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Abstract
The analysis of environmental DNA (eDNA) using metabarcoding has increased in use as a method for tracking biodiversity of 

ecosystems. Little is known about eDNA in marine human-modified environments, such as commercial ports, which are key sites 
to monitor for anthropogenic impacts on coastal ecosystems. To optimise an eDNA metabarcoding protocol in these environments, 
seawater samples were collected in a commercial port and methodologies for concentrating and purifying eDNA were tested for 

their effect on eukaryotic DNA yield and subsequent richness of Operational Taxonomic Units (OTUs). Different filter materials 
[Cellulose Nitrate (CN) and Glass Fibre (GF)], with different pore sizes (0.5 µm, 0.7 µm and 1.2 µm) and three previously pub-

lished liquid phase extraction methods were tested. The number of eukaryotic OTUs detected differed by a factor of three amongst 
the method combinations. The combination of CN filters with phenol-chloroform-isoamyl alcohol extractions recovered a higher 
amount of eukaryotic DNA and OTUs compared to GF filters and the chloroform-isoamyl alcohol extraction method. Pore size was 
not independent of filter material but did affect the yield of eukaryotic DNA. For the OTUs assigned to a highly successful non-in-

digenous species, Styela clava, the two extraction methods with phenol significantly outperformed the extraction method without 
phenol; other experimental treatments did not contribute significantly to detection. These results highlight that careful consideration 
of methods is warranted because choice of filter material and extraction method create false negative detections of marine eukaryotic 
OTUs and underestimate taxonomic richness from environmental samples.

Key Words
eDNA, 18S ribosomal, seawater, high-throughput-sequencing, metazoan eukaryotes, non-indigenous species
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Introduction

Global biodiversity is being redistributed, with negative 
consequences for humanity (Pecl et al. 2017). Therefore, 
development of global biodiversity monitoring tech-

niques is needed to more rapidly assess current biodiver-
sity, predict future biodiversity trajectories and improve 
policy for intervention (Díaz et al. 2015). A technique 
with broad applications for biodiversity monitoring is the 

sequencing of environmentally sampled DNA (hereafter 
eDNA) (Deiner et al. 2017; Stat et al. 2017; Taberlet et al. 
2018). However, variations in eDNA methodologies, in-

cluding sampling, DNA extraction, DNA concentration, 
library preparation and bioinformatic pipelines, can have 
a significant effect on the detection of species and down-

stream ecological inferences (Deiner et al. 2015; Djurhuus 
et al. 2017; Evans et al. 2017; Leray and Knowlton 2017; 
Vasselon et al. 2017). No single method has or is like-

ly to emerge as appropriate for all situations due to the 

ecology of eDNA (sensu Barnes and Turner 2016) that 

is likely to produce spatial and temporal heterogeneity of 

eDNA in different ecosystems. Indeed, conditions such as 
pH, temperature and presence of humic substances have 
been shown to affect the degradation and detectability of 
eDNA (Seymour et al. 2018; Stoeckle et al. 2017; Tsuji et 
al. 2017). Given the unlikelihood that one universal meth-

od will be ideal for all ecosystems, investigators first need 
to test the efficacy of a variety of methods to determine 
what is optimal for their goals and target environment 

(Goldberg et al. 2016).

Human-modified coastal habitats are key sites for un-

derstanding the effects of anthropogenic activities, such 
as pollution and the introduction of non-indigenous spe-

cies (NIS) (Floerl and Inglis 2005; Seebens et al. 2013). 
For example, ballast water tanks and hull fouling of both 
commercial and recreational ships are prominent vectors 

dispersing NIS in coastal ecosystems (Gollasch 2002; La-

coursière‐Roussel et al. 2012; Molnar et al. 2008; Ruiz 
et al. 2000; Sylvester et al. 2011). NIS have well-doc-

umented negative effects on marine biodiversity and 
ecosystem services, making bio-surveillance in these 
environments a high priority (Katsanevakis et al. 2014; 
Molnar et al. 2008). However, routine monitoring using 
traditional methods is impractical for many commercial 

ports around the world. Hence, there is the need for de-

velopment of an eDNA metabarcoding methodology spe-

cific to the study of these coastal environments, which is 
an attractive alternative given the ease and scalability of 

sampling compared with traditional methods (Grey et al. 

2018; Lacoursière‐Roussel et al. 2018).
To date, there is some guidance on suitable filters or 

DNA extraction techniques for eDNA studies of both 
fresh and marine environments. Specifically, research has 
begun to identify optimal methods for filtration and ex-

traction of eDNA in freshwater systems based on qPCR 
detection of single species and high-throughput sequenc-

ing of eukaryotic communities (Deiner et al. 2015; Hinlo 

et al. 2017; Lacoursière‐Roussel et al. 2016; Li et al. 2018; 
Spens et al. 2017). Only a single study has explored filter 
material and extraction methods using eDNA metabarcod-

ing to survey marine communities (Djurhuus et al. 2017) 
, with no existing studies accounting for pore size across 
different filter material in freshwater or marine systems.

Using seawater sampled from a commercial port, and 
a factorial experiment (Figure 1), we tested for an effect 
of filter material, pore size (non-independent of filter 
material) and extraction method on the DNA yield from 
eukaryotic environmental DNA (measured after amplifi-

cation of the V4 region of the18S ribosomal RNA gene) 
and the correlation that eukaryotic DNA yield has on 

the detection of Operational Taxonomic Units (OTUs). 
Our null hypothesis was that filter material, its pore size 
and the extraction method have no negative effect on the 
quantity of eukaryotic environmental DNA and number 
of OTUs detected.

Methods

Experimental design

A power analysis (Zar 1999) was used to determine the re-

quired number of experimental replicates per treatment to 
test the above null hypothesis using the following equation:

2

22

1,2/

)/( µ
α

d

t
n

n−=
CV

The power analysis calculates sample size (n) or the 

number of 100 ml experimental replicates, for each re-

sponse variable; including filter material, pore size and 
extraction type. We performed the test assuming a 90% 
confidence that the average DNA concentration after 
amplification or count of OTUs deviates (d), with a con-

fidence interval (CV) no more than 10% from the true 
mean (µ) post-amplification DNA concentration or count 
of OTUs. The true mean is assumed equivalent between 
replicates. We used the Critical Values calculated from 
the t distribution assuming a one-tailed test (α=0.05, 
(α=0.05, Zar 1999) and iteratively solved for sample 

size until the initial and predicted sample sizes were 
equivalent. Our statistical power analysis with the above 
assumptions indicated that we needed at least five rep-

licates per experimental treatment. We therefore strove 
for ten replicates per experimental treatment (Figure 1) 
to increase our confidence and compensate for any event 
during the experiment that would lead to the loss or omis-

sion of any replicate.

Sampling site

The Port of Southampton in the United Kingdom is 
amongst the busiest and oldest commercial ports in Eu-

rope (McCutcheon 2008). The port is protected from 
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wave exposure by the natural harbour created by the 
Solent Estuary and the Isle of Wight. A modelling ap-

proach to identify invasion risk categorised the Solent as 

one of the highest risk areas for marine species invasions 

(Pearce et al. 2012). Furthermore, surveys of Southamp-

ton marinas have found many of the most common NIS in 
the UK, making it an ideal location to test whether eDNA 
metabarcoding methods are sensitive enough to detect 

NIS in commercial ports (Bishop et al. 2015).

