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Abstract

In sequential decision problems in an unknown environment, the decision maker often faces a

dilemma over whether to explore to discover more about the environment, or to exploit current

knowledge. We address the exploration-exploitation dilemma in a general setting encompassing

both standard and contextualised bandit problems. The contextual bandit problem has recently

resurfaced in attempts to maximise click-through rates in web based applications, a task with sig-

nificant commercial interest.

In this article we consider an approach of Thompson (1933) which makes use of samples from

the posterior distributions for the instantaneous value of each action. We extend the approach by

introducing a new algorithm, Optimistic Bayesian Sampling (OBS), in which the probability of

playing an action increases with the uncertainty in the estimate of the action value. This results in

better directed exploratory behaviour.

We prove that, under unrestrictive assumptions, both approaches result in optimal behaviour

with respect to the average reward criterion of Yang and Zhu (2002). We implement OBS and

measure its performance in simulated Bernoulli bandit and linear regression domains, and also

when tested with the task of personalised news article recommendation on a Yahoo! Front Page

Today Module data set. We find that OBS performs competitively when compared to recently

proposed benchmark algorithms and outperforms Thompson’s method throughout.

Keywords: multi-armed bandits, contextual bandits, exploration-exploitation, sequential alloca-

tion, Thompson sampling

1. Introduction

In sequential decision problems in an unknown environment, the decision maker often faces a

dilemma over whether to explore to discover more about the environment, or to exploit current

knowledge. We address this exploration-exploitation dilemma in a general setting encompass-
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ing both standard bandit problems (Gittins, 1979; Sutton and Barto, 1998; Auer et al., 2002) and

contextual-bandit problems (Graepel et al., 2010; Li et al., 2010; Auer, 2002; Yang and Zhu, 2002).

This dilemma has traditionally been solved using either ad hoc approaches like ε-greedy or softmax

action selection (Sutton and Barto, 1998, Chapter 2) or computationally demanding lookahead ap-

proaches such as Gittins indices (Gittins, 1979) which provably satisfy an optimality criterion with

respect to cumulative discounted reward. However, the lookahead approaches become intractable

in all but the simplest settings and the ad hoc approaches are generally perceived to over-explore,

despite providing provably optimal long term average reward.

In recent years, Upper Confidence Bound (UCB) methods have become popular (Lai and Rob-

bins, 1985; Kaelbling, 1994; Agrawal, 1995; Auer et al., 2002), due to their low computational cost,

ease of implementation and provable optimality with respect to the rate of regret accumulation.

In this article we consider an approach of Thompson (1933) which uses posterior distributions

for the instantaneous value of each action to determine a probability distribution over the available

actions. Thompson considered only Bernoulli bandits, but in general the approach is to sample a

value from the posterior distribution of the expected reward of each action, then select the action

with the highest sample from the posterior. Since in our generalised bandit setting the samples

are conditioned on the regressor, we label this technique as Local Thompson Sampling (LTS). The

technique is used by Microsoft in selecting adverts to display during web searches (Graepel et al.,

2010), although no theoretical analysis of Thompson sampling in contextual bandit problems has

been carried out.

When these posterior samples are represented as a sum of exploitative value and exploratory

value, it becomes clear that LTS results in potentially negative exploratory values. This motivates a

new algorithm, Optimistic Bayesian Sampling (OBS), which is based on the LTS algorithm, which

is modified by replacing negative exploratory value with a zero value.

We prove that, under unrestrictive assumptions, both approaches result in optimal behaviour in

the long term consistency sense described by Yang and Zhu (2002). These proofs use elementary

and coupling techniques.

We also implement LTS and OBS and measure their performance in simulated Bernoulli bandit

and linear regression domains, and also when tested with the task of personalised news article

recommendation on the the Yahoo! Front Page Today Module User Click Log Data Set (Yahoo!

Academic Relations, 2011). We find that LTS displays competitive performance, a view shared by

Chapelle and Li (2011), and also that OBS outperforms LTS throughout.

1.1 Problem Formulation

An agent is faced with a contextual bandit problem as considered by Yang and Zhu (2002). The

process runs for an infinite sequence of time steps, t ∈ T = {1,2, . . .}. At each time step, t, a

regressor, xt ∈ X , is observed. An action choice, at ∈ A , A = {1, . . . ,A},A < ∞, is made and a

reward rt ∈ R is received.

The contextual bandit framework considered assumes that reward can be expressed as

rt = fat
(xt)+ zt,at

where the zt,a are zero mean random variables with unknown distributions and fa : X → R is an

unknown continuous function of the regressor specific to action a. The stream of regressors xt is

assumed not to be influenced by the actions or the rewards, and for simplicity we assume that these
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are drawn independently from some fixed distribution on X .1 For our actions to be comparable,

we assume that ∀a ∈ A ,∀t ∈ T ,∀x ∈ X , fa(x)+ zt,a is supported on the same set, S . Furthermore to

avoid boundary cases we assume that ∀a ∈ A

sup
x∈X

fa(x)< supS . (1)

In situations where the zt,a have unbounded support, S =R, and (1) is vacuous if X is compact. The

condition is meaningful in situations where S is compact, such as if rewards are in {0,1}.

Definition 1 The optimal expected reward function, f ∗ : X → R, is defined by

f ∗(x) = max
a∈A

fa(x).

A minimal requirement for any sensible bandit algorithm is the average reward convergence crite-

rion of Yang and Zhu (2002), which identifies whether a sequence of actions receives, asymptot-

ically, rewards that achieve this optimal expected reward. Hence the main theoretical aim in this

article is to prove under mild assumptions that LTS and OBS constructs a sequence of actions such

that
∑t

s=1 fas
(xs)

∑t
s=1 f ∗(xs)

a.s.
→ 1 as t → ∞. (2)

The choice of action at is based on the current and past regressors, {x1, . . . ,xt}, past action

choices, {a1, . . . ,at−1}, and past rewards, {r1, . . . ,rt−1}. Denote Ĩ1 = /0 and, for all times {t ∈ T :

t ≥ 2}, denote

Ĩt = (x1, . . . ,xt−1,r1, . . . ,rt−1,a1, . . . ,at−1).

Furthermore denote all of the prior information available as I0 and also all the information available

at time t as It (= I0 ∪ Ĩt).

Definition 2 The policy,
(

πt(·)
)

t∈T
, is a sequence of conditional probability mass functions where

πt(a) = P(at = a|It ,xt). At each time step t, the policy maps It and xt to a probability mass function

giving the probability of each action being selected.

The policy is constructed in advance of the process, using only I0, and is the function used to map

It and xt to action selection probabilities for each of the actions.

Note also that, under a Bayesian approach, the information sets It result in posterior distributions

for quantities of potential interest. In particular I0 defines the assumed functional forms of the fa,

and a prior distribution over the assumed space of functions, which is then updated as information

is received, resulting in a Bayesian regression procedure for estimating the reward functions fa, and

hence a posterior distribution and expectation of fa(xt) conditional on the information set It ∪{xt}.

We do not however formulate an exact probability model of how regressors are sampled, rewards

are drawn and inference is carried out. Instead we rely on Assumptions 1–5 placed on the Bayesian

regression framework, given in Section 3, that will be satisfied by standard models for the xt , rt and

prior information I0. In particular, randomness resulting from the regressor and reward sequences

are controlled through these assumptions, whereas our proofs control the randomness due to the

1. Note that this assumption of iid sampling from X is only used in the latter part of the proof of Theorem 1. In

fact an ergodicity condition on the convergence of sample averages would suffice, but would increase the notational

complexity of the proofs.
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action selection method. A useful framework to keep in mind is one in which regressors are drawn

independently from a distribution on a compact Euclidean space X , each zt,a is a Gaussian random

variable independent of all other random variables, and the prior information I0 includes that each

fa is a linear function, and a prior distribution over the parameters of these functions; we revisit this

model in Section 4.2 to demonstrate how this framework does indeed ensure that all the Assumptions

are satisfied. However much more general frameworks will also result in our Assumptions being

satisfied, and restricting to a particular probability model at this point will unnecessarily restrict the

analysis.

1.2 Algorithm Motivation

The choice of algorithm presented in this article is motivated by both infinite and finite time consid-

erations. The first subsection of this section describes desirable infinite time properties for an algo-

rithm that are of importance in proving optimality condition (2). The second subsection describes,

in a heuristic manner, desirable finite time properties to help understanding of the motivation behind

our choice of algorithm, as opposed to the many other algorithms that also satisfy the infinite time

requirements.

