
ANZIAM J. 46 (E) pp.C1272–C1285, 2005 C1272

Optimising series solution methods for flow
over topography—Part 1
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Abstract

Series solution methods have recently been used to solve fully non-
linear flow over topography problems. These methods are iterative
schemes that update an initial estimate of the fluid surface (a free
boundary) using a cost function. Series solutions are obtained effi-
ciently and accurately with exact error bounds immediately available.
Critical to the speed of the procedure is the implementation of ef-
ficient computer code and numerical techniques. In this paper we
discuss methods that improve the computational time of the origi-
nal implementation by several orders of magnitude, without any loss
of accuracy. The efficiency of the improved method is demonstrated
by generating two dimensional solutions to subcritical flow over an
isolated cosine shaped obstacle.
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1 Introduction

Many potential flow problems satisfy Laplace’s equation. Often the location
of one of the boundaries is unknown giving rise to a free boundary problem.
Specific examples include groundwater seepage [6] and flow over topogra-
phy [4]. Solution methods are typically iterative processes that consist of
estimating the location of the free boundary, solving the known boundary
problem at each step, then updating the free boundary location using a
cost function. The known boundary problem is often solved numerically by
boundary integral or boundary element methods [1]. However, these schemes
can be computationally expensive.

Recently, it has been shown that series solution methods are efficient for
solving Laplacian free boundary problems [3, 7]. At each step of the pro-
cedure, an analytic series solution is obtained with maximum error bounds
immediately available. These error bounds may be used to examine the con-
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vergence behaviour of the solution. A comparison between boundary integral
and analytic series methods shows that the analytic series approach has a
superior efficiency and accuracy when calculating two dimensional flow over
topography [5]. The series method has been successful in calculating su-
percritical, transcritical and subcritical solutions to flow over cosine shaped,
asymmetric and arbitrary shaped obstacles.

The ultimate aim of this research is to determine three dimensional so-
lutions to realistic fluid flow over topography. In order to achieve this, the
efficiency of the two dimensional solution method must be optimised. In
this two part paper, we discuss techniques used to improve the efficiency of
the analytic series solution method for flow over topography problems. In
Part 1 the methods include vectorising the code, accurately estimating inte-
grals and using a proportional knot point positioning. Implementing these
improvements we demonstrate a decrease in computational time by several
orders of magnitude with no loss of accuracy. In Part 2 [2] we discuss the up-
date method for the free surface and show that using information about the
update of upstream knot points allows an improved update for downstream
knot points. These improvements result in an order of magnitude decrease
in the number of free surface updates required for computation of solutions.

A brief outline of Part 1 of the paper now follows. In Section 2 we describe
the flow over topography problem, present a mathematical formulation and
give a brief description of the series solution approach. Section 3 introduces
the techniques we have used to optimise the efficiency of the solution method.
Finally, in Section 4 we present and discuss the results showing the decrease
in computational time as efficiencies are implemented on the procedure.

2 Problem description and solution method

The flow over topography model we use assumes that the fluid is inviscid,
incompressible, of constant density and flows without rotation over an ob-
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stacle of arbitrary shape. We assume a uniform flow upstream and that
flow quantities far downstream of the obstacle are bounded. All variables
are nondimensionalised resulting in an upstream flow with unit depth and
speed in the dimensionless system. With these assumptions, the stream func-
tion Ψ(x, y) satisfies Laplace’s equation:

∇2Ψ = 0 . (1)

We also assume that the free surface y = η(x) , is a streamline, and that
there is no penetration through the topography y = f b(x) , giving the top
and bottom boundary conditions

Ψ(x, η(x)) = 1 and Ψ(x, f b(x)) = 0. (2)

The flow domain is truncated to a finite length x ∈ [−s, s] , where s is chosen
large enough such that the flow continues to satisfy the above conditions.
With this truncation, the side boundary conditions are

Ψ(−s, y) = y and Ψ(s, y) =
y

ηs

, (3)

where ηs is the height of the fluid at x = s . As the flow is irrotational, the
Bernoulli equation evaluated along the free surface gives

1

2
F 2u2 + η =

1

2
F 2 + 1 , (4)

where u is the magnitude of the velocity and F is the Froude number which is
defined in terms of three dimensional quantities: the upstream fluid speed U ,
depth H, and acceleration due to gravity g; and then F = U/

√
gH . The

magnitude of the velocity at any point in the fluid is expressed in terms of
the stream function as

u2 =

(
∂Ψ

∂x

)2

+

(
∂Ψ

∂y

)2

.

Note that the function η(x) which appears in two of the boundary conditions
is unknown. This means we are solving a nonlinear free boundary problem.
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The most difficult flow over topography problem to solve is the subcritical
case, Froude number F < 1 , characterised by a train of lee waves downstream
of the obstacle. This is because the free surface possesses a more complicated
profile with areas of high curvature. The success of any solution method is
measured by its performance in obtaining subcritical solutions. Therefore
this is the region of the parameter space in which we seek solutions.