Sample collection

To allow for broad taxonomic richness in the water used 
for the experiment, thirteen 1 litre seawater samples 
were collected from Empress Dock at two sites: seven 
from the harbour master’s pontoon (50°53’24.7128”N, 
1°23’47.2704”W) in the southwest corner and six 
from the National Oceanography Centre pontoon 
(50°53’28.2732”N, 1°23’38.0724”W) in the northeast 

corner. The 1 litre Nalgene™ plastic bottles were decon-

taminated with a 4% bleach solution (0.58% NaOCl) and 
rinsed using sterile Milli-Q water. Plastic bottles were 
then used to collect water from the top 0.5 m of the water 
column, first being rinsed out twice in the water and, fi-

nally, collecting the 1 litre water sample with the third fill. 
After collection, samples were immediately transported 
to the laboratory directly near the dock where they were 

refrigerated at 4 °C. Samples were refrigerated for 12.5 
hours until filtration could begin.

Sample filtration

Prior to filtration, the thirteen 1 litre seawater samples 
were poured into a single container. Experimental repli-
cates were created by taking 100 ml volumes of seawa-

ter from the single container (Figure 1). The single con-

tainer of seawater was continuously mixed to minimise 
sedimentation of particulates and to ensure homogeneity 

across experimental replicates. Each 100 ml experimental 
replicate was randomly assigned to a filter type (Figure 
1). To compare pore size and filter material, two pore siz-

es (0.7 µm and 1.2 µm) of Glass Microfibre Filters (GF) 
and three pore sizes (0.45 µm, 0.65 µm and 1.2 µm) of 
Cellulose Nitrate Filters (CN) were tested: GF 0.7 µm 
(Whatman), Grade GF 1.2 µm (Whatman), CN 0.45 µm 
(GE Healthcare), CN 0.65 µm (GE Healthcare) and CN 
1.2 µm (GE Healthcare). All filter types had 47 mm diam-

eters. Filters where chosen because they represent com-

monly used material and pore sizes. Pore sizes between 
GF 0.7 µm and CN 0.65 µm were considered equivalent 
pore sizes for statistical analysis of the experiment. Fil-
tration occurred on a three-piece stainless-steel manifold 

with the capacity to processes three experimental repli-
cates in parallel.

After each filtration, filters was folded and placed into 
a 2 ml microcentrifuge tube filled with 700 µl of Long-

mire’s tissue lysis buffer (Longmire et al. 1997), ensur-
ing that the filter was completely submerged and stored 
at -20 °C. The filters in Longmire’s tissue lysis buffer 
were shipped to the University of Notre Dame at ambi-
ent temperature for processing. Longmire’s buffer, as it 
is commonly called, has been shown to be effective for 
storage of filtered eDNA samples at room temperature 
(Renshaw et al. 2015). Use of a lysis buffer for preser-
vation of eDNA samples is favourable because it has a 

pH suitable for stabilising DNA and additives capable of 

deactivating nucleases.

A rigorous cleaning protocol, before and during the 
procedure, ensured minimal cross-contamination be-

tween filters. All equipment was decontaminated before 
the procedure using a 4% bleach solution (0.58% NaO-

Cl). The three-piece stainless-steel manifold and work-

ing area were first wiped down with the 4% bleach solu-

tion and then rinsed with distilled water and dried. New 

gloves and forceps were used for every experimental rep-

licate and the decontamination procedure was repeated 

between replicates.

Figure 1. Experimental design used to test for an effect of filter 
material (Cellulose Nitrate, CN; Glass Fibre, GF) pore size and 
extraction method (PCI-1, PCI-2 and CI, see methods section 
for their description) on the detection eukaryotic DNA yield and 

the number of Operational Taxonomic Units (OTUs) estimat-
ed from seawater samples from a commercial port. Numbers in 

parentheses are the number of replicates with the target number 

first followed by the final number included in statistical analy-

ses. Colours indicate experimental treatments where filter ma-

terial is in blue (GF) or red (CN) and extraction methods are in 
variations of blue or red depending on filter material.
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DNA extraction methods

Experimental replicates were randomly assigned by fil-
ter type to an extraction method as indicated in Figure 1. 
Three DNA extraction protocols were tested. Two consist-
ed of phenol-chloroform-isoamyl protocols (PCI-1, PCI-2) 
and the third protocol used a chloroform-isoamyl protocol 

(CI). The exact step-by-step protocols that were followed 
are provided in Suppl. material 1. Protocol PCI-1 is a mod-

ified protocol that was developed by combining aspects of 
both the PCI-2 and the CI protocols. The PCI-1 protocol 
was previously used by Lacoursière-Roussel et al. (2018) 

and the main difference from either of the other two proto-

cols is that it utilised QIA shredder filters (Qiagen, Germa-

ny), which have been reported to assist with performance 
of extracting DNA from environmental samples (Goldberg 

et al. 2013). Protocol PCI-2, which was previously used in 
comparison to commercial extraction kits and was shown 
to perform well when targeting both eukaryotes and bacte-

ria (Deiner et al. 2015), was used here unmodified except 
to account for the difference in filter size used by increas-

ing the volume of tissue lysis buffer added. Protocol CI 
was also previously used in comparison to kit extractions 
and is an inexpensive alternative that performed as well as 
other extraction methods (Renshaw et al. 2015). The CI 
protocol used in this study was unmodified. The CI proto-

col omits the chemical phenol, which is a toxic substance 
requiring extra safety precautions and added processing 
time and thereby considered a safer and less time-consum-

ing option. DNA extractions were eluted in 75 µl of water 
or buffer as indicated in Suppl. material 1.

To remove potential inhibitors, extracted DNA was 
treated with the OneStep™ PCR Inhibitor Removal Kit 
(Zymo Research, Irvine, California, USA). Each replicate 
was quantified with 2 µl of sample using Qubit dsDNA 
High-Sensitivity Kit and Qubit 2.0 Fluorometer (Life 
Technologies, Grand Island, NY).

Library preparation methods

Our 18S ribosomal RNA gene primer set contained two 
sequences: Illumina adapter sequence and gene-specific 
target sequence. The Illumina adapter sequence provid-

ed the requisite flanking region for subsequent dual-in-

dexing PCR and sequencing platform compatibility. The 
gene-specific sequence targeted a 378 bp fragment of the 
V4 variable region of the Eukaryote 18S ribosomal RNA 
gene. Hadziavdic et al. (2014) demonstrated in silico that 

the 18S_574F and 18S_952R primer set was the most op-

timal primer pair to cover eukaryote taxa while efficiently 
excluding prokaryotes. Together, these primers allowed for 
the generation of a eukaryotic 18S ribosomal RNA gene li-
brary compatible with Illumina sequencing platforms.

PCR-1

The library preparation workflow is illustrated in Fig-

ure 2. The eukaryote 18S ribosomal RNA gene V4 

variable region (378 bp) was amplified from extracted 
DNA by high fidelity PCR using iProof PCR reagents 
(Bio Rad Laboratories, Hercules, CA), and our 18S ribo-

somal RNA gene primer set in a 0.2 ml PCR tubes with 
individually attached cap. The 50 µl-reaction contained 
5.0 µl of extracted DNA (regardless of concentration), 
27.0 µl of PCR-grade water, 10.0 µl of 5× HiFi Buf-
fer (Bio Rad Laboratories, Hercules, CA), 1.5 µl of 50 
mM magnesium chloride (Bio Rad Laboratories, Her-
cules, CA), 1.0 µl of 10 mM dNTP mix, (G-Bioscience, 
St. Louis, MO), 2.5 µl of 10 µM 18S_574F primer (In-

tegrated DNA Technologies, Coralville, IA), 2.5 µl of 
10µM 18S_952R primer (Integrated DNA Technologies, 
Coralville, IA) and 0.5 µl of 2 U/µl iProof HiFi DNA 
Polymerase (Bio Rad Laboratories, Hercules, CA). PCR 
reactions were cycled in a Master Pro S (Eppendorf, 
Westbury, NY) with the following conditions: initial de-

naturation at 98.0 °C for 2 minutes, followed by 25 cy-

cles of denaturation at 98.0 °C for 10 seconds, annealing 
at 55.0 °C for 20 seconds and primer extension at 72.0 
°C for 30 seconds, with a final extension at 72 °C for 10 
minutes. Reactions were purified with a 0.8× bead:sam-

ple volume ratio (40.0 µl) of Agencourt Ampure XP 
Beads (Beckman Coulter, Webster, TX) and separated 
with a DynaMag-2 magnet rack (Life Technologies, 
Grand Island, NY). Ampure XP Beads were resuspended 
in 52.5 µl PCR-grade water to elute PCR products. After 
clearing the solution of Ampure XP Beads with the Dy-

naMag-2 magnet, only 50.0 µl was recovered to avoid 
Ampure XP Bead carry-over. PCR product concentra-

tion was determined with 2.0 µl of sample using Qubit 
dsDNA High-Sensitivity Kit and Qubit 2.0 Fluorometer 
(Life Technologies, Grand Island, NY).