1.2.1 INFINITE TIME CONSIDERATIONS

In conventional interpretations of similar problems (Littman, 1996; Singh et al., 2000; Sutton and

Barto, 1998), there are two major aspects of generating a policy. The first is developing an evaluation

scheme and the second an action selection scheme.

So that the agent can evaluate actions, a regression procedure is used to map the current regressor

and the history It to value estimates for the actions. Denote the agent’s estimated value of action

a at time t when regressor x is presented as f̂t,a(x). Since f̂t,a is intended to be an estimate of fa,

it is desirable that the evaluation procedure is consistent, that is, ∀a ∈ A ,∀x ∈ X , f̂t,a(x)− fa(x)
converges in some sense to 0 as nt,a → ∞, where nt,a is the number of times action a has been

selected up to time t. Clearly such convergence will depend on the sequence of regressor values

presented. However consistency of evaluation is not the focus of this work, so will be assumed

where necessary and the evaluation procedure used for all algorithms compared in the numerical

experiments in §4 will be the same. The main focus of this work is on the action selection side of

the problem.

Once action value estimates are available, the agent must use an action selection scheme to

decide which action to play. So that the consistency of estimation is achieved, it is necessary that

the action selection ensures that every action is selected infinitely often. In this work, we consider

algorithms generating randomised policies as a way of ensuring infinite exploration is achieved.

In addition to consistent evaluation and infinite exploration, it is also necessary to exploit the

obtained information. Hence the action selection method should be greedy in the limit, that is, the

policy πt is designed such that

∑
a∈argmaxa∈A f̂t,a(xt)

πt(a)→ 1 as t → ∞.

These considerations result in the consideration of GLIE (greedy in the limit with infinite ex-

ploration) policies, for which action selection is greedy in the limit and also guarantees infinite
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exploration (Singh et al., 2000). We combine a GLIE policy with consistent evaluation to achieve

criterion (2).

1.2.2 FINITE TIME CONSIDERATIONS

As well as convergence criterion (2), our choice of algorithm is also motivated by informal finite

time considerations, since many algorithms for which (2) holds are perceived to explore more than

is desirable. We note that formal optimality criteria are available, such as expected cumulative dis-

counted reward (Gittins, 1979) and rate of regret accumulation (Auer et al., 2002). However an

analysis of Thompson sampling under these criteria has proved elusive, and our heuristic approach

inspires a modification of Thompson sampling which compares favourably in numerical experi-

ments (see Section 4). In this section, we discuss the short term heuristics.

In particular, consider the methodology of evaluating both an exploitative value estimate and an

‘exploratory bonus’ at each time step for each action, and then acting greedily based on the sums

of exploitative and exploratory values (Meuleau and Bourgine, 1999). An action’s exploitative

value estimate corresponds to the expected immediate reward (i.e., expected reward for the current

timestep) from selecting the action, given information obtained so far, and therefore the posterior

expectation of expected immediate reward is the appropriate exploitative action value estimate.

Definition 3 Let pa(· |It ,xt) denote the posterior distribution of fa(xt) given It and xt , and let QTh
t,a

be a random variable with distribution pa(· |It ,xt). The exploitative value, f̂t,a(xt), of action a at

time t is defined by

f̂t,a(xt) = E(QTh
t,a |It ,xt).

Thompson (1933) suggests selecting action at with probability equal to the probability that at is

optimal, given It (there is no regressor in Thompson’s framework). This principle has recently been

used by Graepel et al. (2010), who implement the scheme by sampling, for each a, QTh
t,a from the

posterior distribution pa(· |It ,xt) and selecting an action that maximises QTh
t,a. This corresponds to

using an exploratory value f̃ Th
t,a (xt) :=QTh

t,a− f̂t,a(xt) which is sampled from the posterior distribution

of the error in the exploitative action value estimate at the current regressor. We name this scheme

Local Thompson Sampling (LTS), where ‘local’ makes reference to the fact that action selection

probabilities are the probabilities that each action is optimal at the current regressor. Under mild

assumptions on the posterior expectation and error distribution approximations used, one can show

that Local Thompson Sampling guarantees that convergence criterion (2) holds (see Theorem 1).

However the exploratory value f̃ Th
t,a (xt) under LTS has zero conditional expectation given It and

xt (by Definition 3) and can take negative values. Both of these properties are undesirable if one as-

sumes that information is useful for the future. One consequence of this is that, in regular situations,

the probability of selecting an action â∗t ∈ argmaxa∈A f̂t,a(xt) decreases as the posterior variance of

fâ∗t (xt)− f̂t,â∗t (xt) increases, that is, if the estimate for an action with the highest exploitative value

has a lot of uncertainty then it is less likely to be played than if the estimate had little uncertainty.

To counteract this feature of LTS, we introduce a new procedure, Optimistic Bayesian Sampling

(OBS) in which the exploratory value is given by

f̃t,a(xt) = max(0, f̃ Th
t,a (xt)− f̂t,a(xt)).

This exploratory value has positive conditional expectation given It and xt and cannot take negative

values. The exploratory bonus results in increased selection probabilities for uncertain actions, a
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desirable improvement when compared to LTS. In §3, we show that OBS satisfies the convergence

criterion (2) under mild assumptions. Furthermore, simulations described in §4 indicate that the

OBS algorithm does indeed outperform LTS, confirming the intuition above.

1.3 Related Work

There are three broad classes of exploration approach: undirected, myopic and belief-lookahead

(Asmuth et al., 2009). In undirected exploration, the action selection distribution depends only on

the values of the exploitative action value estimates. Examples of undirected exploration include

ε-greedy and softmax action selection (see Chapter 2 of Sutton and Barto, 1998). In general, the

short term performance of undirected methods is restricted by the fact that estimate uncertainty is

not considered.

At the other end of the spectrum, in belief-lookahead methods, such as those suggested by

Gittins (1979), a fully Bayesian approach is incorporated in which the action yielding the highest

expected cumulative reward over the remainder of the process is selected,2 thereby considering ex-

ploitative and exploratory value both directly and simultaneously and providing the optimal decision

rule according to the specific criterion of maximising expected cumulative discounted reward. Ac-

cording to Wang et al. (2005),“in all but trivial circumstances, there is no hope of exactly following

an optimal action selection strategy”. Furthermore, even when it is possible to evaluate the optimal

decision rule, “the optimal solutions are typically hard to compute, rely on artificial discount factors

and fail to generalise to realistic reward distributions” (Scott, 2010). There is also the issue of ‘in-

complete learning’; Brezzi and Lai (2000) showed that, for standard bandit problems, Gittins’ index

rule samples only one action infinitely often and that this action is sub-optimal with positive prob-

ability. If the modelling assumptions and posterior approximations used are accurate, then this is a

price worth paying in order to maximise expected cumulative discounted reward. However, if the

posterior approximation method admits a significant error, then it may be that a too heavy reliance

is placed on early observations. For these reasons, Gittins-type rules are rarely useful in practice.

In myopic methods, the uncertainty of action value estimates is taken into account, although the

impact of action selections on future rewards is not considered directly. The exploratory component

of myopic methods aims to reduce the uncertainty at the current regressor without explicitly con-

sidering future reward. By reducing uncertainty at each point presented as a regressor, uncertainty

is reduced globally ‘in the right places’ without considering the regressor distribution. Myopic ac-

tion selection can be efficient, easy to implement and computationally cheap. The LTS and OBS

methods presented in this paper are myopic methods. The other main class of myopic methods

are the upper confidence bound methods, which are now popular in standard and contextual bandit

applications, and in some settings can be proved to satisfy an optimality criterion with respect to

the rate of accumulation of regret (for an overview, and definitions of various notions of regret, see

Cesa-Bianchi and Lugosi, 2006).

Inspired by the work of Lai and Robbins (1985) and Agrawal (1995), Auer et al. (2002) proposed

a myopic algorithm, UCB1, for application in standard bandit problems. The exploratory value at

time t for action a, which we denote f̃t,a, takes the simple form

f̃t,a =

√

2log(t −1)

nt,a
.

2. Note that this is only meaningful in the case of discounted rewards or if the time sequence is finite.
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Infinite exploration is guaranteed by the method, since the exploratory value grows in periods

in which the associated action is not selected. Moreover, Auer et al. (2002) prove that the ex-

pected finite-time regret is logarithmically bounded for bounded reward distributions, matching the

(asymptotically) optimal rate derived by Lai and Robbins (1985) uniformly over time. Auer et al.

(2002) also propose a variant of UCB1, named UCB-Tuned, which incorporates estimates of the

reward variances, and show it to outperform UCB1 in simulations, although no theoretical results

are given for the variant.

