
Optimism-Driven Exploration for Nonlinear Systems

Teodor Mihai Moldovan, Sergey Levine, Michael I. Jordan, Pieter Abbeel

Abstract— Tasks with unknown dynamics and costly system
interaction time present a serious challenge for reinforcement
learning. If a model of the dynamics can be learned quickly,
interaction time can be reduced substantially. We show that
combining an optimistic exploration strategy with model-
predictive control can achieve very good sample complexity for
a range of nonlinear systems. Our method learns a Dirichlet
process mixture of linear models using an exploration strategy
based on optimism in the face of uncertainty. Trajectory
optimization is used to plan paths in the learned model that
both minimize the cost and perform exploration. Experimental
results show that our approach achieves some of the most
sample-efficient learning rates on several benchmark problems,
and is able to successfully learn to control a simulated helicopter
during hover and autorotation with only seconds of interaction
time. The computational requirements are substantial.

I. INTRODUCTION

Learning unknown system dynamics while simultaneously

using this information to reach a goal has been a serious

challenge for reinforcement learning (RL) in the case of

continuous state spaces. Such tasks arise in robotics, where

time constraints, safety, and wear-and-tear place stringent

limits on the amount of system interaction allowed [1], as

well as adaptive control, where the dynamics change unpre-

dictably and the controller must adapt online [2]. Model-

based RL reduces the required interaction time by learning a

model of the dynamics. Although many methods have been

proposed for model-based RL with efficient exploration in

discrete MDPs, data-efficient model-based RL in continuous

systems remains a challenging problem despite substantial

recent advances [3], [4], [5].

We propose a model-based RL algorithm for continuous

systems based on the principle of optimism in the face

of uncertainty. Our exploration strategy chooses exploratory

actions based on the estimated uncertainty in the learned

dynamics model. To exploit new information about the model

as soon as it becomes available, we replan the actions online

using a model-predictive control (MPC) algorithm that inte-

grates with our exploration strategy. This requires a model

that can be updated efficiently and provides uncertainty

estimates for exploration. We use a Dirichlet process mixture

model (DPMM), which scales gracefully with the number

of samples and provides Bayesian uncertainty estimates. By

updating the model online and using MPC to continually

replan optimistic trajectories in light of new observations,

our method can learn continuous tasks with very little system

interaction.
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Our main contribution is a data-efficient reinforcement

learning method based on model-predictive control. We

extend optimism-driven exploration, which has previous been

applied mainly to discrete problems [6], [7], to continuous

nonlinear deterministic systems, and show that a dynamics

representation based on the Dirichlet process mixture models

(DPMM) [8] can be effectively combined with this explo-

ration strategy. We perform MPC using a pseudospectral tra-

jectory optimization method [9] that incorporates our explo-

ration strategy into the dynamics equations. In our evaluation,

we demonstrate that our approach not only achieves state of

the art sample efficiency on standard benchmark problems,

but that it is also able to do so without the use of any shaping

cost, with only the target state available beforehand. This

is in contrast to most continuous methods, which typically

employ a smooth shaping cost [3], [10]. Furthermore, since

we use online trajectory optimization, we do not rely on an

episodic formulation of the task. This allows us to perform

adaptive control in settings where restarting the episode is

impossible.

The asymptotic complexity of our algorithm in the number

of data points collected is O(n log n) and could be improved

to sublinear at the expense of further approximations [11],

a significant improvement from the competing Gaussian

Process based approach [3], however the afferent constants

make our implementation two orders of magnitude slower

than real-time. To demonstrate this capability, we learn a

hovering policy for a simulated helicopter mid-flight, using

only 5 seconds of interaction time and losing on average

3.5 meters of altitude before stabilizing the hover, as well as

an autorotation maneuver to recover from an engine failure,

using only 8 seconds of interaction time.

II. OVERVIEW

Optimism in the face of uncertainty is a general principle

for model-based reinforcement learning underlying numer-

ous efficient algorithms backed by theoretical guarantees in

multiple settings. Policies based on upper confidence bounds

(UCB) illustrate this principle [12] for multi-armed bandit

problems. The Bayesian optimistic local transitions algo-

rithm [6] and the optimistic linear programming algorithm

[7] apply the same principle to discrete MDPs, and recent

results show regret bounds also based on this principle for

linear systems with quadratic costs [4].

