percentage of the samples contained in 1|s|, 2|s| and 3|s| of

the mean. If the distribution show a similarity to the percentage of 66%, 95%
and 99% for 1s, 2s and 3s around the mean, this indicates that the distribu-

tion is shows a concentration around the given mean value. For the interpre-

tation of the results, this test provides an indication about the performance

behaviour of a selection method. A method can either show a performance

which oscillates around an average, or it can show a split performance. i.e. it

performs either very badly or very well.

• 95%-Confidence interval. It is assumed that the measured computation

times and the resulting QoS represent a population parameter with a specific

distribution. Thus, the calculated arithmetic mean covers only the captured

part of the entire population.

The confidence interval denotes an interval in which the arithmetic mean

of the entire population resides subject to a probability of correctly captured

samples. In this simulation sciences, the considered probability is set at 95%.

The denotes that 5% of the values are taken as wrong values resulting from

errors in the simulation setup or the method to capture the results. Different

definitions for the confidence interval exist. These depend on the count of

samples. Because the setup will be designed to contain between 50 and 1000

runs, the following definition of the confidence interval is used:

[

x− z
(

1− α

2

) s√
n

;x + z
(

1− α

2

) s√
n

]

The variable α represents the likeliness of failure. For a 95%-confidence

interval the assumed failure is 5%. The term z(x) refers to the quantile of

the normal distribution. The other variables refer to the same definition as

previously given.

6.3 Parameters and Implementation

One of the first parameters to set for the simulation is the size of a typical composi-

tion structure. The Gartner Group has presented a study about the average number

of services found in companies and enterprises. This gives a rough overview about

the dimensions to consider [107]. According to this study, small companies deploy

125

6.3. Parameters and Implementation

about 25 services on average while very large enterprises deploy a total amount of

more than 1000 services. In such very large enterprises, more than 100 clients ac-

cess these services on a daily average. This study has also revealed that the services

in very large enterprises are usually invoked among all units but entirely within the

organisation. From these numbers, no concrete estimation is possible. It is possible

to estimate that, on average, a client accesses 10 services which indicates roughly

the size of possible compositions. The number of 1000 services represents a direc-

tion for how many services may be considered by a broker. However, assumptions

about how many services candidates result for each task cannot be made.

Besides the numbers from this analysis, scientific publications provide indica-

tions about possible sizes of service compositions. Van der Aalst et al. describe

the application of workflow modelling techniques to the process of granting a loan

for a Danish bank company. In their example, 8 tasks are identified that together

form a complete business process [147]. The evaluations of workflow management

facilities of Heinis et al. [44] and Cranford et al. [19] mention workflows that usu-

ally consist of up to 25 individual tasks or activities. Regarding the typical size

of workflows or business processes, medium sized compositions can have about

ten tasks, while large compositions can be around 25 tasks in size. It must be

also considered that a composition might require a transformation before it can be

processed by the aggregation method. Section 4.5 has mentioned these transforma-

tions, which involve the duplication of nodes. Consequently, the resulting number

of tasks to process by selection algorithms might be larger than the number found

in the original business process.

6.3.1 Quality-of-Service Parameters

Regarding the response time, measurements of the invocation of Web services can

be considered because Web services represent the most popular SOA implementa-

tion today. Tosic et al. have introduced an infrastructure to evaluate the provision of

policy-aware Web services [132], which also provides a quantitative measurement

of Web service invocation times. In their work, they have performed experiments

to execute Web services while providing an adaptive solution to cover dynamic

changes in the given QoS. Their experiments show that a standard setup in a local

network resulted in a lowest response time of about 150 milliseconds of plain test

Web services. Therefore, for this work a value of 150 milliseconds is regarded as

the lower end of response time values.

Gillmann et al. have evaluated in their work the typical duration of activities

in a workflow. The workflow scenario represents a realistic application of service

compositions. According to their evaluation, automatic (non-interactive) activities

take from around 2 to 12 seconds [38]. Chandrasekaran et al. have introduced

a simulation environment for processes based on Web service compositions [18].

Their measurements show which parts of the service invocation take which amount

of time: the queuing of the request, its processing or the transfer over the network.

According to their measurements, the service invocations range between 400 mil-

126

6.3. Parameters and Implementation

liseconds and 2.6 seconds.

Regarding the availability of services, the work of Gillmann et al. considers

a typical downtime in the area of 20 minutes each day in their evaluation [38].2

This would result in an availability of 0, 985%. Kenyon presents in his book a

very detailed discussion about typical availability rates in service architectures [72,

p. 411]. The data is summarised in Table 6.1. Based on these values, it can be

concluded that an availability value close to 99% represents a lower limit for the

business minded provision of services. Values above the high-availability can be

ignored from Table 6.1, because for most cases it can be assumed that the underly-

ing software platform, computer hardware and network connection provide a lower

availability.

. .System class Availability Yearly Downtime Daily Downtime

. .
Unmanaged 90.00000% 876.00 h 2.40 h

Managed 99.00000% 87.60 h 14.40 h

Well-Managed 99.90000% 8.76 h 1.44 m

Fault-Tolerant 99.99000% 52.56 m 8.64 s

High-Availability 99.99900% 5.26 m 863.99 ms
...

...
...

...

Ultra-Availability 99.99999% 3.15 s 8.64 ms

Table 6.1: Availability rates and resulting downtimes by Kenyon [72, p. 411].

Regarding the cost and the reputation, an evaluation of existing work would not

result in any benefit for this simulation: Cost and reputation are individually set.

Moreover, their definitions can vary as explained in Section 4.4.3. For example,

the cost depends on the payment model or the considered currency. An amount of

a particular currency could require a transformation into another. Regarding the

reputation any scale used for setting scores can be considered. For this work, for

both categories arbitrary absolute values within a reasonable range are considered.

The value ranges of the other values – i.e. the response time, number of tasks

and candidates, and availability – are based on the previously given discussion of

existing literature. Table 6.2 summarises the value ranges for the parameters of the

simulation.

6.3.2 Implementation

The simulation software generates arbitrary problem instances which includes struc-

tures and QoS values of the candidates to apply each of the different selection

methods. The software considers the four QoS characteristics as described in the

2It must be noted that this number represents a simplified assumption of their failure model as

explained in [38]. However, for the use in this work such a statement is regarded as sufficient to get

an impression about typical dimensions.

127

6.3. Parameters and Implementation

Parameter, value range

Number of tasks [4 . . . 50] incremented by 1 or fixed value

Number of candidates [2 . . . 50] incremented by 1 or fixed value

Response time [150 . . . 9999] randomly chosen

Cost [0 . . . 9999] randomly chosen

Reputation [0 . . . 10] randomly chosen

Availability [0.9750 . . . 0.9999] randomly chosen

Table 6.2: Parameter value ranges of the simulation.

previous section: the maximum response time, the maximum cost, the reputation

based on the mean-aggregation and the availability. The generation of problem

instances involves a number of steps each covering a randomly generated aspect:

1. To build up the composition structure, the software determines a root struc-

ture chosen from the composition patterns with equal probability. To build

“deep structures”, the software first chooses a composition pattern as a root

structure. Within this root and inside further structural elements, the simula-

tor chooses with equal probabilities to either generate a task or to generate a

structural element that may contain tasks and other structural elements.

The simulator considers only seven composition patterns from the nine in-

troduced in Section 4.3. This represents a simplification of the composition

patterns. It merges the patterns CP5 with CP6, and CP8 with CP9, to one

new pattern each. Which particular element is generated is chosen with equal

probability of 14.28% for each. Thus, the generated structures statistically

contain more parallel arrangements, because the considered patterns consist

of five parallel patterns and two sequential patterns (71.43% versus 28.57%).

2. The software generates candidate services with random QoS values. To en-

sure a realistic QoS variance of the candidates, the software randomly as-

signs, for each task, an optimal cost and response time with uniform distri-

bution, from the following intervals:

QoS Characteristic, value range

Response Time [150 . . . 2000] uniformly distributed

Cost [0 . . . 1000] uniformly distributed

Based on the optimal value qoptimal, the actual value for each candidate is

determined by adding a randomly determined percentage between 0 and 100
with uniform distribution. In short the generated QoS value qg is:

qg = qoptimal · (1 + x) 0 ≤ x ≤ 1, x ∈ R

128

6.3. Parameters and Implementation

To form a trade-off couple between the response time and cost, the two are

set as follows: The value x1 added to the optimal response time is taken to

calculate the value x2 added to the optimal cost, with x1 + x2 = 1. Thus,

the better the response time is, the worse the cost and vice versa.

3. Contrary to the previous characteristics, the software does not generate an

optimal value for generating the reputation values. The reputation is gener-

ated by taking a base value of 5 and adding a value 0, . . . , 10 ∈ N, which is

chosen with uniform distribution, to this base value. Regarding the availabil-

ity, the algorithm considers the interval [0.975 . . . 0.999] as given in Table 6.2

and chooses, with uniform distribution, a value between these two borders.

4. After the structure and candidate QoS values have been determined, a con-

straint is determined by running the constraint selection first. In the simu-

lation campaigns, the cost is the considered constraint characteristic. The

aggregated value is increased by a set percentage (for example by 20%) and

then taken as the constraint that has to be met by the other selection methods.

After the creation of the problem instance, the software performs the selection

methods on this setup. For each run, the software captures the resulting aggregated

QoS and the computation time in microseconds. The computation is the time that

an algorithm needs to determine the solution, based on a given problem instance.

Thus, the generation of the instance including the candidates with their QoS values

is not captured by the measurements.

6.3.3 Technical Details

Since the computation times are captured to compare the computational efforts of

the particular selection methods, the absolute performance of the used hard- and

software platform is generally irrelevant for the validity of the results. However,

it was necessary to ensure that the simulation host computer kept its condition

throughout all the campaigns and that no other processes running in parallel affect

the measurements. Consequently, only operating system and a software run-time

environment was installed on the host computer, keeping it clean at “factory set-

tings”.

The simulation software is a custom implementation and no external software,

libraries and tools were integrated. All selection methods ran in the same environ-

ment under the same conditions working on the same data structure in the com-

puter’s main memory. Java was chosen as the implementation language for the

simulation software because of its availability on many platforms. Thus, for the

distribution of the software, it is ensured that it will be able to run on different

hardware platforms and operating systems. Since Java 2 Standard Edition (J2SE)

5.0, the API provides the operation System.nanoTime(), which offers a more pre-

cise time measurement as the operation System.currentTimeMillis() provided by

previous versions of the Java platform as the only operation of this kind. It turned

129

6.4. Simulation Campaigns and their Results

out that measurements in the magnitude of milliseconds did not capture the com-

putation time from the random, constraint and local selection methods. Therefore,

the version 5.0 of the J2SE is the required run-time environment for the simulation

software. Setting the parameters to create the problem instances involved the gen-

eration of random numbers. Accordingly, the pseudo-random number generator

implementation of the class java.util.Random (with default seed) was used for this

purpose.

The entire simulation was performed on the same computer keeping the same

software platform. As a computer, standard PC hardware with the Windows 2000

operating system was used. The operating system was kept at its default state,

meaning that no additional driver software was installed and no settings were made

to additionally configure the computer. As a consequence, the computer did not

maintain any network connection and ran in standard 680 by 480 graphics mode

with 16 colors. The only software that was installed is the Java virtual machine to

let the computer run the simulation software. Further technical specifications about

the computer are given in the Appendix A.

6.4 Simulation Campaigns and their Results

In the following, different simulation campaigns are described in which influence

of a particular parameter on the resulting performance of the algorithms is investi-

gated. For example, it is obvious that a rising number of tasks will result in a rising

computational effort. However, regarding a raising number of candidates with a

fixed number of tasks, one can guess that the algorithms scale differently because

of different upper bounds of complexity. Another question is how much potential

for optimisation exists for a given problem instance, since this potential depends

on the variance of the provided candidate QoS. To cover these considerations, the

following different simulation campaigns have been designed that allow the evalu-

ation of different performance factors:

Simulation campaigns, short description

C1 Increasing number of tasks without constraint

C2 Increasing number of tasks with constraint

C3 Increasing number of service candidates with a fixed number of tasks

C4 Volatility of the QoS among the candidates

C5 Parallel vs. sequential composition structures

In the following sections, these campaigns are discussed and their results are

analysed. Regarding the simulation setup, two general issues have been set that

apply to all campaigns. The number of conducted runs per setup was set to 200
times. From preliminary tests, it turned out that for this number of runs it is ensured

that a campaign will result in similar statistical results when run again. Because

the “exponential” selection methods are indeed very time-consuming to simulate,

130

6.4. Simulation Campaigns and their Results

the software skips a method if the average time has exceeded a certain limit. For

the campaigns, the simulator has skipped a method if its average computation time

in a run has exceeded 500 seconds.

6.4.1 Increasing Number of Tasks without Constraint (C1)

As a start, this simulation campaign has the goal to test the resulting performance

with an increasing number of tasks. For this campaign, the number of candidates

is kept constant. Regarding the setup of the QoS, this campaign does not set any

constraints but it considers the four QoS characteristics for optimisation. As ex-

plained in the previous section, the response time and cost will form a trade-off

couple, meaning that optimising one generally results in making the other worse.

The reference method for comparing the resulting QoS will be set to the con-

straint-based selection. Although there is no constraint to meet, this method opti-

mises for just one QoS characteristic and thus serves as a simple QoS optimisation

approach. Because, contrary to the local and pattern optimisation, the bottomup

optimisation considers also constraints, this method will be skipped for this cam-

paign and explored in the next one. In summary, this campaign uses the following

setup:

C1 Parameters and Setup, values

Number of tasks [4 . . . 50], each setup incrementing by 1

Number of candidates 5, constant

Candidate QoS as given in Table 6.2, randomly set,

uniformly distributed

Constraint no constraint set

Involved methods constraint, random, global, discarding,

local and pattern

Reference method constraint

Expectations

This campaign will evaluate how the different heuristics perform when faced with

the problem of optimising for different QoS characteristics while two of them form

a trade-off couple. A constraint is not considered. Generally, this campaign will

evaluate how well the heuristics optimise a given setup when compared with the

three reference methods.

Results

The results of this simulation campaign are shown in Figures 6.2 and 6.3. In ad-

dition, Table 6.3 shows the results of the setup with 12 tasks. Figure 6.2 shows

the average resulting aggregated QoS performing the selection methods relative to

the constraint selection. Figure 6.3 shows the average computation times of the

different selection methods for problem instances with increasing number of tasks;

131

6.4. Simulation Campaigns and their Results

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

 5 10 15 20 25 30 35 40 45 50

q
o

s
 r

a
ti
o

 (
c
o

n
s
tr

a
in

t
=

 1
)

number of tasks

Constraint
Random

Global
Discarding

Local
Pattern

Figure 6.2: Relative QoS to constraint

selection (C1, with 5 candidates).

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 5 10 15 20 25 30 35 40 45 50

ti
m

e
 i
n

 m
ic

ro
s
e

c
o

n
d

s

number of tasks

Constraint
Random

Global
Discarding

Local
Pattern

Figure 6.3: Computation times of selec-

tion methods (C1, with 5 candidates).

this diagram has a logarithmic scale on its y-axis. Table 6.3 lists the arithmetic

mean, the standard deviation and the confidence interval. Based on the standard

deviation, the table shows how many percent of the samples are within one, two or

three standard deviations around the mean.

Average Standard % % %
Method Mean x Deviation s in 1s in 2s in 3s 95%-Conf.

Overall QoS relative to constraint selection

Constraint 1.0 0.0 0.0 0.0 0.0 ± 0.0

Random 0.9808 0.0937 76.50 96.00 98.50 ± 0.0110

Glob O. 1.2463 0.0988 73.00 94.00 99.50 ± 0.0116

Disc O. 1.2398 0.1022 72.00 93.00 100.00 ± 0.0120

Local 1.2110 0.1068 73.00 95.50 99.00 ± 0.0125

Pattern 1.2303 0.1019 71.00 94.00 99.50 ± 0.0120

Computation duration, in microseconds

Constraint 23 51 98.50 98.50 98.50 ± 6.0040

Random 8 1 23.50 69.00 95.00 ± 0.1177

Glob O. 831,559,679 211,098,114 69.00 95.00 100.0 ± 24,485,178

Disc O. 285,281,163 184,650,968 21.00 84.00 87.00 ± 21,738,258

Local 48 46 98.50 98.50 98.50 ± 5.4154

Pattern 263,332 2,098,027 98.50 98.50 99.00 ± 246,992

Table 6.3: QoS and times, setup with 12 tasks in C1.

Both the pattern and the local method show a resulting average QoS perfor-

mance that is very close to the algorithm that always finds the optimal solution.

In all runs, the pattern method shows the better resulting QoS when compared to

the local method. The gap between the pattern method and the local method is

relatively small. The discarding method shows almost the same QoS performance

as the global method.

132

6.4. Simulation Campaigns and their Results

Regarding the computing duration, the constraint, random and local methods

show a slow increase – as expected. The results for the pattern method show that,

with a growing number of tasks, its computation exceeds the given time limit and

thus was skipped after the setup with 25 tasks. However, its computation times

climb slower than the times of the global or the discarding method. Compared to

the global method, the pattern method performs significantly better: The average

computation time for a setup of 12 tasks is less than 0.1% of the average computa-

tion time for the global selection.

The histogram of the computation times in Figure 6.4 explains the behaviour

of the pattern method more closely. For more than 40% out of the 200 samples,

the algorithm executes faster than 0.001 seconds. However, for 7% of the samples

the algorithm takes more than 0.1 seconds for execution. This shows the volatility

of the required computational efforts by this method. For comparison, Figure 6.5

shows the histogram of the computation duration of the global method. Although

the values are larger than those resulting from the pattern method, they do not show

that large variance.

 0

 20

 40

 60

 80

 100

 120

 140

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

o
c
c
u
rr

e
n
c
e
s

time in microseconds

Figure 6.4: Histogram of computation

times of the pattern method (C1, setup

with 12 tasks).

 0

 20

 40

 60

 80

 100

 120

 140

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

o
c
c
u
rr

e
n
c
e
s

time in microseconds

Figure 6.5: Histogram of computation

times of the global method (C1, setup

with 12 tasks).

Interpretation

This campaign has evaluated the performance of the three heuristics, the discard-

ing, local and pattern methods. The results allow the following interpretation about

these three:

• Discarding. This method results in almost the same QoS performance as the

global method that always finds the optimal solution. However, this cam-

paign shows that the bounding ability of this heuristic cannot save enough

efforts to show a substantial difference. The results show that for larger

number of tasks, the bounding saves more than 50% of the computational

133

6.4. Simulation Campaigns and their Results

effort, but the effort still rises exponentially. Accordingly, its computational

performance can be regarded as poor.

Looking at the results for very small composition sizes, the discarding method

takes even longer time than the global method. Obviously, the discarding

method cannot save more time by bounding sub-trees than it consumes more

for testing for bounding after each step.

• Local. The locally optimising method shows a QoS performance that comes

very close to the pattern, global and discarding methods. From the generated

data of this campaign, which is not entirely presented here, the local method

showed that in about 95% of the runs, this selection method results a mini-

mum QoS of about 15% worse than the average of the optimal solution. As

expected, it performs with a negligible computational effort.