Two recently-proposed variants of the UCB1 algorithm are the MOSS (Minimax Optimal Strat-

egy in the Stochastic case) algorithm (Audibert and Bubeck, 2010) and the UCB-V algorithm (Au-

dibert and Bubeck, 2009). The MOSS algorithm is defined for finite problems with known horizon

|T |, but the ‘doubling trick’ described in §2.3 of Cesa-Bianchi and Lugosi (2006) can be used if the

horizon is not known. MOSS differs from UCB1 by replacing the log(t −1) term in the exploratory

value with log
(

|T |
|A |nt,a

)

and hence selecting intensively drawn actions less often. The UCB-V al-

gorithm incorporates estimates of reward variance in a similar way to the UCB-Tuned algorithm.

The UCB-Tuned, MOSS and UCB-V algorithms provide suitable benchmarks for comparison in

Bernoulli bandit problems.

Another class of ‘UCB-type’ algorithms was proposed initially by Lai and Robbins (1985),

with a recent theoretical analysis by Garivier and Cappé (2011). The evaluation of action values

involves constrained maximisation of Kullback-Leibler divergences. The primary purpose of the

KL-UCB algorithm is to address the non-parametric problem although parametric implementation is

discussed and optimal asymptotic regret bounds are proven for Bernoulli rewards. In the parametric

case, a total action value corresponds to the highest posterior mean associated with a posterior

distribution that has KL divergence less than a pre-defined term increasing logarithmically with

time. A variant of KL-UCB, named KL-UCB+ is also proposed by Garivier and Cappé (2011) and

is shown to outperform KL-UCB (with respect to expected regret) in simulated Bernoulli reward

problems. Both algorithms also serve as suitable benchmarks for comparison in Bernoulli bandit

problems.

For contextual bandit problems, Interval estimation (IE) methods, such as those suggested by

Kaelbling (1994), Pavlidis et al. (2008) and Li et al. (2010) (under the name LinUCB), have become

popular. They are UCB-type methods in which actions are selected greedily based on the upper

bound of a confidence interval for the exploitative value estimate at a fixed significance level. The

exploratory value used in IE methods is the difference between the upper bound and the exploitative

value estimate. The width of the confidence interval at a particular point in the regressor space is

expected to decrease the more times the action is selected.

There are numerous finite-time analyses of the contextual bandit problem. The case of lin-

ear expected reward functions provides the simplest contextual setting and examples of finite-time

analyses include those of the SupLinRel and SupLinUCB algorithms by Auer (2002) and Chu et al.

(2011) respectively, in which high probability regret bounds are established. The case of gener-

alised linear expected rewards is considered by Filippi et al. (2010), proving high probability regret

bounds for the GLM-UCB algorithm. Slivkins (2011) provides an example of finite-time analysis

of contextual bandits in a more general setting, in which a regret bound is proved for the Contextual

Zooming algorithm under the assumptions that the joint regressor and action space is a compact

metric space and the reward functions are Lipschitz continuous over the aforementioned space.

On the other hand, very little is known about the theoretical properties of Thompson sampling.

The only theoretical studies of Thompson sampling that we are aware of are by Granmo (2008)
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and Agrawal and Goyal (2011). The former work considers only the two-armed non-contextual

Bernoulli bandit and proves that Thompson sampling (the Bayesian Learning Automaton, in their

terminology) converges to only pulling the optimal action with probability one. The latter work con-

siders the K-armed non-contextual Bernoulli bandit and proves an optimal rate of regret (uniformly

through time) for Thompson sampling. In this work, we focus on proving convergence criterion (2)

for the LTS and OBS algorithms in a general contextual bandit setting in §3 and perform numerical

experiments in §4 to illustrate the finite time properties of the algorithms.

2. Algorithms

In this section, we describe explicitly how the action selection is carried out at each decision instant

for both the LTS and the OBS algorithms.

At each time t, the LTS algorithm requires a mechanism that can, for each action a ∈ A , be

used to sample from the posterior distribution of fa(xt) given regressor xt and information set It .

Recall that the density of this distribution is denoted as pa(·|It ,xt) and a random variable from the

distribution as QTh
t,a.

Algorithm 1 Local Thompson Sampling (LTS)

Input: Posterior distributions {pa(·|It ,xt) : a ∈ A}
for a = 1 to A do

Sample QTh
t,a ∼ pa(·|It ,xt)

end for

Sample at uniformly from argmaxa∈A QTh
t,a

As in the case of the LTS algorithm, at each time t, the OBS algorithm requires a mechanism that

can, for each action a∈A , be used to sample from the posterior distribution of fa(xt) given regressor

xt and information set It . Additionally, the OBS algorithm requires a mechanism for evaluating

exploitative value f̂t,a(xt), where exploitative value is taken to be the posterior expectation of fa(xt)
given It and xt .

Algorithm 2 Optimistic Bayesian Sampling (OBS)

Input: Posterior distributions {pa(·|It ,xt) : a ∈ A}
for a = 1 to A do

Sample QTh
t,a ∼ pa(·|It ,xt)

Evaluate f̂t,a(xt) = E(QTh
t,a|It ,xt)

Set Qt,a = max(QTh
t,a, f̂t,a(xt))

end for

Sample at uniformly from argmaxa∈A Qt,a

3. Analysis

Theoretical properties of the LTS and OBS algorithms are analysed in this section. In particular,

we focus on proving convergence in the sense of (2) under mild assumptions on the posterior dis-

tributions and expectations used. Regret analysis would provide useful insight into the finite time
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properties of the LTS and OBS algorithms. However, we consider the problem in a general setting

and impose only weak constraints on the nature of the posterior distributions used to sample action

values, making the type of regret analysis common for UCB methods difficult, but allowing the

convergence result to hold for a wide class of bandit settings and posterior approximations.

3.1 LTS Algorithm Analysis

We begin our convergence analysis by showing that the LTS algorithm explores all actions infinitely

often, thus allowing a regression procedure to estimate all the functions fa. In order to do this we

need to make some assumptions.

To guarantee infinite exploration, it is desirable that the posterior distributions, pa(·|·, ·), gen-

erating the LTS samples are supported on (infS ,supS), a reasonable assumption in many cases.

We make the weaker assumption that each sample can be greater than (or less than) any value in

(infS ,supS) with positive probability. For instance, this assumption is satisfied by any distribution

supported on (infS , infS +δ1)∪ (supS −δ2,supS) for δ1,δ2 > 0.

It is also desirable that the posterior distributions remain fixed in periods of time in which

the associated action is not selected, also a reasonable assumption if inference is independent for

different actions. We make the weaker assumption that, in such periods of time, a lower bound exists

for the probability that the LTS sample is above (or below) any value in (infS ,supS). Formally, we

make the following assumption:

Assumption 1 Let a ∈ A be an arbitrary action, let T be an arbitrary time, let IT be an arbitrary

history to time T , and let M ∈ (infS ,supS). There exists an ε > 0 depending on a, T , IT and M

such that for all t > T , all histories

It = IT ∪{xT , . . . ,xt−1,rT , . . . ,rt−1,aT , . . . ,at−1}

such that as 6= a for s ∈ {T, . . . , t −1}, and all xt ∈ X

P(QTh
t,a > M|It ,xt)> ε

and

P(QTh
t,a < M|It ,xt)> ε.

Along with Assumption 1, we also assume that the posterior distributions concentrate on func-

tions of the regressor bounded away from supS as their associated actions are selected infinitely

often. Formally, we assume that:

Assumption 2 For each action a ∈ A , there exist a function ga : X → (infS ,supS) such that

(i)
[

QTh
t,a −ga(xt)

] P
→ 0 as nt,a → ∞,

(ii) supx∈X ga(x)< supS .

We do not take ga = fa since this allows us to prove infinite exploration even when our regression

framework does not support the true functions (e.g., when I0 supports only linear functions, but the

true fa are actually non-linear functions). Furthermore, the second condition, when combined with

Assumption 1, ensures that over periods in which action a is not selected there is a constant lower
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bound on the probability that either the LTS or OBS algorithms sample a QTh
t,a value greater than any

gã(x).
Although there is an apparent tension between Assumption 1 and Assumption 2(i), note that

Assumption 1 applies to the support of the posterior distributions for periods in which associated

actions are not selected, whereas Assumption 2(i) applies to the limits of the posterior distributions

as their associated actions are selected infinitely often.