We apply optimism-driven exploration to nonlinear dy-

namical systems, using trajectory optimization to act opti-

mistically with respect to the learned dynamics. Our method

extends the approaches presented in [4] and [6] to nonlinear

dynamical systems. In addition to choosing actions, the



Algorithm 1 Continuous RL with optimistic exploration

Require: dynamical system starting at state x, optional goal

state xgoal

Require: sampling frequency νs, control frequency νc
τ ← zero control trajectory

z ← empty list of observations

repeat

x ← state after following τ for 1/νc seconds starting

at state x
z ← z appended with states, time derivatives, controls

(ẋ, x, u) sampled every 1/νs seconds.

f ← learned dynamics given all observations z as

specified in Section V.

τ ← optimal trajectory for dynamics f with starting

state x as specified in Section IV

until task objective achieved

trajectory optimization algorithm is also allowed to pick

favorable dynamics that are sufficiently likely under the

model based on past observations. Favorable dynamics are

chosen relative to the cost function and, consequently, our

exploration strategy prioritizes learning those aspects of the

dynamics that are most relevant for success. As more data

becomes available, the uncertainty in the model decreases,

since alternatives that disagree with the true dynamics be-

come less likely. This results in progressively less exploration

as the model improves. Asymptotically, exploration reduces

to zero with enough data, though in practice, the goal is often

reached before this happens.

Analogously to other exploration methods based on opti-

mism, we take an online approach that avoids the need for

restarts or episodes. This allows our algorithm to learn with

the fewest number of samples and to perform adaptive con-

trol. As summarized in Algorithm 1, our method observes the

current state, updates the model as described in Section V,

and recomputes the trajectory with optimistic dynamics, as

described in Sections III and IV. This is done online at

regular intervals. Intuitively, this procedure succeeds because

either the algorithm makes progress towards the goal, or the

optimistic dynamics are incorrect and the newly collected

data ensures that similar mistakes will be avoided in the

future. This approach requires a model-predictive control

(MPC) algorithm that continually recomputes the trajectory

to account for new observations, and a dynamics model that

can represent uncertainty. We use a pseudospectral trajectory

optimization algorithm for MPC [9], and a Dirichlet process

mixture model (DPMM) [13] for the dynamics, which strikes

a good balance between expressiveness and computational

complexity, as discussed in Section V.

III. OPTIMISM BASED EXPLORATION IN NONLINEAR

DYNAMICAL SYSTEMS

We assume that the true dynamics are given by ẋ =
f∗(x, u), where x, ẋ and u are the state of the system, its

time derivative, and the control. The system is assumed to be

deterministic1 but state observations are allowed to be noisy,

as is typically unavoidable in practical systems. The algo-

rithm must minimize the integral of a cost rate q(x(t), u(t))
while optionally reaching a goal state xgoal, which may be

only partially specified.2 If none of the dimensions of the

goal state are specified, the algorithm simply minimizes the

total cost. The planning algorithm does not have access to

the true dynamics, it only has access to a statistical estimator

f based on past observations. As discussed in Section V,

we used a DPMM for this estimator, though any consistent

estimator may be used. The MPC algorithm is allowed

to use optimistic dynamics in the vicinity of the expected

dynamics that deviate by at most one standard deviation in

each dimension as specified by the covariance matrix. This

approach leads the system to be optimistic about the way

dynamics will play out in regions where the dynamics model

estimate still has high covariance; if indeed the dynamics

play out as optimistically hoped for, then this is a good

exploitation trajectory, if they don’t, then the model estimate

will be updated with data from that region, resulting in a

reduced covariance and less optimism about the dynamics

in that region going forward. Asymptotically, the expected

dynamics converge to the true dynamics and the standard

deviation converges to zero, so the planning algorithm will

asymptotically obey the true dynamics.

Given the estimator f of the dynamics, our optimistic plan-

ning algorithm can be formulated as a constrained functional

optimization problem:

minimize x,u,ξ,h>0 :

∫ h

t=0

q(x(t), u(t))dt (1)

s.t. ẋ(t) = E[f(x(t), u(t))] + Cov
1

2 [f(x(t), u(t))] · ξ(t),

− 1 ≤ u(t), ξ(t) ≤ 1, x(0) = xstart

optional constraints: x(h) = xgoal, h = hfixed

where the decision variables x(t), u(t), ξ(t) are vector func-

tions of time representing the state of the system, the controls

to be applied and virtual controls encoding exploration

serving optimism. The trajectory duration h is also included

as a decision variable and the function q(x(t), u(t)) is an

arbitrary cost rate function.