PCR-2

The Illumina adapter and dual-index barcodes (i7 and i5 
index primers) were added to the PCR-1 products by high 
fidelity PCR using iProof PCR reagents (Bio Rad Labora-

tories, Hercules, CA) in a 0.2 ml PCR tube with individ-

ually attached cap. The 50 µl-reaction contained 5.0 µl 
of PCR-1 Template (regardless of concentration), 22.0 µl 
of PCR-grade water, 10.0 µl of 5× HiFi Buffer (Bio Rad 
Laboratories, Hercules, CA), 1.5 µl of 50 mM magnesium 
chloride (Bio Rad Laboratories, Hercules, CA), 1.0 µl of 
10 mM dNTP mix, (G-Bioscience, St. Louis, MO), 5.0 
µl of 10 µM i7 Index primer (Integrated DNA Technol-
ogies, Coralville, IA), 5.0 µl of 10 µM i5 Index primer 
(Integrated DNA Technologies, Coralville, IA) and 0.5 µl 
of 2 U/µl iProof HiFi DNA Polymerase (Bio Rad Lab-

oratories, Hercules, CA). PCR reactions were cycled in 
a Master Pro S (Eppendorf, Westbury, NY) with the fol-
lowing conditions: initial denaturation at 98.0 °C for 2 
minutes, followed by 8 cycles of denaturation at 98.0 °C 
for 10 seconds, annealing at 60.0 °C for 20 seconds and 
extension at 72.0 °C for 30 seconds, with a final extension 
at 72.0 °C for 10 minutes. Reactions were purified with 
a 0.8× bead:sample volume ratio (40.0 µl) of Agencourt 
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Ampure XP Beads (Beckman Coulter, Webster, TX) and 
separated with a DynaMag-2 magnet (Life Technologies, 
Grand Island, NY). Ampure XP Beads were resuspend-

ed in 32.5 µl PCR-grade water to elute the dual-indexed 
library. After clearing the solution of Ampure XP Beads 
with the DynaMag-2 magnet, only 30.0 µl was recovered 
to avoid Ampure XP Bead carryover. Library concentra-

tion was determined with 2.0 µl of sample using Qubit 
dsDNA High-Sensitivity Kit and Qubit 2.0 Fluorometer 
(Life Technologies, Grand Island, NY).

No-template controls

No-template controls were introduced at multiple steps in 

the workflow (DNA extraction, eukaryotic 18S ribosomal 
RNA gene PCR-1 and PCR-2). No-template controls fol-
lowed the same procedure as experimental replicates. In 
place of extracted DNA, 5.0 µl of PCR-grade water was 
used as the template for PCR-1 and PCR-2. A total of ten 
no-template controls were generated to detect contamina-

tion during seawater sampling and preparation of libraries.

Figure 2. Library preparation workflow illustrating pooling by volume rather than by normalising to avoid removing the effect of 
the experimental treatments.
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Library Validation

Due to the project’s scale, 31 of 129 dual-indexed li-
braries (~24%), derived from experimental replicates, 
were randomly chosen for Bioanalyzer analysis to con-

trol overall cost of validation. To verify the final library 
fragment size and diagnose primer contamination, 1.0 µl 
of dual-indexed library was analysed using Bioanalyzer 
2100 instrument and Bioanalyzer DNA 7500 kit (Agilent 
Technologies, Santa Clara, CA). All no-template controls 
(1.0 µl) were analysed using Bioanalyzer DNA High-Sen-

sitivity kit (Agilent Technologies, Santa Clara, CA).

Multiplexing Libraries

Due to the number of samples in the study, the libraries 
where split across two MiSeq runs. To avoid a run ef-
fect, libraries were randomly assigned to one of two pools 
by sub-group (explained below), extraction method and 
filter material. All ten no-template control libraries were 
added to both pools to test for consistency between runs. 

As PCR-2 DNA concentrations from each filter materi-
al were the response variables, the volume of template 
added to the eukaryotic 18S ribosomal RNA gene PCR 
and dual-index PCR was held constant without normal-
ising the template concentration as this would remove 

the effect of our experiment (Fig. 2). Furthermore, we 
multiplexed equal volumes of library or no-template con-

trol by group and pool assignment (Fig. 2). Specifically, 
5.0 µl of library (regardless of concentration) and 5.0 µl 
of no-template control were combined by group. This 

created six (6) sub-pools: PCI-1 Pool-1, PCI-1 Pool-2, 
PCI-2 Pool-1, PCI-2 Pool-2, CI Pool-1 and CI Pool-2. 
To remove primer contamination, each sub-pool was pu-

rified with a 0.8× bead:sample volume ratio of Agencourt 
Ampure XP Beads (Beckman Coulter, Webster, TX) and 
separated with a DynaMag-2 magnet (Life Technologies, 
Grand Island, NY). Ampure XP Bead volume was calcu-

lated by multiplying 0.8 and the total volume of the sub-

pool. Ampure XP Beads were resuspended with 1.089 µl 
PCR-grade water per library and no-template control in 
the sub-pool. This volume was chosen based on the de-

sire for an elution volume of about 32 µl to effectively 
concentrate the pooled libraries by 4 to 5 times. In prac-

tice, 32 µl would be divided by the sum of the number 
of libraries and no-template controls in the pool to deter-

mine the elution volume per library (Fig. 2). (Example: 
If a sub-pool with 25 libraries and 4 no-template controls 
had a total volume of 145 µl, then116 µl of Ampure XP 
Beads would be added. Ampure XP Beads would be re-

suspended with 31.58 µl of PCR-grade water and then 
29.0 µl recovered after bead separation.). After clearing 
the solution of Ampure XP Beads with the DynaMag-2 
magnet, 2.5 µl less than the elution volume was recovered 
to avoid Ampure XP Bead carry-over. Finally, 0.5 µl per 
library and no-template control of the concentrated sub-

pools were combine by final pool assignment. (Example: 
Subpool Group M with 25 libraries and 4 no-template 

controls contributed 14.5 µl to the final pool while Sub-

pool Group K with 20 libraries and 3 no-template con-

trols contributed 11.5 µl to the final pool).

