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Abstract: Dried porous materials based on plant proteins are attracting large attention thanks to
their potential use as sustainable food ingredients. Nevertheless, plant proteins present lower gelling
properties than animal ones. Plant protein gelling could be improved by optimising gelation condi-
tions by acting on protein concentration, pH, and ionic strength. This work aimed to systematically
study the effect of these factors on the gelation behaviour of soy and pea protein isolates. Protein
suspensions having different concentrations (10, 15, and 20% w/w), pH (3.0, 4.5, 7.0), and ionic
strength (IS, 0.0, 0.6, 1.5 M) were heat-treated (95 ◦C for 15 min) and characterised for rheological
properties and physical stability. Strong hydrogels having an elastic modulus (G′) higher than 103 Pa
and able to retain more than 90% water were only obtained from suspensions containing at least 15%
soy protein, far from the isoelectric point and at an IS above 0.6 M. By contrast, pea protein gelation
was achieved only at a high concentration (20%), and always resulted in weak gels, which showed
increasing G′ with the increase in pH and IS. Results were rationalised into a map identifying the
gelation conditions to modulate the rheological properties of soy and pea protein hydrogels, for their
subsequent conversion into xerogels, cryogels, and aerogels.

Keywords: plant proteins; heat gelation; gelling behaviour; structure; pH

1. Introduction

Xerogels, cryogels, and aerogels indicate dry porous materials produced by remov-
ing the solvent from a gel. Most studies have been carried out on the development of
inorganic dried porous materials (e.g., silica and carbon-based) [1–3] to be used in a wide
variety of applications, such as catalysis, environmental remediation, energy storage, and
insulation [4–7]. Nevertheless, in recent years, growing interest has been focused on the
development of biopolymeric-based dried porous templates, due to their biocompatibility,
and non-toxic profile. Thanks to these characteristics, their application has been successfully
extended to life science fields, including the biomedical and pharmaceutical sectors [8–10].
The potentialities of dried porous materials in the food sector are nowadays attracting
large attention, due to their unique physico-chemical properties and techno-functionalities.
Both cryogels and aerogels have been suggested as innovative delivery systems to protect
bioactives and flavours during processing, storage, and digestion [11–16]. In addition,
their capacity to absorb large amounts of food solvents has been identified as a key feature
to modulate food structural properties [17,18]. For instance, they have been suggested
as templates for oil structuring, leading to fat replacers with improved nutritional prop-
erties [16,19–21]. By contrast, as concerns xerogels, to the best of our knowledge, no
applications in the food sector have been reported, despite the high potentialities of these
materials have been demonstrated in other life science sectors.

To produce food-grade dried porous material, an aqueous gel is first produced by
inducing the networking of the selected biopolymer in water, leading to a hydrogel [22].
To obtain a xerogel, subsequently, water is removed from the network by evaporative
drying. The latter can also be performed by evaporating ethanol after substituting hydrogel
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water with ethanol [23,24]. The evaporative drying usually induces capillary forces during
solvent removal, so that xerogels present low porosity [25]. Cryogels are instead obtained
through freeze-drying, and thus by water sublimation [18]. This reduces the capillary
forces, leading to materials with large pores and channels left upon the sublimation of
water crystals grown during freezing [26]. Finally, aerogels are obtained by replacing the
water contained in the starting gel with ethanol, followed by ethanol removal with a flow
of CO2 in the supercritical state [27]. This technique preserves the structure of the initial
network, and the dried material is thus characterised by low density and high internal
surface area, due to the presence of micro- and macropores [28].