Without the virtual controls ξ, this optimization is a

standard optimal control task. The additional virtual controls

ξ, which are scaled by the uncertainty in the model, specify

how much the dynamics are allowed to deviate from the

mean in units of standard deviation. The formulation can

either treat the horizon h as an optimization variable or,

optionally, constrain the horizon to a fixed value. Similarly, it

is possible but optional to specify a goal state as a constraint,

either fully or only partially. Since this problem is defined

in terms of states and controls (the physical controls plus

1The model we employ (DPMM) supports both stochastic and determin-
istic systems. The planning algorithm, however, only supports deterministic
systems; our method could be adapted to stochastic systems by swapping
in a suitable planner in its place.

2If the goal state is not specified at all, we can employ a minimum cost
formulation by adding cost as an additional term in the state, which can
then be minimized under the same optimization framework.



the virtual controls), it can be solved using any optimal

control algorithm. We use a pseudospectral sequential linear

programming solver discussed in Section IV.

Larger or smaller bounds for ξ may be used to increase or

reduce the amount of exploration by replacing the constraint

−1 ≤ ξ ≤ 1 with −p ≤ ξ ≤ p for some fixed p > 0.

Doing so allows p standard deviations from the mean in each

dimension. We found that resizing the prediction region was

not necessary in our experiments and simply used p = 1.

Note that the planner is allowed to choose different favorable

dynamics (through different ξ) at different time steps; this

is consistent with the formulation of previously proposed

algorithms based on the same principle [12], [6], [7], [4].

IV. OPTIMAL CONTROL

We control the dynamical system using model-predictive

control (MPC) [14], [15], [16], [17]. This section does not

contain any novel contributions; it describes our choice of

optimal control algorithm and clarifies how optimal control

is used in conjunction with the exploration objective.

Our exploration framework requires optimizing a trajec-

tory based on Equation (1), executing the actions along

this trajectory in open loop for 1/νc seconds, and then

reoptimizing the trajectory based on the new state and the

updated model. Since the dynamics model is continually

changing, constant replanning is likely to be required, as

is the case in prior methods [18]. MPC is an approach

for optimal control that fits naturally with our exploration

formulation and is well suited for sample-efficient online

learning. We briefly summarize our approach to optimal

control in this section, though in practice any trajectory

optimization algorithm that can solve problems of the type

shown in Equation (1) would be suitable.

The optimal control objective is to find a sequence of

states and controls that minimize the time integral of the cost

rate function q(ẋ, x, u) while optionally enforcing that a goal

state is reached. To solve this continuous control problem,

we must first discretize it in time. Instead of enforcing

the dynamics at all times, we now only enforce them at a

finite number k of appropriately chosen collocation times

0 ≤ hτ1 ≤ hτ2 ≤ · · · ≤ hτk ≤ h, where h is the time

horizon and τi ∈ [0, 1]. To simplify notation, let ẋi = ẋ(hτi).
The states x(t) can be expressed as time integrals of the time

derivatives of states as follows:

x(hτi)− x(0) = h

∫ τi

0

ẋ(hτ)dτ ≈ h
∑

j

Aij(k)ẋj

x(h)− x(0) = h

∫ 1

0

ẋ(hτ)dτ ≈ h
∑

j

wj ẋj ,

where the approximate integration operators Aij and wj are

chosen depending on the type of time discretization scheme

used.

The optimal control problem can now be expressed as a

discrete time non-linear optimization problem:

minimize ẋi,xi,ui,ξi,h>0 : h
∑

i

wiq(xi, ui) (2)

s.t. ẋi = E[f(xi, ui)] + Cov
1

2 [f(xi, ui)] · ξi,

xi := xstart + h
∑

j

Aij ẋj , −1 ≤ ui, ξi ≤ 1

optional constraints: xgoal − xstart = h
∑

i

wiẋi, h = hfixed

where the decision vector variables ẋi, xi, ui, ξi are now

time-discretized versions of the corresponding variables from

Equation (1). We have thus replaced a constrained functional

optimization problem to a constrained finite dimensional

optimization problem.

Pseudospectral methods [9] specify efficient time dis-

cretization schemes grounded in implicit integration theory.