Lemma 2 shows that, if Assumption 1 and 2 hold, then the proposed algorithm does guarantee

infinite exploration. The lemma is important as it can be combined with Assumption 2 to imply

that, for all a ∈ A ,
[

QTh
t,a −ga(xt)

] P
→ 0 as t → ∞

since ∀a ∈ A ,nt,a → ∞ as t → ∞. The proof of Lemma 2 relies on the following lemma (Corollary

5.29 of Breiman, 1992):

Lemma 1 (Extended Borel-Cantelli Lemma). Let It be an increasing sequence of σ-fields and let

Vt be It+1-measurable. Then

{

ω :
∞

∑
t=0

P(Vt |It) = ∞

}

= {ω : ω ∈Vt infinitely often}

holds with probability 1.

Lemma 2 If Assumption 1 and 2 hold, then the LTS algorithm exhibits infinite exploration with

probability 1, that is,

P

(

⋃

a∈A

{nt,a → ∞ as t → ∞}

)

= 1.

Proof Fix some arbitrary k ∈ {2, . . . ,A}. Assume without loss of generality that actions in A inf =
{k, . . . ,A} are selected infinitely often and actions in Afin = {1, . . . ,k−1} are selected finitely often.

By Assumption 2 and the infinite exploration of actions in A inf, we have that for all actions ainf ∈
A inf there exists a function gainf : X → (infS ,supS) such that

[

QTh
t,ainf −gainf(xt)

] P
→ 0 as t → ∞.

Therefore, for fixed δ > 0, there exists a finite random time, Tδ, that is the earliest time in T such

that for all actions ainf ∈ A inf we have

P
(

|QTh
t,ainf −gainf(xt)|< δ

∣

∣

∣It ,xt , t > Tδ

)

> 1−δ. (3)

Note that, by Assumption 2, we can choose δ to be small enough that such that for all actions a ∈ A

and regressors x ∈ X ,

ga(x)+δ < supS . (4)

Since all actions in Afin are selected finitely often, there exists some finite random time Tf that

is the earliest time in T such that no action in Afin is selected after Tf . Let T = max{Tδ,Tf }. From

(4) and Assumption 1 we have that for each afin ∈ Afin\1 there exists an εafin > 0 such that

P

(

QTh
t,afin < max

a∈A
ga(xt)+δ

∣

∣

∣
It ,xt , t > T

)

> εafin , (5)
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and also that there exists an ε1 > 0 such that

P

(

QTh
t,1 > max

a∈A
ga(xt)+δ

∣

∣

∣
It ,xt , t > T

)

> ε1. (6)

Define the events:

G
δ
t,a =

{

QTh
t,a > max

a∈A
ga(xt))+δ

}

,

Gδ
t,a =

{

QTh
t,a < max

a∈A
ga(xt)+δ

}

,

Gδ
t,a =

{

|QTh
t,a −ga(xt)|< δ

}

.

Then the LTS action selection rule implies that

G
δ
t,1 ∩

(

⋂

afin∈Afin\1

Gδ
t,afin

)

∩

(

⋂

ainf∈A inf

Gδ
t,ainf

)

⊂ {at = a},

so that

P(at = 1|It ,xt ,T > t)≥ P

(

G
δ
t,1 ∩

(

⋂

afin∈Afin\1

Gδ
t,afin

)

∩

(

⋂

ainf∈A inf

Gδ
t,ainf

)

∣

∣

∣

∣

It ,xt , t > T

)

. (7)

The set {G
δ
t,1,G

δ
t,a,G

δ
t,b : a = 2, . . . ,k− 1,b = k, . . . ,A} is a conditionally independent set of events

given It and xt . Therefore, by (3), (5) and (6), we have

P

(

G
δ
t,1 ∩

(

⋂

afin∈Afin\1

Gδ
t,afin

)

∩

(

⋂

ainf∈A inf

Gδ
t,ainf

)

∣

∣

∣

∣

It ,xt , t > T

)

> εk−1(1−δ)A−k+1 (8)

where ε = minafin∈Afin εafin . Combining (7) and (8), it follows that

P(at = 1|It ,xt , t > T )> εk−1(1−δ)A−k+1

so that

∑
t∈T

P(at = 1|It ,xt)≥
∞

∑
t=T+1

P(at = 1|It ,xt)

=
∞

∑
t=T+1

P(at = 1|It ,xt , t > T )

>
∞

∑
t=T+1

εk−1(1−δ)A−k+1 = ∞

since T is almost surely finite. Hence, by Lemma 1, {at = 1} occurs infinitely often almost surely,

contradicting the assumption that 1 ∈ Afin. Since action 1 was chosen arbitrarily from the set Afin,
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any action in Afin would cause a contradiction. Therefore, Afin = /0, that is, every action is selected

infinitely often almost surely.

When we return to the notion of exploitative value estimates f̂t,a(xt) and hence the concept of a

greedy action, then we wish to ascertain whether the algorithm is greedy in the limit. Assumption

2 only implies that the sum of exploitative and exploratory values tends to a particular function of

the regressor and not that the exploratory values tend to zero. Although a minor point, the infinite

exploration, given by Assumption 1 and 2, needs to be complemented with an assumption that the

exploitative value estimates are converging to the same limit as the sampled values QTh
t,a in order

to prove that the policy generated by the LTS algorithm is GLIE. This assumption is not used in

proving that the LTS algorithm generates policies satisfying convergence criterion (2) but is used

for the equivalent proof for the OBS algorithm (see §3.2).

Assumption 3 For all actions a ∈ A

[

f̂t,a(xt)−ga(xt)
] P
→ 0 as nt,a → ∞

for ga defined as in Assumption 2.

Lemma 3 If Assumptions 1, 2 and 3 hold, then the LTS algorithm policy is GLIE.

Proof For any a ∈ A , since

f̃ Th
t,a = QTh

t,a − f̂t,a(xt),

Assumptions 2 and 3 give

f̃ Th
t,a (xt)

P
→ 0 as nt,a → ∞. (9)

Since Assumptions 1 and 2 are satisfied, infinite exploration is guaranteed by Lemma 2. This infinite

exploration and (9) imply that ∀a ∈ A

f̃ Th
t,a (xt)

P
→ 0 as t → ∞. (10)

Let us denote the set

A
∗
t = argmax

a∈A

f̂t,a(xt).

By splitting value samples into exploitative and exploratory components we have

P

(

at ∈ A
∗
t

∣

∣It ,xt

)

= P

(

max
a∈A∗

t

QTh
t,a > max

a∈A\A∗
t

QTh
t,a

∣

∣

∣It ,xt

)

= P

(

max
a∈A

f̂t,a(xt)+max
a∈A∗

t

f̃ Th
t,a (xt)> max

a∈A\A∗
t

[

f̂t,a(xt)+ f̃ Th
t,a (xt)

]∣

∣

∣It ,xt

)

≥ P

(

max
a∈A

f̂t,a(xt)− max
a∈A\A∗

t

f̂t,a(xt)> 2max
a∈A

∣

∣ f̃ Th
t,a (xt)

∣

∣

∣

∣

∣It ,xt

)

a.s.
→ 1 as t → ∞,

since the right hand side of the last inequality converges in probability to 0 by (10) and

max
a∈A

f̂t,a(xt)> max
a∈A\A∗

t

f̂t,a(xt)
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by definition of A∗
t . Hence, the action selection is greedy in the limit. Lemma 2 ensures infinite

exploration, so the policy is GLIE.

We have shown we can achieve a GLIE policy even when we do not have consistent regression.

However, to ensure the convergence condition (2) is satisfied we need to assume consistency, that

is, that the functions ga (to which the QTh
t,a converge) are actually the true functions fa.

Assumption 4 For all actions a ∈ A and regressors x ∈ X ,

ga(x) = fa(x).

The following Theorem is the main convergence result for the LTS algorithm. Its proof uses the

fact that, under the specified assumptions, Lemma 2 implies that, for all actions a ∈ A ,

[

QTh
t,a − fa(xt)

] P
→ 0 as t → ∞.

We then use a coupling argument (dealing with the dependence in the action selection sequence) to

prove that the LTS algorithm policy satisfies convergence criterion (2).

Theorem 1 If Assumptions 1, 2 and 4 hold, then the LTS algorithm will produce a policy satisfying

convergence criterion (2).

Proof Recall that the optimal expected reward function is defined by f ∗(x) = maxa∈A fa(x). Fix

some arbitrary δ > 0. Denote the event

Eδ
t =

{

f ∗(xt)− fat
(xt)< 2δ

}

so that Eδ
t is the event that true expected reward for the action selected at time t is within 2δ of the

optimal expected reward at time t.

The first part of the proof consists of showing that

P(Eδ
t |It ,xt)

a.s.
→ 1 as t → ∞.

From Assumptions 2 and 4, and the infinite exploration guaranteed by Lemma 2, ∀a ∈ A

[

QTh
t,a − fa(xt)

] P
→ 0 as t → ∞.