2.1 Series solution method

The stream function is transformed to a related function ψ(x, y) by

Ψ(x, y) = ψ(x, y) + y +
(x+ s)y

2s

[
1

ηs

− 1

]
. (5)

With this transformation equations (1) and (3) show that ψ(x, y) will satisfy
Laplace’s equation with homogeneous side boundary conditions. The top
and bottom boundary conditions (2) become

ψ[x, η(x)] = 1− η(x)− (x+ s)η(x)

2s

[
1

ηs

− 1

]
= ht(x) , (6)

ψ[x, f b(x)] = −f b(x)− (x+ s)f b(x)

2s

[
1

ηs

− 1

]
= hb(x) . (7)

The Bernoulli equation (4) is recast in terms of the partial derivatives of ψ.
Once the transformed problem has been solved, a solution to the original
problem is immediately available.

Using separation of variables, the general solution to equation (1) is rep-
resented by an infinite series; however, we truncate the series so that ψ ≈ ψN

where

ψN(x, y) =
N∑

n=1

anun(x, y) + bnvn(x, y) . (8)
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Here un and vn are eigenfunctions chosen to satisfy the partial differential
equation (1) and side boundary conditions (3). Given an estimate of the
location y = η(x) of the free surface, the series coefficients an and bn are
calculated using the upper and lower boundary conditions (6) and (7). This
process is covered in full by Read [6] and is not presented here.

Note that ψN is intended to approximate ψ and is computed from an
estimate of the position of the free surface. We expect ψN to be a more
accurate approximate of ψ as the value of N increases. In fact we have
observed exponential convergence of ψN → ψ given a favourable choice for
the representation of the free surface [3].

It is clear from the paragraphs above that the function ψ(x, y) we compute
changes as η(x) in equation (6) changes. Note also a solution to the flow over
topography problem must satisfy the Bernoulli equation (4). Therefore we
update η(x) (and recompute ψ) based on how closely this equation is satisfied.

2.2 Iterative update scheme

The iterative process updates the top boundary representation η(x), at a set
of knot points {xj, j = 1, . . . ,M} and has the form

η(i+1)(xj) = η(i)(xj)− cδη(i)(xj) , (9)

where i is the iteration count and c is an update constant which is chosen to
enhance the convergence rate.

The first step at each iteration requires the location of the knot points to
be determined. We have found it essential to position knot points in areas
of high curvature. Thus we solve∫ xj

−s

√
1 + p η̈(x)2 dx =

(
j − 1

M − 1

) ∫ s

−s

√
1 + p η̈(x)2 dx (10)



2 Problem description and solution method C1278

for xj where j = 2, 3, . . . ,M − 1 . We choose x1 = −s and xM = s for every
iteration. The parameter p has the effect of clustering knots in regions of
higher curvature as its value is increased.

The free boundary increment δη(i)(x) is calculated by a cost function. We
use an integrated cost function which is based on the Bernoulli equation (4).
In brief, we solve for the fluid speed u and integrate to determine a velocity
potential. This is compared to a velocity potential we obtain when we use
the Cauchy–Riemann equations on Ψ. Exact details are presented in Part 2
of this paper, see equation (3) there. For Part 1 of the paper, the important
point to observe is that to evaluate the cost function at a knot point xj, an
integral along the free surface over [−s, xj] needs to be computed.

In order to compute these integrals we need to determine the position of
the upper surface at locations between the knot points. We use an interpolant
based on a Fourier sine series representation of the free surface. This provides
the exponential convergence we discussed in Section 2.1.

The accuracy of the solution is immediately available at each iteration
by examining the root mean squared (r.m.s.) error in the top and bottom
boundary conditions and the cost function. The r.m.s. errors may be used
in a convergence criterion for the update method. If the obstacle is small,
the solution is stable and the errors decrease to a minimum and remain for
all following iterations. For higher obstacles errors may fluctuate. Then we
find that choosing the solution with the global minimum cost function error
is appropriate.

3 Efficiency improvements

In order to determine solutions for three dimensional flow over topography,
the efficiency of the two dimensional solution method must be optimised.
In this section, we introduce techniques that we have used to achieve this.
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With these methods, we have calculated accurate solutions to complicated
flow problems in approximately 30 seconds.

Our first attempt to improve efficiency involved vectorising the code. For
convenience we chose to code in Matlab as we required the program to be
portable and without reliance on external subroutines. Therefore as a bench-
mark we use “unvectorised” Matlab code.

Increased efficiency was observed by vectorising the evaluation of the se-
ries solutions for the stream function and the velocity potential, the Fourier
series approximations for the top and bottom boundaries and the first and
second derivatives of each. See Table 1 for the percentage increase in effi-
ciency after vectorising the code.