In these schemes, the time steps τ1, . . . τk are not equally

spaced, but instead are clustered more densely around the

endpoints. The approximate integration operators Aij and

wj are prescribed accordingly. Pseudospectral methods are

advantageous because fewer collocation times can be used

without compromising accuracy, the dual variables of the

time-discretized optimization problem are provably close to

the co-states of the continuous time optimization problem,

and interpolation of the resulting controls between colloca-

tion time steps is well specified. In our experiments we used

Gaussian pseudospectral time discretization [9].

The optimization problem (2) is non-convex, so in general

we can only guarantee convergence to a (potentially infeasi-

ble) local optimum. In our experiments we used a sequential

linear programming solver [19], though any other efficient

non-linear solver may also be used.

V. DIRICHLET PROCESS MIXTURE OF LINEAR MODELS

Optimism-driven exploration requires accurate variance

estimates (or trust regions) for the partially learned dynamics

model. Furthermore, since our algorithm uses online updates,

the dynamics model must strike a good balance between

representational power and ability to scale with the num-

ber of samples. In our experiments, we use the Dirichlet

process mixture model (DPMM) for this purpose. Many

other probabilistic models are also suitable for use with

our method, though the DPMM provides a good balance of

flexibility and efficiency, particularly for physical systems

that are well approximated by the piecewise linear dynamics

that are induced by a Gaussian mixture [20]. The DPMM au-

tomatically chooses the number of clusters in this mixture, as

described in this section. We first review the DPMM [13] and

then propose a simple posterior distribution approximation,

equivalent to weighted least squares, that is well suited for

dynamics prediction. At a high level, it is sufficient to think

of this model as fitting a Gaussian mixture with a Bayesian

procedure that automatically adapts the number of clusters

and provides estimates of the uncertainty in the model.

A single Gaussian distribution (or, equivalently, a single

linear model) is not sufficient to capture the dynamics of



complex nonlinear systems, but a mixture of Gaussians

is often descriptive enough if we assume that, for each

sufficiently small region in state space, the underlying (un-

known) dynamical system is locally linear. Unfortunately, it

is generally not possible to determine the optimal number

of clusters a priori and this parameter has a large impact—

too many clusters leads to over-fitting and too few clusters

collapses modes that could be discriminated between with

enough data. Dirichlet process mixture models (DPMMs)

tackle this issue by allowing a countably infinite number

of clusters, with the actual number of clusters determined

via posterior inference. Under the Dirichlet process prior

the expected number of clusters grows logarithmically in the

number of observations [13] and posterior inference sharpens

this growth rate so as to control model complexity as we

observe more data. Our model is based on the following

standard DPMM [8]:

G |α, λ ∼ DP(α,NW−1(λ))

ηn |G ∼ G

zn | ηn ∼ N (ηn),

where α is the concentration parameter of the Dirichlet

process prior and the base measure is the normal-inverse-

Wishart distribution.

The DPMM represents a distribution over clusterings of

the stacked vector z = [ẋ, x, u]. As discussed later in this

section, we use this model to predict ẋ by conditioning on

the covariate x, u. For convenience of notation we only show

the DPMM for learning full state dynamics. Learning partial

models is also possible (as shown in our experiments) by

defining z in terms of the relevant partial state components.

It is convenient to rewrite this model using an exponential

family representation. The natural parameter vector for the

normal-inverse-Wishart prior is obtained by stacking together

the usual parameters: λ = [nm,Ψ+ nmmT , n, ν + 2+ dz],
where dz is the dimension of z. The vector of sufficient statis-

tics is also obtained by concatenation: T (z) = [z, zzT , 1, 1].
What makes this representation convenient is that posterior

updates are now extremely simple: τ = λ + T (z). Given

the importance of α in DPMMs, we treat it not as a fixed

hyperparameter but endow it with a gamma prior distribution,

Ga(0, 0), which we integrate over via the posterior inference

algorithm.

a) Variational Inference: While Dirichlet process mix-

ture models are often fit with one of a number of different

Markov chain Monte Carlo or sequential Monte Carlo algo-

rithms, given our stringent requirements for computational

efficiency we have chosen instead to make use of variational

inference methods. In particular, we make use of the mean-

field variational inference procedure for DPMMs developed

by Blei and Jordan [8]. This procedure, based on a stick-

breaking representation of the Dirichlet process, requires us

to set an upper bound on the number of clusters that can be

represented. This is a parameter of the inference procedure,

not of the model, and it is generally set to be as high as

computational resources permit. Many of the represented

clusters will not be populated.