• Pattern. The results from this campaign, especially the histogram shown in

Figure 6.4, allow the conclusion that the algorithm strongly depends on the

given structure of the composition. The computational effort grows expo-

nentially for the evaluation of the combinations within a pattern. If a pattern

consists of many tasks to evaluate, the number of possible combinations rises

exponentially. The simulation has shown that these cases occur and they re-

sult in an extremely large computational effort. Compared with the two other

heuristics tested here, this method shows a QoS performance between the lo-

cal and the discarding methods.

6.4.2 Increasing Number of Tasks with One Constraint (C2)

This simulation campaign has the goal to test the resulting performance with an

increasing number of tasks. For this campaign, the number of candidates per task

is kept constant. The particular QoS characteristics are generated using a normal

distribution. Consequently, each of the values within the range is possible with

equal probabilities. For the constraint, one QoS characteristic is chosen. Then, the

required constraint value is set to 20% above the best value possible. The reference

method for comparing the resulting QoS will be set to the constraint-based selec-

tion. In summary, this campaign uses the following setup:

C2 Parameters and Setup, values

Number of tasks [4 . . . 50], each setup incrementing by 1

Number of candidates 5, constant

Candidate QoS as given in Table 6.2, randomly set,

with uniform distribution

Constraint 1 characteristic, 20% worse than best possible for

constraint-aware methods

Involved methods constraint, random, global, discarding

and bottomup

Reference method constraint

134

6.4. Simulation Campaigns and their Results

Expectations

The expectations are similar as in the previous campaign except that this campaign

involves a constraint and thus, instead of the local and pattern heuristics, the focus

lies on the discarding and bottomup heuristics. The anticipated result is a quantita-

tive evaluation about how well each of the algorithms scales with a rising number

of tasks and if the resulting QoS of particular algorithms will decrease. Obviously,

a larger composition structure will include a higher number of branches, which

could result in more potential to optimise. On the other hand, a larger number of

tasks will reduce the optimisation level, because the QoS increase of a particular

task will be relatively low compared to the aggregated QoS of the entire composi-

tion.

Simulation Results

The results of this campaign are shown in Figures 6.6 and 6.7. In addition, Ta-

ble 6.4 shows the results of the setup with 12 tasks.Figure 6.6 shows the average

resulting aggregated QoS performing the selection methods, relative to the con-

straint selection. Figure 6.7 shows the average computation times of the differ-

ent selection methods for problem instances with increasing number of tasks. It

must be noted that its y-axis has a logarithmic scale. Table 6.4 lists the arithmetic

mean, the standard deviation and the corresponding confidence intervals. Based on

the standard deviation, the table shows also how many percent of the samples are

within one, two or three standard deviations around the mean.

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

 5 10 15 20 25 30 35 40 45 50

q
o

s
 r

a
ti
o

 (
c
o

n
s
tr

a
in

t
=

 1
)

number of tasks

Constraint
Random

Global
Discarding
Bottumup

Figure 6.6: Relative QoS to constraint

selection (C2, with 5 candidates).

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 5 10 15 20 25 30 35 40 45 50

ti
m

e
 i
n

 m
ic

ro
s
e

c
o

n
d

s

number of tasks

Constraint
Random

Global
Discarding
Bottumup

Figure 6.7: Computation times (C2 with

5 candidates).

The results show that the exponentially time-bounded methods indeed show a

steep increase in the computational duration. Compared to these, the quadratic bot-

tomup method shows a relatively slow increase. Table 6.4 shows that the discarding

method has a high volatility regarding its duration, while the global seems to op-

erate on constant level. In fact, the confidence intervals show that the given mean

135

6.4. Simulation Campaigns and their Results

Average Standard % % %
Method Mean x Deviation s in 1s in 2s in 3s 95%-Conf.

Overall QoS relative to constraint selection

Constraint 1.0 0.0 0.0 0.0 0.0 ± 0.0

Random 0.9808 0.0937 76.50 97.50 98.50 ± 0.0110

Glob Co. 1.2154 0.0899 73.00 94.50 99.00 ± 0.0105

Disc Co. 1.2089 0.0934 72.00 94.00 99.00 ± 0.0110

Bottomup 1.0655 0.0603 83.00 96.00 98.00 ± 0.0070

Computation duration, in microseconds

Constraint 23 51 98.50 98.50 98.50 ± 6.0040

Random 8 1 23.50 69.00 95.00 ± 0.1177

Glob Co. 750,982,559 207,036,882 68.00 95.00 100.00 ± 24,373,668

Disc Co. 309,828,060 176,015,663 19.50 81.50 84.50 ± 20,721,656

Bottomup 268 98 84.00 94.00 95.00 ± 11.537

Table 6.4: QoS and times, setup with 12 tasks in C2.

value for the duration is not representative and the occurring values are widely

spread. To examine this behaviour further, Figure 6.8 shows a histogram of the

computation times for the discarding method. Each bar shows the time in mi-

croseconds. It must be noted that the x-axis in this diagram has a logarithmic scale.

From this histogram it can be seen that about 50% of the runs perform faster than

100 seconds while the average is at 309 seconds due to some runs with require a

high effort.

The bottomup method shows a relatively large standard deviation and confi-

dence interval of its duration. Also when observing the complete results, which are

not listed, the confidence interval decreases from 1/10th of the mean (at 12 tasks)

to 1/20th of the mean (at 40 tasks). To provide additional insights on the resulting

population, the histogram of duration from the bottomup method is given in Fig-

ure 6.9. The histogram shows an accumulation around the average. However, in

some cases the values are three times larger. The computation times of the random

and constraint selection are relatively low and therefore is ignored in the further

discussion.

Regarding the resulting QoS, the global and the discarding selection are on the

same level, indicating that the discarding method results in almost the same QoS

as the global selection. The bottomup method shows a decreasing level of perfor-

mance with a rising number of tasks when compared to the constraint selection.

The 95%-confidence interval values, as given in the table, indicate that the average

closely represents the actual performance of the selection methods.

Interpretation

Comparing the constraint selection and the global selection reveals that, on av-

erage, the overall QoS can be improved by about 25% − 30% when considering

136

6.4. Simulation Campaigns and their Results

 0

 20

 40

 60

 80

 100

 120

 140

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

o
c
c
u
rr

e
n
c
e
s

time in microseconds

Figure 6.8: Histogram of computation

times of the discarding method (C2, with

12 tasks).

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600 700 800

o
c
c
u
rr

e
n
c
e
s

time in microseconds

Figure 6.9: Histogram of computation

times of the bottomup method (C2, with

12 tasks).

the setup of QoS values as expected. The global and discarding methods show an

exponentially rising computational effort with a larger number of candidates and

therefore can be regarded as unfeasible. The results allow the following interpreta-

tion about the two evaluated heuristics:

• Discarding. The selection by discarding subsets results in the best QoS pos-

sible, while still meeting the constraint for the setups. The heuristic aspect of

the discarding subset algorithm, as discussed in Section 5.4.2, is very small;

rather this method resulted in almost the same QoS as an algorithm that is

guaranteed to always find the optimal solution.

Regarding the computational duration, this selection method has an unattrac-

tive scaling. Obviously the time performance is highly volatile and seems to

depend strongly on the generated example problem instances: In one third

of the cases, this method solves the problem within a negligible effort while

in 15% of the cases, the duration is about 100-times as high. A future simu-

lation campaign with the focus on different structures should to examine this

aspect further.

• Bottomup. The bottomup selection results in the second worst QoS, com-

pared to the other heuristics. The results for the QoS values show that

the bottomup method reaches about one third of the optimal performance

achieved by the global selection. However, it meets the constraint and shows

a low computational effort and scales well with a rising number of tasks. The

bottomup method shows feasible efforts even for larger composition struc-

tures.

In summary, this campaign has confirmed that the branch-and-based approach

is not guaranteed to save computational efforts in special cases. But it resulted

137

6.4. Simulation Campaigns and their Results

in almost the best QoS possible. The bottomup method behaves in the opposite

way: It has low computational requirements combined with a relatively low QoS

performance.

6.4.3 Increasing Number of Service Candidates (C3)

For this campaign, the number of tasks in a problem instance is kept constant for

each test run. Like for the previous campaign, the particular QoS categories are

generated using a normal distribution - thus this means that each of the values

within the range are chosen with equal probabilities. A constraint is considered for

this campaign by the constraint-aware methods.

C3 Parameters and Setup, values

Number of tasks 8, constant

Number of candidates [2 . . . 50]

Candidate QoS as given in Table 6.2, uniform distribution

Constraint 20% worse cost than best possible for constraint-

aware methods

Involved methods constraint, random, global (two), discarding (two),

bottomup, local and pattern

Reference method constraint

Expectations

The expected result is a quantitative analysis of how well each of the algorithm

scales with a rising number of candidates. Compared with the rising number of

tasks, increasing the number of candidates results in an effort bounded by a poly-

nomial, because the number of tasks is kept constant. For the calculation of the

worst-case effort, the number of tasks goes into the exponent of a time-bounding

function, as explained in Section 5.3.5. For this campaign, the exponent is kept at

8. Therefore, the worst-case effort for this setup results in the class of O(n8) where

n represents the number of candidates. A statement is expected on how the poly-

nomial computational efforts will compare to the setup of the first two campaigns

with an exponentially bounded effort.

Results

Figures 6.10 and 6.11 show the average aggregated QoS performing the selection

methods relative to the constraint selection. Figures 6.12 and 6.13 show the aver-

age computation times of the involved selection methods. In addition, Table 6.5

shows the results of the setup with 11 candidates, because this setup still involves

the global and discarding selection methods. For setups with more than 11 can-

didates, the global selection was skipped. The table lists the arithmetic mean, the

standard deviation and the corresponding confidence intervals. Based on the stan-

dard deviation, the table shows how many percent of the samples are within one,

138

6.4. Simulation Campaigns and their Results

two or three standard deviations around the mean.

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

 5 10 15 20 25 30 35 40 45 50

q
o

s
 r

a
ti
o

 (
c
o

n
s
tr

a
in

t
=

 1
)

number of candidates

Constraint
Random

Global
Discarding

Local
Pattern

Figure 6.10: Relative QoS to constraint

selection of optimisation-only methods

(C3).

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

 5 10 15 20 25 30 35 40 45 50

q
o

s
 r

a
ti
o

 (
c
o

n
s
tr

a
in

t
=

 1
)

number of candidates

Constraint
Random

Global Constr
Disc Constr

Bootomup

Figure 6.11: Relative QoS to constraint

selection of constraint-aware methods

(C3).

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 5 10 15 20 25 30 35 40 45 50

ti
m

e
 i
n

 m
ic

ro
s
e

c
o

n
d

s

number of candidates

Constraint
Random

Global
Discarding

Local
Pattern

Figure 6.12: Computation duration of

optimisation-only methods (C3).

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 5 10 15 20 25 30 35 40 45 50

ti
m

e
 i
n

 m
ic

ro
s
e

c
o

n
d

s

number of candidates

Constraint
Random

Global Constr
Disc Constr

Bottomup

Figure 6.13: Computation duration of

constraint-aware methods (C3).

Regarding the QoS performance, all methods show an increase with a rising

number of candidates when compared to the constraint selection. The previous

campaigns have shown that an increasing number of tasks resulted in a decreasing

behaviour of the QoS performance, compared with the constraint selection. In this

campaign, all methods have shown an improving QoS performance for a rising

number of candidates when compared to the constraint selection. The results also

show a rather steep slope at the beginning, which seems to lower for larger number

of candidates.

Regarding the computational efforts, the results show a similar development

than in the previous two campaigns. The constraint, the random and local selection

show at seldom runs a computation time of about 400 microseconds. In general

139

6.4. Simulation Campaigns and their Results

Average Standard % % %
Method Mean x Deviation s in 1s in 2s in 3s 95%-Conf.

Overall QoS relative to constraint selection

Constraint 1.0 0.0 0.0 0.0 0.0 ± 0.0

Random 0.9715 0.1028 70.00 97.00 98.50 ± 0.0121

Glob O. 1.4114 0.1403 75.50 94.50 98.50 ± 0.0165

Glob Co. 1.3304 0.1339 75.00 93.50 99.50 ± 0.0157

Disc O. 1.4074 0.1404 75.00 95.00 98.50 ± 0.0165

Disc Co. 1.3243 0.1331 74.50 94.00 99.50 ± 0.0156

Local 1.3801 0.1448 75.00 95.00 98.00 ± 0.0170

Bottomup 1.1062 0.1050 83.50 96.50 98.00 ± 0.0123

Pattern 1.4005 0.1407 74.00 95.00 98.00 ± 0.0165

Computation duration, in microseconds

Constraint 24 44 98.50 98.50 98.50 ± 5.1799

Random 8 28 99.50 99.50 99.50 ± 3.2963

Glob O. 544,394,247 125,620,708 68.00 93.00 100.0 ± 14,788,850

Glob Co. 454,826,580 122,039,371 67.00 94.00 100.0 ± 14,367,230

Disc O. 103,781,595 220,063,566 87.00 92.50 94.00 ± 30,498,693

Disc Co. 147,531,815 250,731,490 81.00 89.00 95.00 ± 34,748,973

Local 67 54 96.50 97.00 97.00 ± 6.3572

Bottomup 304 54 85.50 94.00 94.50 ± 12.125

Pattern 3,687,662 27,872,646 98.00 99.00 99.00 ± 3,281,341

Table 6.5: QoS and times, setup with 11 candidates in C3.

these three methods showed a rather continuous computation duration within one

setup which usually varies for a couple of microseconds. However, for a few runs,

the results show an abnormality. A histogram of computation times by the local

method shown in Figure 6.14 shows that most values are within the range of few

microseconds. It can be assumed that these captured “break-out” times resulted

from temporary anomalies of the testing platform. The referring histogram in Fig-

ure 6.15 shows that the captured values are widely distributed. Furthermore, the

histogram shows the pattern of an discrete distribution. It must be noted that the

y-axis of this histogram has a logarithmic scale.

Interpretation

Although the worst case effort of the algorithms is polynomial bounded, the com-

putation time of the algorithms increases as fast as for the previous two campaigns.

Since the number of possible combinations rose by n8, the computation time for

the first five setups rose quicker than for the setups with rising number of tasks

and a fixed number of 8 candidates. The results show that even for relatively low

composition sizes the global method results in an intolerable effort. Regarding the

involved heuristics, the following conclusions can be drawn:

• Discarding. Like in the previous campaigns, this heuristic results in a QoS

140

6.4. Simulation Campaigns and their Results

 0

 20

 40

 60

 80

 100

 120

 140

 40 45 50 55 60 65 70

o
c
c
u
rr

e
n
c
e
s

time in microseconds

Figure 6.14: Histogram of computation

times for the local method (C3, 11 can-

didates).

 0

 20

 40

 60

 80

 100

 120

 140

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

o
c
c
u
rr

e
n
c
e
s

time in microseconds

Figure 6.15: Histogram of computation

times for the pattern method (C3, 11
candidates).

performance that is similar to the global selection. However, the quickly

rising duration makes clear that its application is unfeasible.

• Local. The local method shows a resulting QoS that is very close to the

global method. Considering the resulting QoS from the pattern method, this

approach offers similar QoS performance while showing negligible compu-

tational efforts.

An interesting phenomenon is the rising QoS performance with a higher

number of candidates when compared to the constraint selection. With a

rising number of tasks (as performed in the previous campaign), the results

showed a decreasing performance: The impact when optimising a single

critical task becomes relatively small with a larger total number of tasks. A

fixed number of tasks provides a constant optimisation impact when improv-

ing a single critical task. In addition, a higher number of candidates seems

to result in a higher potential to improve the QoS.

• Bottomup. The bottomup method confirms its good computational perfor-

mance. Regarding the QoS performance, the improvements are clearly not

as good as for the other heuristic methods; it seems to achieve 1/3 of the

performance of the other methods.

• Pattern. The pattern selection results in a QoS performance that is higher

than that of the local selection, but not as good as that of the discarding

selection. Like in previous campaigns, the pattern method shows an unfeasi-

ble effort with a rising number of candidates, even when considering that it

performs by magnitudes quicker than the discarding selection. In addition,

this method shows an increasing QoS performance with a rising number of

candidates as well, confirming the assumption that the optimisation potential

generally improves regardless of the considered method.

141

6.4. Simulation Campaigns and their Results

The pattern method showed also a distribution of captured computation times

that looks similar to a discrete distribution (cf. Figure 6.15). It can be as-

sumed that the computation times are directly dependent on the randomly

generated number of tasks found within a single pattern. Considering the

bars given in Figure 6.15, the rightmost could result from compositions

where a pattern with 8 tasks was generated, the second-right results from

a pattern with 7 tasks etc.

6.4.4 Volatility of the Quality-of-Service (C4)

For this campaign, the number of tasks and candidates of a problem instance is

kept constant for each test run. Like for the previous campaign, the particular QoS

categories are generated using an uniform distribution. In addition, the volatility

of the QoS values of the candidates is varied: The goal is to test setups in which

the QoS values show large differences among the candidates. In contrast to this,

the obtained results will be compared to setups in which the QoS values among the

candidates remain almost the same.

To create the variation among the generated QoS values, an additional factor,

the variance factor qv, is included when the QoS of the candidates is generated.

Based on the QoS generation explained in the previous Section 6.3, the generated

QoS value is:

qg = qoptimal · (1 + qvx) x = 0, . . . , 1

For the simulation, the different setups were performed with different values of

qv starting from 0.1 and incremented by about 0.16 for 50 times. The Table 6.6

shows examples for generated QoS values at different values of qv. It must be

noted that each set of 10 example candidates refers to a different task with different

best QoS value. This campaign is different from the previous campaigns, because

the simulator repeated the simulation test setup at different levels of qv, and not

different amounts of candidates or tasks.

qv = 0.1 qv = 1.0 qv = 4.0

1762.0 264.0 5.0 0.998 1844.0 1085.0 5.0 0.991 4564.0 1185.0 17.0 0.988
1742.0 267.0 5.0 0.999 1523.0 1232.0 6.0 0.998 2072.0 2949.0 12.0 0.995
1709.0 272.0 5.0 0.998 2312.0 0872.0 6.0 0.993 1648.0 3249.0 7.0 0.956
1753.0 265.0 5.0 0.999 2330.0 0864.0 10.0 0.997 1477.0 3370.0 5.0 0.954
1742.0 267.0 5.0 0.997 1491.0 1247.0 8.0 0.981 1990.0 3007.0 17.0 0.929
1714.0 271.0 5.0 0.998 2028.0 1001.0 5.0 0.976 2345.0 2755.0 18.0 0.995
1710.0 272.0 5.0 0.999 1940.0 1042.0 5.0 0.999 1107.0 3632.0 13.0 0.930
1804.0 257.0 5.0 0.997 2045.0 0994.0 9.0 0.981 4210.0 1436.0 13.0 0.978
1769.0 263.0 5.0 0.998 1668.0 1166.0 7.0 0.996 2648.0 2541.0 11.0 0.905
1704.0 273.0 5.0 0.999 2307.0 0874.0 9.0 0.990 4310.0 1365.0 13.0 0.900

Table 6.6: Examples of generated QoS values at different qv.

142

6.4. Simulation Campaigns and their Results

C4 Parameters and Setup, values

Number of tasks 8, constant

Number of candidates 5, constant

Candidate QoS value range altered by qv, from 0.1 to 8, by incre-

ments of 0.16, uniform distribution

Constraint 20% worse cost than best possible for constraint-

aware methods

Involved methods constraint, random, global (two), discarding (two),

bottomup, local and pattern

Reference method constraint and random selection

Expectations

The expected result for this campaign differs much from the other. The expectation

is to evaluate changes in the QoS performance of an algorithm if the volatility of the

generated QoS increases. Moreover, the selection methods are expected to show

individual changes in their QoS performance: A heuristic method might result

in poor performance compared to the optimal solution if the setup offers a high

optimisation potential.

