Optimising Skeletal-Stream Parallelism on a
BSP Computer

Andrea Zavanella*

Dipartimento di Informatica
Universita di Pisa Italy
zavanell@di.unipi.it

http://www.di.unipi.it/~zavanell

Abstract. Stream parallelism allows parallel programs to exploit the
potential of executing different parts of the computation on distinct in-
put data items. Stream parallelism can also exploit the concurrent eval-
uation of the same function on different input items. These techniques
are usually named “pipelining” and “farming out”. The P3L language
includes two stream parallel skeletons: the Pipe and the Farm construc-
tors. The paper presents a methodology for efficient implementation of
the P3L Pipe and Farm on a BSP computer. The methodology provides
a set of analytical models to predict the constructors performance using
the BSP cost model. Therefore a set of optimisation rules to decide the
optimal degree of parallelism and the optimal size for input tasks (grain)
are derived. A prototype has been validated on a Cluster of PC and on
a Cray T3D computer.

1 Introduction

Parallel computers can exploit an input stream to execute in parallel different
parts of code while data items flow through the PEs. Generally the optimisation
of a pipeline computation requires the programmer to deal with the bottleneck
problem (i.e. a stage is particularly slower than the others). The goal of such
a decomposition is to minimise the service time of the module, which is now
limited by the maximum of the stages service times, while the latency per item
is normally greater than in sequential monolithic versions. A different solution to
exploit the input stream arises when a function f can be computed, over a single
item, independently from the evaluation of the others. In this case computation
can be “farmed out” to a group of PEs (generally named “workers”). The goal of
farming the computation of the function is mainly to minimise the service time of
the module. Implementing a “farm” strategy charges programmers of decisions
as the degree of parallelism (i.e to decide the number of workers), the scheduling
policy to adopt and the size of the “task” to schedule. In this article we propose
a strategy to efficiently implement the two decomposition schemes presented

* This Work has been partially supported by the italian M.U.R.S.T. in the framework
of the Project MOSAICO and by the UE with a TMR (Marie Curie) grant

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 853857 1999.
© Springer-Verlag Berlin Heidelberg 1999

854 Andrea Zavanella

above on a generic BSP computer [8,[6].The strategy is proposed with the goal
in mind of designing P3L as a portable skeleton language [3] [1]. In particular
the paper provides a set of optimisation rules for a portable implementation of
the P3L constructors Pipe and Farm.

2 P3L and the BSP Computer

A suitable approach to reconcile performance and abstraction in parallel pro-
gramming is provided by the skeletons methodology [2, 4, [7]. In skeletal pro-
gramming the parallelism is introduced using a limited set of parallel patterns
which are automatically implemented by the support. The P3L language allows
several parallel constructors to be composed and nested in order to write fully
structured parallel programs. The parallel constructors included by the language
are: Pipe, Farm, Loop, Map, Reduce, Scan and Comp.

The BSP computer is a parallel abstract machine [8] composed by: a set of
memory-processor couples, an interconnection structure, and a synchronisation
device A BSP computation is a sequence of so-called supersteps. Each superstep
includes three phases: local computation phase, a interprocessor communication
phase and a global synchronisation phase. In the BSP model the differences
between parallel machines are reflected by a small set of machine-dependent
parameters: p is the number of available processors; g, is the asymptotic com-
munication cost for very large messages expressed in time steps; N,y is the
size of the message that produces half the optimal bandwidth, in other words
g(N1/2) = 290 and a message of size h can be routed in g(h) * h time steps;
number of time steps for barrier synchronisation; s is the number of time steps
per second. Assuming that W is the maximum number of operations executed by
one processor during the local computation phase and h is the maximum amount
of data moved by one processor in the interprocessor communication phase: the
cost of a superstep is given by Tsstep = W + gooh(1 + %) + . The issues for
efficient implementations of the BSP model have been addressed on several pa-
pers [6] and the framework has already been used to derive optimisation rules
for data parallel programs and data parallel skeletons [5], 9].