Therefore there exists a finite random time, Tδ, that is the earliest time in T such that ∀a ∈ A

P

(

|QTh
t,a − fa(xt)|< δ

∣

∣

∣

∣

∣

It ,xt , t > Tδ

)

> 1−δ (11)

so that, after Tδ, all sampled QTh
t,a values are within δ of the true values with high probability.

Define the events

Fδ
t,a = {|QTh

t,a − fa(xt)|< δ}.
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Then {Fδ
t,a : a ∈ A} is a conditionally independent set of events given It and xt , so that

P

( ⋂

a∈A

Fδ
t,a|It ,xt , t > Tδ

)

= ∏
a∈A

P(Fδ
t,a|It ,xt , t > Tδ)> (1−δ)A (12)

using inequality (11).

Note that, for any a∗t ∈ argmaxa∈A fa(xt),
⋂

a∈A

Fδ
t,a ⊂ {QTh

t,a∗t
> f ∗(xt)−δ} (13)

and, for any a′ ∈ {a ∈ A : f ∗(xt)− fa(xt)> 2δ},
⋂

a∈A

Fδ
t,a ⊂ {QTh

t,a′ < f ∗(xt)−δ}. (14)

Since argmaxa∈A fa(xt) is non-empty and the action selection rule is greedy on the QTh
t,a, statements

(13) and (14) give ⋂

a∈A

Fδ
t,a ⊂ { f ∗(xt)− fat

(xt)< 2δ}= Eδ
t .

and so

P

(

⋂

a∈A

Fδ
t,a|It ,xt

)

≤ P(Eδ
t |It ,xt). (15)

Inequalities (12) and (15) imply that

P(Eδ
t |It ,xt , t > Tδ)> (1−δ)A.

The condition above holds for arbitrarily small δ so that ∀x ∈ X

P(Eδ
t |It ,xt)

a.s.
→ 1 as t → ∞. (16)

This concludes the first part of the proof. We have shown that the probability that the action

selected at time t has a true expected reward that is within 2δ of that of the action with the highest

true expected reward at time t tends to 1 as t → ∞. We now face the difficulty that the strong law of

large numbers cannot be used directly to establish a lower bound on limt→∞
1
t ∑t

s=1 fas
(xs) since the

expected reward sequence
(

fas
(xs)
)

s∈T
is a sequence of dependent random variables.

The result may be proved using a coupling argument. We will construct an independent se-

quence of actions bs that are coupled with as, but for which we can apply the strong law of large

numbers to fbs
(xs). By relating the expected reward for playing the bs sequence to that of the as

sequence we will show that the as sequence satisfies the optimality condition (2).

Fix some arbitrary ε > 0, define the sets

A
ε
t = {a ∈ A : f ∗(xt)− fa(xt)< 2ε},

and let U1,U2, . . . be a sequence of independent and identically distributed U [0,1] random variables.

The construction of Eε
s and Aε

s implies that Eε
s ⇔ {as ∈ Aε

s }. So, by conditioning on the event

{as ∈ Aε
s } and using the LTS action selection rule, it follows that as can be expressed as

as =

{

argmaxa∈Aε
s

QTh
s,a if Us < P(Eε

s |Is,xs)

argmaxa∈A\Aε
s

QTh
s,a if Us > P(Eε

s |Is,xs)
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with ties resolved using uniform sampling.

We similarly define bs based on the Us as

bs =

{

argmina∈Aε
s

fa(xs) if Us < 1− ε

argmina∈A fa(xs) if Us > 1− ε,

again, with ties resolved using uniform sampling. Note that, since the Us and xs are independent

and identically distributed, the bs are independent and identically distributed, and so is the sequence

fbs
(xs).
Note that by (16) there exists a finite random time

Sε = sup

{

t < ∞ : P(Eε
t |It ,xt)< 1− ε

}

.

By considering the definition of Sε, it follows that

{s > Sε}∩{Us < 1− ε} ⊂ {Us < P(Eε
s |Is,xs)}

⊂

{

as ∈ argmax
a∈Aε

s

QTh
s,a

}

⊂ {as ∈ A
ε
s }

⊂
{

fas
(xs)≥ min

b∈Aε
s

fb(xs)
}

. (17)

Also, it is the case that

{Us < 1− ε}=
{

bs ∈ argmin
b∈Aε

s

fb(xs)
}

⊂
{

fbs
(xs) = min

b∈Aε
s

fb(xs)
}

. (18)

Combining (17) and (18), we have that

{s > Sε}∩{Us < 1− ε} ⊂
{

fas
(xs)≥ fbs

(xs)
}

. (19)

Note also that

{Us > 1− ε} ⊂
{

fbs
(xs) = min

a′∈A
fa′(xs)≤ fas

(xs)
}

. (20)

It follows from (19), (20) and the definition of f ∗ that

{s > Sε} ⊂ { f ∗(xs)≥ fas
(xs)≥ fbs

(xs)}

and so
1

t

t

∑
s=Sε

f ∗(xs)≥
1

t

t

∑
s=Sε

fas
(xs)≥

1

t

t

∑
s=Sε

fbs
(xs). (21)

We will now use inequality (21) to prove the result. The definition of bs implies that

{Us < 1− ε} ⊂ {bs ∈ A
ε
s }.

By considering the definition of Aε
s , it follows that

{Us < 1− ε} ⊂ { fbs
(xs)> f ∗(xs)−2ε}. (22)

Since
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• Sε is finite

• the Us are independent and identically distributed

• the fbs
(xs) are independent and identically distributed

we can use the strong law of large numbers and (22) to get

lim
t→∞

[

1

t

t

∑
s=Sε

fbs
(xs)

]

= EU×X fbs
(xs)

= P(Us < 1− ε)EX [ fbs
(xs)|Us < 1− ε]+P(Us > 1− ε)EX [ fbs

(xs)|Us > 1− ε]

> (1− ε)
(

EX f ∗(·)−2ε
)

+ εEX [ fbs
(xs)|Us > 1− ε], (23)

where EU×X denotes expectation taken with respect to the joint distribution of Ut and xt and EX

denotes expectation taken with respect to the distribution of xt (note that both distributions are the

same for all values of t).

By the strong law of large numbers, we get

lim
t→∞

[

1

t

t

∑
s=Sε

f ∗(xs)

]

= EX f ∗(·). (24)

Since (21), (23) and (24) hold, we have that

EX f ∗(·)≥ lim
t→∞

[

1

t

t

∑
s=Sε

fas
(xs)

]

≥ lim
t→∞

[

1

t

t

∑
s=Sε

fbs
(xs)

]

> (1− ε)
(

EX f ∗(·)−2ε
)

+ εEX [ fbs
(xs)|Us > 1− ε].

This holds for arbitrarily small ε, hence

lim
t→∞

[

1

t

t

∑
s=Sε

fas
(xs)

]

= EX f ∗(·). (25)

It is the case that

lim
t→∞

1

t

t

∑
s=1

fas
(xs) = lim

t→∞

1

t

Sε−1

∑
s=1

fas
(xs)+ lim

t→∞

1

t

t

∑
s=Sε

fas
(xs)

= 0+ lim
t→∞

[

1

t

t

∑
s=Sε

fas
(xs)

]

(26)

as t → ∞ since Sε is finite and fas
(xs)≤ supx∈X fa∗(x)< ∞.

Since both (25) and (26) hold, it is true that

lim
t→∞

[

1

t

t

∑
s=1

fas
(xs)

]

= EX f ∗(·) = lim
t→∞

[

1

t

t

∑
s=1

f ∗(xs)

]

.
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Hence
∑t

s=1 fas
(xs)

∑t
s=1 f ∗(xs)

a.s.
→ 1 as t → ∞.

3.2 OBS Algorithm Analysis

We analyse the OBS algorithm in a similar way to the LTS algorithm. In order to prove infinite

exploration for the OBS algorithm, we must make an additional assumption on the exploitative

value estimates. We assume that exploitative values are less than supS by a constant for all regressor

values during periods of time in which their associated actions are not selected. This allows us to

make statements similar to inequality (5) in the proof of Lemma 2, however relating to OBS samples

rather than LTS samples.

Assumption 5 Let a ∈ A be an arbitrary action, let T be an arbitrary time, and let IT be an

arbitrary history to time T . There exists a δ > 0 depending on a, T , and IT such that for all t > T ,

all histories It = IT ∪{xT , . . . ,xt−1,rT , . . . ,rt−1,aT , . . . ,at−1} such that as 6= a for s ∈ {T, . . . , t −1},

and all x ∈ X ,

supS − f̂t,a(x)> δ.