Results

Figure 6.16 shows the average resulting aggregated QoS performing the selection

methods that are capable of optimisation only (e.g. the local method) relative to

the constraint selection. In the case that no constraint must be hold, the constraint

selection just optimises for one QoS characteristic. Figure 6.17 shows the same for

the constraint-aware selection methods (e.g. the bottomup method) with a given

constraint. In addition to the these diagrams, Figures 6.18 and 6.18 show the QoS

ratio relative to the random selection. In the same manner, Figures 6.20 and 6.21

show the average computation times. It must be noted that the y-axis has a log-

arithmic scale in both figures. Table 6.7 lists the arithmetic mean, the standard

deviation s and the corresponding confidence intervals for the setup with qv = 2.

Based on the standard deviation, the table shows how many percent of the samples

are within one, two or three standard deviations around the mean.

The results in Figures 6.20 and 6.21 show that an increasing qv results in a

slight decrease of the computation time for the methods based on a branch-and-

bound approach. These methods also show a strong volatility of the computation

time (cf. Table 6.7). However, except from the discarding methods, the variation

of the qv does not appear to have an impact on the times. The pattern method

shows an intense oscillation around a fixed level. In comparison, the values given

by Table 6.7 show a high deviation and a high confidence interval, indicating that

the given average values are highly volatile. The level of typical computation times

of the pattern selection appears to be two magnitudes lower than the corresponding

levels of the discarding and global selection.

The results regarding the QoS performance show that most selection methods

143

6.4. Simulation Campaigns and their Results

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

 0 1 2 3 4 5 6 7 8

q
o
s
 r

a
ti
o
 (

c
o
n
s
tr

a
in

t
=

 1
)

variance factor qv

Constraint
Random

Global
Discarding

Local
Pattern

Figure 6.16: Rel. QoS to constr. selec-

tion: optimisation-only methods (C4).

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

 0 1 2 3 4 5 6 7 8

q
o
s
 r

a
ti
o
 (

c
o
n
s
tr

a
in

t
=

 1
)

variance factor qv

Constraint
Random

Global Constr
Discarding Constr

Bottomup

Figure 6.17: Rel. QoS to constr. selec-

tion: constraint-aware methods (C4).

1.00

1.10

1.20

1.30

1.40

1.50

1.60

 0 1 2 3 4 5 6 7 8

q
o
s
 r

a
ti
o
 (

ra
n
d
o
m

 =
 1

)

variance factor qv

Constraint
Random

Global
Discarding

Local
Pattern

Figure 6.18: Rel. QoS to random selec-

tion: optimisation-only methods (C4).

1.00

1.10

1.20

1.30

1.40

1.50

1.60

 0 1 2 3 4 5 6 7 8

q
o
s
 r

a
ti
o
 (

ra
n
d
o
m

 =
 1

)

variance factor qv

Constraint
Random

Global Constr
Discarding Constr

Bottomup

Figure 6.19: Rel. QoS to random selec-

tion: constraint-aware methods (C4).

become worse with a rising qv when compared to the constraint selection (cf. Fig-

ures 6.16 and 6.17). However, the decrease of the random selection indicates that

the constraint selection performs exceptionally well with a rising qv. For that rea-

son, a relative comparison of the selection methods to the random selection is given

in Figures 6.18 and 6.19. From this point of view, all selection methods except

the local selection show an increasing QoS performance with a rising qv. Among

them, the constraint method shows the strongest climb. The local method shows a

decrease of the QoS performance when compared with any of the other selection

methods. For high values of qv, it decreases down to the level of the constraint se-

lection. Comparing the bottomup with the discarding method in Figure 6.19 shows

that the QoS performance of the bottomup method climbs slightly stronger than the

other. From the values given in Table 6.7 it can also be seen that the performance

shows the smallest deviation. The pattern method shown in Figure 6.18 appears

to result in a noticeable decrease of the QoS performance when compared to the

144

6.4. Simulation Campaigns and their Results

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 1 2 3 4 5 6 7 8

ti
m

e
 /
 m

ic
ro

s
e
c
o
n
d
s

variance factor qv

Constraint
Random

Global

Discarding
Local

Pattern

Figure 6.20: Computation duration:

optimisation-only methods (C4).

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 1 2 3 4 5 6 7 8

ti
m

e
 /
 m

ic
ro

s
e
c
o
n
d
s

variance factor qv

Constraint
Random

Global Constr

Disc Constr
Bottomup

Figure 6.21: Computation duration:

constraint-aware methods (C4).

global and discarding selection.

Interpretation

Compared to the random selection, the global methods (the optimising only and the

constraint aware) show a rising QoS performance when the variance of the QoS

values increases among the candidates. This allows the conclusion that a higher

variance creates a higher potential for optimisation. Considering only one QoS

characteristic, the QoS optimisation potential rises even stronger when compared

to the global selection.

• Discarding. The discarding selection results in small savings regarding the

computational efforts for small values of qv and larger savings for a higher

value of qv, when compared to the global selection. Obviously, this method

is able to skip combinations more efficiently the more the QoS is varied.

• Local. For small values of qv, the local method shows a high QoS perfor-

mance when considering the global selection as reference. For high values

of qv, the local selection shows no difference in the overall QoS when com-

pared to the constraint selection, which optimises only by one characteristic.

The simulations also show that optimising one QoS category, which is done

by the constraint selection, has almost no effect on the overall QoS for low

values of qv. However, it must be noted that a constraint regarding one QoS

category can be taken into consideration.

• Bottomup. Regarding the computation times, the bottomup method con-

firms the impression of the previous campaigns. It results in low efforts and

keeps constant throughout the different setups. It shows a relatively low QoS

performance, like in other campaigns. However, it must be noted that com-

145

6.4. Simulation Campaigns and their Results

Average Standard % % %
Method Mean x Deviation s in 1s in 2s in 3s 95%-Conf.

Overall QoS relative to constraint selection

Constraint 1.0 0.0 0.0 0.0 0.0 ± 0.0

Random 0.9720 0.1052 76.00 97.00 98.50 ± 0.0123

Glob O. 1.2458 0.1053 72.50 95.50 98.50 ± 0.0124

Glob Co. 1.1826 0.0940 75.00 95.50 98.50 ± 0.0110

Disc. O. 1.2427 0.1072 73.00 94.50 98.50 ± 0.0126

Disc. Co. 1.1768 0.0933 74.50 95.50 98.50 ± 0.0109

Local 1.1914 0.1207 74.00 95.50 98.50 ± 0.0142

Bottomup 1.0691 0.0787 91.50 96.00 98.00 ± 0.0092

Pattern 1.2266 0.1132 70.50 95.50 98.50 ± 0.0133

Computation duration, in microseconds

Constraint 17 33 99.00 99.00 99.00 ± 3.8849

Radom 7 0.0 0.0 0.0 0.0 ± 0.0

Glob O. 968,646 225,758 65.50 95.50 100.0 ± 26,577

Glob Co. 810,440 217,805 66.00 95.00 100.0 ± 25,641

Disc. O. 680,862 721,339 83.50 94.50 98.50 ± 84,920

Disc. Co. 592,478 642,166 80.50 96.50 98.00 ± 75,599

Local 34 47 98.00 98.00 98.00 ± 5.5331

Bottomup 159 88 92.50 93.00 93.00 ± 10.359

Pattern 9,488 42,495 97.00 97.00 99.00 ± 5,002.7

Table 6.7: QoS and times, setup with qv = 2 in C4.

pared to the other selection methods, except the constraint selection, it keeps

an acceptable level.

• Pattern. The pattern selection shows a smaller decrease of the QoS perfor-

mance for larger values of qv when compared to the local selection. The

small gap between this and the local selection that was noticed in the pre-

vious campaigns becomes larger with a higher variance among the offered

QoS. This campaign has also confirmed the volatile behaviour of the pattern

heuristic regarding its computational efforts.

6.4.5 Parallel vs. Sequential Composition Structures (C5)

As mentioned in the introduction on the QoS-based selection in Section 5.1, a

specific characteristic of the selection problem lies in determining the combination

of candidates in the parallel arrangements. This campaign will vary the structural

elements used for the problem instances to evaluate the performance of the different

algorithms with an increasing number of parallel arrangements.

The first setup starts with all-sequential structures. For the subsequent setups,

the simulator generates parallel patterns with increasing probability. A probability

value of 20% means that there is a 20% probability that a parallel pattern is cre-

ated, and an 80% probability that a sequential only is created. The last setup is

146

6.4. Simulation Campaigns and their Results

performed at a probability value of 100%. In this case, the generated structures

consist entirely of parallel patterns.

C5 Parameter / Setup (Value)

Number of tasks 8, constant

Number of candidates 5, constant

Candidate QoS as given in Table 6.2, uniformly distributed

Constraint 20 % worse cost than best possible for constraint-

aware methods

Involved methods constraint, random, global (two), discarding (two),

bottomup, local and pattern

Reference method constraint

Structure starting with sequential structures with rising proba-

bility of parallel structures, incrementing each setup

by 2%

Expectations

The expected result from this campaign is a qualitative statement about how the

QoS and computational performance of the selection methods depend on the struc-

ture of the composition. For example, for all-sequential structures, an algorithm

might perform very fast when compared to parallel structures. Regarding the QoS

performance, this campaign will show if any of the proposed heuristics will per-

form worse or better with a rising ratio of parallel patterns.

Results

The results regarding the QoS performance are shown in Figures 6.22 and 6.23.

The computation times are given in Figures 6.24 and 6.25. In all figures, the dashed

lines indicate the probability value that was applied in the four previous campaigns.

In addition, Table 6.8 shows the results of the setup with a probability value of

100%.

The global selection and the three heuristics show an increase of the QoS per-

formance with a rising number of parallel structures. Because the global selection

results in the optimal solution, this indicates that the potential for the optimisation

of the QoS increases with the ratio of parallel structures. As a qualitative statement,

the local and the pattern selection show similar improvements while the pattern se-

lection results in approx. 3 − 4% better QoS performance compared to the local

method. Like the global selection, the discarding selection shows a steeper increase

of the QoS performance when compared to the two other heuristics.

Regarding the computation time, all three selection methods show similar re-

sults as in the previous campaign. The discarding selection requires for sequential

structures almost the same efforts as the global method. For all parallel structures

it performs almost three times as fast. It must be noted that after a 100% proba-

bility of generating parallel structures, no further improvements can be achieved.

Therefore, the values for the 100% probability represent a maximum of the indi-

147

6.4. Simulation Campaigns and their Results

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

 0 20 40 60 80 100

q
o
s
 r

a
ti
o
 (

c
o
n
s
tr

a
in

t
=

 1
)

parallel probability %

Constraint
Random

Global
Discarding

Local
Pattern

Figure 6.22: Relative QoS to constr.

selection: optimisation-only methods

(C5).

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

 0 20 40 60 80 100

q
o
s
 r

a
ti
o
 (

c
o
n
s
tr

a
in

t
=

 1
)

parallel probability %

Constraint
Random

Global Constr
Disc Constr

Bottomup

Figure 6.23: Relative QoS to constr. se-

lection: constraint-aware methods (C5).

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 20 40 60 80 100

ti
m

e
 /
 m

ic
ro

s
e
c
o
n
d
s

parallel probability %

Constraint
Random

Global
Discarding

Local
Pattern

Figure 6.24: Computation duration:

optimisation-only methods (C5).

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 20 40 60 80 100

ti
m

e
 /
 m

ic
ro

s
e
c
o
n
d
s

parallel probability %

Constraint
Random

Global
Discarding

Bottomup

Figure 6.25: Computation duration:

constraint-aware methods (C5).

cated direction. Like in the previous campaign, the pattern selection shows a larger

volatility of its computational duration than the other selection methods.

Interpretation

The results show generally the larger potential for QoS optimisation if a composi-

tion structure contains parallel structures. Moreover, the three heuristics, the dis-

carding, local and pattern selection, show also QoS performance improvements

with a larger ratio of parallel structures. The constraint and the random selection

show constant QoS performance. Therefore, such methods do not appear to per-

form well with parallel structures when compared to the other methods.

The computation time stays almost constant for all methods, except for the

discarding selection, which shows poor time performance for sequential structures

while its performance improves for a rising ratio of parallel structures. As in previ-

148

6.5. Evaluation Conclusions

Average Standard % % %
Method Mean x Deviation s in 1s in 2s in 3s 95%-Conf.

Overall QoS relative to constraint selection

Constraint 1.0 0.0 0.0 0.0 0.0 ± 0.0

Random 0.9799 0.1005 67.50 96.00 99.50 ± 0.0118

Global O. 1.2705 0.1209 71.00 92.50 99.50 ± 0.0142

Global Co. 1.2212 0.1169 71.00 97.00 100.00 ± 0.0137

Disc. O. 1.2619 0.1261 71.00 93.00 99.00 ± 0.014

Disc. Co. 1.2127 0.1184 70.00 97.50 100.00 ± 0.013

Local 1.2300 0.1278 73.00 95.50 99.90 ± 0.015

Bottomup 1.0843 0.0868 88.50 95.00 97.50 ± 0.010

Pattern 1.2545 0.1225 71.00 92.00 99.50 ± 0.014

Computation duration, in microseconds

Constraint 16 28 99.50 99.50 99.50 ± 3.296

Random 7 0.0 0.0 0.0 0.0 ± 0.0

Global O. 787,800 182,108 66.00 96.50 100.00 ± 21,438

Global Co. 675,092 170,954 65.50 97.50 100.00 ± 20,125

Disc. O. 232,417 348,351 85.50 94.00 98.00 ± 41,010

Disc. Co. 261,742 406,588 86.50 93.00 98.00 ± 47,866

Local 28 2 64.50 95.50 98.50 ± 0.235

Bottomup 137 70 96.50 97.00 97.00 ± 8.240

Pattern 13,902 1,407,168 95.50 98.50 98.50 7,864

Table 6.8: QoS and times, setup with a parallel probability of 100% in C5.

ous campaigns, the pattern selection shows a highly oscillating computation time,

indicating a strong dependency on the composition structure.

6.5 Evaluation Conclusions

The first three campaigns have tested the heuristics with a rising number of tasks

and candidates. As discussed in the previous chapter, the global selection results in

quickly rising computation times. These results confirm that the straight-forward

evaluation of all candidates represents an intolerable approach. The campaigns

also show that an increasing number of candidates is not preferable to an increasing

number of tasks for the global selection under the simulation conditions. Although

an increasing number of candidates results in efforts that can be bounded by a

polynomial, the results show that only small compositions can be solved in feasible

time by such brute-force approaches.

The campaign that increases the deviation of the QoS values demonstrates that

the more the QoS values differ among the candidates, the more increases the po-

tential to improve the overall QoS. This potential is identified by the global, dis-

carding, bottomup and pattern methods when compared to the random selection,

which ignores the QoS. However, the heuristic local selection shows a decreasing

performance which has indicated that this method performs worse the stronger the

149

6.5. Evaluation Conclusions

QoS values among the candidates vary. In contrast, the heuristics reveal a good

performance close to the optimal solution in cases where the QoS of candidates

show relatively low differences.

The campaign that tests for the performance differences when either process-

ing parallel or sequential structures demonstrates that, with a rising ratio of parallel

structures, the optimal QoS identified by the global selection increases. Contrary

to the preceding campaign, all the heuristics show a slight increase of the QoS

performance when the ratio of parallel structures rises. Accordingly, the structural

arrangement of the composition has in impact on the QoS performance of the dif-

ferent methods. However, all methods show a similar level of improvement and no

method reveals a particular weakness or strength in this campaign.

Referring to the four evaluated heuristics, the following conclusions can be

drawn:

• Discarding. The discarding selection method can be considered unfeasi-

ble. It performed about two to three times faster in comparison to the global

method, however it still showed an exponentially increasing effort for the

given problem instances. Obviously, the given setup of QoS values and

composition structures do not allow the algorithm to bound sub-trees very

often. Regarding the QoS performance, the discarding selection resulted in

the same QoS as the global selection in the tests.

• Local. The local heuristic represents a simple approach that consumes al-

most no computational efforts. The required efforts are in the same range as

the constraint or the random selection. Considering that an assignment must

be performed in any case, the efforts for the local selection are negligible.

The campaigns have shown that this method usually resulted in more than

4/5 of the full QoS optimisation potential when considering the interval be-

tween the optimal solution and the QoS-ignoring result. Further tests have

shown that this method becomes noticeably weaker the more the QoS values

differ among of the candidates.

• Bottomup. The bottomup selection has shown a negligible computational

effort. This method scales well with both a rising number of candidates and

tasks. However, the QoS performance can be regarded as weak when com-

pared to the local or pattern selection. In the campaigns, it reached about

1/2 to 2/3 of the QoS optimisation potential, referring to the interval be-

tween optimal and QoS-ignoring solution. Moreover, its QoS performance

decreases for a rising number of tasks. However, this approach is capable of

considering constraints. Thus, it has an advantage over the local and pattern

selection.

• Pattern. Compared with the bottomup and the local methods, the pattern

selection showed the best QoS performance. However, a small fraction of

the performed runs has resulted in an unfeasible computational effort that

150

6.5. Evaluation Conclusions

makes the application of this method difficult. As discussed in the previous

chapter, the algorithm performs badly if a structural pattern contains a large

number of tasks. Although this constellation can be regarded as unlikely, the

random setups have encountered these at significant amount of times. As a

conclusion for future work, the pattern method could be combined with a

local approach: Then, a combined algorithm can switch to a faster algorithm

if a composition structure is identified to produce high efforts, e.g. a single

pattern that contains a relatively high number of tasks.

In summary, the campaigns have shown that the heuristic have a good perfor-

mance under special conditions. As for other cases, the following basic trade-off

couples apply: If an heuristic performs quickly, its QoS performance is poor. If an

algorithm shows a good QoS performance, it shows an unfeasible worst-case ef-

fort. As an inspiration for future work, a hybrid heuristic might be able to combine

the good elements of the tested approaches. For example, such an heuristic could

choose an appropriate strategy based on key parameters determined for a particular

problem instance.

151

6.5. Evaluation Conclusions

152

Chapter 7

Developing Service Compositions

As Chapter 2 has explained, different modelling languages exist: Some of them fo-

cus on modelling business processes and ignore specific SOA technologies, while

others are specifically designed to cover specific technical platforms, for example

Web services. In addition, Chapter 2 has defined a relation between business pro-

cess models, composition models and a service composition. The development

process of a service composition must cover the entire chain – from processing a

business process model as an input, up to the output of an execution description

that allows the service provider to run the composition.

Since the development of composition starts with a model of a process, the lit-

erature discusses methods and solutions that take advantage of the proposed Model

Driven Architecture (MDA) introduced by the Object Management Group (OMG).