Final Library Validation and Illumina Sequencing

The Genomics Core Facility (University of Notre Dame, 
Notre Dame, IN) validated the final library pools using 
a combination of Qubit dsDNA High-Sensitivity Kit and 
Qubit 2.0 Fluorometer (Life Technologies, Grand Island, 
NY), Bioanalyzer 2100 instrument and Bioanalyzer DNA 
7500 Kit or Bioanalyzer DNA High-Sensitivity Kit (Ag-

ilent Technologies, Santa Clara, CA) and Kapa Illumina 
Library Quantification qPCR assay (Kapa Biosystems, 
Wilmington, MA). Final molar concentration of the final 
library pool was based on the average of the values deter-

mined by Qubit and qPCR analysis. For each of the final 
library pools, a solution containing 6 pM denatured library 
and 3 pM denatured PhiX Control v3 (Illumina, Inc., San 
Diego, CA) was sequenced on Illumina MiSeq Sequenc-

er operating MiSeq Control Software v2.5 with MiSeq 
flowcell (v3) and MiSeq Reagent Kit (v3). Sequencing 
format was 300 cycles for read 1, 8 cycles for index 1 
read, 8 cycles for index 2 read and 300 cycles for read 2. 
Each library pool was run on a different MiSeq flow cell. 
MiSeq Reporter v2.5 Real Time Analysis (RTA) v1.18.54 
performed base calling. Illumina Bcl2fastq v2.18 demul-
tiplexed the RTA output and converted the data from bcl 
to fastq format. Finally, BaseSpace Broker v2.1 reported 
the files to BaseSpace Sequencing Hub.

Lastly, one set of samples was unfortunately mixed 
during the second stage of DNA extraction. While they 
were fully processed and contributed to the total raw reads 

observed, we removed them from any statistical analysis 
due to not being able to differentiate which replicate they 
were. This error reduced the number of experimental rep-

licates for the treatment of cellulose nitrate filters with a 
pore size of 0.65 µm (CN 0.65 µm) extracted with the 
PCI-2 protocol from ten to four. We also lost one sam-

ple during DNA extraction from the treatment with the 
filter material of glass fibre with a pore size of 0.7 (GF 
0.7 µm) extracted with PCI-1. The replicate could not be 
processed for sequencing and thus reduced the number of 
replicates for this treatment from ten to nine.

Bioinformatic analysis

Sequencing adapters were removed and reads were quali-
ty filtered using Trimmomatic v0.32 (Bolger et al. 2014). 
An in-house Perl script was used to check for 100% match 
to both forward and reverse primers (Github: https://
github.com/pfrender-laboratory/epps) and non-matching 

reads were discarded. Paired end reads were then merged 
using the -fastq_mergepairs command in USEARCH 
v8.1.1861(Edgar 2013) and singleton merged sequences 
(defined as a merged sequence observed only once across 
all replicates) were discarded. All replicates were pooled 

for OTU generation and OTU clustering was performed 

https://github.com/pfrender-laboratory/epps
https://github.com/pfrender-laboratory/epps
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using the -cluster_otus command in USEARCH with two 
clustering thresholds of 97% and 95% similarity. Potential 
chimera sequences were also filtered by -cluster_otus com-

mand during the OTU clustering process as suggested by 
USEARCH. Centroid sequences from each OTU were tax-

onomically annotated using the Species Assignment Pack-

age v1.9.4 (Munch et al. 2008) against the NCBI nr data-

base. OTUs were counted as metazoan if they received an 
assignment to the phylum level or lower. Specific parame-

ters for each filtration step are shown in Suppl. material 2.
To explore the effect of method choice on a global-

ly relevant NIS, we determined the detection of Styela 

clava in different technical replicates based on species 
assignments of OTUs. Styela clava, a solitary ascidian, 
is native to the NW Pacific. Over the last 100 years, it 
has become common in fouling communities in harbours 

and ports across the globe, including Europe, Australasia 
and North America (Goldstien et al. 2011). In the United 
Kingdom, it was first discovered in 1953 in Plymouth and 
then described as Styela mammiculata by Carlisle (1954). 
This introduction was attributed to the transport via war-

ships after the end of the Korean war (Holmes 1968). It 
was first recorded in Southampton water in 1958 reach-

ing population densities of 200 adults per square metre 
(Holmes 1968). Since then, the contemporary presence of 
Styela clava in Southampton water is well documented 

(Bishop et al. 2015). In each replicate, detection was con-

sidered positive if a single read or greater was assigned to 

Styela clava.

Statistical analysis

All statistical analyses were performed using the pro-

gramme R, version 3.3.1.1 (R Core Team 2016). R scripts 
and required data files are provided on Figshare (https://
doi.org/10.6084/m9.figshare.c.4191167.v1). Least 

squares regression models were used to test the additive 
effect of filter material (GF or CN), extraction type (CI, 
PCI-1 and PCI-2), pore size (0.5 μm, 0.7 μm and 1.2 
μm) and the nested effect of filter material on pore size 
on PCR-2 DNA concentrations and OTU richness (both 
eukaryotic and metazoans only). As mentioned above, GF 
0.7 µm and CN 0.65 µm were considered equivalent pore 
sizes for statistical analysis of the experiment. Richness 
of an experimental replicate was calculated by summing 
all OTUs with a single read or more. Due to the possible 
violation of homogeneity with pore size, resulting from 
the imbalance in factor levels (0.5 μm = 10, 0.7 μm = 53, 
1.2 μm = 60), we also tested the models after removing the 
smallest pore size (0.5 μm) from the dataset. In addition to 
the two response variables of PCR-2 DNA concentrations 
and OTU richness, the variables of DNA concentration 
after PCR-1, the number of raw merged reads, number of 
merged reads after quality filtering, the number of OTUs 
clustered at 95% and the subset of metazoan OTUs clus-

tered at 95% were tested for a correlation to establish an 
association between each step in the laboratory workflow 
and the outcome of methods’ choices. To evaluate the de-

tectability of the NIS Styela clava across the experimental 
treatments, reads from the five OTUs assigned to Styela 

clava were pooled (Suppl. material 3) and detection was 
indicated by a single read or more. The effect of exper-
imental treatments on detection was modelled using the 

same least squares regression model as above.

Results

Sequencing and OTUs

Raw fastq files have been deposited in the Short Read Ar-
chive (PRJNA395904). The two MiSeq runs produced a 
total of 45,600,412 raw reads for the experimental repli-
cates and 41,522 reads for the no-template controls. Af-
ter merging paired reads and quality filtering, a total of 
16,144,713 reads remained for the experimental replicates 
and 837 reads for the no-template controls. Experimental 
replicates had an average of 125,153 ± 111,631 reads and 
no-template controls had an average of 42 ± 25 reads.

The number of unique reads summed across both runs 
was 996,242. After removal of singletons, 260,711 unique 
reads remained. Clustering at 97% and 95% resulted in 
4,554 and 3,634 OTUs, respectively (Suppl. material 3). 
Based on taxonomic assignment of OTUs clustered at 
97% and 95%, 2,112 and 1,519 were identified to at least 
the taxonomic level of phylum and represented 123 and 
102 metazoan eukaryotes, respectively. Using clustering 
at 97% as the example, the no-template controls had reads 
assigned to 61 of the OTUs (Suppl. material 4). Of these, 
28 OTUs had only one read assigned to a no-template 
control inclusive of both MiSeq runs. When comparing 
the other 33 OTUs, only two were consistently detected 
between the two MiSeq runs. As so few OTUs were con-

sistently detected between runs and nearly half were rep-

resented by one read, we did not consider this evidence of 
contamination due to preparation error in the sampling or 

library preparation workflow, but rather evidence of the 
known tag-jumping or cross-talk errors generated on Il-
lumina instruments (Schnell et al. 2015; Edgar 2016). As 
this error results in so few reads, we considered this error 
random and did not apply a correction factor to the data.