Food-grade xerogels, cryogels, and aerogels can be prepared either from polysaccha-
rides or proteins. As concerns proteins, most literature studies focus on animal ones (e.g.,
whey, egg white, casein, gelatin) [29,30], while studies on the development of dried porous
templates from plant proteins are limited to a few works exploiting silk fibroin, patatins,
and soy proteins [31–37]. The interest in plant-based products is constantly growing due
to their low environmental impact, low cost, and the possibility of being obtained from
food industry wastes, in a circular economy perspective [38–40]. For these reasons, plant
proteins are ideal candidates for developing sustainable dried porous materials intended
as innovative ingredients for the food sector. However, the production of plant-based
xerogels, cryogels, and aerogels is rather challenging. This is mainly due to the poor
gelling properties of vegetable proteins compared to their animal counterparts. Protein
gelation is commonly induced by heat treatment, during which the protein chains unfold,
exposing their reactive groups, which subsequently drive protein reassembling in a 3D
network. Although both covalent (i.e., S-S bridges) and weak interactions (i.e., hydrophobic
interactions, hydrogen bonds, and electrostatic interactions) play an important role in the
formation and stabilisation of protein gels [41], the availability of free -SH groups available
for covalent stabilisation is known to lead to stronger gels. The possibility to obtain strong
hydrogels is pivotal in determining their suitability in the conversion into dried porous
materials, since the stronger the gel, the higher its capacity to structurally withstand the
subsequent drying steps. In this regard, plant proteins present a lower number of -SH
groups as compared to animal ones [42]. Moreover, the extraction process performed to
isolate the protein fraction from the vegetable matrix, where it is intimately embedded
in fiber–protein complexes, is known to induce structural modifications in the protein
chains, further reducing gelling properties [43]. Nevertheless, several factors, including
protein concentration, pH, and ionic strength, can be properly modulated to improve the
plant protein gelling capacity. In this regard, the increase in protein concentration usually
leads to a denser protein network, accounting for the formation of firmer gels that better
maintain the original volume upon water removal [41]. When gelation occurs at a pH
approaching the isoelectric point (pI), globular and strongly aggregated protein structures
are formed, mostly driven by hydrophobic interactions [44,45]. At a pH far above or below
the pI, instead, proteins form a fine-stranded network, as a result of the presence of surface
charges which prevent intimate protein aggregation [46]. For example, aerogels derived
from gels prepared near protein pI have been shown to present higher structural stability
during drying, associated with lower density and higher pore sizes as compared to aerogels
prepared far from the pI [28,47]. Gelation properties are also affected by ionic strength (IS).
The increase in IS reduces electrostatic repulsive forces among protein chains, favouring the
formation of a stronger network. For instance, the elastic modulus of pea protein gels was
increased by 12 times by adding 0.3 M NaCl [41]. However, beyond a salt concentration
threshold, specific for each protein (usually >2.0 M), a weakening of the hydrogel structure
is commonly observed, due to salt-induced stabilisation of the protein structure, which
suppresses protein unfolding during gelation [48,49].

This work aimed to systematically study the effect of gelation conditions on the
physical properties of plant protein-based hydrogels, with the final aim of identifying the
conditions leading to hydrogels suitable for the development of dried porous materials.
For this purpose, soy and pea proteins were selected as the protein sources widely used as
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alternatives to animal proteins. Aqueous suspensions containing increasing amounts of
soy and pea protein isolates (SPI and PPI) at different pH (3.0, 4.5 pI, 7.0) and IS (0.0, 0.6,
1.5 M) were heat-treated to induce gelation. The obtained hydrogels were characterised
for rheological properties and physical stability, and the results were rationalised into a
gelation map.

2. Results and Discussion
2.1. Effect of Protein Type and Concentration

SPI and PPI solutions were prepared at increasing concentrations from 10 to 20%
(w/w) at pH 7.0, and thermally treated. Table 1 reports the appearance of the obtained SPI
and PPI samples.

Table 1. Appearance, elastic (G′), loss modulus (G′′), loss tangent (tan δ), and water-holding capacity
(WHC) of soy protein isolate (SPI) and pea protein isolate (PPI) systems obtained after heat treatment
of protein solutions at 10, 15, and 20% w/w; at pH 7.0; and 0.0 ionic strength.

Protein Concentration (%, w/w) Appearance G′ × 102 (Pa) G′′ × 102 (Pa) Tan δ WHC

SPI

10
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N.D.: not determined, since the system did not gel. a, b, c: means indicated by different letters in the same column
are significantly different (p < 0.05).

As expected, for both SPI and PPI, the increase in protein concentration resulted in a
visible increase in system structuring [50,51]. At a given protein concentration, SPI always
led to a more structured system as compared to PPI, so a minimum protein concentration
of 15 and 20% (w/w) was required to form a semi-solid system by using SPI and PPI,
respectively (Table 1). This difference was also confirmed by the rheological analysis.
Supplementary Figure S1 reports the frequency sweep test results for SPI and PPI hydrogels
obtained from 20% (w/w) protein solutions.
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For both proteins, G′ higher than G′′ and parallel to G′′ was obtained, indicating
the formation of gel systems [52]. The moduli of the PPI gel showed a higher frequency
dependence (higher slope) than those of the SPI gels. The latter showed a negligible
frequency dependence, indicating that a stronger gel structure was obtained; SPI gels also
presented rheological moduli higher than those of the PPI gel, and a lower loss tangent
(tan δ) (Table 1). These results confirm the higher gelling ability of SPI as compared to
PPI. In agreement with the literature [53,54], this difference between SPI and PPI gelation
properties can be attributed to the different compositions of the globulin fraction of the
considered proteins. Soybean globulins are mainly represented by glycinin (11S) and
β-conglycinin (7S), which present higher solubility than pea ones (legumin 11S and vicilin
7S). As a result, a higher protein fraction would remain homogeneously suspended during
the gelation of soy proteins [43,53]. Moreover, soybean globulins have been previously
demonstrated to present a threshold gelling concentration lower than pea ones [55].