The OMG represents a non-profit standardisation organisation with the goal of de-

veloping object-oriented technologies. Briefly explained, the MDA proposal bun-

dles a set of standards to facilitate the software development with the focus on

modelling languages and modelling tools. In an MDA-based development effort,

not writing source code but expressing models represent the centre development

effort. It is desired that the source code is automatically generated from a set of

models that cover the structure and the behaviour of the software. In the context

of service compositions, the MDA provides an infrastructure that allows directly

taking a model of the business process as the starting point for the development of

a composition of services that facilitate the process. Many software vendors and

initiatives support this approach with available integrated development environ-

ments (IDEs). Examples are the software development tools of Borland, as well

as EclipseUML, which is based on the Eclipse open source project; IBM offers

a suite named WebSphere portfolio that supports the entire chain of development

from business process modelling to a service with monitoring facilities [85].1

This chapter will introduce the basic elements that such a development process

1Borland provides the Together Suite which covers general software development efforts includ-

ing the composition of Web services. A development environment that has a direct focus on the

realisation of business processes from IBM is the WebSphere Integration Developer.

153

7.1. Introduction to the Model Driven Architecture

must involve; however, it will not cover and discuss specific development process

methodologies such as the popular waterfall methodology or newer use-case-driven

or extreme programming approaches. It will focus on the issues of trading when

developing compositions. Because the MDA is not a part of this focus area, this

chapter tries to avoid details about the MDA. It will not present a complete view on

the MDA and concepts like the model hierarchy, for example, are ignored in this

discussion.

The goal is to give the reader an orientation about the development of compo-

sitions and to explain how processing QoS will enhance the output of the develop-

ment process. The remainder of this chapter will start with a brief introduction to

the MDA and introduces service-composition-related applications from the litera-

ture. Subsequent to that, the main steps in the development of compositions will

be discussed; this work is partially based on previously published research work

about building compositions of Web services (cf. Grønmo and Jaeger [39], [40]).

7.1 Introduction to the Model Driven Architecture

The general objective of the MDA is to separate the specification of the system

functionality from specific platform technology [96]. Figure 7.1 shows the basic

separation of different categories for models that occur in this architecture. The

separation is the result of an abstraction that separates the technical details in a

model from the functional aspects of a system. Accordingly, one kind of model

is proposed that does not refer to any technical specific artefacts. Such a model is

named Platform Independent Model (PIM). Based on the PIM, a Platform Specific

Model (PSM) is foreseen. Besides a PIM and a PSM, the development can option-

ally involve a model of the domain concepts that describe the actors and entities

found in the application domain. Such a model can provide a view on the system

that is independent from any functional or computational details.

The MDA approach anticipates that developers start to design their software

with a PIM that does not cover any technology-specific aspects. When this model

is finished, it represents the basis for deriving a PSM. Therefore, the choice for a

specific technology is deferred until the PSM is created. The authors of the MDA

anticipate that these transformations happen automatically and thus let the devel-

oper focus on modelling the functionality rather than writing code. Consequently,

the model becomes an asset of the development process. With the adoption of the

MDA, three main advantages are anticipated by the OMG [96]:

• The same system functionality, once modelled, can be reused for different

target platforms. This flexibility is often required, because the IT landscape

in businesses consists of many heterogeneous platforms and software sys-

tems as already explained in Section 2.4.

• A separate model of the system functionality allows a more efficient vali-

dation. If the model is free from technical details, there is less to consider

154

7.1. Introduction to the Model Driven Architecture

for validation tools. Moreover, the software specification and development

will likely result in different models at different levels of abstraction. With

defined transformations between the different levels of abstraction, tools can

ensure the consistency between these models.

• The creation of the system can be guaranteed to be free from technical arte-

facts that a specific technology would imply. Thus, a platform-independent

model offers a better foundation for the desired functionality.

Model of Business
Process / Workflow

Abstraction

Platform Independent

Component View (PIM)

Model of the Domain
(optional)

Computation Independent

Business Model

Model of Service
Composition

Platform Specific

View (PSM)

Figure 7.1: Separation of the models in the MDA (based on OMG’s MDA docu-

ment [96, section 2.3]).

Besides the MDA proposal, the OMG has also standardised several related

technologies. The Meta Object Facility (MOF, [98]) represents the most funda-

mental standard. It defines how to specify modelling languages. Usually, a soft-

ware developer is not concerned with the MOF. Instead, it is a standard used by

modelling language designers and tool manufacturers. A well-known modelling

language is the Unified Modelling Language (UML, [100]). Software developers

use the UML to express models of software systems or parts of a software system.

And as mentioned in Section 2.1.2, a part of the UML, the activity diagram, is also

considered for modelling business processes.

The main research challenge in the field of the MDA is the model transfor-

mation technology that transforms PIMs into PSMs. Furthermore transformation

should provide the generation of source code or execution descriptions from PSMs.

Source code or similar descriptions can be seen as textual models in this context.

Several software products and tools using the UML and the MDA are already avail-

able for the creation of business processes. However, the goal that has not been

reached so far is a fully automated tool chain. The vision is that software engineers

can focus on the business process model and automated transformations provide

the generation of the source code.

155

7.1. Introduction to the Model Driven Architecture

PSM 1

PSM 2

PSM n

PIM 1

PIM 2

PIM n

(...)

(...)

Business Process Model
(System Functionality)

+ Profile of Service

(QoS) Aspects

+ Profile of
Security Aspects

Model of Middleware
(e.g. Web Services)

Model of
Implementation
Language (e.g. Java)

Model of Implem.
Environment
(e.g. Axis)

Target Platform
(Source Code or
Interface Desc)

Abstraction

System Detail

Figure 7.2: The evolution of the models in the MDA (based on Bézivin et al. [9]).

In the context of MDA, a problem is that a single modelling language does

not cover all the aspects needed to create models of the entire problem domain.

This applies especially to the topic of this work, the creation of business processes

with service compositions. Chapter 2 has already introduced several modelling

languages, which are at different levels of abstraction. Some languages focus on

modelling abstract business processes and some languages involve Web service

standards which refers to PIMs. An ideal MDA environment would support the

transformation of models between different levels of abstraction and it would en-

sure the consistency between them. Besides the transformation issues, several fur-

ther aspects should be covered like security, QoS or organisational constraints. This

results in different views on the system. To cover this problem, current research

efforts evaluate how to mark up models with aspects based on extensions, named

UML profiles. UML profiles allow extending the modelling concepts found in the

UML.

Figure 7.2 outlines different levels of abstraction, with possible examples of

PIMs and PSMs. This figure has been presented by Bézivin et al. [9]. It shows

that a model of the business process is assigned to the group of PIMs. Additions to

this model, such as the specification of QoS aspects or security constraints, result

in a less abstract PIM. A model that directly refers to a specific component or SOA

technology represents a PSM. A further specialisation, in the sense of being less

156

7.1. Introduction to the Model Driven Architecture

abstract, is the coverage of specific SOA platforms. Then, possible transformations

result in further detailed models up to the source code or interface descriptions.

7.1.1 Model Driven Development of Web Service Compositions

The adoption of the MDA to develop service compositions or business processes

has been already covered by research work. In the following, three research efforts

are introduced, which have applied the MDA for the creation of business processes

with SOA technologies. These three efforts are considered to be representative

for this field and to reflect the state-of-the-art. The first cited work covers the

aspects of supporting Web services in an MDA-based development. The second

effort plays in the same field but focusses more on how the transformations will

be created. The third work covers the consistency between the models of different

levels of abstraction. These three research works also demonstrate the feasibility

of adopting the MDA to develop service compositions in order to develop business

processes.

• Web service compositions in UML (Skogan et al. [120]) The authors pro-

pose UML activity models to design a Web service composition. Using

MDA techniques, an UML activity diagram can be transformed into different

Web service composition languages. Based on the activity models, the gen-

eration of executable models using the composition languages BPEL4WS

and WorkSCo is described. WorkSCo is part of a framework for realising

workflows with services.

UML activity diagrams are used as platform independent composition mod-

els. The contribution of the authors lies in the special coverage of the Web

services technology. It proposes the integration of WSDL descriptions into

an UML diagram in order to generate the interface description for the result-

ing composition, which is also seen as a new service. Most other approaches

presume that the WSDL file can or must be – depending on the applica-

tion scenario – generated by an UML class diagram in order to complete the

composition model. Generally, the authors propose to integrate existing Web

services. Thus their WSDL descriptions can be reused.

• B2B Applications in the context of MDA (Bézivin et al. [9]). The work of

Bézivin et al. covers the transformation of UML models into two target plat-

forms: One is the Microsoft .NET framework and the other is a BPEL4WS

execution environment for Web service compositions. As an intermediate

step for the generation of BPEL4WS descriptions, the output of WSDL is

provided. Further contributions covers the transformation originating from

different PIMs to a Java-based Web service environment without the inter-

mediate step of a composition model in BPEL4WS [8]. The research group

of Bézivin et al. have put a special emphasis on the development of a ded-

icated transformation language that they name Atlas Transformation Lan-

157

7.2. Model-Driven Development of Service Compositions

guage (ATL, [7]). The language allows definitions for transformation rules

between the abstract elements of a PIM and the abstract elements of a PSM.

• The medini platform (Kath et al. [70]). The foundation of this research ef-

fort is the modelling environment named medini. Medini provides a set of

tools to establish a tool chain for MDA-based software development. In ad-

dition, it features a model repository that stores the software models, which

are seen as an asset of the development process. The tools provide verifica-

tion functionality to ensure the consistency of the models at different levels

of abstraction. The medini architecture consists of three tiers: the modelling

tools, the model repositories and the transformation tools. To ensure in-

teroperability with other development software, the elements of the medini

platform are designed to conform to the MOF standards for open interfaces

and model repositories.

One application of the medini platform is the transformation of EDOC mod-

els to PSMs that target a CORBA middleware environment. EDOC stands

for Enterprise Distributed Object Computing and represents a profile for the

UML that covers the modelling of distributed enterprise systems. A transfor-

mation tool is capable of performing a transformation from EDOC models

to PSMs suited for the CORBA Component Model (CCM, [97]). Another

transformation tool covers the generation of interface descriptions of Web

services. In addition to the service interface descriptions, medini also pro-

vides support for behaviour models that resemble a process. The behaviour

models are EDOC choreographies on the PIM-side and BPEL4WS descrip-

tions on the PSM-side.

7.2 Model-Driven Development of Service Compositions

The previous sections have explained that the MDA proposal by the OMG and

the related research work provide methods and technologies that cover the specific

characteristics of developing service compositions. The forthcoming sections will

outline at what point in a model-driven development effort the trading of services,

especially the QoS-based selection will take place. The trading identifies services

in order to integrate them into the composition. As briefly explained in Section 1.1,

it covers two main parts: One part represents the functional matchmaking of avail-

able candidate services and the other facilitates a selection among potential service

candidates in order to optimise the resulting QoS of the composition.

However, this discussion does not cover the roles, the behaviour and the collab-

oration of actors who might participate in such a development process. Thus, this

discussion cannot serve as a development methodology. The goal in this discus-

sion is to identify at which points the trading and especially the processing of QoS

enhances the output of intermediate steps in the development process. Moreover,

the upcoming sections will also explain which facilities are required to perform

158

7.2. Model-Driven Development of Service Compositions

the trading and to process QoS information. As explained in the introduction, it is

assumed that the retailer of the composition also represents the modeller and the

developer of the composition. As introduced in the Section 1.1, he acts also as

the service importer when contacting other service brokers and 3rd party service

providers.

3. Trading: Selection 4. Deploying and Publishing

2. Trading: Matchmaking1. Modelling

Composition

Model (PIM)

with Tasks

Composition

Model (PSM)

with selected

Services

Export

Executable

Specification

Design the

Composition

Discovery and

Matchmaking

Service

Selection

Activity Model Description or Document

Desciption of
Candidate
Services

Executable

Specification,

Descriptions

Figure 7.3: Main steps of developing service compositions.

Figure 7.3 outlines the tasks of an abstract development process that consists of

four main steps. This figure and all the following use elements related to the flow

chart notation: The trapezoid-shaped boxes indicate an activity. Activities can

directly follow each other or have documents (descriptions) or models as an output

or input. Documents are represented by a rectangular box that has a wave-shaped

lower bound, and models are represented by ovals. Relations between subsequent

activities, as well as input and output directions, are shown with arrows.

The first step covers the modelling of an abstract composition consisting of

tasks. It can be left open whether this model is part of the development or represents

an externally provided process model. Besides, it must be noted that the flow of

information will not be elaborated in this work because this represents the main

contribution of the research works presented in Section 7.1.1 and in Section 2.4.1.

Very briefly, the particular steps are as follows:

• 1. Modelling. As a first step, either the retailer or any other party defines

a new service composition by creating a PIM that defines the control flow

between the tasks. Then, the retailer annotates the tasks with descriptions to

identify the functional requirements. In addition to the functional descrip-

tion, the retailer determines the required QoS for each of the identified tasks

and for the entire composition. Adding the functional description and defin-

159

7.2. Model-Driven Development of Service Compositions

ing the QoS requirements can be done in parallel since they do not depend

on each other. The outcome of the first step is an abstract composition model

(a PIM) that contains all the required information for the discovery and se-

lection of services.

• 2. Trading: matchmaking of functionality. The second step covers the

first part of the trading, which is the discovery of suitable services. This part

of trading is usually based on matchmaking between the functional descrip-

tions of services and the functional requirements. MDA techniques trans-

formed the interface descriptions from the model and the task annotations

into a textual description. This description can serve as an input for an auto-

mated search and matchmaking process evaluating services offered by other

retailers or service brokers. The outcome of this step is a list of candidate

services for each task.

• 3. Trading: QoS-based selection. In this step, the set of candidate services

undergo a selection, which is based on the QoS requirements. This repre-

sents the second part of trading. QoS requirements can be used in two ways:

Either requirements can represent a global constraint that the resulting com-

position must meet or QoS categories can be used as optimisation criteria.

The QoS-based selection will result in a ranked list of candidates for each

task. Then, the retailer can choose a concrete service for each task and adds

the corresponding description to a new software model. The resulting model

is a PSM. Depending on the anticipated level of detail, this description can

include interface descriptions, functional descriptions as well as QoS state-

ments.

• 4. Assembly, deployment and publishing. In the fourth and last step, the

PSM is used to generate different descriptions: a) a document describing

the interface to advertise the composition for future trading processes, b)
an executable flow description to deploy the composition in an execution

environment and c) a description defining the offered QoS of the entire com-

position.

7.2.1 Modelling the Composition

The goal of the first step is to provide the necessary information for the subsequent

trading processes. This means that the modeller defines the requirements resulting

from the needed tasks. Based on these requirements, services must be found that

fulfil them. A detailed model of the first step is given in Figure 7.4. The develop-

ment starts with an abstract model of the business process. Chapter 2 has already

discussed possible languages for this purpose. Depending on the organisational

circumstances, either the modeller of the composition performs the modelling or

an existing business process model is taken as the basis of the composition model.

In the Web service domain, the case is possible that a modeller receives a model

160

7.2. Model-Driven Development of Service Compositions

expressed in the EPC notation of a business process. Then, based on the EPC de-

scription, an UML activity diagram must be created to continue the development in

the MDA environment. Depending on the available facilities, the modeller can take

advantage of existing transformations. Such transformations convert the existing

model into a new one using a modelling language of the development environment

(cf. Kath et al. [70]).

Importing Relevant

Domain Models

Designing the

 Composition

Modelling

Functional

Requirements

Determining

relevant QoS

Categories

Compoposition

Model (PIM x)

Modelling QoS

Requirements

Activity Model

Compoposition

Model (PIM y)

Merge Models

(optionally)

Compoposition

Model (PIM z)

Business

Process Model

(optional input)

Figure 7.4: First step: modelling the composition.

To deliver the requirement descriptions for the trading, the existing model must

be enhanced. Depending on the kind of requirements, this can cover the functional

descriptions of the tasks or statements about the required QoS. The functional de-

scription can include a description of the interface or a description of the behaviour

of the service. The state-of-the-art focuses on the interface description where two

main approaches exists: In one approach, the interface is described on a syntactic

level and in the other description of the semantics of the service elements can also

be used for this purpose. Examples for a syntactic description are interface de-

scriptions using the WSDL for Web services or the Interface Definition Language

(IDL) in a CORBA environment.

The general problem with interface descriptions is that labels and data types

used do not provide an unambiguous definition of the interpretation of these el-

ements. To make such implicit information explicit, the common approach is to

provide a semantic description of the service. A semantic description means that

the described elements are linked to concepts that have a defined interpretation.

Such a set of interpretations is named ontology; this ontology is subsumed by the

concept of the domain model on top of the PIM in a MDA as presented in Sec-

tion 7.1. Then, adding such a description provides a more precise definition of

the task or service. This represents the main motivation for expressing the desired

functionality with a semantic description.

To create a semantic description of the interfaces, the designer must first iden-

161

7.2. Model-Driven Development of Service Compositions

tify appropriate ontologies (domain models) that provide a definition of the con-

cepts required to describe the service semantically. In the domain of Web services,

such domain models are usually represented in textual descriptions using ontol-

ogy languages, e.g. the Web Ontology Language (OWL, [89]). In the case that

the MDA environment does not directly support the used language of the domain

model, automated transformations can help to convert these into the required rep-

resentation. In order to apply this technique to develop compositions of Web ser-

vices, Djuric has the corresponding transformation methods for importing OWL

ontologies into UML models [24].

A basic solution for the semantic description of the behaviour is the reference

to a service type. Such a service type can be referenced to a standardised tax-

onomies of services. As an example, the United Nations Standard Products and

Services Code (UNSPSC, [110]) provides such a directory. Using this directory,

the modeller describes a service with an unambiguous key that refers to an abstract

service functionality. More sophisticated approaches aim at describing conditions

that must hold before, during, and after the invocation of the service. Sycara et

al. have discussed the matchmaking of services involving statements about condi-

tions [125]. Other research efforts have discussed the required interaction when

invoking interface. The approach is to model patterns of interaction with process

algebra or state machines. Then, a matchmaking between the patterns of offered

services and the patterns of requested services can identify a compatibility on the

level of possible interactions (cf. Bordeaux et al. [82], and Wombacher et al. [152]).

Besides domain models and the modelling facilities an MDA environment

might provide, some dedicated proposals exist for the semantic descriptions. The

currently most popular are OWL Services (OWL-S, [130]), the Web Service Mod-

elling Ontology (WSMO, [32]) and the semantic extension to Web service interface

definitions (WSDL-S, [119]). All these proposals involve Web service standards as

this represents the currently most popular implementation of an SOA. In the recent

past, a unification effort has started and an interest group at the W3C discusses

the three proposals.2 The advantage for the modeller of the composition is that

these semantic description languages cover the specific characteristics of a service.

The UML for example, is intended for the general design of software systems and

thus, less suitable for modelling the semantics of a service. Moreover, research

work about existing trading facilities, which will be introduced in the next section,

is also based on these three proposals. However, using these languages results in

additional effort regarding their integration in an MDA environment. Either trans-

formations must exist to import and export the dedicated semantic description of

services [41] or specific modelling tools must be integrated into the MDA environ-

ment.

In addition to the interface description, the modeller must determine the re-

quirements on the QoS. The process begins with the selection of the relevant QoS

2This is the Semantic Web Services Interest Group hosted by the W3C. This group has the primary

goal to share findings and activities about semantic description of Web services [12].

162

7.2. Model-Driven Development of Service Compositions

characteristics. This depends on the nature of the given requirements as well as

which characteristics are supported by trading facilities and the service providers.

As Chapter 3 has explained, the modeller can query other retailers and brokers in

order to identify the characteristics that can be used to specify the requirements.