The mean-field variational inference algorithm of Blei and

Jordan [8] can be viewed as an approximate version of

expectation-maximization that iterates between the following

two steps:

E step: (3)

ϕk,n ∝ exp

(

∇A(τk)
TT (zn) + ψ(ak)− ψ(bk)

+

k
∑

i=1

(ψ(bi)− ψ(ai + bi))

)

M step: (4)

τk = λ+
∑

n

ϕk,nT (zn),

ak = 1 +
∑

n

ϕk,n,

bk = α+
∑

n

K
∑

j=k+1

ϕj,n,

where ψ is the digamma function, A is the partition function

of the normal-inverse-Wishart prior, and ϕk,n and τk are

variational parameters that are the degrees of freedom of the

algorithm.

To initialize the base measure we start with λ0 =
[0, 0, 0, 2dz+1] and we perform a weighted posterior update

imagining that the entire training set belongs to a single

cluster:

λ = λ0 + w ·
∑

n

T (zi)/
∑

n

T (zi)−1,

where T (zi)−1 is the last component of the vector of

sufficient statistics, and w specifies the relative importance

of the prior with respect to a single observation. With this

choice of prior parameters the clustering method is invariant

to affine transformations of the dataset.

Online variational inference methods (e.g. [11]) could be

used for a further improvement in computational complexity

and running time. We leave this investigation for future

work since the computational cost of planning dominates the

cost of inference in our implementation and the additional

approximations required for online inference might adversely

affect learning performance.

b) Dynamics Prediction: Once the mixture model has

been trained, we use it to predict ẋ given x, u. Unlike

previous approaches that make predictions based only on

conditional expectations with the DPMM [21], our explo-

ration method critically depends on establishing good es-

timates of variance. A difficulty in the DPMM setting is

that it is possible for the conditional distribution under the

model to be multi-modal, which can complicate planning

by introducing local optima. We have run experiments using

the complete conditional distribution and confirmed that this

issue prevents viable trajectory planning during learning even

for systems as simple as an under-actuated pendulum. To
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(a) Benchmark tasks
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Fig. 1: Illustrations of the pendulum, cartpole, and double pendulum benchmarks (top left), the DPMM 2 and 4 seconds

into learning the pendulum task (middle left), visualization of the simulated helicopter in the beginning, middle, and end of

learning to hover (bottom left), the helicopter altitude over multiple trials of the hovering task (top right) and the helicopter

altitude and rotor speed over multiple trials of the autorotation task (middle and bottom right).

address this difficulty, we use an approximation scheme to

produce a unimodal conditional distribution. Let p(k |x, u)
be the posterior cluster assignments computed from the

model using Bayes’ theorem:

p(k |x, u) =
p(x, u | τk)p(k)
∑

l p(x, u | τl)p(l)

p(k) := − log(1 + bk/ak)−
K
∑

l=k+1

log(al/bl + 1).

According to this model, the true conditional density is

given by:

p(ẋ |x, u) =
∑

k

p(k |x, u)p(ẋ |x, u, τk).

We approximate this conditional by p(ẋ |x, u, τ(x, u)) where

τ(x, u) =
∑

k p(k |x, u)τk. This approximation is justified

by its connection to weighted least squares which is made

explicit by expressing τ(x, u) in terms of the sufficient

statistics of the training data:

τ(x, u) = λ+
∑

k,n

p(k |x, u)ϕk,nT (zn), (5)

where ϕk,n is prescribed by Equation (3).

The resulting approximate prediction is the same as the

one we would obtain by weighted Bayesian linear regression

with factored weights vn =
∑

k p(k |x, u)ϕk,n. Average

predictions under this model correspond to predictions made

by weighted least squares with these weights. Weighted

least squares is generally considered robust and accurate

but computationally expensive [22], since it normally must

access the entire training set for each prediction. The ap-

proximation is correct when the state-control pair (x, u) for

which we are predicting dynamics lies on a single cluster,

that is there exists one k∗ such that p(k∗ |x, u) = 1 but in

general the approximation is not consistent. In our approach,

the Dirichlet process mixture model can be regarded as a

form of data compression that makes weighted least squares

computationally tractable.