We now show that the OBS algorithm explores all actions infinitely often. Assumptions 2 and 3

imply that, for any action a ∈ A ,

[

Qt,a −ga(xt)
] P
→ 0 as nt,a → ∞

so that OBS samples associated with actions assumed to be selected infinitely often can be treated in

the same way as LTS samples are in the proof of Lemma 2. The only slight difference in the proof

comes in the treatment of samples associated with actions assumed to be selected finitely often,

although Assumption 5 ensures that the logic is similar.

Lemma 4 If Assumption 1, 2, 3 and 5 hold, then the OBS algorithm exhibits infinite exploration

with probability 1.

Proof Since Qt,a = max(QTh
t,a, f̂t,a(xt)), Assumption 2 and 3 give that ∀a ∈ A inf

[

Qt,a −ga(xt)
] P
→ 0 as t → ∞.

Let T and δ be defined as in Lemma 2 (with the QTh
t,a replaced by Qt,a). In the proof of Lemma 2,

g∗(xt) := maxa∈A ga(xt)+δ is used as a target for samples associated with actions in afin ∈ A\1 to

fall below and the sample associated with action 1 to fall above. The assumptions do not restrict

from occurring the event that there exists an action a in Afin\1 such that, for all t > T , f̂t,a(xt) >
g∗(xt), thus making it impossible for Qt,a to fall below g∗(xt). However, Assumption 5 can be used

to imply that there exists a δ1 > 0 such that ∀afin ∈ Afin and ∀t > T

f̂t,afin(xt)< supS −δ1. (27)
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Assumption 1 and inequality (27) then imply that, for all actions afin ∈Afin\1, there exists an εafin > 0

such that

P

(

Qt,afin < max(g∗(xt),supS −δ1)
∣

∣It ,xt , t > T
)

> εafin

and also that there exists an ε1 > 0 such that

P

(

Qt,1 > max(g∗(xt),supS −δ1)
∣

∣It ,xt , t > T
)

> ε1.

The proof then follows in a similar manner to that of Lemma 2, with the QTh
t,a replaced by Qt,a.

In the case of the LTS algorithm, it is not necessary for the generated policy to be GLIE for

Theorem 1 to hold. Assumptions are only made on total action value estimates, that is, the sum

of exploitative and exploratory value, and it is not necessary that the exploratory value converges

to zero. Exploitative value estimates are not used explicitly for the LTS algorithm and Lemma

3 is included in this work for completeness. In the case of the OBS algorithm, it is important

that Assumption 3 holds so that the policy is GLIE, since exploitative values are used explicitly.

The total action value can be equal to the exploitative value estimate so it is important that the

exploitative estimate converges to the same value as the LTS samples. Obviously, this would hold

if the posterior expectation is used as we suggest, however our framework allows for the use any

functions of the regressor satisfying Assumptions 3 and 5 when implementing the OBS algorithm

and the convergence result will still hold.

Lemma 5 If Assumption 1, 2, 3 and 5 hold, then the OBS algorithm policy is GLIE.

Proof The proof is similar to that of Lemma 3, replacing f̃ Th
t,a with f̃t,a, replacing QTh

t,a with Qt,a and

using the fact that

f̃t,a(xt) = max(0, f̃ Th
t,a (xt)).

Under Assumptions 1–5, we have that the LTS samples, QTh
t,a, and the exploitative values, f̂t,a(xt)

are consistent estimators of the true expected rewards, fa(xt) and that infinite exploration is guar-

anteed by Lemma 4. Therefore, we have that the OBS samples, Qt,a converge in probability to the

true expected rewards, fa(xt), as t → ∞. We can therefore prove that the OBS algorithm satisfies

convergence criterion (2) using a similar method to that used for the proof of Theorem 1.

Theorem 2 If Assumptions 1–5 hold, then the OBS algorithm will produce a policy satisfying con-

vergence criterion (2).

Proof By Assumption 2, 3 and 4 and the infinite exploration guaranteed by Lemma 4, we have that

∀a ∈ A
[

Qt,a − fa(xt)
] P
→ 0 as t → ∞

since Qt,a = max(QTh
t,a, f̂t,a(xt)). The remainder of the proof follows as in the case of Theorem 1

(replacing QTh
t,a with Qt,a).
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4. Case Studies

In this section, we aim to validate claims made in §1.2 regarding the short term performance of the

OBS algorithm by means of simulation. We use the notion of cumulative pseudo-regret (Filippi

et al., 2010) to assess the performance of an algorithm. The cumulative pseudo-regret measures the

expected difference between the reward the algorithm receives and the reward that would be received

if the regression functions were known in advance so that an optimal arm can be chosen on every

timestep; it is a standard measure of finite-time performance of a bandit algorithm. Our definition

differs slightly from that of Filippi et al. (2010) since we do not restrict attention to generalised

linear bandits.

Definition 4 The cumulative (pseudo) regret, RT , at time T is given by

RT =
T

∑
t=1

[

f ∗(xt)− fat
(xt)
]

.

We compare the performance of OBS to that of LTS and various recently proposed action se-

lection methods in simulated Bernoulli bandit and linear regression problem settings in §4.1 and

§4.2 respectively. We also consider a real-world version of the problem using data that relates to

personalised news article recommendation, the Yahoo! Front Page Today Module User Click Log

Data Set (Yahoo! Academic Relations, 2011). Graepel et al. (2010) suggest using LTS to deal with

the exploration-exploitation dilemma in a similar sponsored search advertising setting. We compare

the OBS performance to that of LTS on the Yahoo! data and obtain results indicating that OBS

performs better in the short term.

4.1 Bernoulli Bandit

In the multi-armed Bernoulli bandit problem, there is no regressor present. If the agent chooses

action a on any timestep then a reward of 1 is received with probability pa and 0 with probability

1− pa. For each action a, the probability pa can be estimated by considering the frequency of

success observed in past selections of the action. The agent needs to explore in order to learn the

probabilities of success for each action, so that the action yielding the highest expected reward can

be identified. The agent needs to exploit what has been learned in order to maximise expected

reward. The multi-armed Bernoulli bandit problem presents a simple example of the exploration-

exploitation dilemma, and has therefore been studied extensively.

4.1.1 PROBLEM CONSIDERED

In this case, we let the prior information, I0, consist of the following:

• The number of actions, A.

• (∀a ∈ A)(∀t ∈ T )
{

fa(xt) = pa

}

for pa ∈ (0,1) unknown.

• ∀a,∀t,zt,a =

{

−pa with probability 1− pa,
1− pa with probability pa.

• For each action a ∈ A , the prior distribution of fa is Beta(1,1) (or equivalently U(0,1)).
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4.1.2 LTS AND OBS IMPLEMENTATION

Let r̃τ,a denote the value of the reward received on the timestep where action a was picked for the

τth time. For arbitrary a ∈ A define

st,a =
nt,a

∑
τ=1

r̃τ,a.

Posterior expectations (using flat priors, as indicated by I0) can be evaluated easily, so we define

exploitative value as

f̂t,a :=
st,a +1

nt,a +2
.

The posterior distribution of pa given It has a simple form. We sample

QTh
t,a ∼ Beta(st,a +1,nt,a − st,a +1).

and set

Qt,a = max(QTh
t,a, f̂t,a).

4.1.3 CONVERGENCE

In this section, we check explicitly that Assumptions 1–5 are satisfied in this Bernoulli bandit set-

ting, therefore proving that the LTS and OBS algorithms generate policies satisfying convergence

criterion (2).

Lemma 6 The LTS total value estimate, QTh
t,a, satisfies Assumption 1, for all a ∈ A .

Proof Let a∈A , T > 0, IT and M ∈ (0,1) be arbitrary. For any t > T and It = IT ∪{rT , . . . ,rt−1,aT ,
. . . ,at−1} with as 6= a for s ∈ {T, . . . , t −1}, the posterior distribution of fa given It will be the same

as the posterior distribution of fa given IT (since no further information about fa is contained in It).

Let

ε :=
1

2
min

{

P(QTh
T,a < M |IT ),P(Q

Th
T,a > M |IT )

}

.

We then have that

P(QTh
t,a > M|It)> ε

and

P(QTh
t,a < M|It)> ε.

Lemma 7 The LTS total value estimate, QTh
t,a, satisfies Assumptions 2–4, for all a ∈ A .