An additional problem is the definition of the measures; one approach is to refer to

a commonly agreed definition of the relevant QoS characteristics, for example as

published by standard bodies. This particular issue has been discussed in Chapter 3

and was also mentioned as one of the prerequisites to perform the aggregation in

the beginning of Chapter 4.

Currently, there is no de-facto standard present for representing QoS charac-

teristics in the Web service domain as well as in other component middleware.

When using UML in an MDA-based environment, the representation of QoS re-

quirements in the model can follow the UML QoS-Profile [99]. This UML profile

defines a set of QoS categories with their interpretation and their notation. It al-

lows the modeller to express QoS statements as annotations in UML models. Since

UML is a graphical language, the UML QoS-Profile represents a preferred choice

for use in a MDA environment (cf. Grønmo and Jaeger [39]).

Figure 7.5 summarises the considered aspects of service description in a simple

hierarchy. The basic separation identifies a functional and a non-functional part. In

the field of non-functional descriptions, this hierarchy distinguishes between QoS

and non-QoS. For non-QoS characteristics different definitions exist; for this work,

it is assumed that they do not represent numeric measures, such as the country from

where the service is provided (cf. the beginning of Chapter 3). The functional part

has two main sub-parts, one covers the behaviour and another the interface.

The outcome is a composition model that contains all the needed semantic and

syntactic description of the interface for performing service discovery. Thus, it

provides the necessary information for the next step. An additional outcome is

a model that covers also QoS requirements. This represents the required input

for the third step in the development, the selection of services. Optionally, these

two aspects can merge into one model. However, this represents a methodological

consideration that is not the focus of this discussion. Besides, it is open whether

the requirements are expressed in a graphical model or in a textual description.

Since the MDA anticipates the use of transformations to convert between both, it

is presumed that the graphical representation provided by an MDA environment

represents the preferred interface for the composition modeller.

7.2.2 Trading: Matchmaking

The second step covers the discovery of services. The discovery of services is a

trading process that preceeds the selection of services. The discovery has the goal

to identify services that meet the functional demands. The idea is to deliver a set of

services that would generally fulfil the desired task regardless of any non-functional

preference. The identification process is based on matchmaking descriptions of in-

terface and service functionality. To perform the matchmaking, it is assumed that a

163

7.2. Model-Driven Development of Service Compositions

Service

Description

Functional

Non-Functional

Interface

Behaviour

QoS

Non-QoS

Syntactic

Semantic

e.g. service

category

e.g. cost,

execution time

e.g. security,

country

e.g. data types

e.g. interpre-

tation of inputs

Categorisation

Conditions and

Effects

e.g. rule-based

expressions

Figure 7.5: Proposed taxonomy of service descriptions.

service broker has access to the syntactic and optionally to the semantic description

of the service and its elements. The necessary description can be derived from the

model that the previous step has produced. Grønmo et al. have presented transfor-

mations from composition models into a semantic description language for Web

services [41]. The authors explain how semantic service descriptions modelled in

an UML model can be extracted to generate a description document compliant to

OWL-S in order to discover Web services.

The generated documents represent semantic descriptions of requested tasks

for which candidate services must be identified. The subsequent discovery process

involves querying brokers to identify these candidates. For this step, syntactic

and semantic interface descriptions are used. A matchmaking process compares

the interface signature between the required tasks and available candidates. As

mentioned in the previous section, such a description does not sufficiently describe

the functionality. In any case, matchmaking must consider the syntactic (interface)

description. If a service does not match the required interface on the syntactic

level, it would be regarded as incompatible anyway. Thus, the matchmaking of

the semantic description represents always an addition to the matchmaking of the

syntactic description.

The goal of the semantic matchmaking is to identify the relation between a

requested and an offered entity, which are described by concepts defined in an

ontology. A matchmaking process can identify three main relations between the

concept representing the required entity and the concept representing the offered

entity (cf. Jaeger et al. [65, 66]):

• No Match. The matchmaking process cannot identify any relation between

both concepts. This can have many reasons. Most likely the two concepts

164

7.2. Model-Driven Development of Service Compositions

are indeed different. Another problem that is inherent to the matching is that

the ontology used by one semantic description does show any relation to the

ontology used by the other. In this case, the two concepts could match in

reality. However, a match cannot be determined by the software.

• One Concept Subsumes the Other. If one concept subsumes the other, the

matchmaking process has identified that one concept denotes a more general

entity than the other does. This is similar to what can be found in object

hierarchies of object oriented programming languages: From two classes,

one can represent a super-class of the other representing a more general type.

Since most services are implemented by using object-oriented programming

languages, previous research work has explained that the general subsump-

tion relation must consider the direction of the subsumption relation between

service importer and exporter [65]: For the syntactic convention in program-

ming languages, the contravariance must hold. In common object-oriented

programming languages, the sub-class relation represents a contravariance

because a subclass provides all characteristics of its super-class plus addi-

tional one.

Ensuring the contravariance means that an interface is defined to expect a

type that shows all needed characteristics for the operation, even if the ser-

vice importer invokes the service with a more special type. This direction

is applied vice versa to the returned types: The service exporter can return

a type that shows the same characteristics as required by the importer re-

quires or a more special one. This ensures that the returned type provides

all required characteristics and does not violate any requirements. Other re-

search work has also discussed that with reverse subsumption relations, a

matched service could still be used. In this case, the partially matched ser-

vices can be used with additional services that together ensure that the given

functional requirements are met (cf. the plug-in case described by Li and

Horrocks [81]).

• Match. The matchmaking process identifies that the concept representing

the offered entity is equivalent with the concept representing the required

entity. Of course, this represents the desired result of a matchmaking pro-

cess.

In the field of Web services, available proposals cover the mentioned descrip-

tion languages OWL-S, WSMO and WSDL-S. For the OWL-S language, several

works have introduced matchmaking algorithms [66, 65, 81, 106], as well as exten-

sions to trading infrastructure namely the UDDI discovery services [1, 103, 124].

Mainly these works focus on the semantic description of the parameter types and

matching service categories (i.e. WSDL-S), while the semantic description of the

service behaviour is partially covered by expressing conditions based on rule ex-

pressions (in OWL-S and WSMO).

165

7.2. Model-Driven Development of Service Compositions

Search and

Matchmaking

Description of

matched

Services

Manual

Investigation

Description of
Service

Candidates

Activity Description/Document

Semantic

Descriptions

of Tasks

Figure 7.6: Second step: matchmaking.

However, if a matchmaking algorithm identifies clear matches for all the as-

pects, a seamless interoperation of the involved candidates cannot be guaranteed.

To cope with this issue, further reasoning is necessary. The matchmaking of syntac-

tic and semantic interface descriptions will improve the precision of the discovery,

but it will not remove the need for manual investigation of the discovered services

to assure the compatibility. Otherwise, the accurate interoperation of the service

in the composition cannot be guaranteed. Figure 7.6 summarises this step: Based

on the semantic descriptions of the required tasks, a matchmaking process tries

to identify service candidates. The state of the research shows that these service

candidates must undergo an additional review in order to ensure their functional

suitability. The anticipated outcome of this step is at least one service candidate

per task.

7.2.3 Trading: Quality-of-Service-based Selection of Candidates

In this step, the selection of the services takes place; the goal of this step is to

identify the best selection among the candidate services for the tasks of the compo-

sition with respect to selection criteria. This work considers the QoS as selection

criteria. Because this step represents the main topic of this work, it was covered

in the previous chapters. This section will just discuss the basic activities of this

development step, as outlined in Figure 7.7.

Based on the identified set of candidates from the previous step, the QoS of

the candidates must be processed. Either the QoS of each candidate is part of the

available descriptions, or the QoS must be retrieved from the service providers.

Depending on what has been defined in the first step, the QoS requirements can

deal with two aspects which were also parts of the problem model for the QoS-

based selection: constraints and optimisation goals. A constraint requirement can,

for example, cover statements like the maximum response time of the entire com-

position. The other aspect covers optimisation criteria. An example is to reduce

the amount of resources for executing the composition.

The selection process determines the best possible selection of services de-

pending on the requirements and the offered QoS of the considered candidates.

The simplest approach that was discussed in this thesis for performing the selection

166

7.2. Model-Driven Development of Service Compositions

Composition

Model (PSM) with

Selected Services

Import QoS and

Description of

Selected Serv

Retrieve QoS

offered

Description of

Selected

Services

Sets of appr.

Services with

Offered QoS

Description of

Candidate

Services

Activity Model Description/Document

QoS Req. of

Abstract

Composition

QoS-based

Selection

Figure 7.7: Third step: QoS-based selection of candidates.

operates on a local perspective: Such an algorithm selects a candidate by compar-

ing the QoS among all candidates for a particular task and chooses the candidate

that provides the best QoS. This case represents the state-of-the-art of available

broker implementations and trading functionality. The previous chapters have also

explained that a better QoS is obtained with an algorithm that considers the entire

composition or sub-parts of the composition, rather than optimising the QoS for

each task in isolation. Thus, the QoS-based selection takes place at this stage in

the development process.

After the QoS-based selection has been performed, the modeller can add the

QoS of the selected services to form a new version of the model – a platform-

specific model of the composition. Based on the QoS of the individual services, an

algorithm can compute a resulting QoS statement for the composition by using the

aggregation method that was introduced in Chapter 4. The selection process might

not only choose the optimal service among the candidates, it can also determine

the ranking of the available candidates based on the relevant criteria. Depending

on the return policies, the process can result in more than one ranked service for

each task. Choosing more than one service for each task could increase the relia-

bility of service executions by providing a redundant arrangement (cf. Jaeger and

Ladner [58, 59]). The outcome of this step is the generated platform-specific model

involving the chosen services. This model can be enhanced by importing the of-

fered QoS values of each chosen service and the aggregated QoS for the resulting

composition.

7.2.4 Advertisement and Deployment

The fourth step builds upon the output of the previous phases, which are the as-

signment of at least one service to the tasks, their semantic description and the

QoS resulting from the assignment. The modeller can import all information for

167

7.2. Model-Driven Development of Service Compositions

Deploy

Composed

Service

QoS Offered

of Composition

Executable

Specification of

Composition

Create Executable

Specification

of Composition

Create Interface

Description of

Composition

Interface

Description of

Composition

Create QoS

Offered of

Composition

Create Semantic

Description of

Composition

Semantic

Description of

Composition

Activity Model Description/Document

Composition

Model (PSM) with

Selected Services

Service Brokers
(optionally with

Interface, Semantic,
QoS Descriptions)

Figure 7.8: Fourth step: advertisement and deployment.

the particular models onto one unifying model by using software transformations.

This step has the goal to create the necessary information to advertise the compo-

sition as a new service. Another goal is to generate an executable specification in

order to perform the composition.

Figure 7.8 outlines the general activities of this step: Based on the exist-

ing PSM and optional additional descriptions, four main descriptions are created.

Since they do not depend on each other, these activities can be performed in arbi-

trary order or in parallel. These descriptions are the following:

• Interface Description. Based on the design of the composition, the overall

input and output parameters can be defined and exported. If the interface

description uses a standardised description format, the composition can be

advertised and executed as a service for the consumers. In the field of Web

services this would also cover a WSDL description. An example for the

MDA-based generation of WSDL files from service compositions has been

introduced by Grønmo et al. [42].

• QoS Description. The previous step has already mentioned that, based on

the QoS of the involved services, the QoS of the overall composition can be

aggregated. Such a description can use the same languages which the 3rd

party providers use for their service advertisements.

• Semantic Description. A semantic description of the service interface can

be derived from the semantic descriptions of each task as created in the

168

7.2. Model-Driven Development of Service Compositions

first step of the development. The part that covers the behaviour of the ser-

vice must involve additional modelling because the composition represents a

functionality that was not available before. Thus, this part cannot be derived

from the description of the involved services.

Regarding the semantic description of the interfaces, Grønmo et al. have

already discussed an approach based on transformations between UML and

OWL Services [41].

• Executable Specification. Automated transformations can create an exe-

cutable specification from the control specification expressed in the PSM.

Runtime environments can use this executable specification to invoke the

available services in the defined order. Such a specification could use WS-

BPEL or BEPL4WS in order to define compositions of Web services. Kath et

al. [70] and Skogan et al. [120] have explained the generation of BPEL4WS

descriptions to execute compositions of Web services. Examples of run-

time environments that are capable of BPEL4WS are the IBM WebSphere

Server [85] or the Oracle BPEL Server [117].

Finally, the composed service composition can be deployed and published. The

generated descriptions can be passed to service brokers in order to advertise the

service. At the end, the retailer can offer the service ready for the invocation by

consumers.

7.2.5 Development as an Iterative Process

Like other design and creation processes in the engineering and computer sciences,

the creation of the composition is an iterative and heuristic process that assumes the

ability to go back and forth to the different activities. The heuristic nature is as such

that by undergoing these procedures in iterations, the result becomes better with

each iteration. Different reasons exists for why the development process requires

an iterative procedure, among them are the following:

• No matched services. It can happen that the matchmaking process does not

identify suitable service candidates. In this case, the retailer has two options:

The development process can be interrupted and the required service can be

implemented. Alternatively, he can modify the composition design in order

to adapt the required services to the available services that were previously

excluded. Then, the modeller must redesign the composition.

• Discovery as inspiration. During the matchmaking and reengineering pro-

cess, the retailer can discover that his abstract composition is not the optimal

design. Most likely, the retailer can experience this situation during the as-

sessment of suitable service candidates. For example, a new kind of service

might inspire the composition modeller to restructure the existing tasks of

the composition. Then, the development starts over with the redesign of the

composition as well.

169

7.2. Model-Driven Development of Service Compositions

• Too restrictive QoS. The selection can reveal that the matched candidates

cannot satisfy the requested QoS. Alternatively, some of the selected candi-

dates do not provide any statements about the considered QoS characteris-

tics. In both cases, the result is that no services that meet the QoS require-

ments are available. In the first case, the retailer needs to adjust the state-

ment of the corresponding QoS characteristic, if loosening the requirements

is possible. Then, the selection process can be performed again among the

candidate services. If the retailer cannot weaken the requirements or aban-

don any QoS characteristic, the situation is similar to the first point: Either a

new service is created or the functionality of the tasks is adapted.

• Too many candidates. Contrary to the previous scenarios, the selection

process might reveal that too many services meet the QoS requirements. Of

course, this case does not represent a problem. However, the retailer can take

this as an opportunity to improve the QoS. Obviously, the candidate services

would allow even stronger requirements and a better QoS can be achieved.

The retailer can perform the activities of the first step again to re-define the

QoS requirements. Then, the retailer can repeat the selection of the third

step.

The above-mentioned issues occur during the development of the composi-

tion. Monitoring and analysing the composition during the run-time can also lead

further iterations of the development process. At run-time, a composition can be

monitored to measure the resulting QoS. The QoS at run-time can differ from the

advertised QoS. Thus, the retailer might consider measuring the execution with

respect to the relevant QoS criteria. The goal of such an analysis is to identify

potential weak or critical services in the composition. The retailer has three main

options when a weak or critical service is revealed:

• Replacing. He can replace the particular service with other identified candi-

dates that were ranked lower than the chosen service. However, the service

was originally sorted out by a selection process. Consequently, this modifi-

cation results in a worse QoS prediction for the composition.

• Acquiring new services. As an alternative, the discovery must be repeated

and the “bad” service must be excluded. The modeller can perform a new

attempt a new service discovery to find services that were previously not

available.

• Redesigning the composition. Like for the iteration in the development

process, the modeller can try to redesign or rearrange the required function-

ality to avoid the problem of insufficient QoS. In this case, a new iteration of

the development process is started.

The retailer will continuously need to optimise the composition in order to

approach the optimal setup. One reason is the general volatility of the QoS, which

170

7.2. Model-Driven Development of Service Compositions

is a characteristic of distributed systems. Another reason is that new services will

appear, as well as other services will disappear. To guarantee a constant QoS level

of the entire composition, a new selection must take place when the QoS of the

involved services changes. To ensure that new, possibly QoS-improving services

are utilised, the process steps from performing the discovery can be repeated at a

regular basis. Figure 7.9 outlines the relations of the main steps with the run-time

part. In this figure, the activity with the grey border represents the selection. The

diagram shows that the selection is performed each time the set of involved services

or their QoS has changed. A repeated selection always requires the activities of the

fourth step.

4: Deploying and
Publishing

2: Trading:
Matchmaking

1: Modelling

No Services
Found

Inspiration

Too Restrictive
QoS Constraints

Too Many
Candidates

Critical Service /
Possible Improvements
Identified

Regular Update
of Available Services

Service with
Weak QoS Identifed

Runtime:
Monitoring

3: Trading:
Selection

Figure 7.9: The iterative development process.

171

7.2. Model-Driven Development of Service Compositions

172

Chapter 8

Conclusions

The application of heuristic algorithms to the problem of the QoS-based selection

when forming service compositions was explained and analysed. In addition, the

implementation of a simulation in order to analyse the performance of the con-

sidered algorithms was presented. The results from conducted simulations allow

quantitative statements about the feasibility of the heuristic algorithms when com-

pared to algorithms that guarantee to solve the problem in an optimal way.

The concept of QoS as preference criteria for the service selection covers many

aspects. The definition from the ISO 9004 standard [127] on services and quality

allows many possible application scenarios. To sharpen the focus of this work, the

scenario of realising business processes was presented as the main application case.

The motivation for this application case lies in the presented commonalities of busi-

ness processes with the characteristics of service compositions (cf. Section 2.4).

The application scenario influenced the direction of the discussion on QoS in

distributed systems (cf. Chapter 3). Thus, also particular QoS issues in the field

of SOAs and Web services were presented. For the subsequent QoS-aggregation,

existing research works on QoS issues in these fields were also assessed. Then, a

uniform approach for aggregating the QoS was defined and explained for process-

ing the QoS of individual services in compositions. The approach presumes that

the composition can be described by using a specific structural model. Based on

the structural model and the corresponding aggregation rules, the presented method

can determine the resulting QoS of service compositions. This functionality repre-

sents the foundation for the QoS-based selection of service candidates.

After this first part, which presented the necessary foundations, an analysis of

the QoS-based selection problem was given which resulted in a problem model.

This model enabled an analysis on the relations to other combinatorial problems.

The considered problems were the multiple choice knapsack problem, the resource-

constrained project scheduling problem, the QoS-based query planning for queries

to database systems, and the QoS-based routing in computer networks. In addi-

tion, the problem model served also as the foundation for a discussion about the

hardness of the QoS-based selection problem. It was shown that the presented

173

problem model for the QoS-based selection describes a problem that is NP -hard.

The NP -hardness is shown by reducing the multiple choice knapsack problem to

the selection problem (cf. Section 5.3.5). In addition, the comparison with the

MCKP has revealed that the approaches as presented in the related work based on

the MCKP do not cover all aspects of the QoS-based selection problem.

This represents the motivation to evaluate heuristic algorithms for the selection

problem as an alternative to algorithms that guarantee to find the optimal solution.

A selection of heuristic algorithms was explained and their advantages and disad-

vantages were discussed. To provide quantitative results, an evaluation of these

heuristics was also presented (cf. Chapter 6). The evaluation was performed by

software that simulates the application of these heuristics on randomly generated

problem instances. The goal of the simulation was to capture two aspects of the per-

formance of the heuristics: Their QoS performance and their computational time

performance. Based on the quantitative results, also the weaknesses and strengths

of the heuristics were revealed and discussed. In summary, the evaluation revealed

the following insights about the heuristic algorithms:

• The discarding heuristic showed an unattractive consumption of the compu-

tation time under real-world conditions. This shows that a branch-and-bound

strategy is not able to efficiently save computational efforts. However, this

approach results in the almost optimal QoS for the composition.