3 Implementing P3L Pipe on the BSP Computer

A cost-efficient implementation for the Pipe constructor is derived using the
following variables: the inter-arrival time (per item) is T¢; a set of functions
fi : 7; — Tiy1; the size of Tj is d;; the time to compute f; is t; A simple scheme
to implement a pipeline on a BSP computer exploits a double buffering technique
which implies that during each superstep each PE performs three operations: a)
computing the function on the previously received item; b) receiving the next
input item; c) sending the result to the next stage. The service time of Pipe
using tasks of k items is TP¢(k) = Max(kT,, T:t9(k)), where:

serv SeErv

TStag(k) = Max[0<i<z—1]Tsierv(k) (1)

serv

Optimising Skeletal-Stream Parallelism on a BSP Computer 855

Tlopo (k) = (tik 4+ 1+ gook(ds + dig1) + 2gocN1/2) (2)

Since balance between the external time and service times of the stages is con-
venient we propose two optimisation strategies:

— adjusting the grain: the value k of the number of items per task can be
tuned. Assuming that 7 = Maz|o<i<.—1](ti + goo(di +diy1) We consider the
two cases: 7 < T, and 7 > T,. In the first case the value of k balancing the

service time of the Pipe with the interarrival time is given by: k = %
In the second case the value k& = 1 makes the service time of the Pipe

minimal.

— merging fast stages: this technique provides an implementation which uses
less resources of the starting one and which has the same service time. We
can apply this technique when 35 : S(j) + S(j + 1) < Maxp<jc.—1)S(7)
where: S¢i) = fi + goo(di + diy1). Under this assumption we can merge the
stage j and j + 1 of the pipe in a sequential stage which does not increase
the service time.

4 Implementing P3L Farm on the BSP Computer

Assuming that the interarrival time of the input stream is 7T, and the time to
compute f on a single item is ty. In the case ty >> T, and f cannot be further
decomposed we can attempt to speed-up our computation using a farming tech-
nique. The template proposed uses a synchronous pipeline scheme of three types
of processes: emitter, workers (n) and collector. The service times of emitter-
collector and workers per item are:

9oolN1/2 gooNij2 +1

3

k + nk (3)
2000dp + 1 2900 N1j2 +1

_ 290000 fJr g 1/2 (4)

n nk

Tem*c"l(n, k) = 2goodo +

SETV

Tu)ork(n7 k’)

serv

The service time in Eq. Bl introduces two optimisation cases, when: 2g.,dy < T¢
both the Eq. I;I-II can be decreased to the interarrival time T, choosing a couple
of values: (71, k) such that be P the property:

P(n,k) =T, (n, k) < To & T (n, k) < T, (5)

serv SETvV

Then P(n,k) and: ¥(n,k) # (A, k)P(n,k) = n > n From Eq. BH using a
practical optimisation rule:

gooNl/Z | ‘ngodo +ty
(Te - 2good0) + gooNl/Q ’ Te
2gooN1j2 +1
1%

n = Max(] |+1) (6)

E:Max(1,| b (7)

856 Andrea Zavanella

When: 2¢g.cdy > T. we use a different rule to compute a value of £ giving an
approximation of the minimum for EqBlsuch that: TS, < (2g00do)(1+1/prec).

serv

The precision parameter prec can be tuned as a compiling option.

prec(gooN1/2 +1)

]AC =
2gs0do

(®)

Fixed the value of k we can derive 7:

. prec(2geodo +ty + 2g00do) 4goody + ty

" (prec +1)2(goodo) ogdy 29c0do | ©)

5 Experiments

The optimisation rules of Section] have been tested on two different parallel
architectures: a Cluster of 10 PC with PentiumII 266 Mhz processors running
Linux connected by a 100Mbit Fast Ethernet technology (Backus), and a Cray
T3D with 512 Alpha processors with clock rate of 150 Mhz connected by a three
dimensional torus having a 300 Mbyte/s bandwidth per link. A group of tests
have been executed using the C4+BSP-lib and using a stream of items (C-type:
double). The predictions of the model prove to be accurate and we see that the
values choosen by the model for n and k are extremely close to the optimal ones.