DNA concentration

DNA concentration varied as a function of filter material, 
pore size and extraction method (Fig. 3a). Using PCR-2 
DNA concentrations as the response variable for an esti-

mate of DNA concentrations of eukaryotic environmen-

tal DNA (Fig.3b), a significant effect of extraction type (P 
<0.001), pore size (P <0.001), filter material (P <0.001) 
and a nest effect of pore size on filter material (P = 0.035) 
were found (Table 1, Fig. 4a). Specifically, DNA concen-

tration after PCR-2 ranged from 0.08 to 45.70 ng/μl (mean 
= 18.427, s.d. = 15.770) (Fig. 4a). Chloroform extractions 
yielded PCR-2 DNA concentrations from 0.08 to 30.6 ng/
μl (mean = 4.314, s.d. = 6.429), with PCI-1 extractions pro-

https://doi.org/10.6084/m9.figshare.c.4191167.v1
https://doi.org/10.6084/m9.figshare.c.4191167.v1
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ducing 0.18 to 45.7 ng/μl (mean = 26.414, s.d. = 12.861) 
and PCI-2 extractions producing 0.16 to 45.5 ng/μl (mean 
= 30.022, s.d. = 12.323). DNA concentrations, after PCR-
2, varied with corresponding pores sizes as well as with 
samples filtered with 0.5 μm filters showing 2.78 to 30.6 
ng/μl (mean = 11.173, s.d. = 9.780), 0.7 μm resulting in 
0.08 to 45.7 μm (mean = 15.849, s.d. = 15.453) and 1.2 
μm filters resulting in 0.15 to 45.5 ng/μl (mean = 21.914, 
s.d. = 16.184). Samples processed with CN filters had 
PCR-2 DNA concentrations of 0.08 to 45.7 ng/μl (mean 
= 22.021, s.d. = 16.682) and samples processed with GF 
filters had PCR-2 DNA concentrations of 0.09 to 42.6 ng/
μl (mean = 14.400, s.d. = 13.733). Models, from which 
we removed the smallest pore size to assess possible type 
I errors, showed significant differences across extraction 
method (P <0.001), pore size (P = 0.004) and filter material 
(P <0.001) and between the interaction of pore size nested 
within filter material (P = 0.033) (Suppl. material 5).

OTU richness

OTU detection for eukaryotes and the subset of metazo-

an eukaryotes varied with method choice (Figure 3c, d). 
DNA extraction concentrations and PCR-2 DNA con-

centrations were correlated with OTU richness estimated 
for all eukaryotes and the subset of metazoan eukaryotes 
(Fig. 5). Significant effects were observed for the number 
of OTUs (clustered at 97% similarity) detected across ex-

Figure 3. Observed DNA concentrations or number of Operational Taxonomic Units by experimental treatment. Observed DNA 
concentrations after DNA extraction (a) indexed PCR (PCR-2) (b) and the number of estimated OTUs per experimental treatment 
clustered at 97% for all eukaryotes and (c) and metazoans (d). The upper and lower whiskers indicate the minimum and maximum 
point within 1.5 times the Interquartile Range extended from the 25th and 75th percentile, respectively. Colours indicate filter mate-

rial where red is Cellulose Nitrate (CN) and blue is Glass Fibre (GF). The three extraction methods are abbreviated as in Figure 1.

Table 1. Statistical results from the least squares regression 
models with response variables of PCR-2 DNA concentrations, 
OTUs with 97% sequence similarity and Styela clava detection. 

Provided for each explanatory variable (extraction type, fil-
ter material, pore size and pore size nest in filter material) are 
the degrees of freedom (DF), Sum of squares (Sum sq), Mean 
squares (Mean sq), F value and p-value (P-value).

Response: PCR-2 DNA Concentration

DF Sum Sq Mean Sq F value P value

Extraction type 2 17018.2 8509.1 111 < 0.001

Pore size 2 1231.1 615.5 8.06 < 0.001

Filter material 1 2883.3 2883.3 37.8 < 0.001

Pore size / Filter 
material

1 347.8 347.8 4.55 0.035

Residuals 116 8859.8 76.4
Response: OTU 97

Extraction type 2 1980701 990351 55 < 0.001

Pore size 2 378264 189132 10.5 < 0.001

Filter material 1 1152720 1152720 64 < 0.001

Pore size / Filter 
material

1 66101 66101 3.67 0.058

Residuals 116 2090261 18019

Response: Styela clava detection

Extraction type 2 4.148 2.074 10.595 <0.001

Pore size 1 0.177 0.177 0.905 0.343
Filter material 1 0.587 0.587 2.998 0.086

Pore size / Filter 
material

1 0.007 0.007 0.033 0.855

Residuals 123 24.074 0.196
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traction types (P <0.001), pore size (P = 0.010) and filter 
material (P <0.001) (Fig. 4b, c). However, a non-signifi-

cant interaction effect of pore size nested in filter material 
(P = 0.058) was detected (Table 1, Fig. 4b, c). Models, 
from which the smallest pore size was removed to assess 
possible type I errors, showed comparable results in that 
OTU detection and significant differences amongst ex-

traction types (P <0.001) and filter material (P <0.001), 
but there was a non-significant effect of pore size nested 
in filter material (P = 0.056) and a non-significant effect of 
pore size (P=0.061) (Fig. 4b) (Suppl. material 5). Results 
were similar for the subset of OTUs that were assigned 
to the metazoan phylum and clustered at 95% similarity 
(Fig. 4c, Fig. 5). Furthermore, each step of the workflow 
from DNA extraction to library preparation to bioinfor-
matic choices for clustering threshold showed strong pos-

itive correlations (Fig. 5).
Based on the taxonomic assignment of OTUs, Styela 

clava was detected in 45 of 73 (62%) PCI replicates com-

pared to 10 of 50 (20%) CI extraction replicates (Suppl. 
material 3). A significant effect (P = 0.001) of extraction 
method was found; the CI method was less effective than 
both phenol-based extractions (Table 2, Fig. 6).

Discussion

The eDNA metabarcoding methods experiment findings 
show that filter material, pore size and extraction method 
affects the yield in marine eukaryotic eDNA. Additional-
ly, the filter material and extraction method, but not pore 
size, influence the estimated richness of OTUs detected 
from seawater using eDNA metabarcoding. Specifical-
ly, as many as three times the number of OTUs could be 
detected by adjusting the filter material and extraction 
method, indicating that some materials and methods com-

binations have high false negative detection rates. While 
no other studies have tested for the effect of all three var-
iables tested here, these results corroborate experiments 
in freshwater systems where cellulose nitrate filters yield-

ed a higher DNA concentration compared to other filter 
materials (Hinlo et al. 2017; Lacoursière‐Roussel et al. 
2016). Specifically, for the commercial port seawater 
sampled here, maximum OTU richness was detected with 
cellulose nitrate filters and phenol-chloroform-isoamyl 
extraction. In addition, the largest pore size tested, 1.2 
µm, performed indistinguishably from the 0.65 µm and 