The higher strength of the gel obtained with SPI rather than PPI was also related to an
improvement in gel stability, as shown by the higher WHC values (Table 1). The increased
density network obtained by increasing protein concentration was actually able to retain
more water, due to the better distribution of the solvent in the 3D structure, as well as to
the higher number of protein residues available for the interaction with water [56].

2.2. Effect of pH

The precursor protein solutions were adjusted to pH 3.0, 4.5, and 7.0 and thermally
treated. Independently of the pH, self-standing gelled systems were only obtained at 15 and
20% (w/w) SPI concentrations and at a 20% (w/w) PPI concentration. As representative
examples, Table 2 reports the appearance and the rheological parameters of the hydrogels
obtained from the SPI and PPI solutions at 20% (w/w) protein concentration and adjusted
at the different pH values.

Table 2. Appearance, storage modulus (G′), loss modulus (G′′), loss tangent (tan δ), and water-
holding capacity (WHC) of soy protein isolate (SPI) and pea protein isolate (PPI) hydrogels at 20%
protein concentration at pH 3.0 and 4.5, and 0.0 ionic strength.

Protein pH Appearance G′ × 102 (Pa) G′′ × 102 (Pa) Tan δ WHC

SPI

3.0
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Similar to data achieved at pH 7.0 (Table 1), also at pH 3.0 and 4.5, SPI led to higher
system structuration as compared to PPI. At pH 4.5, which is close to protein pI, a particulate
gel, otherwise known as a microgel, was obtained with both proteins [57,58]. Proteins
actually show a higher tendency towards aggregation in the isoelectric region, where the
net charge is low, and thus protein–protein interactions are promoted with the formation
of spherical particles, which, at a high protein concentration, can randomly associate into
larger self-supporting hydrogels [58]. By contrast, at pH values away from the pI, where
strong electrostatic repulsions are present, the gels present a fine-stranded structure.

For both proteins, the decrease in pH from 7.0 (Table 1) to 3.0 (Table 2) caused a signifi-
cant decrease in system structuration, as evidenced by the rheological parameters. In fact,
not only both moduli showed lower values for gels prepared at pH 3.0 as compared to those
obtained at neutral pH, but they also presented a slightly higher frequency dependence. In
this regard, Supplementary Figure S2 shows the effect of the pH change on the frequency
sweep results of PPI gels prepared at 20% (w/w) protein concentration at pH 3.0 and 7.0.
A significant decrease in gel strength was instead observed upon adjusting the protein
solution at pH 4.5 (Tables 1 and 2). This can be attributed to the different microstructure
of the hydrogels obtained at different pHs. In particular, microgelled systems obtained
near the pI are stabilised by weak surface interactions among spherical protein aggregates,
which can easily flow one on the other [59]. By contrast, at pHs far from the pI (pH 3.0
and 7.0), stranded gel structures are obtained, stabilised by numerous disulphide bridges
and weak-interaction entanglement regions, thus accounting for the higher resistance to
mechanical perturbation [58]. Moreover, in the isoelectric region, protein solubility is
minimised, resulting in a significant decrease in well-solubilised protein fractions able to
efficaciously interlink in a 3D gel network [53].

For both SPI and PPI, pH had a negligible effect on gel stability, as indicated by the
comparable WHC values (Tables 1 and 2). This is probably due to the counterbalancing
effect of the high protein concentration on the effect of pH. In other words, the effect of
the different gel architectures induced by pH would be made negligible in the presence of
a high protein concentration, which would increase the network density, thus allowing a
high solvent retention [53].

2.3. Effect of Ionic Strength

The precursor protein solutions were added with different NaCl amounts to modulate
the ionic strength (IS) of the system. As representative examples of the effect of this
parameter at low protein concentrations, Table 3 shows the appearance of systems obtained
upon the thermal treatment of 10% (w/w) SPI and 15% (w/w) PPI solutions, at pH 7.0, and
having 0.6 and 1.5 M IS.