• The bottomup heuristic required very few computational efforts. However,

the resulting QoS reaches only 1/3 to 1/2 of the best QoS possible in the

different simulation campaigns. Thus, its application must take a clear QoS

penalty into account.

• The local heuristic, which implemented a greedy strategy to solve the given

problem, resulted in very attractive QoS (about 4/5 of the optimal) while

requiring low computational efforts. However, it is not able to consider con-

straints. Moreover, it showed weaknesses for problem instances with very

diverse QoS offers.

• The pattern-based heuristic showed a QoS performance between the local

and discarding heuristic. However, it scales unattractive with larger problem

instances under real-world conditions. Although, it consumes only a fraction

of computation time when compared to the discarding method, it requires

unattractive computation times for problem instances with a larger number

of candidates or tasks.

The presentation about the abstract development process at the end has clarified

the role of the QoS-based selection when creating compositions of services. By ex-

plaining this development process it was made clear at which points in the process

the QoS-based selection must take place. Moreover, the development process has

also explained the motivation for the following preconditions for the QoS-based

selection:

174

8.1. Summary of Main Contributions

• Functional compatibility. For the application of the QoS-based selection,

the considered candidates have been proven functionally compatible to the

tasks. Besides the practical benefit of this step, the advantage is that sorting

out service candidates in advance results in fewer candidates to evaluate.

• Uniformity of QoS characteristics. The other main presumption is the uni-

formity of the QoS characteristics: The retailer who performs the selection

process must have the same understanding of the considered QoS character-

istics as the service providers who offer their candidates with QoS promises.

Chapter 3 has also discussed related research work that considers this prob-

lem. Since the focus of this thesis lies on the combinatorial aspect of the

problem, the QoS uniformity among the involved parties was not further dis-

cussed.

8.1 Summary of Main Contributions

The previous section has summarised the main contribution of this work which is

the discussion and evaluation of the heuristic algorithms. Thus, it directly cov-

ers the problem statement given in the first chapter. Besides the evaluation re-

sults about the heuristic approaches, the following scientific contributions were

presented:

• Assessment about the QoS in service compositions. The first part of this

thesis has provided a survey about the existing research work and clarified

relevant QoS concepts for the use in service compositions. The outcome

is an assessment about relevant QoS characteristics, as given in Section 3

and an assessment about the resulting value dimensions when the relevant

characteristics are applied in the field of services and service compositions

to determine the simulation parameters (cf. Section 6.3.1).

Moreover, Chapter 7 has explained the issues of aggregating QoS and per-

forming the QoS-based selection in a development process for building ser-

vice compositions.

• An aggregation model. The next contribution is a structural model an a

method that enables the aggregation of QoS in service compositions, based

on the QoS of individual tasks or candidates. Besides the application of

this model to perform the QoS-based selection, this approach has been also

applied in related work about improving the QoS by applying redundant ser-

vices structures [58, 59]. The proposed approach presumes that the compo-

sition can be expressed by using this structural model. This thesis has dis-

cussed the expressiveness and limitation of this structural model. Based on

an analysis of the identified limitations, the application of existing transfor-

mations (cf. Kiepuszewski et al. [73]) was proposed to cover not conforming

compositions with this structural model.

175

8.2. Outlook and Future Work

• The problem model. Besides the structural model to perform the aggre-

gation, another model describes the selection problem itself. The problem

model uses the structural model of the aggregation method to describe the

structure of the occurring problem instances. In addition, the rules of the ag-

gregation model were used to derive statements that express constraints and

optimisation goals.

The problem model provides the foundation for three aspects: 1) a clarifi-

cation of the characteristics of the problem and its relation to existing prob-

lem models, 2) a discussion about the effort to solve the problem and 3) a

blueprint for the implementation of the simulation in order to achieve the

quantitative results.

• Development of the simulation. The presented performance evaluation re-

quired the implementation of a simulation. Existing works about QoS in ser-

vice compositions were assessed in order to determine the parameterisation

of the setup. The results from performed simulations made clear that a vari-

ation of different parameters results also in a variation of the performance.

Thus, the assessment of existing work was necessary to deliver a realistic

simulation setup that would result in realistic performance evaluations.

The structural model and the problem model were also the foundation for the

analysis about the related work in the field of QoS aggregation (cf. Section 4.6) and

in the field of QoS-based selection (cf. Section 5.1). The problem model served

as a reference to show the differences to existing related work about the QoS-

based selection that has considered the multiple choice knapsack problem as the

appropriate problem model.

8.2 Outlook and Future Work

Because the definition of services and their composition by the ISO 9000 and 9004

standards [128, 127] is considered for this work, the discussed combinatorial prob-

lem can be applied outside an SOA and Web service infrastructures as well. The

given discussion can be transferred to other domains. A possible application would

be the production of goods where a product is comprised of different sub-products

and services of different suppliers. For example, the production of a car represents

such a scenario. The involved sub-products and services are applied in a certain

order, and require a time to perform. Products cost a particular amount of money

and everything operates at a certain level of reliability. The optimisation of quan-

tifiable measures as presented in this work is also relevant for other domains which

have the goal to implement a process.

Besides other potential applications of QoS-based selection in the industry,

the simulations have shown in general that the optimisation of the QoS provides

significant advantages in terms of cost, response time, and availability: The eval-

uation of the (QoS-ignoring) random and global selection methods have resulted

176

8.2. Outlook and Future Work

in quantitative statements about the improvements when the QoS is optimised. All

considered measures represent relevant objectives for optimisation in today’s IT

infrastructures when it comes to saving money and efforts (or the amount of work)

and to provide systems that are more reliable.

This work has also mentioned that QoS-aware development tools are currently

not widely used. Besides research prototype work (for example, presented by

Grønmo and Jaeger [39]), no commercial product was identified that provides the

support for the QoS of services when developing service compositions. The imple-

mented simulator represents a solution that has proven to be capable of processing

the QoS of service candidates, performing the aggregation and has demonstrated

the application of different selection algorithms. This implementation serves as

proof of concept for the proposed QoS-based selection. It can be further devel-

oped for the integration into software packages to create service compositions in

the sense of the SOA. This thesis proposes how the discussed approaches find their

way into software products, service brokers or development environments in order

to create compositions as discussed in Chapter 7.

Besides the application in the software industry, the main contributions of this

thesis also enable different opportunities for further research work. Possible areas

of further research based on this work are:

• Developing more heuristics. Along with the given analysis of the four

heuristics, a combined heuristic approach can be derived from further re-

search in the field of related combinatorial problems. The result could be

a hybrid approach as mentioned in Section 6.5. For example, the QoS per-

formance of the pattern selection can be combined with the computational

performance of the local selection by applying the local selection for the rare

cases that pose difficulties to the pattern selection.

• Designing campaigns. Besides the evaluation of additional heuristics, dif-

ferent simulation campaigns can be also considered in order to explore more

aspects of the heuristics. For example, a different setup could vary how many

tasks a structural element contains on average.

• Other approaches. Besides the heuristics, another research opportunity

would be the creation of an algorithm that derives the appropriate set of inte-

ger programming formulations according to a given instance of the selection

problem. Such an algorithm could be based on defined transformations that

transform each pair of QoS characteristic and composition pattern into a cor-

responding formula. Then, software tools for integer programming solving

could be applied and the performance of such an approach can be compared

with the performance of the heuristics.

• Optimisation Prediction. Based on the simulation results and the problem

model, a functionality can be established that predicts the optimisation po-

tential of a given composition setup. The goal of this function is to quickly

177

8.2. Outlook and Future Work

predict the QoS optimisation potential. Based on this prediction, a QoS-

based broker can decide whether to run a time-consuming selection algo-

rithm or to prefer a heuristic algorithm.

178

Appendix A

Specification of the

Hard- and Software Platform

The entire simulation presented in this work was performed on standard PC hard-

ware running a Microsoft Windows 2000 operating system. Table A.1 lists the

detailed specifications of the computer.

CPU Intel Pentium IV CPU

2.4GHz, 512KB level-2 cache, 533MHz FSB

(family 15, model 2, stepping 9)

Hardware Intel i865 chipset with integrated graphics controller

512 MB DDR333 main memory, 40GB hard disk

OS Microsoft Windows 2000

(version 5.0.2195, service pack 4, build 2195)

performance setting “optimised for applications”

Java VM Sun’s Java HotSpot Client VM 1.5.0 06-b05

default settings (i.e. for heap sizes)

Table A.1: Specification of the host system.

Apart from the technical specifications, the performance of the simulation host

platform is also interesting in order to compare the results with future or external

research. An official Java benchmark does not exist. However, different (research)

groups have developed and published software that performs typical scientific cal-

culations and captures the computational performance.

Among these efforts, “SciMark 2.0” has been chosen to measure the perfor-

mance of the computer used for the simulation runs. SciMark was developed by

Roldan Pozo, and Bruce Miller at the National Institute of Standards and Tech-

nology (NIST). The software is freely available at http://math.nist.gov/scimark2/.

Running the benchmark tool in the command line of the host system resulted in the

following output:

179

SciMark 2.0a

Composite Score: 187.41090663144433

FFT (1024): 83.56844871970135

SOR (100x100): 322.88120458089793

Monte Carlo : 24.54603686755795

Sparse matmult (N=1000, nz=5000): 127.85017738323931

LU (100x100): 378.20866560582505

java.vendor: Sun Microsystems Inc.

java.version: 1.5.0_06

os.arch: x86

os.name: Windows 2000

os.version: 5.0

The captured composite score of 187 compares well with the given results from

other computers available on the home page of SciMark: Different other Pentium

IV-based machines at 2.4Ghz clock rate resulted in the score of 187 as well.

180

Appendix B

List of Abbreviations

BPEL4WS Business Process Execution Language for Web Services

BPMI Business Process Management Initiative

BPML Business Process Modelling Language

BPMN Business Process Modelling Notation

BPSS Business Process Specification Schema

CPA Collaboration Protocol Agreement

CPP Collaboration Protocol Profile

CPU Central Processing Unit

CORBA Common Object Request Broker Architecture

CCM CORBA Component Model

ebXML Electronic Business using eXtensible Markup Language

EDOC Enterprise Distributed Object Computing

EPC Event-driven Process Chain

XML Extensible Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IDL Interface Definition Language

ISO International Organization for Standardization

IETF Internet Engineering Task Force

ISO-OSI ISO Open System Interconnection Model

J2SE Java 2 Standard Edition

MDA Model-Driven Architecture

MTBF Mean Time Between Failure

MTTT Mean Time to Transition

MOF Meta Object Facility

MCDM Multiple Criteria Decision Making

MCKP Multiple-Choice Knapsack Problem

181

MKP Multiple-Dimension Knapsack Problem

MMKP Multiple-Dimension Multiple-Choice Knapsack Problem

OMG Object Management Group

OASIS Organization for the Advancement of Structured Information Standards

OWL-S OWL Services

PC Problem Carrier

PIM Platform Independent Model

PSM Platform Specific Model

QoS Quality of Service

RM-ODP Reference Model for Open Distributed Processing

RCPSP Resource Constrained Project Scheduling Problem

SLA Service Level Agreement

SOA Service-Oriented Architecture

SAW Simple Additive Weighting

SWM Structured Workflow Model

TINA Telecommunications Information Networking Architecture

W3C The World Wide Web Consortium

TINA-C TINA Consortium

UML Unified Modelling Language

UN/CEFACT United Nations Centre for Trade Facilitation and Electronic Business

UNSPSC United Nations Standard Products and Services Code

UDDI Universal Description, Discovery, and Integration

OS Operating System

OWL Web Ontology Language

VM Virtual Machine

WSCI Web Service Choreography Interface

WSLA Web Service Level Agreement Language

WSMO Web Service Modelling Ontology

WSOI Web Service Offerings Infrastructure

WSOL Web Service Offerings Language

WSDL-S Web Service Semantics

WS-BPEL Web Services Business Process Execution Language

WS-I Web Services-Interoperability

WSDL Web Services Description Language

WSFL Web Services Flow Language

WfMC Workflow Management Coalition

WorkSCo Workflow with Separation of Concerns

XPDL XML Processing Description Language

YAWL Yet Another Workflow Language

182

183

184

Bibliography

[1] Rama Akkiraju, Richard Goodwin,

Prashant Doshi, and Sascha Roeder. A

Method for Semantically Enhancing

the Service Discovery Capabilities of

UDDI. In Proceedings of the Workshop

on Information Integration on the Web,

pages 87–92, August 2003.

[2] Ali Shaikh Ali, Omer F. Rana, Rashid

Al-Ali, and David W. Walker. UDDIe:

An Extended Registry for Web Services.

In Proceedings of the 2003 Symposium

on Applications and the Internet Work-

shops (SAINT’03 Workshops), page 85,

Orlando, Florida, USA, January 2003.

IEEE Press.

[3] Cristina Aurrecoechea, Andrew T. Camp-

bell, and Linda Hauw. ”a survey of qos ar-

chitectures”. Multimedia Systems, Special

Section on Quality of Service Architec-

tures for Multimedia Systems, 6(3):138–

151, May 1998.

[4] Sean Baker and Simon Dobson. Compar-

ing Service-Oriented and Distributed Ob-

ject Architectures. In Proceedings of the

International Symposium on Distributed

Objects and Applications (DOA’05), Agia

Napa, Cyprus, November 2005. Springer

Press.

[5] Luciano Baresi, Sam Guinea, and Pier-

luigi Plebani. WS-Policy for Service

Monitoring. In 6th VLDB Workshop

on Technologies for E-Services (TES’05),

volume LNCS 3811. Springer Press,

September 2005.

[6] Boualem Benatallah, Marlon Dumas,

Marie-Christine Fauvet, F. A. Rabhi, and

Quan Z. Sheng. Overview of Some

Patterns for Architecting and Managing

Composite Web Services. In ACM SIGe-

com Exchanges, pages 9–16. ACM Press,

August 2002.

[7] Jean Bézivin, Grégoire Dupé, Frédéric

Jouault, Gilles Pitette, and Jamal Eddine

Rougui. First experiments with the atl

model transformation language: Trans-

forming xslt into xquery. In 2nd OOP-

SLA Workshop on Generative Techniques

in the context of Model Driven Architec-

ture, Anaheim, California, USA, 2003.

[8] Jean Bézivin, Slimane Hammoudi, Deni-

valdo Lopes, and Frédéric Jouault. Ap-

plying mda approach for web service plat-

form. In Proceedings of the Eighth IEEE

International Enterprise Distributed Ob-

ject Computing Conference (EDOC’04),

pages 58–70, Monterey, California, USA,

September 2004. IEEE Press.

[9] Jean Bézivin, Slimane Hammoudi, Deni-

valdo Lopes, and Frédéric Jouault. B2B

Applications, BPEL4WS, Web Services

and dotNET in the Context of MDA. In

Proceedings of the International Confer-

ence on Enterprise Integration and Mod-

elling Technology (ICEIMT’04), Toronto,

Canada, October 2004. Springer Press.

[10] Gregory Alan Bolcer and Gail Kaiser.

SWAP: Leveraging the Web to Manage

Workflow. In IEEE Internet Comput-

ing, pages 85–88. IEEE Press, January-

February 1999.

[11] David Booth, Hugo Haas, Francis Mc-

Cabe, Eric Newcomer, Michael Cham-

pion, Chris Ferris, and David Or-

chard. Web Services Architecture.

http://www.w3c.org/TR/ws-arch/, Febru-

ary 2004.

[12] Carine Bournez and Hugo Haas. Seman-

tic Web Services Interest Group Char-

ter. http://www.w3.org/2003/10/swsig-

charter, October 2003.

[13] Ilja N. Bronstein, Konstantin A. Se-

mendjajew, Gerhard Musiol, and Heiner

Mühlig. Taschenbuch der Mathematik.

185

Bibliography

Harri Deutsch Verlag, Frankfurt am Main,

Germany, 4. edition, 1999.

[14] David Burdett and Nickolas Kavantzas

(Eds.). WS Choreography Model

Overview, W3C Working Draft 24

March 2004. Technical report, W3C,

http://www.w3.org/TR/ws-chor-model/,

2004.

[15] Jorge Cardoso. Quality of Service and Se-

mantic Composition of Workflows. PhD

thesis, Department of Computer Sci-

ence, University of Georgia, Athens, GA

(USA), 2002.

[16] Jorge Cardoso, Amit Sheth, and Krys

Kochut. Implementing QoS Management

for Workflow Systems. Technical report,

LSDIS Lab, Computer Science, Univer-

sity of Georgia, Athens, GA – USA, 2002.

[17] Jorge Cardoso, Amit Sheth, and John

Miller. Workflow Quality of Ser-

vice. In Proceedings of Interna-

tional Conference on Enterprise Inte-

gration and Modeling Technology and

International Enterprise Modeling Con-

ference (ICEIMT/IEMC’02), Valencia,

Spain, April 2002. Kluwer Academic

Publishers.

[18] Senthilanand Chandrasekaran, Gregory S.

Silver, John A. Miller, Jorge Cardoso,

and Amit P. Sheth. XML-based Model-

ing and Simulation: Web Service Tech-

nologies and their Synergy with Simula-

tion. In Jane L. Snowdon and John M.

Charnes, editors, Proceedings of the 34th

Winter Simulation Conference: Explor-

ing New Frontiers, pages 606–615, San

Diego, California, USA, December 2002.

ACM Press.

[19] Jonathan Cranford, Ravi Mukkamala, and

Vijayalakshmi Atluri. Modeling and

evaluation of distributed workflow algo-

rithms. In Proceedings of the World

Multiconference on Systemics, Cybernet-

ics and Informatics: Information Systems

Development (ISAS-SCI), pages 183–188,

Orlando, Florida, USA, July 2001. IIIS.

[20] Eric Crawley, Raj Nair, Bala Rajagopalan,

and Hal Sandick. A Framework for QoS-

based Routing in the Internet. Informa-

tional RFC 2386, Internet Engineering

Task Force (IETF), 1998.

[21] Thomas H. Davenport. Process Inno-

vation. Harvard Business School Press,

Boston, MA, USA, 1992.

[22] Remco M. Dijkman and Marlon Du-

mas. Service-Oriented Design: A Multi-

Viewpoint Approach. International Jour-

nal of Cooperative Information Systems

(IJCIS), 13(4):337–368, 2004.

[23] Edsger W. Dijkstra. Go To Statement

Considered Harmful. Communications of

the ACM, 11(3):147–148, March 1968.

[24] Dragan Djuric. MDA-based Ontology

Infrastructure. Computer Science Infor-

mation Systems (ComSIS), 1(1), February

2004.

[25] Erdogan Dogdu and Venkata Mamidenna.

Efficient Scheduling Strategies for Web

Services-based E-Business Transactions.

In 6th VLDB Workshop on Technologies

for E-Services (TES’05), volume LNCS

3811, pages 113–125. Springer Press,

September 2005.

[26] Krzysztof Dudziński and Stanislaw

Walukiewicz. Exact Methods for the

Knapsack Problem and its Generalisa-

tions. European Journal of Operations

Research, 28(2):3–21, 1987.

[27] Lill Kristiansen (Ed.). TINA-C De-

liverable: Service Architecture, Ver-

sion 5.0. TINA consortium website:

http://www.tinac.com/, June 1997.