18 T 14 T
T_serv(n,100) o T_serv(n,300) ¢
16 T _serv(n,300) + ® T_serv(n,500) +
T_serv(n,500) = 12, T_serv(n,1900) ©
° Measured(n,100) - e Measured(n,300) -x
1 00) -4 0 Measured(n,500) -+~
o 500) -*- to Measured(n,1900) -* -
Te 10 5 o, Te -~
g Breoe 2 "as
g 5o 2 PR
; 10+ ¥ o ; . a.+ o
£ Ty o0 £ S
g 8 By o0, 8 6l N
H A 5 s o x s . s 1o ¢ g x
3 6 S o 3 § o ‘%@?gg -
- T ° ¥ o
e VR . - LEXEXEY
P e S R R T ey D s Gt 583
2k
21
0 0
2 3 4 5 6 7 2 3 4 5 6 7
Number of workers (n) Number of workers (n)

Fig. 1. Predicted and Measured times: Test Backus

6 Conclusions and Related Works

A methodology for an optimised implementation of Stream Parallelism on a
BSP computer has been proposed and validated. The model provides accuracy

Service Time (usec)

Optimising Skeletal-Stream Parallelism on a BSP Computer 857
35 T 35 T
T_serv(n5) © T_serv(n,5) o
T_serv(n,10) + T_serv(n,10) +
30 b, T_serv(n,50) o© T_serv(n,20) o
Measured(n,5) - 30 | Measured(n,5) -
Measured(n,10) -&- X Measured(n,10) -&-
Measured(n,50) -*-- Measured(n,20) -*-
25t Te -~ Te -~
g FER AN
3
20 - é/
N X
\“A = wr B
N [}
R .
NN 73 N
g eeln o 15t R
10 Tl T *
L '&' T o S 8 * 3
] e 10 - 8 R
5t b, by %
@
. . [P
ol . . . 5
5 10 20 10 1! 20 25

15 5
Number of workers (n) Number of workers (n)

Fig. 2. Predicted and Measured times: Test T3D

enough to automatically decide the degree of parallelism and grain of data. This
work also shows how a skeleton languages like the P3L can be implemented
achieving both performance and portability. The methodology together with
other recent works [9 B] is a further step towards the design of a complete
compiling technology having as its first goal the performance portability.

References

(1]

2]

S. Ciarpaglini, M. Danelutto, L. Folchi, C. Manconi, and S. Pelagatti. ANACLETO:
a Template-based p3l Compiler. In Proceedings of the Seventh Parallel Computing
Workshop (PCW ’97), Australian National University, Canberra, August 1997.
M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation.
The MIT Press, Cambridge, Massachusetts, 1989.

M. Danelutto, R. Di Meglio, S. Orlando, S. Pelagatti, and M. Vanneschi. A Method-
ology for the Development and the Support of Massively Parallel Programs. In D.B.
Skillicorn and D. Talia, editors, Programming Languages for Parallel Processing.
IEEE Computer Society Press, 1994.

J. Darlington, M. Ghanem, and H. W. To. Structured Parallel Programming. In
Proceedings of the Working Conference MPPM °93, Berlin, September 1993. GMD
FIRST.

D.B.Skillicorn, M. Danelutto, S. Pelagatti, and A. Zavanella. Optimising Data-
Parallel Programs Using the BSP Model. In Proceeding of EUROPAR98, LNCS.
Springer, 1998.

D.B. Skillicorn, J.M.D. Hill, and W.F. McColl. Questions and answers about BSP.
Technical Report PRG-TR-15-96, Oxford University Computing Laboratory, 1996.
S.Pelagatti. Structured Development of Parallel Programs. Taylor & Francis, 1997.
L. G. Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103, August 1990.

A. Zavanella and S. Pelagatti. Using BSP to Optimize Data-Distribution in Skele-
ton Programs. In Proceedings of HPCN99, number 1593 in LNCS, pages 613-622,
April 1999.

	Introduction
	 P^3L and the BSP Computer
	Implementing P^3L Pipe on the BSP Computer
	Implementing P^3L Farm on the BSP Computer
	Experiments
	Conclusions and Related Works