Figure 4. Observed DNA concentrations or number of Operational Taxonomic Units by experimental factor. Mean PCR-2 DNA 
concentrations (indexed libraries) (y-axis) for each set of explanatory variables including extraction type (A), filter pore size (B) 

and filter material (C). Extraction types include chloroform (Cl), phenol chloroform 1 (PCl 1) and phenol chloroform 2 (PCl 2) 
extractions. Filter materials included Cellulose Nitrate (CN) and Glass Fibre (GF). The upper and lower whiskers indicate the mini-
mum and maximum point within 1.5 times the Interquartile Range extended from the 25th and 75th percentile, respectively.
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0.7 µm pore sizes (Figure 3). As larger pore sizes allow 
for shorter filtration times (Li et al. 2018), if we were to 
implement an eDNA sampling regime for this environ-

ment, these results suggest that the most effective and effi-

cient materials and methods’ combination would be a 1.2 

µm cellulose nitrate filter with the phenol-chloroform-is-

oamyl extraction protocol (PCI-2).
An important observation from this study is that all 

materials and methods used produced biodiversity in-

formation, even when DNA yields were below detection 
limits (e.g. Figure 3a, CI extraction). However, by adjust-
ing the filter material and extraction method, we could 
reduce the false negative rate by as many as two orders of 

magnitude. Thus, unless methods are compared, it is hard 

to determine their OTU detection limits. Increasing OTU 
detection rates for species in commercial ports is valua-

ble for monitoring of rare or endangered species or where 

novel species invasions require elevated levels of biose-

curity. Indeed, marine eDNA studies have already begun 
to detect both non-indigenous (Borrell et al. 2017; Simp-

son et al. 2017) and rare species (Weltz et al. 2017). For 

example, the invasive ascidian Styela clava, which was 
observed as present during sampling of the studied site, 
was detected 40% more often in phenol-chloroform-is-

oamyl extraction replicates and achieved a detection rate 
as high as 80% compared to a 50% detection rate for CI 
extraction replicates. Our results, based on both the detec-

tion of Styela clava and the increase of OTUs detected, 

Figure 5. Pairwise correlations between non-independent response variables corresponding to quantified values taken during the analy-

ses. Lower triangle consists of scatterplots with individual sample comparisons shown. The upper triangle shows the R correlation value 
corresponding with the lower triangle. The diagonal shows the distribution curve for the variable indicated in the corresponding column.
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demonstrate that it is essential to understand the detection 

rate of material and method choices before making an as-

sessment about species presence or absence.

The logical conclusion from first principles, which in-

fers that false negative detections decrease as DNA yield 

from a sample increases, suggests that the DNA extrac-

tion is an obvious step in the process to optimise. The 

experimental test here demonstrated that the phenol-chlo-

roform-isoamyl DNA extraction methods produced a 
greater yield of DNA compared to the chloroform-isoa-

myl extraction method. The slight modifications between 
the two phenol-chloroform-isoamyl DNA extractions 
methods tested were not significantly different. Previous 
work in freshwater systems have also shown that a phe-

nol-chloroform-isoamyl DNA extraction method resulted 
in a higher yield of DNA compared to DNeasy Animal 

Tissue kits (Qiagen) (Deiner et al. 2015). However, these 
results were based on a single filter material, glass fibre 
filters. More recent work indicates, inclusive of this study, 
that there are interactions between filter material and ex-

traction methods, indicating that both filter material and 
extraction interact to drive yields in DNA (Djurhuus et al. 
2017). Thus, it may be possible to maximise eDNA yield 
by jointly optimising which extraction methods performs 
best on a filter material such that biodiversity detected is 
equivalent between any chosen materials and methods. 
Phenol-chloroform-isoamyl methods perform best with 
cellulose nitrate filters compared to glass fibre filters in 
this study, and we recommend that future research should 
determine other combinations to optimise eDNA yield 

from other filter material and extraction combinations.
This study is the first to compare filter material and sim-

ilar pore sizes between filter materials. However, including 
a statistical term where pore size was nested within filter 

material provide a better model fit to the data compared to 
a purely additive model. The non-independence of filter 
material with pore size and estimated richness is likely be-

cause filter pore sizes are not uniform in structure between 
different filter materials. In fact, glass fibre filters are de-

scribed by the manufacturer as having a nominal pore size 
of 0.7 μm, but the size of any one pore can vary. For a mi-
crograph of pore structures of different filter materials, see 
the Supplemental material from figure S2 of Turner et al. 
(2014). Thus, there may be synergistic physical or chem-

ical interactions generated with pore size and different fil-
ter materials. Follow up work is needed to determine how 

the pore’s structure and filter material interact with eDNA 
to yield differences in eDNA concentration and detection 
of OTU richness. Sequential filtering experiments in fresh 
(Turner et al. 2014) and salt water systems (Sassoubre et 

al. 2016) have shown that eDNA exists in a range of parti-
cle sizes. Therefore, it is expected that a smaller pore size 
would capture more eDNA with a trade-off of smaller pores 
requiring more effort to filter as the pores become blocked 
(Li et al. 2018). The trade-off between filtration time need-

ed to attain a specific volume and the pore size interacting 
with the particulate matter in water samples clogging pores 

depends on the study system and question. We therefore 
recommend that pilot studies are conducted to determine 

which pore size is adequate for sampling eDNA given local 
environmental conditions and which results in an appropri-

ate detection rate.

The choices made about the amount of replication in 

eDNA methodology experiments require more attention. 
Replication amongst eDNA methodology studies varies, 
with some including only three replicates per treatment 

(Djurhuus et al. 2017; Lacoursière‐Roussel et al. 2016; Pig-

gott 2016; Spens et al. 2017) and others choosing 4 to 15 

Figure 6. Detection rate of Styela clava by extraction method. The proportion of positive detections for Styela clava across experi-
mental treatments (left). Photographic image of Styela clava individual from Chichester Harbour, United Kingdom (Right). Colours 
are indicating the three different extraction methods which are abbreviated the same as in Figure 1.
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replicates per treatment (Deiner et al. 2015; Eichmiller et 
al. 2016; Hinlo et al. 2017). However, none of these studies 
presented justification for the level of replication. A statisti-
cal power analysis was a priori used in this study to deter-

mine the number of replicates needed and extra precaution 
was taken to use twice as many to allow for the inadvertent 

loss of samples due to technical or procedural error. Re-

porting insignificant differences between methods without 
enough power to detect the effect can impact proper method 
choice, both in the study and for latter work built upon the 
inference. We recommend future methodological studies 
use a power analysis or other such methods to provide in-

formation about the experimental design such that non-sig-

nificant differences can be interpreted as meaningful.
The current practice in eDNA metabarcoding studies is 

to normalise DNA concentration of prepared libraries from 

each sample before pooling and sequencing. The intention 
of which is to produce a dataset with equal sequencing 
depth per sample. The normalisation of read depth per li-

brary can also be achieved bioinformatically (Bista et al. 

2017; Kelly et al. 2016). The practice of normalising DNA 

concentration across libraries is logical when the question 
being tested can be confounded by sequence depth. How-

ever, when the variable being tested is, in fact, the yield in 
DNA between samples, normalising DNA concentration 
at any step before sequencing would remove the effect 
from the experiment. Therefore, normalisation by volume 
rather than DNA concentration was used in this study (Fig. 

2). Normalisation of DNA concentration between samples 

during library preparation at any step is not always clearly 

reported in the methodology; therefore, it is unclear how 
many eDNA metabarcoding method studies may have un-

intentionally decreased the likelihood of finding an effect 
related to yield of DNA from an environmental sample. 

Future work should examine the effect of normalisation 
during library preparation for method comparison studies, 
as it was not the goal here. By comparing normalised li-

braries to unnormalised, it may be possible to decrease the 
effect of low DNA yield from a set of method choices. 
This is identical to sequencing more DNA from an ampli-
fied extraction, but this alternative method choice assumes 
the original pool of environmental sequences is not biased 
by the initial low yield generated from the DNA extrac-

tion itself. Furthermore, the normalisation of samples may 
have a dramatic negative effect on the detected biodiversi-
ty in case where a single dominant species overwhelms the 

sample, as commonly found in oceans (jellyfish bloom, 
krill swarm, phytoplankton bloom). This effect has been 
documented by Deagle et al. (2018) and future studies 

should explore the effects of normalisation on species de-

tectability in cases where the total DNA diversity of the 

ecosystem is ‘swamped’ by a small number of species.