[28] Abdelkarim Erradi and Piyush Mahesh-

wari. wsBus: QoS-aware Middleware

for Reliable Web Services Interactions.

In Proceedings of the 2005 IEEE Inter-

national Conference on e-Technology, e-

Commerce and e-Service (EEE’05), pages

634–639, Hong Kong, China, March

2005. IEEE Press.

[29] Assaf Arkin et al. Business Process Mod-

eling Language (BPML). Technical Re-

port Version 1.0, BPMI.org, 2002.

[30] Assaf Arkin et al. Web Service Choreog-

raphy Interface (WSCI) 1.0. Technical re-

port, W3C, http://www.w3.org/TR/wsci,

2002.

[31] Tony Andrews et al. Business Process Ex-

ecution Language for Web Services Ver-

sion 1.1. Technical report, BEA Systems,

IBM Corp., Microsoft Corp., http://www-

106.ibm.com/developerworks/webser-

vices/library/ws-bpel/, 2003.

186

Bibliography

[32] Cristina Feier and John Domingue. D3.1

WSMO Primer. WSMO Final Draft,

DERI International, April 2005.

[33] Daniela Florescu, Andreas Gruenhagen,

and Donald Kossmann. XL: an XML

Programming Language for Web Service

Specification and Composition. In Pro-

ceedings of the 11th international con-

ference on World Wide Web (WWW’02),

pages 65–76. ACM Press, May 2002.

[34] Helmut Frank, Norbert Gronau, and Her-

mann Krallman. Systemanalyse im Un-

ternehmen. 3. Edition. Oldenbourg Ver-

lag, München, Germany, October 2000.

[35] Svend Frølund and Jari Koistinen. Quality

of Service Aware Distributed Object Sys-

tems. In Proceedings in 5th USENIX Con-

ference on Object-Oriented Technologies

and Systems (COOTS’99), pages 69–84,

San Diego, California, USA, May 1999.

USENIX.

[36] Dinesh Ganesarajah and Emil Lupu.

Workflow-based Composition of Web-

services: A Business Model or a Pro-

gramming Paradigm? In Proceed-

ings of 6th International Enterprise Dis-

tributed Object Computing Conference

(EDOC’02), pages 273–284, Lausanne,

Switzerland, September 2002. IEEE CS

Press.

[37] Michael R. Garey and David S. Johnson.

Computers and Intractability A Guide to

the Theory of NP-Completeness. W. H.

Freeman and Company, New York, NY,

USA, 1979.

[38] Michael Gillmann, Gerhard Weikum, and

Wolfgang Wonner. Workflow Manage-

ment with Service Quality Guarantees. In

Proceedings of the 2002 ACM SIGMOD

International Conference on Management

of Data, pages 228–239, Madison, Wis-

consin, USA, June 2002. ACM Press.

[39] Roy Grønmo and Michael C. Jaeger.

Model-Driven Methodology for Building

QoS-Optimised Web Service Composi-

tions. In Proceedings of the 5th IFIP

International Conference on Distributed

Applications and Interoperable Systems

(DAIS’05), pages 68–82, Athens, Greece,

May 2005. Springer Press.

[40] Roy Grønmo and Michael C Jaeger.

Model-Driven Semantic Web Service

Composition. In The 12th ASIA-

PACIFIC Software Engineering Confer-

ence (APSEC’05), pages 79–86, Taipei,

Taiwan, December 2005. IEEE CS Press.

[41] Roy Grønmo, Michael C Jaeger, and

Hjørdis Hoff. Transformations be-

tween UML and OWL-S. In Euro-

pean Conference on Model Driven Archi-

tecture – Foundations and Applications

(ECMDA’05), volume 3748 of LNCS,

pages 269–283, Nuremberg, Germany,

November 2005. Springer Press.

[42] Roy Grønmo, David Skogan, Ida Sol-

heim, and Jon Oldevik. Model-Driven

Web Service Development. Interna-

tional Journal of Web Services Research

(JWSR), 1(4), Oct-Dec 2004.

[43] Michael Hammer and James Champy.

A Manifesto for Business Revolution.

Harper Business, 1993.

[44] Thomas Heinis, Cesare Pautasso, and

Gustavo Alonso. Design and evalua-

tion of an autonomic workflow engine.

In Proceedings of the Second Interna-

tional Conference on Autonomic Com-

puting (ICAC’05), pages 27–38, Seat-

tle, Washington, USA, June 2005. IEEE

Press.

[45] David Hollingsworth. The Workflow Ref-

erence Model. Technical Report TC00-

1003, Workflow Management Coalition,

Lighthouse Point, Florida, USA, 1995.

[46] David Hollingsworth. The Work-

flow Reference Model 10 Years On.

(extracted from “Workflow Handbook

2004”), Workflow Management Coali-

tion, Lighthouse Point, Florida, USA,

February 2004.

[47] Michael N. Huhns and Munindar P. Singh.

Service-oriented computing: Key con-

cepts and principles. IEEE Internet

Computing, January and February:75–81,

2005.

[48] Richard Hull, Michael Benedikt, Vas-

silis Christophides, and Jianwan Su. E-

Services: A Look Behind the Curtain. In

Proceedings of the 22nd ACM SIGACT-

SIGMOD-SIGART Symposium on Prin-

ciples of Database Systems (PODS’03),

pages 1–14, San Diego, California, USA,

June 2003. ACM Press.

187

Bibliography

[49] Ching-Lai Hwang and K. Paul Yoon, edi-

tors. Multiple Attribute Decision Making:

Methods and Applications, volume 186 of

Lecture Notes in Economics and Mathe-

matical Systems. Springer Press, March

1981.

[50] ISO/IEC. ITU.TS Recommendation

X.902 — ISO/IEC 10746-1: Open Dis-

tributed Processing Reference Model -

Part 1: Overview, August 1996.

[51] ISO/IEC. ITU.TS Recommendation

X.902 — ISO/IEC 10746-2: Open Dis-

tributed Processing Reference Model -

Part 2: Foundations, August 1996.

[52] ISO/IEC. ISO/ITU-T Recommendation

X.641 — ISO/IEC 13236: Information

Technology - Quality of Service - Frame-

work, 1997.

[53] ISO/IEC. ITU.TS Recommendation

X.950 — ISO/IEC 13235-1: Trading

Function: Specification, August 1997.

[54] ISO/IEC. CD 15935 Information Tech-

nology: Open Distributed Processing -

Reference Model - Quality of Service.

(CD Ballot), October 1998.

[55] ISO/IEC. ITU-T Recommendation X.641

— ISO/IEC 13236: Information Tech-

nology - Quality of Service: Framework,

1998.

[56] ISO/IEC. ISO/IEC 15909-1: High-level

Petri nets – Part 1: Concepts, Definitions

and Graphical Notation. Published Stan-

dard, December 2004.

[57] ITU-T. ITU-T Recommendation X.200

— ISO/IEC 7498-1: Open Systems Inter-

connection – Basic Reference Model: The

Basic Model, July 1994.

[58] Michael C. Jaeger and Hendrik Lad-

ner. Improving the QoS of WS Com-

positions based on Redundant Services.

In The 2005 International Conference

on Next Generation Web Services Prac-

tices (NWeSP’05), pages 189–194, Seoul,

South-Korea, August 2005. IEEE CS

Press.

[59] Michael C. Jaeger and Hendrik Ladner.

A Model for the Aggregation of QoS in

WS Compositions Involving Redundant

Services. Journal of Digital Information

Management, 4(1):44–49, March 2006.

[60] Michael C. Jaeger and Gero Mühl. Soft

Real-Time Aspects for Service-Oriented

Architectures. In Proceedings of the

IEEE Joint Conference on E-Commerce

Technology (CEC’06) and Enterprise

Computing, E-Commerce and E-Services

(EEE’06), pages 22–29, San Francisco,

California, USA, June 2006. IEEE Press.

[61] Michael C. Jaeger, Gero Mühl, and Se-

bastian Golze. QoS-aware Composition

of Web Services: An Evaluation of Se-

lection Algorithms. In Proceedings of

the Confederated International Confer-

ences CoopIS, DOA, and ODBASE 2005

(OTM’05), volume 3760 of LNCS, pages

646–661, Agia Napa, Cyprus, November

2005. Springer Press.

[62] Michael C. Jaeger and Gregor Rojec-

Goldmann. SENECA – Simulation of Al-

gorithms for the Selection of Web Ser-

vices for Compositions. In 6th VLDB

Workshop on Technologies for E-Services

(TES’05), volume 3811 of LNCS, pages

84–97, Trondheim, Norway, September

2005. Springer Press.

[63] Michael C. Jaeger, Gregor Rojec-

Goldmann, and Gero Mühl. QoS

Aggregation for Service Composition

using Workflow Patterns. In Proceedings

of the 8th International Enterprise Dis-

tributed Object Computing Conference

(EDOC’04), pages 149–159, Monterey,

California, USA, September 2004. IEEE

Press.

[64] Michael C. Jaeger, Gregor Rojec-

Goldmann, and Gero Mühl. QoS

Aggregation in Web Service Compo-

sitions. In Proceedings of the 2005

IEEE International Conference on e-

Technology, e-Commerce and e-Service

(EEE’05), pages 181–185, Hong Kong,

China, March 2005. IEEE Press.

[65] Michael C. Jaeger, Gregor Rojec-

Goldmann, Gero Mühl, Christoph

Liebetruth, and Kurt Geihs. Ranked

Matching for Service Descriptions using

OWL-S. In Kommunikation in verteil-

ten Systemen (KiVS 2005), Informatik

Aktuell, pages 91–102, Kaiserslautern,

Germany, February 2005. Springer Press.

[66] Michael C. Jaeger and Stefan Tang.

Ranked Matching for Service Descrip-

tions using DAML-S. In Proceedings

188

Bibliography

of CAiSE’04 Workshops, pages 217–228,

Riga, Latvia, June 2004. Riga Technical

University.

[67] Gerrit K. Janssens, Jan Verelst, and Bart

Weyn. Techniques for modelling work-

flows and their support of reuse. In

Business Process Management – Models,

Techniques, and Empirical Studies, vol-

ume 1806 of LNCS, pages 1–15, Berlin,

Germany, February 2000. Springer Press.

[68] Jeff Johnson, Teresa L. Roberts, William

Verplank, David C. Smith, Charles Irby,

Marian Beard, and Kevin Mackey. The

Xerox Star: A Retrospective. Computer,

22(9):11–26,28–29, September 1989.

[69] Sravanthi Kalepu, Shonali Krish-

naswamy, and Seng Wai Loke. Reputa-

tion = f(user ranking, compliance, verity).

In Proceedings of the IEEE International

Conference on Web Services (ICWS’04),

pages 200–207, San Diego, California,

USA, July 2004. IEEE CS Press.

[70] Olaf Kath, Andrei Blazarenas, Marc

Born, Klaus-Peter Eckert, Motoshisa Fun-

abashi, and Chiaki Hirai. Towards Ex-

ecutable Models: Transforming EDOC

Behavior Models to CORBA and BPEL.

In Proceedings of the 8th International

Enterprise Distributed Object Computing

Conference (EDOC’04), pages 267–274,

Monterey, California, USA, September

2004. IEEE Press.

[71] Gerhard Keller, Markus Nüttgens, and

August-Wilhelm Scheer. Semantische

Prozeßmodellierung auf der Grundlage

Ereignisgesteuerter Prozeßketten (EPK).

Veröffentlichungen des Instituts für

Wirtschaftsinformatik (IWi) 89, Uni-

versität des Saarlandes, Saarbrücken,

Germany, 1992.

[72] Tony Kenyon. Data Networks: Routing,

Seurity, and Performance Optimization.

Digital Press, 1. edition, June 15th 2002.

[73] Bartek Kiepuszewski, Arthur H. M. ter

Hofstede, and Christoph Bussler. On

Structured Workflow Modelling. In Pro-

ceedings of the 12th International Con-

ference on Advanced Information Systems

Engineering (CAiSE’00), volume 1789 of

LNCS, pages 431–445, Stockholm, Swe-

den, June 2000. Springer Press.

[74] Donald E. Knuth. Structured Program-

ming with go to Statements. ACM Com-

puting Surveys, 6(4):261–301, December

1974.

[75] Pinar Koksal, Sena Nural Arpinar, and

Asuman Digac. Workflow History Man-

agement. SIGMOD Record, 27(1):67–75,

1998.

[76] Lea Kutvonen. Trading Services in Open

Distributed Environments. PhD thesis,

Department of Computer Science, Uni-

versity of Helsinki, Helsinki, Finland,

1998.

[77] Hendrik Ladner. Methoden zur Opti-

mierung der Dienstgüte von Web Ser-

vice Kompositionen. diploma thesis,

Berlin University of Technology, Faculty

of Electrical Engineering and Computer

Science, October 2005.

[78] Juhnyoung Lee. Matching Algorithms

for Composing Business Process Solu-

tions with Web Services. In Proceed-

ings of the 4th International Conference

on E-Commerce and Web Technologies

(ECWEB’03), pages 393–402, Prague,

Czechoslovakia, October 2003. Springer

Press.

[79] Ulf Leser. Combining Heterogeneous

Data Sources through Query Corre-

spondence Assertions. In Fereidoon

Sadri, editor, CIKM’98 First Workshop

on Web Information and Data Manage-

ment (WIDM’98), pages 29–32, Bathesda,

Maryland, USA, November 1998. ACM

Press.

[80] Frank Leymann. Web Services Flow

Language (WSFL 1.0). Technical report,

IBM Software Group, http://www-

4.ibm.com/software/solutions/webser-

vices/pdf/WSFL.pdf, 2001.

[81] Lei Li and Ian Horrocks. A Software

Framework For Matchmaking Based on

Semantic Web Technology. In Proceed-

ings of the 12th International Conference

on World Wide Web (WWW’03), pages

331–339. ACM Press, May 2003.

[82] Lucas Bordeaux and Gwen Salaun and

Daniela Berardi and Massimo Mecella.

When are two web services compatible?

In Revised Selected Papers of the 5th

International Workshop on Technologies

189

Bibliography

for E-Services (TES’04), volume 3324 of

LNCS, pages 15–28, Toronto, Canada,

August 2004. Springer Press.

[83] Heiko Ludwig. Web Services QoS: Exter-

nal SLAs and Internal Policies Or: How

do we deliver what we promise? Keynote

Speech at the WISE Workshop on Web

Services Quality, December 2003.

[84] Heiko Ludwig, Alexander Keller, Asit

Dan, Richard P. King, and Richard

Franck. Web Service Level Agree-

ment (WSLA) Language Specification.

http://www.research.ibm.com/wsla/WSL

ASpecV1-20030128.pdf, January 2003.

[85] Ed Lynch and Chandra Venkatapathy.

Sustaining your Advantage with Business

Process Integration based on Service Ori-

ented Architecture. White Paper, October

2005.

[86] Dirk E. Mahling, Noel Craven, and

W. Bruce Croft. From Office Automation

to Intelligent Workflow Systems. IEEE

Intelligent Systems, 10(3):41–47, June

1995.

[87] Mike Marin, Justin Brunt, Wojciech

Zurek, Tim Stephenson, Sasa Bojanic,

and Gangadhar Gouri. Workflow Pro-

cess Definition Interface – XML Process

Definition Langauge, Version 1.0. Tech-

nical Report WFMC-TC-1025, Workflow

Management Coalition, Lighthouse Point,

Florida, USA, October 2002.

[88] E. Michael Maximilien and Munindar P.

Singh. A Framework and Ontology for

Dynamic Web Services Selection. In

IEEE Internet Computing, pages 84–93.

IEEE Press, September-October 2004.

[89] Deborah L. McGuinness and Frank

van Harmelen. OWL Web Ontol-

ogy Language Overview. Technical re-

port, W3C, http://www.w3.org/TR/owl-

features/, 2004.

[90] Daniel A. Menasce. QoS Issues in Web

Services. In IEEE Internet Comput-

ing, pages 72–75. IEEE Press, November-

December 2002.

[91] Daniel A. Menasce. Composing Web

Services:A QoS View. In IEEE Inter-

net Computing, pages 88–90. IEEE Press,

November–December 2004.

[92] Daniel A. Menasce. Response-Time

Analysis of Composite Web Services. In

IEEE Internet Computing, pages 90–92.

IEEE Press, January–February 2004.

[93] Microsoft. Enterprise UDDI Services: An

Introduction to Evaluating, Planning, De-

ploying, and Operating UDDI Services,

February 2003.

[94] Klara Nahrstedt and Jonathan M. Smith.

The QoS Broker. IEEE MultiMedia,

2,(1):53–67, Spring 1995.

[95] Felix Naumann, Ulf Leser, and Jo-

hann Christoph Freytag. Quality-driven

integration of heterogenous information

systems. In Proceedings of 25th Inter-

national Conference on Very Large Data

Bases (VLDB’99), pages 447–458, Ed-

inburgh, September 1999. Morgan Kauf-

mann.

[96] Object Management Group (OMG).

Model Driven Architecture. ormsc/2001-

07-01, August 2001.

[97] Object Management Group (OMG).

CORBA Components. OMG formal

document/02-06-65, 2002.

[98] Object Management Group (OMG). Meta

Object Factility Specification. OMG for-

mal document/2002-04-03, April 2002.

[99] Object Management Group (OMG).

UML Profile for Modelling Quality of

Service and Fault Tolerance Character-

istics and Mechanisms. ptc/2004-06-01,

June 2004.

[100] Object Management Group (OMG). Uni-

fied Modeling Language: Superstructure.

OMG formal document/05-07-04, August

2005.

[101] Chun Ouyang, Marlon Dumas, Stephan

Breutel, and Arthur H.M. ter Hofstede.

Translating Standard Process Models to

BPEL. In Proceedings of the 18th In-

ternational Conference on Advanced In-

formation Systems Engineering, Luxem-

bourg, June 2006. Springer Press.

[102] Massimo Paolucci, Takahiro Kawamura,

Terry R. Payne, and Katia Sycara. Im-

porting the Semantic Web in UDDI. In

Revised Papers from the International

Workshop on Web Services, E-Business,

and the Semantic Web, pages 225–236,

Toronto, Canada, May 2002. Springer

Press.

190

Bibliography

[103] Massimo Paolucci, Takahiro Kawamura,

Terry R. Payne, and Katia Sycara. Seman-

tic Matching of Web Service Capabilities.

In Proceedings of 1st International Se-

mantic Web Conference. (ISWC’02), vol-

ume 2342 of LNCS, pages 333–347, Sar-

dinia, Italy, June 2002. Springer Press.

[104] Mike P. Papazoglou. Service-Oriented

Computing: Concepts, Characteristics

and Directions. In Proceedings of

the Fourth International Conference on

Web Information Systems Engineering

(WISE’03), pages 3–12, Roma, Italy, De-

cember 2003. IEEE CS Press.

[105] Chintan Patel, Kaustubh Supekar, and Yu-

gyung Lee. Provisioning Resilient, Adap-

tive Web Services-based Workflow: A Se-

mantic Modeling Approach. In Proceed-

ings of the IEEE International Conference

on Web Services (ICWS’04), pages 480–

487, San Diego, California, USA, July

2004. IEEE CS Press.

[106] Terry R. Payne, Massimo Paolucci, and

Katia Sycara. Advertising and Matching

DAML-S Service Descriptions. In Posi-

tion Papers for SWWS’01, pages 76–78,

Stanford, USA, July 2001. Stanford Uni-

versity.