Although the final system showed an evident phase separation, as compared to the
system with no salt added (Table 1), which showed a liquid-like homogeneous structure,
the increase in IS resulted in a local gelling effect with the formation of a microgel-like
structure. This effect can be traced back to the shielding effect of salt ions of the protein
surface charge, favouring protein aggregation [60]. The positive effect of the IS increase
on SPI and PPI gelling properties was also observed at a higher protein concentration. In
this regard, Table 3 reports the appearance and the rheological parameters of the hydrogels
obtained from 20% (w/w) SPI and PPI solutions at pH 7.0, at 0.6 and 1.5 M IS. As compared
to the gels obtained without salt addition (Table 1), the increase in IS resulted in particulate
gels, well-evident in the case of the PPI-based systems (Table 3). This was due to the changes
induced by the increase in IS in the gel microstructure, which shifted from a fine-stranded
structure (low IS) to a particulate structure (high IS) [22]. NaCl concentration increase also
caused a considerable increase in both SPI and PPI gel strength, as indicated by the increase
in G′ values (Tables 1 and 3), as shown in Supplementary Figure S3, which reports the
frequency sweep results for PPI gels at 20% (w/w) protein concentration at 0.0 and 1.5 M IS.
The presence of Na+ ions actually promotes protein–protein interactions during gelation,
due to the reduction of the repulsive electrostatic interactions between protein chains [51].
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Moreover, the increase in IS is known to promote the so-defined “salting-in” effect, i.e., the
increase in the solubility of globulins, which are the main protein fraction of both SPI and
PPI [61]. A higher IS thus results in higher availability of well-hydrated proteins available
for networking during gelation [51,62].

Table 3. Appearance, storage modulus (G′), loss modulus (G′′), loss tangent (tan δ), and water-
holding capacity (WHC) of soy protein isolate (SPI) and pea protein isolate (PPI) hydrogels at 10, 15,
or 20% (w/w) protein concentrations at 0.6 and 1.5 M ionic strength.

Protein Concentration
(%, w/w) Ionic Strength (M) Appearance G′ × 102 (Pa) G′′ × 102 (Pa) Tan δ WHC

SPI

10

0.6
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IS also affected gel stability. In the case of the SPI gels, WHC decreased with IS, despite
the higher gel strength (Table 3). Similar results were found for gels from both soy [63,64]
and egg white proteins [65–68] and can be attributed to the microstructural changes induced
by the presence of ions. In this regard, Munialo et al. [69] have demonstrated that a gel
with an evenly distributed fine-stranded network, obtained at low IS, generally presents
higher WHC as compared to particulate gels, obtained at high IS, where water is less tightly
trapped. Likewise, Maltais et al. [70] and Urbonaite, et al. [71,72] reported an inverse
correlation between aggregate size and WHC, with larger aggregates resulting in lower
WHC. On the contrary, in the case of PPI hydrogels, the increase in IS promoted an increase
in the WHC. It can be inferred that, in this case, the increased gel structural properties
obtained upon NaCl addition (Tables 1 and 3) prevailed over the microstructural changes
induced by the IS increase.
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2.4. Gelation Map

Collected data were further elaborated and rationalised in order to obtain a gelation
map (Figure 1), which is useful to have an immediate view of the gelation performances of
SPI and PPI under the considered conditions.
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Figure 1. Gelation map of soy (SPI) and pea protein isolate (PPI) at increasing protein concentration
(%, w/w), pH, and ionic strength (IS). The mean values of elastic modulus (G′ × 103 Pa) of the gelled
systems are also reported within cells.

The obtained map clearly highlights the complex effect of protein type, pH, IS, and
their combination on the sample structure. For example, the higher gelation propensity of
SPI as compared to PPI is immediately visible, as well as the higher structuration obtained
far away from the protein isoelectric region pH or increasing the IS. This map represents a
useful tool to identify optimal conditions leading to SPI and PPI gels presenting the desired
physical properties. In particular, the conditions allowing for the preparation of hydrogels
presenting a network strong enough to withstand the conversion into xerogels, cryogels, and
aerogels can be identified. Moreover, additional considerations can be drawn, with the aim of
optimising the production process of these dried porous materials. For example, at pH 3.0 or
7.0, in view of minimising the consumption of SPI, and thus raw material costs, while also
maintaining a strong gel structure, the possibility to reduce the SPI concentration from 20 to
15% (w/w) while increasing the ionic strength can be identified. Similarly, in the case of PPI,
it is immediately evident how only weak gels can be obtained at 20% concentration.

3. Conclusions

The results collected in this study show that the gelling behaviour of vegetable proteins
is highly dependent on both the protein nature and formulation parameters (protein
concentration, pH, ionic strength). In particular, hydrogel strength can be enhanced by
choosing soy proteins over pea ones, as well as avoiding the isoelectric region and increasing
the ionic strength. The obtained gelation map can be considered a useful tool to identify
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the optimal conditions to produce soy and pea protein hydrogels with physical properties
suitable for the subsequent conversion into xerogels, cryogels, and aerogels.