Conclusions

While the advice and methods for detecting false positives 
have matured and researchers implement these practices 

(Goldberg et al. 2016), there is still considerable work 
ahead to understand what generates false negative detec-

tions. A clear recommendation to maximise detection of 
OTU richness emerging from this study is that cellulose 
nitrate filters combined with a phenol-chloroform-isoa-

myl extraction method yields more eDNA and detects a 
greater richness of OTUs than other method combina-

tions. A strong positive association between DNA yield 

and OTU richness and all the steps in between was ob-

served in this study (Fig. 5) and indicated that thresholds 
in library concentrations should be sought to help reduce 

false negative detections.

This study adds to the growing literature that false 

negative detections are a consequence of how the sample 
is processed in the laboratory. While methods will con-

tinue to be optimised and because false negative detec-

tions are often the result of a sampling problem, all steps 
where the sample of eDNA is biased can create false neg-

ative detections. Continued work is needed to identify 

the most crucial steps where this bias is introduced and 

future research on the laboratory methods should focus 

on optimisation of steps where the most gain in species 

detection is possible. These include, but are not limited 
to, the sequencing depth (Grey et al. 2018) and the total 

amount of DNA extracted and subsequently used in PCR 
(Mächler et al. 2015). Eventual standardisation of these 
methods when used in management settings is needed 

to produce actionable results. Nevertheless, the size of 
eDNA containing particles may differ amongst taxa and 
environments and other conditions affecting detection 
(e.g. the concentration of PCR inhibiting material), thus 
researchers and managers should consider that multiple 

methods may be needed for different locations. Efforts to 
develop standards are being made through the European 
DNAqua-net Cost Action (Leese et al. 2016) in collabo-

ration with the European Committee for Standardisation 
(http://www.cen.eu).
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Mächler E, Deiner K, Spahn F, Altermatt F (2015) Fishing in the water: 

effect of sampled water volume on environmental DNA-based de-

tection of macroinvertebrates. Environmental Science & Technology 
50: 305–312. https://doi.org/10.1021/acs.est.5b04188

McCutcheon C (2008) Port of Southampton. Amberley Publishing Lim-

ited, 160 pp.
Molnar JL, Gamboa RL, Revenga C, Spalding MD (2008) Assessing the 

global threat of invasive species to marine biodiversity. Frontiers in Ecol-
ogy and the Environment 6: 485–492. https://doi.org/10.1890/070064

Munch K, Boomsma W, Huelsenbeck JP, Willerslev E, Nielsen R 
(2008) Statistical assignment of DNA sequences using Bayes-

ian phylogenetics. Systematic Biology 57: 750–757. https://doi.
org/10.1080/10635150802422316

Pearce F, Peeler E, Stebbing P (2012) Modelling the risk of the intro-

duction and spread of non-indigenous species in the UK and Ireland. 
Report to Department for Environment, Food and Rural Affairs, Ce-

fas Project code E5405W.
Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen I-C, 

Clark TD, Colwell RK, Danielsen F, Evengård B, Falconi L, Ferrier 
S, Frusher S, Garcia RA, Griffis RB, Hobday AJ, Janion-Scheepers 
C, Jarzyna MA, Jennings S, Lenoir J, Linnetved HI, Martin VY, Mc-

Cormack PC, McDonald J, Mitchell NJ, Mustonen T, Pandolfi JM, 
Pettorelli N, Popova E, Robinson SA, Scheffers BR, Shaw JD, Sorte 
CJB, Strugnell JM, Sunday JM, Tuanmu M-N, Vergés A, Villanueva 
C, Wernberg T, Wapstra E, Williams SE (2017) Biodiversity redis-

tribution under climate change: Impacts on ecosystems and human 
well-being. Science 355. https://doi.org/10.1126/science.aai9214

Piggott MP (2016) Evaluating the effects of laboratory protocols on 
eDNA detection probability for an endangered freshwater fish. Ecol-
ogy and Evolution 6: 2739–2750. https://doi.org/10.1002/ece3.2083

R Core Team (2016) R: A language and environment for statistical com-

puting. R Foundation for Statistical Computing, Vienna.
Renshaw MA, Olds BP, Jerde CL, McVeigh MM, Lodge DM (2015) 

The room temperature preservation of filtered environmental DNA 
samples and assimilation into a phenol-chloroform-isoamyl alcohol 

DNA extraction. Molecular Ecology Resources 15: 168–176. https://
doi.org/10.1111/1755-0998.12281

Ruiz GM, Fofonoff PW, Carlton JT, Wonham MJ, Hines AH (2000) Inva-

sion of coastal marine communities in North America: apparent pat-
terns, processes, and biases. Annual Review of Ecology and Systemat-
ics 31: 481–531. https://doi.org/10.1146/annurev.ecolsys.31.1.481

Sassoubre LM, Yamahara KM, Gardner LD, Block BA, Boehm AB 
(2016) Quantification of environmental DNA (eDNA) shedding and 
decay rates for three marine fish. Environmental Science & Technol-
ogy 50: 10456–10464. https://doi.org/10.1021/acs.est.6b03114

Seebens H, Gastner M, Blasius B, Courchamp F (2013) The risk of 
marine bioinvasion caused by global shipping. Ecology Letters 16: 
782–790. https://doi.org/10.1111/ele.12111

Seymour M, Durance I, Cosby BJ, Ransom-Jones E, Deiner K, Ormerod 
SJ, Colbourne JK, Wilgar G, Carvalho GR, de Bruyn M (2018) 
Acidity promotes degradation of multi-species environmental DNA 

in lotic mesocosms. Communications Biology 1: 4. https://doi.
org/10.1038/s42003-017-0005-3

Simpson TJ, Dias PJ, Snow M, Muñoz J, Berry T (2017) Real‐time PCR 
detection of Didemnum perlucidum (Monniot, 1983) and Didem-

num vexillum (Kott, 2002) in an applied routine marine biosecuri-
ty context. Molecular Ecology Resources 17: 443–453. https://doi.
org/10.1111/1755-0998.12581

Spens J, Evans AR, Halfmaerten D, Knudsen SW, Sengupta ME, Mak 
SS, Sigsgaard EE, Hellström M (2017) Comparison of capture 
and storage methods for aqueous macrobial eDNA using an opti-
mized extraction protocol: advantage of enclosed filter. Methods in 
Ecology and Evolution 8: 635–645. https://doi.org/10.1111/2041-
210X.12683

Stat M, Huggett MJ, Bernasconi R, DiBattista JD, Berry TE, Newman 
SJ, Harvey ES, Bunce M (2017) Ecosystem biomonitoring with 
eDNA: metabarcoding across the tree of life in a tropical marine 
environment. Scientific Reports 7: 12240. https://doi.org/10.1038/
s41598-017-12501-5

Stoeckle BC, Beggel S, Cerwenka AF, Motivans E, Kuehn R, Geist J 
(2017) A systematic approach to evaluate the influence of environmen-

tal conditions on eDNA detection success in aquatic ecosystems. PloS 
ONE 12: e0189119. https://doi.org/10.1371/journal.pone.0189119

Sylvester F, Kalaci O, Leung B, Lacoursière‐Roussel A, Murray CC, 
Choi FM, Bravo MA, Therriault TW, MacIsaac HJ (2011) Hull 
fouling as an invasion vector: can simple models explain a com-

plex problem? Journal of Applied Ecology 48: 415–423. https://doi.
org/10.1111/j.1365-2664.2011.01957.x

Taberlet P, Bonin A, Zinger L, Coissac E (2018) Environmental DNA: 
For Biodiversity Research and Monitoring. Oxford University Press, 
Oxford.