[107] Massimo Pezzini. SOA Beyond Hype

and Disillusionment – A Strategic Per-

spective. Key Note given at the SOA Days

2005 Technology Conference, September

2005.

[108] David Pisinger. Algorithms for Knapsack

Problems. PhD thesis, Dept. of Com-

puter Science, University of Copenhagen,

Copenhagen, Denmark, February 1995.

[109] IONA Technologies PLC. Ar-

tix: the Extensible Enterprise Ser-

vice Bus (ESB). product website,

http://www.iona.com/products/artix/,

2005.

[110] United Nations Development Programme.

United Nations Standard Products and

Services Code. organisation website,

http://www.unspsc.org/, 2005.

[111] Peter Puschner and Anton Schedl. Com-

puting Maximum Task Execution Times

- A Graph-Based Approach. Journal

of Real-Time Systems, 13(1):67–91, July

1997.

[112] Shuping Ran. A Model for Web Services

Discovery with QoS. SIGecom Exch.,

4(1):1–10, 2003.

[113] Akhil Sahai, Anna Durante, and Vijay

Machiraju. Towards Automated SLA

Management for Web Services. Technical

Report HPL-2001-310, Software Tech-

nology Laboratory, HP Laboratories Palo

Alto, Palo Alto, California, USA, 2002.

[114] Uwe Schöning. Theoretische Informatik

- kurz gefasst. Spektrum Akademischer

Verlag, Heidelberg, Germany, 3. edition,

1999.

[115] Seema Degwekar and Stanley Y. W. Su

and and Herman Lam. Constraint spec-

ification and processing in web services

publication and discover. In Proceedings

of the IEEE International Conference on

Web Services (ICWS’04), pages 210–217,

San Diego, California, USA, June 2004.

IEEE CS Press.

[116] Mohamed A. Serhani, Rachida Dssouli,

Houari Sahraoui, Abdelghani Benharref,

and M. E. Badidi. QoS Integration in

Value Added Web Services. In Proceed-

ings of the Second International Confer-

ence on Innovations in Informal Technol-

ogy (IIT’05), September 2005.

[117] Dave Shaffer and Brian Dayton. Or-

chestrating Web Services: The Case for

a BPEL Server. Technical report, Ora-

cle Corporation, Redwood Shores, Cali-

fornia, USA, June 2004.

[118] Robert Shapiro, Mike Marin, Justin

Brunt, Wojciech Zurek, Tim Stephenson,

Sasa Bojanic, and Gangadhar Gouri. Pro-

cess Definition Interface – XML Process

Definition Language, Version 2.0. Tech-

nical Report WFMC-TC-1025, Workflow

Management Coalition, Lighthouse Point,

Florida, USA, October 2005.

[119] Kaarthik Sivashanmugam, Kunal Verma,

Amit P. Sheth, and John A. Miller. Adding

Semantics to Web Services Standards. In

Proceedings of the International Confer-

ence on Web Services (ICWS ’03), pages

395–401, Las Vegas, Nevada, USA, June

2003. CSREA Press.

[120] David Skogan, Roy Grønmo, and Ida

Solheim. Web Service Composition in

UML. In Proceedings of the 8th IEEE

191

Bibliography

Intl Enterprise Distributed Object Com-

puting Conf (EDOC’04), pages 47–57,

Monterey, California, USA, September

2004. IEEE Press.

[121] Howard Smith and Peter Fingar. Busi-

ness Process Fusion Is Inevitable. Busi-

ness Process Trends, Columns and Arti-

cles, March 2004.

[122] Howard Smith and Peter Fingar. Work-

flow is just a Pi Process. Business Pro-

cess Trends, Columns and Articles, Jan-

uary 2004.

[123] Naveen Srinivasan, Massimo Paolucci,

and Katia Sycara. Adding OWL-S to

UDDI, Implementation and Throughput.

In Proceedings of Semantic Web Service

and Web Process Composition 2004, San

Diego, California, USA, July 2004.

[124] Katia Sycara, Massimo Paolucci, Julien

Soudry, and Naveen Srinivasan. Dynamic

Discovery and Coordination of Agent-

Based Semantic Web Services. IEEE In-

ternet Computing, 8(3):66–73, May, June

2004.

[125] Katia Sycara, Seth Widoff, Matthias

Klusch, and Jianguo Lu. LARKS: Dy-

namic Matchmaking Among Heteroge-

neous Software Agents in Cyberspace.

Autonomous Agents and Multi-Agent Sys-

tems, 5(2):173–203, 2002.

[126] OASIS WS-BPEL TC. WS-BPEL Speci-

fication Editors Draft. http://www.oasis-

open.org/committees/download.php/127

91/wsbpel-specification-draft-May-20-

2005.html, December 2005.

[127] Technical Committee ISO/TC 176, Qual-

ity Management and Quality Assurance.

Quality Managemant and Quality System

Elements; Part 2: Guidelines for Services,

1991.

[128] Technical Committee ISO/TC 176, Qual-

ity Management and Quality Assurance.

Quality Management and Quality Assur-

ance Standards; Part 1: Guidelines for Se-

lection and Use, 1994.

[129] Satish Thatte. XLANG - Web Ser-

vices for Business Process Design.

http://www.gotdotnet.com/team/xml

wsspecs/xlang-c/default.htm, 2001.

[130] The OWL Services Coalition. OWL-

S: Semantic Markup for Web Services.

Technical report, The DARPA Agent

Markup Language (DAML) Program,

http://www.daml.org/services/, 2004.

[131] Min Tian, A. Gramm, Hartmut Ritter, and

Jochen H. Schiller. Efficient Selection

and Monitoring of QoS-aware Web ser-

vices with the WS-QoS Framework. In

The 2004 IEEE/WIC/ACM International

Conference on Web Intelligence (WI’04),

pages 152–158, Beijing, China, Septem-

ber 2004. IEEE Press.

[132] Vladimir Tosic, Wei Ma, Bernard

Pagurek, and Babak Esfandiari. Web

Service Offerings Infrastructure (WSOI)

– A Management Infrastructure for XML

Web Services. In Proceedings of the

IEEE/IFIP Network Operations and

Management Symposium (NOMS’04),

pages 817–830, Seoul, South Korea,

April 2004. IEEE Press.

[133] Vladimir Tosic, Kruti Patel, and Bernard

Pagurek. WSOL – Web Service Offerings

Language. In Proceedings of the Work-

shop on Web Services, e-Business, and

the Semantic Web - WES (at CAiSE’02),

volume 2512 of LNCS, pages 57–67,

Toronto, Canada, May 2002. Springer

Press.

[134] David Trastour, Claudio Bartolini, and

Chris Preist. A Semantic Web Approach

to Service Description for Matchmaking

of Services. In Proceedings of the 11th

international conference on World Wide

Web (WWW’02), pages 89–98, Honolulu,

USA, May 2002. ACM Press.

[135] UDDI Spec Technical Committee. UDDI

Version 3.0.1. http://uddi.org/pubs/uddi-

v3.0.1-20031014.pdf, 2003.

[136] Guijun Wang, Alice Chen, Changzhou

Wang, Casey Fung, and Stephen Uczekaj.

Integrated Quality of Service (QoS) Man-

agement in Service-Oriented Enterprise

Architectures. In Proceedings of the 8th

International Enterprise Distributed Ob-

ject Computing Conference (EDOC’04),

pages 21–32, Monterey, California, USA,

September 2004. IEEE Press.

[137] Zheng Wang and Jon Crowcroft. Quality

of Service Routing for Supporting Multi-

media Applications . IEEE Journal of Se-

lected Areas in Communications (JSAC),

14(7):1228–1234, September 1996.

192

Bibliography

[138] Gerhard Weikum. Towards Guaranteed

Quality and Dependability of Information

Systems. In 8th GI Fachtagung: Daten-

banksysteme in Buero, Technik und Wis-

senschaft, pages 379–409, Freiburg, Ger-

many, March 1999. Springer Press.

[139] Wen-Lin Yang. Optimal and heuris-

tic algorithms for quality-of-service rout-

ing with multiple constraints. Perfor-

mance Evaluation, 57(3):261–278, Jan-

uary 2004.

[140] Stephen A. White. Business Process

Modeling Notation (BPMN). Technical

Report Working Draft (1.0), BPMI.org,

August 2003.

[141] Wil M. P. van der Aalst. Why workflow is

NOT just a Pi-Process. Online Edition at

BPTrends, BPMI.org, February 2004.

[142] Wil M.P. van der Aalst. Workflow Ver-

ification: Finding Control-Flow Errors

Using Petri-Net-Based Techniques. In

Business Process Management – Mod-

els, Techniques, and Empirical Studies,

volume 1806 of LNCS, pages 161–183,

Berlin, Heidelberg, New York, February

2000. Springer Press.

[143] Wil M.P. van der Aalst. Don’t go with the

flow: Web services composition standards

exposed. Jan/Feb 2003 Issue of IEEE In-

telligent Systems, pages 72–76, January

2003.

[144] Wil M.P. van der Aalst. Pi calculus ver-

sus petri nets: let us eat humble pie rather

than further inflate the pi hype. BPTrends,

3(5):1-11, May 2005.

[145] Wil M.P. van der Aalst and Arthur H.M.

ter Hofstede and Bartek Kiepuszewski

and Alistair P. Barros. Advanced Work-

flow Patterns. In 7th International Con-

ference on Cooperative Information Sys-

tems (CoopIS’00), volume 1901 of LNCS,

pages 18–29, Berlin, Germany, 2000.

Springer Press.

[146] Wil M.P. van der Aalst and Arthur

H.M. ter Hofstede and Bartek Kie-

puszewski and Alistair P. Barros. Work-

flow Patterns. Distributed and Parallel

Databases, 14(1):5–51, 2003.

[147] Wil M.P. van der Aalst and Jens B.

Jørgensen and Kristian B. Lassen. Let’s

Go All the Way: From Requirements

Via Colored Workflow Nets to a BPEL

Implementation of a New Bank System.

In Proceedings of the Confederated In-

ternational Conferences CoopIS, DOA,

and ODBASE 2005 (OTM’05), volume

3760 of LNCS, pages 22–39, Agia Napa,

Cyprus, November 2005. Springer Press.

[148] Wil M.P. van der Aalst and Kees M. van

Hee and G. J. Houben. Modelling Work-

flow Management Systems with high-

level Petri Nets. In G. De Michelis and C.

Ellis and G. Memmi, editor, Proceedings

of the second Workshop on Computer-

Supported Cooperative Work, Petri nets

and related formalisms, pages 31–50,

1994.

[149] Wil M.P. van der Aalst and Lach-

lan Aldred and Marlon Dumas and

Arthur H.M. ter Hofstede. Design

and implementation of the YAWL

system. Technical Report FIT-TR-2003-

07, Centre for IT Innovation, QUT,

http://www.tm.tue.nl/it/research/patterns,

2004.

[150] Wil M.P. van der Aalst and Marlon Du-

mas and Arthur H.M. ter Hofstede and

Petia Wohed. Pattern Based Analysis of

BPML (and WSCI). FIT Technical Report

FIT-TR-2002-05, Queensland University

of Technology, Brisbane, Australia, 2002.

[151] Petia Wohed, Wil M.P. van der Aalst,

Marlon Dumas, and Arthur H.M. ter

Hofstede. Pattern Based Analysis of

BPEL4WS. Technical Report FIT-TR-

2002-04, QUT, Queensland University of

Technology, Queensland, Australia, 2002.

[152] Andreas Wombacher, Peter Fankhauser,

Bendick Mahleko, and Erich Neuhold.

Matchmaking for business processes

based on choreographies. International

Journal of Web Services Research,

1(4):14–32, October-December 2004.

[153] Bibo Yang, Joseph Geunes, and

William J. O’Brien. Resource Con-

strained Project Scheduling; Past Work

and New Directions. Technical Report

Research Report 2001-6, Department

of Industrial and Systems Engineering,

University of Florida, 2001.

[154] Jian Yang. Web Service Componenti-

zation. Communications of the ACM,

46(10), October 2003.

193

Bibliography

[155] Jian Yang, Mike P-Papazoglou, and

Willem-Jan van den Heuvel. Tackling

the Challenges of Service Composition in

E-Marketplaces. In Proceedings of the

12th International Workshop on Research

Issues in Data Engineering (RIDE’02),

pages 125–133. IEEE, February 2002.

[156] Martin Yates, Wataru Takita, Rickard

Jansson, Laurence Demounem, and Harm

Mulder. TINA-C Deliverable: TINA

Business Model and Reference Points.

http://www.tinac.com/, May 1997.

[157] Tao Yu and Kwei-Jay Lin. A Broker-

Based Framework for QoS-Aware Web

Service Composition. In Proceedings

of the 2005 IEEE International Confer-

ence on e-Technology, e-Commerce, and

e-Services (EEE’05), pages 22–29, Hong

Kong, China, March 2005. IEEE Press.

[158] Tao Yu and Kwei-Jay Lin. Service Se-

lection Algorithms for Web Services with

End-to-End QoS Constraints. In Proceed-

ings of the 2005 IEEE International Con-

ference on e-Technology, e-Commerce

and e-Service (EEE’05), pages 129–136,

Hong Kong, China, March 2005. IEEE

Press.

[159] Liangzhao Zeng, Boualem Benatallah,

Anne H.H. Ngu, Marlon Dumas, Jayant

Kalagnanam, and Henry Chang. QoS-

Aware Middleware for Web Services

Composition. IEEE Transactions on Soft-

ware Transactions, 30(5):311–327, May

2004.

194

Nachwort

Die Anfertigung einer Dissertation scheint die Charakteristik aufzuweisen, dass

sich der Autor in die Arbeit stürzt, dazu tendiert, gesellschaftliche Aktivitäten zu

reduzieren, und sich im permanenten Stresszustand befindet, weil der Eindruck

besteht, dass die unerfreulichen Einsichten während der Anfertigung überwiegen.

Umso mehr danke ich Paola dafür, dass sie mir mit einem Mittelweg aus Kon-

frontation und Verständnis begegnete und mich dazu ermahnte, mich während der

Arbeit in einem vertretbaren Modus zu bewegen. Um die Ausmaße zu verdeut-

lichen, möchte ich erwähnen, dass mein Verhalten eine befreundete Sprachlehrerin

inspirierte, eine Figur zu erfinden: Stefan, ein Statistiker, un secchione, der den

ganzen Tag aufgeregt über Zahlenreihen sitzt. Er ist verlobt mit einer Italienerin,

die gerne kocht . . . (vgl. Langenscheidt Sprachkalender Italienisch 2008).

Ich hatte das besondere Glück, dass mir Unterstützung nicht nur aus einer, son-

dern aus zwei Arbeitsgruppen (FLP und BKS) zuteil wurde. Vielen Dank daher an

Chunyan, Malte, Sebastian B., Steffen, Sebastian G., Jens, Michael A., Narcisse,

Helge, Matthias und Tina. Wer die Zwischenstände meiner Arbeit gesehen oder

vorgetragen bekommen hat, wird sicherlich bestätigen, dass die Diskussionen und

Anregungen mit und von meinen Kolleginnen und Kollegen für mich sehr hilfreich

waren. Ganz besonderer Dank gebührt natürlich Gero Mühl, der mich mit großer

Initiative und seinen humorvollen Darstellungen unterstützt und motiviert hat. In

ähnlicher Form muss ich mich bei James und Gregor für deren außergewöhnliche

Hilfsbereitschaft bedanken. Gerhard, Michael P. und Annelie danke ich für Rat

und Tat in der Mathematik und im Englischen.

Bernd Mahr danke ich für die Betreuung meiner Dissertation; Kollegen schrie-

ben zu einem ähnlichem Anlass: “. . . zu deren Entstehung . . . Bernd mit seiner

großen Begabung in sokratischer Hebammentechnik hilfreich beigetragen hat.”

Treffender kann ich es nicht formulieren. Ich möchte mich an dieser Stelle auch bei

Herrn Tolksdorf bedanken, der sich bereit erklärte, die Rolle des zweiten Gutachters

zu übernehmen. Ebenfalls bedanke ich mich bei Herrn Heiss, der den Vorsitz im

Ausschuss übernommen hat. Last but not least, möchte Kurt Geihs meinen Dank

aussprechen – bei ihm als Mitarbeiter am Lehrstuhl für verteilte Systeme an der

TU Berlin hat alles angefangen.

Berlin, Dezember 2006.

195

(the end)

196

	Introduction
	Service Trading
	Trading to Form Compositions

	Problem Statement
	Research Issues

	Structure of the Thesis

	Workflows, Business Processes and Service Compositions
	Business Processes
	Definition of Business Processes
	Modelling Business Processes

	Workflow Management
	Modelling Workflows

	Workflows versus Business Processes
	Realising Business Processes and Workflows
	Modelling Service Compositions

	Quality-of-Service in Service Compositions
	Exchange of Quality-of-Service Information
	Quality-of-Service in a Service-Oriented Architecture
	The Role of the Retailer

	Quality-of-Service Characteristics
	Quality-of-Service Characteristics for Web Services
	Summary of Quality-of-Service Characteristics

	Aggregation of the Quality-of-Servicein Service Compositions
	The Business Process Execution Language
	Workflow Patterns
	Structural Model of Service Compositions
	A Method for Quality-of-Service Aggregation
	Aggregation of Throughput
	Aggregation of Response Time
	Aggregation of Cost
	Aggregation of Availability and Reliability
	Aggregation of Reputation and Fidelity
	Aggregation of Encryption Grade

	Support of Un-Structured Models
	Open Elements
	Arbitrary Loops
	Nested Patterns
	Transformations to Structured Workflow Models

	Related Methods for Quality-of-Service Aggregation
	Aggregation for Quality-of-Service Monitoring
	Aggregation of Mean Values

	Quality-of-Service-based Selection of Services
	Introduction to the Selection Problem
	The Problem Model
	The Selection Criteria
	Modelling the Structure
	Problem Model Summary
	Aggregation of Multiple Optimisation Criteria

	Relations to Other Combinatorial Problems
	The Knapsack Problem
	The Project Scheduling Problem
	Query Planning based on Quality-of-Service
	Routing in the Internet based on Quality-of-Service
	Computational Complexity

	Heuristic Algorithms
	Greedy-based Selection
	Discarding Subsets
	Bottom-Up Approximation
	Pattern-wise Selection
	Comparison of the Algorithms

	Evaluation
	Simulation Model
	Evaluation Methods and Metrics
	Statistical Measures

	Parameters and Implementation
	Quality-of-Service Parameters
	Implementation
	Technical Details

	Simulation Campaigns and their Results
	Increasing Number of Tasks without Constraint (C1)
	Increasing Number of Tasks with One Constraint (C2)
	Increasing Number of Service Candidates (C3)
	Volatility of the Quality-of-Service (C4)
	Parallel vs. Sequential Composition Structures (C5)

	Evaluation Conclusions

	Developing Service Compositions
	Introduction to the Model Driven Architecture
	Model Driven Development of Web Service Compositions

	Model-Driven Development of Service Compositions
	Modelling the Composition
	Trading: Matchmaking
	Trading: Quality-of-Service-based Selection of Candidates
	Advertisement and Deployment
	Development as an Iterative Process

	Conclusions
	Summary of Main Contributions
	Outlook and Future Work

	Specification of the Hard- and Software Platform
	List of Abbreviations