Our approximate predictive density models the previously

introduced stacked vector z = [ẋ, x, u] as being drawn from

a Gaussian distribution with a normal-inverse-Wishart prior

on the parameters µ,Σ. We end up with hyperparameters

Ψ,m, ν, n summarized by τ(x, u) which depend on x, u



pendulum cartpole double pendulum helicopter hover autorotation

our method 3.9± 1s 10± 3s 17± 7s 5± 2s 8.0± 1s
previous best 12s [23] 17.5s [23] 50s [23] 30− 60 min [24], 32s with PILCO -

TABLE I: Summary of the total interaction times required to learn each task using our method, as well as the best previously

reported interaction times. PILCO results for the helicopter were obtained using the author-provided source code. We

simulated the benchmark systems (pendulum, cartpole, double pendulum) using the same dynamics and parameters as the

competing approach [23]. For the helicopter tasks we used the dynamics and parameters described in prior work [25], [26].

Success rate for each task was 100% based on at least 20 different random starting conditions for each system. The full set

of parameters is available with the code used to run our experiments at: http://rll.berkeley.edu/odens.

through the predictive cluster responsibilities p(k |x, u):

Σ ∼ W−1(Ψ, ν) (6)

µ |Σ ∼ N (m,Σ/n)

z |µ,Σ ∼ N (µ,Σ)

τ(x, u) = [nm,Ψ+ nmmT , n, ν + 2 + dz]

= λ+
∑

k,n

p(k |x, u)ϕk,nT (zn).

The parameter µ can be partitioned conformably with

z as µ = [µẋ, µx, µu]. Our dynamics estimator consists

of the conditional random variable µẋ | τ(x, u), x. Explic-

itly, E[f(x, u)] = E[µẋ | τ(x, u), x, u] and Cov[f(x, u)] =
Cov[µẋ | τ(x, u), x, u]. This estimator captures only model

ambiguity resulting from incomplete knowledge of the sys-

tem’s dynamics. Asymptotically, as more data becomes avail-

able, this ambiguity vanishes, ensuring that our algorithm

transitions smoothly between exploration and exploitation.

Note that we use the conditional distribution of the mean

µẋ | τ(x, u), x, u, rather than the conditional distribution of

the observed state time derivative ẋ | τ(x, u), x, u, since the

latter includes observation noise that will persist asymptoti-

cally while the former excludes observation noise.

VI. EXPERIMENTS

We first evaluate our method on a set of benchmark

problems: the pendulum, cartpole, and double pendulum,

shown in Figure 1. These benchmarks provide a comparison

with previous state-of-the-art methods, and are all designed

to test the ability to plan into the future, since each task

initially requires moving away from the goal before the goal

can be reached. For example, the pendulum must swing

back and forth several times before it is able to reach an

upright position. The metric for evaluating performance on

these benchmarks is the amount of interaction time required

to stabilize the system at a goal state. Previous methods

typically used a smooth shaping cost function to smooth

out the task and guide the algorithm towards the goal [23].

However, our MPC formulation allows us to directly use

trajectory duration as the cost, without shaping, by using the

cost rate q(ẋ, x, u) = 1. Consequently, the tasks presented in

this section were formulated as shortest time to goal planning

problems.

The previous state-of-the-art results on these problems

were achieved by PILCO, which uses a Gaussian process

with an episodic formulation to learn the dynamics [3],

resetting the state between episodes. As shown in Table I,

our method is able to learn each of the benchmark tasks with

2 to 3 times less interaction time and without any resets.

In addition to the benchmarks, we evaluated our algorithm

on several helicopter control tasks, based on a simulator

described in previous work [25]. In the first task, shown

in Figure 1, the algorithm takes control of a helicopter

mid-flight, at an altitude of 20m, and must simultaneously

learn a model and stabilize the helicopter into a hover.

Efficient learning is crucial for this task, since inability

to stabilize quickly can result in loss of altitude and a

crash. Successfully completing the task requires learning

to control the helicopter in a single flight, as no resets

are available. The best algorithm submitted to the 2008

Reinforcement Learning Competition for a similar, but not

identical, helicopter hovering task required about 30 - 60

minutes of interaction and the use of resets, though other

variants required as little as 10 minutes when provided with

a good prior policy [24]. Using PILCO, we were able to

obtain a hovering behavior after 32 seconds of interaction and

8 resets. Our algorithm was able to stabilize the helicopter

in about 5 seconds without resets, losing 3.5m of altitude on

average, and never more than 12m.

When comparing our results to those obtained with PILCO

it is important to account for the differences between the

two approaches. The objective of PILCO is to learn a policy

for minimizing a given cost function so restarts are perforce

required to evaluate the policy from different starting states

and improve it. The objective of our approach is less stringent

– we aim to reach a goal state quickly – which can be

achieved with less system interaction, no restarts and no need

to learn a policy.