Proof Posterior expectations are given by

f̂t,a : =
st,a +1

nt,a +2

=
1+∑

nt,a

τ=1 r̃τ,a

nt,a +2
.
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Using the strong law of large numbers, we then have

lim
nt,a→∞

f̂t,a = lim
nt,a→∞

∑
nt,a

τ=1 r̃τ,a

nt,a
= E(rt |at = a) = pa = fa. (28)

Therefore, it is the case that

E(QTh
t,a|It) = f̂t,a

a.s.
→ fa as nt,a → ∞. (29)

By considering the variance of the LTS samples, we get

Var(QTh
t,a|It) =

(st,a +1)(nt,a − st,a +1)

(nt,a +2)2(nt,a +3)

<
(nt,a +2)2

(nt,a +2)2(nt,a +3)

=
1

(nt,a +3)

a.s.
→ 0 as nt,a → ∞. (30)

From (29) and (30), we then have ∀a ∈ A

QTh
t,a

P
→ fa as nt,a → ∞. (31)

Note that since fa = pa < 1 for each a ∈ A , and |A | < ∞, convergence result (31) shows that As-

sumptions 2 and 4 hold and convergence results (31) and (28) combined show that Assumption 3

holds.

Lemma 8 The exploitative value estimate, f̂t,a, satisfies Assumption 5, for all a ∈ A .

Proof Let a ∈ A , T > 0 and IT be arbitrary. For any t > T and It = IT∪ {rT , . . . ,rt−1,aT , . . . ,at−1}
with as 6= a for s ∈ {T, . . . , t −1},

nt,a = nT,a and st,a = sT,a.

Therefore

f̂t,a =
sT,a +1

nT,a +2
≤

nT,a +1

nT,a +2
< 1−

1

nT,a +2
= supS−

1

nT,a +2
,

so that the assumption is satisfied with δ = 1
nT,a+2

.

Proposition 1 Within the described Bernoulli bandit setting convergence criterion (2) is satisfied

when the LTS or the OBS algorithm is used.

Proof Assumptions 1–5 hold, so the proof follows directly from Theorems 1 and 2.

2089



MAY, KORDA, LEE AND LESLIE

4.1.4 EXPERIMENTAL RESULTS

We parameterise a Bernoulli problem of the described form with a vector of probabilities, (p1, . . . ,
pA), corresponding to the expected rewards for the actions in A . We simulate the problem in four en-

vironments with parameters (0.8,0.9), (0.8,0.8,0.8,0.9), (0.45,0.55) and (0.45,0.45,0.45,0.55).
It is well known that the variance of a Bernoulli random variable is maximised when the associated

probability of success is 0.5. We choose to consider the four environments mentioned to provide

‘low variance’ and ‘high variance’ versions of the problem and to investigate the effect of increasing

the number of actions.

For each problem environment, the process is run for 8000 independent trials. A time window

of T = {1, . . . ,5000} is considered on each trial. A trial consists of sampling the potential rewards

rt,a ∼ Bernoulli(pa) for each t ∈ T and a ∈ A and running all algorithms on the same set of po-

tential rewards, whilst recording the regret incurred. We compare the performance of the LTS and

OBS algorithms to that of UCB-Tuned, MOSS, UCB-V, KL-UCB and KL-UCB+ in each of the

four simulated environments. The UCB-Tuned and MOSS algorithms are implemented exactly as

described by Auer et al. (2002) and Audibert and Bubeck (2010) respectively.3 The UCB-V algo-

rithm is implemented as described by Audibert et al. (2007), with exploration function and tuning

constants set to the ‘natural values’ suggested.4 The KL-UCB and KL-UCB+ algorithms are imple-

mented as described by Garivier and Cappé (2011), with constant c = 0, as used in their numerical

experiments.

The results of the simulations are summarised in Figures 1–4. The left hand plots show cumu-

lative regret averaged over the trials. The right hand plots show boxplots indicating the distribution

of final cumulative regret over trials. We consider cumulative regret averaged over trials since this

provides an estimate for the expected cumulative regret, E(RT ), where the expectation is taken with

respect to the regressor sequence and the reward and action sequences under the proposed algo-

rithm, a much more meaningful measure than the cumulative regret incurred over any one trial. We

plot the average cumulative regret on a logarithmic timescale, so that one can get an indication as to

whether an algorithm has a optimal rate of regret.

We first note that, in the cases considered, the MOSS and UCB-V algorithms perform relatively

poorly, despite proven regret guarantees. The left hand plots in Figures 1 and 2 indicate that the

KL-UCB+ algorithm has the best performance (in terms of expected regret) for the ‘low variance’

problem environments, whereas Figures 3 and 4 indicate that the UCB-Tuned algorithm has the

best performance in the ‘high variance’ problem environments. Both the OBS and LTS algorithms

display highly competitive performance in all cases considered, with the OBS algorithm consistently

outperforming the LTS algorithm, as predicted in Section 1.2. It is also indicated that increasing

the number of actions from 2 to 4 widens this performance gap between OBS and LTS. There

3. We implement the MOSS algorithm with the time horizon known. We note that the algorithm can be run without

knowledge of the horizon using the ‘doubling trick’ (Cesa-Bianchi and Lugosi, 2006), whereby the horizon used in the

algorithm is originally set to 2 and then doubled whenever t exceeds the assumed horizon. In preliminary numerical

experiments, the version using knowledge of the time horizon slightly outperformed (with respect to averaged final

cumulative regret) the ‘doubling trick’ version in of all problem environments tested, so we choose to use the former

in comparisons.

4. For the UCB-V algorithm, we use exploration function Et = log t and constant c = 1/6, in the notation of Audibert

et al. (2007). In preliminary numerical experiments, this version outperformed the version used in the numerical

experiments section of Audibert and Bubeck (2009) (with c = 1 instead) in all four problem environments tested, and

so is used for comparisons.
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Figure 1: Performance of various algorithms in Bernoulli bandit simulation with parameters (p1, p2) =
(0.8,0.9). Left: Cumulative regret averaged over trials. Right: Distribution of cumulative re-

gret at time t = 5000. Results based on 8000 independent trials.

is no method tested that outperforms OBS in all four problems and the OBS algorithm displays

performance that is never far from the leading algorithm.

The boxplots on the right hand side of the Figures 1–4 indicate that LTS, OBS, UBC-tuned and

(to a lesser extent) KL-UCB+ are all ‘risky’ algorithms, when compared to the others. If one was

risk-averse, then the KL-UCB, MOSS and UCBV algorithms are suitable options.5 It is also worth

noting that the regret distribution associated with the OBS algorithm seems to have a fatter upper tail

than the LTS algorithm but the LTS algorithm has more variance near the median (which is higher

than the OBS median in the four cases considered). A theoretical analysis on the concentration of

regret for the OBS and LTS algorithms is desirable so that this can be investigated further, although

we leave this to future work.

Finally, in Figure 5, we present plots of the reward ratio (2) through time, for the first 100 trials

of the first experimental condition, in order to demonstrate actual results proved in the theoretical

part of the paper. The ‘almost sure’ nature of the convergence of this quantity is observed, in that on

some runs there is a period to begin with in which the ratio ‘sticks’ before asymptoting towards 1,

whereas most runs converge quickly towards the asymptote. An identical phenomenon is observed

in the other experimental conditions.

5. Note that Audibert and Bubeck (2009) give theoretical results on the concentration of the regret incurred by the

UCB-V algorithm, as well as on its expectation.
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Figure 2: Performance in Bernoulli bandit simulation with parameters (0.8,0.8,0.8,0.9). Note that the

curves for the OBS algorithm and the KL-UCB+ algorithm are virtually coincident.

4.2 Linear Regression

In this case, we study a form of the problem in which the expected reward for each action is a linear

function of an observable scalar regressor and the reward noise terms are normally distributed. The

learning task becomes that of estimating both the intercept and slope coefficients for each of the

actions, so that the action yielding the highest expected reward given the regressor can be identi-

fied. The exploration-exploitation dilemma is inherent due to uncertainty in regression coefficient

estimates caused by the reward noise.

4.2.1 PROBLEM CONSIDERED

In this case, we let the prior information, I0, consist of the following:

• The number of actions, A = 4.

• (∀t ∈ T )
{

xt ∼U(−0.5,0.5)
}

.

• (∀a ∈ A)(∀t ∈ T )
{

fa(xt) = β1,a +β2,axt

}

for β1,a,β2,a ∈ R unknown.

• (∀a ∈ A)(∀t ∈ T )
{

zt,a ∼ N(0,σ2
a)
}

for σa ∈ R unknown.

• (∀a ∈ A){The (improper) prior distributions for β1,a and β2,a are flat over R}.

• (∀a ∈ A){The (improper) prior distribution of σ2
a is flat over R+}.
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Figure 3: Performance in Bernoulli bandit simulation with parameters (0.45,0.55). Note that the curves for

the OBS algorithm and the KL-UCB+ algorithm are virtually coincident.
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Figure 4: Performance in Bernoulli bandit simulation with parameters (0.45,0.45,0.45,0.55).
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Figure 5: Convergence of the ratio (2) in the first 100 Bernoulli bandit simulations with parameters

(p1, p2) = (0.8,0.9).