The results obtained in this research, although relevant to soy and pea protein isolates
solely, clearly indicate the potential of plant proteins as interesting precursors for the
production of food-grade and plant protein-based dried porous materials. Further studies
are therefore required to investigate the correlation between the physical and techno-
functional properties of the precursor hydrogel and the resulting dried materials. In
this regard, different drying processes such as evaporative drying, freeze-drying, and
supercritical drying can be applied to convert the obtained hydrogels into xerogels, cryogels,
and aerogels, respectively. At the same time, a comprehensive characterisation of the dried
templates obtained thereof could be performed. The latter should include the physical
characterisation of the materials (e.g., SEM microstructure, BET surface area, porosity) but
also their interaction properties with food fluids (oil, water) to obtain a first insight into
their applicability as innovative food ingredients.

4. Materials and Methods
4.1. Soy and Pea Protein Solution Preparation

Aqueous solutions presenting different ionic strength (IS), 0.6 and 1.5 M, were prepared
by adding NaCl (Sigma Aldrich, Milan, Italy) in deionised water (System advantage A10®,
Millipore S.A.S, Molsheim, France). Deionised water without the addition of NaCl was
considered to have an IS equal to 0.0 M. Aqueous solutions were added with 10, 15, or 20%
(w/w) of soy (SPI) or pea (PPI) protein isolates (Myprotein, Manchester, England). The
suspensions were subjected to high shear mixing at 1120× g for 1 min (Polytron PT-MR3000,
Kinematica AG, Littau, Switzerland), and pH was adjusted to 3.0, 4.5, and 7.0 by adding
1 M NaOH or HCl.

4.2. Heat Treatment

To induce gelation, soy and pea protein suspensions were transferred in 50 mL-sealed
falcon tubes and subjected to thermal treatment in a water bath (95 ◦C for 15 min), followed
by cooling in an ice bath (0 ◦C for 15 min). The heat-treated samples were then stored at
4 ◦C for 48 h, until analysis.

4.3. Image Acquisition

Images were captured with a digital camera (EOS 550D, Canon, Milano, Italy) in an image
acquisition cabinet (Immagini & Computer, Bareggio, Italy). The digital camera was positioned
in an adjustable stand positioned at 45 cm from the samples and enlightened by 4 × 100 W
frosted photographic floodlights, in a position allowing minimum shadow and glare.

4.4. Rheological Properties

Hydrogel rheological properties were tested using an RS6000 Rheometer (Thermo
Scientific RheoStress, Haake, Germany), equipped with a Peltier system for temperature
control. The analysis was performed with a parallel plate geometry, with a gap of 2.0 mm
at 20 ◦C. Hydrogels were cut into cylinders with 2 mm of height and 20 mm of diameter.
The linear viscoelastic region (LVR) was determined using an oscillatory sweep test (0.01
to 1000 Pa at 1 Hz frequency). The frequency sweep tests were carried out increasing the
frequency from 0.1 to 20 Hz, at stress values selected in the LVR.
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4.5. Physical Stability

The physical stability of hydrogels was evaluated based on their water-holding capac-
ity (WHC). Hydrogels were accurately weighed (W1) and transferred into 1.5 mL-Eppendorf
microcentrifuge tubes, and then centrifugated at 15,000× g for 15 min at 4 ◦C (D3024, DLAB,
Scientific Europe S.A.S, Schiltigheim, France). The supernatant was then removed, and the
samples were weighed again (W2). The WHC was determined according to Equation (1).

WHC =
W1 − (W1 −W2)

W1
· 100 (1)

4.6. Data Analysis

Data are expressed as the mean ± standard deviation of at least three measurements
resulting from two replicates. The statistical analysis was performed using the program R
version 4.1.2 (The R Foundation for Statistical Computing, Vienna, Austria). The homo-
geneity of the variance was evaluated with Bartlett tests, a one-way ANOVA was applied,
and the difference between the averages was assessed by the post-hoc Tukey test (p < 0.05).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels9010062/s1, Figure S1: Elastic (G′) and viscous (G′′) modulus
of soy (SPI) and pea (PPI) hydrogels obtained from 20% (w/w) protein solutions. Figure S2. Elastic
(G′) and viscous (G′′) modulus of pea protein isolate (PPI) hydrogels obtained from 20% (w/w)
protein solutions at pH 3.0 and 7.0. Figure S3. Elastic (G′) and viscous (G′′) modulus of pea protein
isolate (PPI) hydrogels obtained from 20% (w/w) protein solutions at 0.0 and 1.5 M ionic strength.
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