While learning level flight is already a challenging task, a

major strength of sample-efficient reinforcement learning is

its ability to perform adaptive control when the dynamics

change unexpectedly. To evaluate this condition, we sim-

ulated an engine failure and used our algorithm to learn

autorotation, which is a technique for stabilizing unpowered

flight by using the flow of air over the blades to simultane-

ously stabilize rotor speed and descent velocity. Details on

this maneuver, along with a model of its dynamics, can be

found in prior work [25]. Our algorithm was provided with

the speed of the rotor, the dynamics of the helicopter during

normal flight, and the target state. Model learning consisted

of learning the relationship between the rotor speed and the



other state variables and controls. Our method was able to

achieve a steady controlled descent after 8 seconds of system

interaction.

Besides sample efficiency, the asymptotic computational

efficiency of our algorithm also improves on the Gaussian

process used by PILCO, since with a suitable online learning

method, the complexity of training the DPMM grows as

O(n log n) in the number of data points [8], and could be

improved to be sublinear with an online algorithm [11].

However, the use of MPC for online replanning carries an

additional computational cost. This cost does not increase

with the number of data points, but is generally quite high.

Our implementation required around 100s of computation per

second of interaction time, of which 15s were spent updating

the DPMM, and the remainder is spent on replanning the

trajectory. As discussed in the next section, fast MPC is an

active research area that could lead to large improvements in

the running time of our method in the future.

VII. DISCUSSION

We presented a data-efficient reinforcement learning algo-

rithm based around online trajectory optimization with an

optimistic exploration strategy that follows the principle of

optimism in the face of uncertainty. Since this exploration

strategy is driven by the uncertainty in the dynamics model,

we chose a Bayesian dynamics model based on the Dirich-

let process mixture model, which allows us to represent

this uncertainty efficiently and accurately. By using model-

predictive control to replan the trajectory online, our method

is able to quickly respond to changes in this model as new

transitions are observed. Together, these components allow

our approach to achieve state-of-the-art sample efficiency on

a set of benchmark problems, and to learn two challenging

helicopter tasks mid-flight.

Our exploration method is based on previous work on

discrete MDPs [6] and linear systems [4] where the strategy

we use has provable sample complexity bounds. Although

these theoretical guarantees do not immediately extend to

arbitrary nonlinear systems, we empirically demonstrate that

our strategy achieves very good results in an online setting

and without any shaping of the cost function. In contrast,

most model-based reinforcement learning algorithms for

continuous systems use a smooth cost function to shape the

task and encourage exploration [3], [10]. While such cost

functions can be easily constructed in practice with basic

knowledge about the task, it is typically not clear if they

serve an essential role in the exploration component or they

are merely helping the planner escape local optima.

Very little system interaction is required to successfully

execute each task. However, its computational requirements

are considerable. The computational cost stems primarily

from the use of model-predictive control, which requires

repeatedly solving a nonlinear optimal control problem.

MPC allows our method to rapidly adapt to changes in

the model and deploy the limited exploration budget more

efficiently, but at a high cost in computation time. Recent

progress in model-predictive control suggests that real-time

MPC methods even for complex, high-dimensional problems,

may be feasible in the near future, either with algorithmic

improvements, parallelism, or specialized hardware [27],

[28], [29]. Integrating these more advanced MPC methods

with our exploration approach is a promising direction for

future work that can make fast, sample-efficient RL a viable

option for real time adaptive control applications.

Although we chose specific methods for exploration, mod-

eling, and control, our approach is modular and extendible.

For instance, the previously mentioned fast MPCs techniques

could be readily incorporated into our method with additional

action dimensions for exploration, and any model that can

provide estimates of the uncertainty in the dynamics could

be combined with our approach. Further exploring the choice

of each of these components is also an interesting direction

for future work.

Our helicopter control results suggest that our method can

be successful at adaptive control tasks, where the algorithm

must quickly “take command” of an unfamiliar dynamical

system. Such methods are especially important for handling

unexpected situations in safety-critical systems such as air-

craft, where a change in the model dynamics due to failure

might require a rapid correction [30]. Our autorotation ex-

ample is one such situation, and we show that our algorithm

can recover gracefully and reliably. Explicitly combining our

approach with a principled handling of safety constraints

could lead to very robust adaptive control methods for safety-

critical applications in the future.
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