3.1 Evaluating the integrals

The next element of the solution method that was affecting the efficiency was
the evaluation of the integrals required for the cost function and the r.m.s. er-
rors. The fastest Matlab routine available was quadl, which uses adaptive
Lobatto quadrature to approximate the integral to within a predefined toler-
ance. We assumed the recursive nature of this routine was taking the most
time. Therefore, we estimated the integrals with Gaussian quadrature as
implemented by Trefethen [8].

To use the cost function an integral over [−s, xj] is computed. The in-
tegral is evaluated between consecutive knot points (xj−1, xj), and these are
summed giving a composite Guassian rule. To determine the number of
quadrature points required between each knot point, we compare consecu-
tive estimates of a typical integral (In, n = 1, 2, . . . , 20) where n is the number
of points. In this case In is an integral required for the cost function. This
comparison is displayed in Figure 1.

This Figure shows that 6 or 7 quadrature points is sufficient. The distance
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Figure 1: Comparison of consecutive estimates of a typical integral In for
an increasing number of quadrature points n.
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between knot points decreases as the number of knot points is increased,
therefore fewer quadrature points are required if the number of knots in-
creases. The r.m.s. errors are defined in terms of integrals over the entire
solution domain [−s, s] and therefore require significantly more quadrature
points (≈ 50).

3.2 Proportional knot spacing

As discussed in Section 2.2 our initial approach is to cluster knot points
around areas of higher curvature according to equation (10). This is another
process that takes considerable time. Gaussian quadrature can be used to
evaluate the integrals, but the zero finding routine cannot be vectorised. This
routine is used to calculate the x coordinates of each knot point which is the
upper limit of the integral on the left. Therefore, to decrease computational
time, the x coordinates are approximated directly by

xj = 2s

j∑
m=1

1√
1 + p η̈(xm)2

/
M∑

m=1

1√
1 + p η̈(xm)2

, (11)

where the bottom summation is an approximation of the total modified arc
length, and the top summation is the jth proportion of the total. We calcu-
late the position of the new knot points xj in terms of their positions from
the previous iteration xm.

4 Results and discussions

To test the efficiency of the solution process, and any improvements, we
calculate a subcritical flow solution with Froude number F = 0.5 . The
obstacle is a standard cosine shape with maximum height h = 0.1 , and a
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Table 1: Times taken to calculate the subcritical flow solution in Figure 2
including different efficiency improvements.

Improvement Time Percentage
(secs) of original

No improvements 4331 100.0 %
Vectorised code 1802 41.6 %
Estimating integrals 1239 28.6 %
Estimating knot spacing 663 15.3 %
All improvements 31 0.7 %

half base length l = 2 . The bottom boundary is

f b(x) =

{
h
2
[cos(πx/l) + 1] , −l ≤ x ≤ l ,

0 . −s ≤ x ≤ −l and l ≤ x ≤ s .
(12)

where s = 7 in this case. The initial estimate of the free surface is the
straight line η(x) = 1 . We use the cost function given in equation (3) from
Part 2 with an update constant c = 0.2 . The number of terms in the series
solution N = 100 , and the number of update knot points M = 100 . The arc
length constant used in the knot point spacing p = 5 . With these settings,
convergence is achieved in 200 iterations. The solution is shown in Figure 2.
See [3] and [7] for full details of this solution.

Note that upon implementing the procedures mentioned above there was
no significant differences in the profiles, η(x), or the r.m.s. errors of the solu-
tions. The errors in the cost function, top boundary and bottom boundary
for this solution are 9.2× 10−6, 1.3× 10−5 and 1.4× 10−6 respectively.

The original implementation with no efficiency improvements took ap-
proximately 72 minutes to converge [7]. We use this length of time as our
benchmark for all subsequent speed comparisons. Table 1 displays the time
taken to converge to the solution in Figure 2 after including the efficiency
improvements discussed in the previous section.
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Figure 2: Subcritical flow solution after 200 iterations over a cosine shaped
obstacle with maximum height h = 0.1 and half base length l = 2 . The
Froude number F = 0.5 .
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These times were obtained with the tic and toc Matlab commands.
The program was run in Matlab version 7 on a pentium 4 laptop computer.
Table 1 shows that with the above improvements, the computational time of
the solution method has been decreased by 99.3%.

We have tested these efficiency improvements on a range of obstacle
heights. Choosing the optimal update constant c as the obstacle height
increases becomes more difficult. However, once the correct update constant
is used, a similar decrease in computational time is observed for all obstacle
heights. See [5] for the full range of solutions calculated with the analytical
series method.

With the efficiencies demonstrated in this paper, we are able to rou-
tinely calculate accurate, two dimensional, subcritical flow solutions in ap-
proximately half a minute. These improvements are a major step towards
obtaining three dimensional solutions to complicated flow over topography
problems. However, the further refinement of the update procedure presented
in Part 2 of this paper enables even faster computation of solutions.
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