Tsuji S, Ushio M, Sakurai S, Minamoto T, Yamanaka H (2017) Water 
temperature-dependent degradation of environmental DNA and its 

relation to bacterial abundance. PLoS ONE 12: e0176608. https://
doi.org/10.1371/journal.pone.0176608

Turner CR, Barnes MA, Xu CC, Jones SE, Jerde CL, Lodge DM (2014) 
Particle size distribution and optimal capture of aqueous macrobial 
eDNA. Methods in Ecology and Evolution 5: 676–684. https://doi.
org/10.1111/2041-210X.12206

Vasselon V, Domaizon I, Rimet F, Kahlert M, Bouchez A (2017) Appli-
cation of high-throughput sequencing (HTS) metabarcoding to dia-

tom biomonitoring: Do DNA extraction methods matter? Freshwater 
Science 36: 162–177. https://doi.org/10.1086/690649

Weltz K, Lyle JM, Ovenden J, Morgan JA, Moreno DA, Semmens JM 
(2017) Application of environmental DNA to detect an endangered 
marine skate species in the wild. PloS ONE 12: e0178124. https://
doi.org/10.1371/journal.pone.0178124

Zar JH (1999) Biostatistical analysis. Prentice Hall, Upper Saddle River, 
New Jersey.

Supplementary material 1

Extraction protocols

Authors: Kristy Deiner, Jacqueline Lopez, Steve Bourne, 
Luke E. Holman, Mathew Seymour, Erin K. Grey, Anaïs La-

coursière-Roussel, Yiyuan Li, Mark A. Renshaw, Michael E. 
Pfrender, Marc Rius, Louis Bernatchez, David M. Lodge
Data type: methodology
Copyright notice: This dataset is made available under the 
Open Database License (http://opendatacommons.org/licens-

es/odbl/1.0/). The Open Database License (ODbL) is a license 
agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for oth-

ers, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/mbmg.2.28963.suppl1

https://doi.org/10.5962/bhl.title.143318
https://doi.org/10.1021/acs.est.5b04188
https://doi.org/10.1890/070064
https://doi.org/10.1080/10635150802422316
https://doi.org/10.1080/10635150802422316
https://doi.org/10.1126/science.aai9214
https://doi.org/10.1002/ece3.2083
https://doi.org/10.1111/1755-0998.12281
https://doi.org/10.1111/1755-0998.12281
https://doi.org/10.1146/annurev.ecolsys.31.1.481
https://doi.org/10.1021/acs.est.6b03114
https://doi.org/10.1111/ele.12111
https://doi.org/10.1038/s42003-017-0005-3
https://doi.org/10.1038/s42003-017-0005-3
https://doi.org/10.1111/1755-0998.12581
https://doi.org/10.1111/1755-0998.12581
https://doi.org/10.1111/2041-210X.12683
https://doi.org/10.1111/2041-210X.12683
https://doi.org/10.1038/s41598-017-12501-5
https://doi.org/10.1038/s41598-017-12501-5
https://doi.org/10.1371/journal.pone.0189119
https://doi.org/10.1111/j.1365-2664.2011.01957.x
https://doi.org/10.1111/j.1365-2664.2011.01957.x
https://doi.org/10.1371/journal.pone.0176608
https://doi.org/10.1371/journal.pone.0176608
https://doi.org/10.1111/2041-210X.12206
https://doi.org/10.1111/2041-210X.12206
https://doi.org/10.1086/690649
https://doi.org/10.1371/journal.pone.0178124
https://doi.org/10.1371/journal.pone.0178124
http://opendatacommons.org/licenses/odbl/1.0/
http://opendatacommons.org/licenses/odbl/1.0/
https://doi.org/10.3897/mbmg.2.28963.suppl1


Metabarcoding and Metagenomics 2: e28963

https://mbmg.pensoft.net

15

Supplementary material 2

Bioinformatic pipeline and thresholds

Authors: Kristy Deiner, Jacqueline Lopez, Steve Bourne, 
Luke E. Holman, Mathew Seymour, Erin K. Grey, Anaïs La-

coursière-Roussel, Yiyuan Li, Mark A. Renshaw, Michael E. 
Pfrender, Marc Rius, Louis Bernatchez, David M. Lodge
Data type: methodology
Copyright notice: This dataset is made available under the 
Open Database License (http://opendatacommons.org/licens-

es/odbl/1.0/). The Open Database License (ODbL) is a license 
agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for oth-

ers, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/mbmg.2.28963.suppl2

Supplementary material 3

Profiling tables for all libraries
Authors: Kristy Deiner, Jacqueline Lopez, Steve Bourne, 
Luke E. Holman, Mathew Seymour, Erin K. Grey, Anaïs La-

coursière-Roussel, Yiyuan Li, Mark A. Renshaw, Michael E. 
Pfrender, Marc Rius, Louis Bernatchez, David M. Lodge
Data type:  methodology
Copyright notice: This dataset is made available under the 
Open Database License (http://opendatacommons.org/licens-

es/odbl/1.0/). The Open Database License (ODbL) is a license 
agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for oth-

ers, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/mbmg.2.28963.suppl3

Supplementary material 4 

4_NTC

Authors: Kristy Deiner, Jacqueline Lopez, Steve Bourne, 
Luke E. Holman, Mathew Seymour, Erin K. Grey, Anaïs La-

coursière-Roussel, Yiyuan Li, Mark A. Renshaw, Michael E. 
Pfrender, Marc Rius, Louis Bernatchez, David M. Lodge
Data type: occurrences
Copyright notice: This dataset is made available under the 
Open Database License (http://opendatacommons.org/licens-

es/odbl/1.0/). The Open Database License (ODbL) is a license 
agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for oth-

ers, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/mbmg.2.28963.suppl4

Supplementary material 5

Alternative statistical model

Authors: Kristy Deiner, Jacqueline Lopez, Steve Bourne, 
Luke E. Holman, Mathew Seymour, Erin K. Grey, Anaïs La-

coursière-Roussel, Yiyuan Li, Mark A. Renshaw, Michael E. 
Pfrender, Marc Rius, Louis Bernatchez, David M. Lodge
Data type: statistical data
Copyright notice: This dataset is made available under the 
Open Database License (http://opendatacommons.org/licens-

es/odbl/1.0/). The Open Database License (ODbL) is a license 
agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for oth-

ers, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/mbmg.2.28963.suppl5

http://opendatacommons.org/licenses/odbl/1.0/
http://opendatacommons.org/licenses/odbl/1.0/
https://doi.org/10.3897/mbmg.2.28963.suppl2
http://opendatacommons.org/licenses/odbl/1.0/
http://opendatacommons.org/licenses/odbl/1.0/
https://doi.org/10.3897/mbmg.2.28963.suppl3
http://opendatacommons.org/licenses/odbl/1.0/
http://opendatacommons.org/licenses/odbl/1.0/
https://doi.org/10.3897/mbmg.2.28963.suppl4
http://opendatacommons.org/licenses/odbl/1.0/
http://opendatacommons.org/licenses/odbl/1.0/
https://doi.org/10.3897/mbmg.2.28963.suppl5

	Optimising the detection of marine taxonomic richness using environmental DNA metabarcoding: the effects of filter material, pore size and extraction method
	Research Article
	Abstract
	Introduction
	Methods
	Experimental design
	Sampling site
	Sample collection
	Sample filtration
	DNA extraction methods
	Library preparation methods
	PCR-1
	PCR-2
	No-template controls
	Library Validation
	Multiplexing Libraries
	Final Library Validation and Illumina Sequencing
	Bioinformatic analysis
	Statistical analysis

	Results
	Sequencing and OTUs
	DNA concentration
	OTU richness

	Discussion
	Conclusions
	Acknowledgements
	References
	Supplementary material 1
	Supplementary material 2
	Supplementary material 3
	Supplementary material 4
	Supplementary material 5