4.2.2 LTS AND OBS IMPLEMENTATION

Denote estimators at time t of the parameters ba and σa for a = 1, . . . ,A as b̂t,a and σ̂t,a respectively,

where ba = (β1,a,β2,a)
T . For all a ∈ A , denote Tt,a = {τ ∈ {1, . . . , t − 1} : aτ = a} and the nt,a-

vectors of regressors and rewards observed at time steps in Tt,a as xt,a and rt,a respectively. Denote

the nt,a ×2 matrix formed by the concatenation of 1nt,a and xt,a as Xt,a, where 1nt,a is the nt,a-vector

with every component equal to 1. Let b̂t,a be given by the least squares equation

b̂t,a := (XT
t,aXt,a)

−1XT
t,art,a.

Let us also denote xt = (1,xt)
T . Posterior expectations (using flat priors, as indicated by I0) can be

evaluated easily, so we define exploitative value as

f̂t,a(xt) := xT
t b̂t,a.

Let σ̂t,a be given by

σ̂t,a :=

√

1

nt,a −2
(rt,a −Xt,ab̂t,a)T (rt,a −Xt,ab̂t,a)

and let Ut,a ∼ tnt,a−2. We define the LTS exploratory value as

f̃ Th
t,a (xt) :=

[

σ̂t,a

√

xT
t (X

T
t,aXt,a)−1xt

]

Ut,a. (32)
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The LTS total value is given by

QTh
t,a(xt) = f̂t,a(xt)+ f̃ Th

t,a (xt).

The OBS total value is given by

Qt,a(xt) = max(QTh
t,a, f̂t,a(xt)).

Note that if nt,a ∈ {0,1,2} then the posterior distribution of fa(xt) is improper. In these situations,

we sample values from N(0,103) to obtain QTh
t,a.

4.2.3 CONVERGENCE

In this section, we check explicitly that Assumptions 1–5 are satisfied in this linear regression set-

ting, therefore proving that the LTS and OBS algorithms generate policies satisfying convergence

criterion (2).

Lemma 9 The LTS total value estimate, QTh
t,a, satisfies Assumption 1, for all a ∈ A .

Proof Let a∈A , T > 0, IT and M ∈R be arbitrary. For any t > T and It = IT ∪{rT , . . . ,rt−1,aT , . . . ,
at−1} with as 6= a for s ∈ {T, . . . , t − 1}, the posterior distribution of ba and σ2

a given It will be the

same as that given IT (since no further information about fa is contained in It). In particular for each

regressor x, f̂t,a(x) = f̂T,a(x), and f̃ Th
t,a (x) has the same distribution given It as it did given IT . Define

ε :=
1

2
min

x∈[−0.5,0.5]
min

{

P( f̃ Th
T,a(x)< M− f̂T,a(x) |IT ),P( f̃ Th

T,a(x)< M− f̂T,a(x) |IT )
}

.

Since QTh
t,a = f̂t,a(xt)+ f̃ Th

t,a (xt), we then have that

P(QTh
t,a > M|It)> ε

and

P(QTh
t,a < M|It)> ε.

Lemma 10 (taken from Eicker, 1963) is used to prove the consistency of the least squares esti-

mators of the regression coefficients.

Lemma 10 The least squares estimators b̂t,a, t = 2,3, . . . converge in probability to ba as nt,a → ∞

if and only if λmin(X
T
t,aXt,a) → ∞ as nt,a → ∞, where λmin(X

T
t,aXt,a) is the smallest eigenvalue of

XT
t,aXt,a.

Lemma 11 The exploitative value estimate f̂t,a(xt)
P
→ fa(xt) as nt,a → ∞.

Proof Let x̃i,a denote the value of the regressor presented on the timestep where action a was picked

for the ith time.

XT
t,aXt,a =





nt,a ∑
nt,a

i=1 x̃i,a

∑
nt,a

i=1 x̃i,a ∑
nt,a

i=1 x̃2
i,a



 .
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The smallest eigenvalue is given by

λmin =
nt,a

2

[

∑
nt,a

i=1 x̃2
i,a

nt,a
+1−

√

√

√

√

(

∑
nt,a

i=1 x̃2
i,a

nt,a
+1

)2

−4

(

∑
nt,a

i=1 x̃2
i,a

nt,a
−

(

∑
nt,a

i=1 x̃i,a

)2

n2
t,a

)

]

.

Therefore, since VarX > 0, we have that

lim
nt,a→∞

λmin = lim
nt,a→∞

nt,a

2

[

EX2 +1−

√

(

EX2 +1
)2

−4VarX

]

= ∞.

Using Lemma 10, we then have

[

b̂t,a −ba

]

P
→ 0 as nt,a → ∞.

Multiplying on the left by xT then gives

[

f̂t,a(xt)− fa(xt)
]

P
→ 0 as nt,a → ∞.

Lemma 12 The LTS total value estimate, QTh
t,a, satisfies Assumptions 2–4, for all a ∈ A .

Proof To prove this lemma, we need to show that f̃t,a(xt)
P
→ 0 as nt,a → ∞ for all actions a ∈ A . In

order to do this, we consider each component in the product that forms f̃t,a(xt) (see (32)). Firstly,

we consider Ut,a. It is a well known (as is described in Zwillinger, 2000) that

Ut,a
D
→ N(0,1) as nt,a → ∞. (33)

Next, we consider σ̂t,a. Using the facts that b̂t,a
P
→ ba as nt,a → ∞, zt,a = rt − fa(xt) and E[zt,a] = 0

we have that

σ̂t,a :=

√

1

nt,a −2
(rt,a −Xt,ab̂t,a)T (rt,a −Xt,ab̂t,a)

P
→

√

1

nt,a −2
(rt,a −Xt,aba)T (rt,a −Xt,aba) as nt,a → ∞

a.s.
→
√

E[z2
t,a] as nt,a → ∞

=
√

Var[zt,a]+ [E[zt,a]]2

=
√

Var[zt,a] = σa. (34)

2096



OPTIMISTIC BAYESIAN SAMPLING

Finally, let us consider xT
t (X

T
t,aXt,a)

−1xt . We start by looking at the determinant of XT
t,aXt,a. We have

that

detXT
t,aXt,a = n2

t,a

(

1

nt,a

nt,a

∑
i=1

x̃2
i,a −

( 1

nt,a

nt,a

∑
i=1

x̃i,a

)2

)

a.s.
→ n2

t,a

(

E[x2
t ]−E[xt ]

2
)

as nt,a → ∞

= n2
t,aVar[xt ]. (35)

Using the standard formula for inverting a 2×2 matrix, we get

xT
t (X

T
t,aXt,a)

−1xt =
1

detXT
t,aXt,a

(

nt,a

∑
i=1

x̃2
i,a −2xt

nt,a

∑
i=1

x̃i,a + x2
t nt,a

)

=
1

detXT
t,aXt,a

(

nt,a

[ 1

nt,a

nt,a

∑
i=1

x̃2
i,a −

( 1

nt,a

nt,a

∑
i=1

x̃i,a

)2]

+
1

nt,a

(
nt,a

∑
i=1

x̃i,a

)2

−2xt

nt,a

∑
i=1

x̃i,a + x2
t nt,a

)

=
1

nt,a
+

1

detXT
t,aXt,a

(

1

nt,a

(
nt,a

∑
i=1

x̃i,a

)2

−2xt

nt,a

∑
i=1

x̃i,a + x2
t nt,a

)

=
1

nt,a
+

1

detXT
t,aXt,a

(

nt,a

[( 1

nt,a

nt,a

∑
i=1

x̃i,a

)2

−2
1

nt,a
xt

nt,a

∑
i=1

x̃i,a + x2
t

]

)

=
1

nt,a
+

1

detXT
t,aXt,a

(

nt,a

[ 1

nt,a

nt,a

∑
i=1

x̃i,a − xt

]2

)

. (36)

Using (35), (36) and the facts that Var[xt ]> 0 and both xt and E[xt ] are bounded, we have that

xT
t (X

T
t,aXt,a)

−1xt
a.s.
→

1

nt,a
+

[

E[xt ]− xt

]2

nt,aVar[xt ]

a.s.
→ 0 as nt,a → ∞. (37)

Equations (33), (34) and (37) imply that f̃ Th
t,a (xt)

P
→ 0 as nt,a → ∞. Therefore, since QTh

t,a = f̂t,a(xt)+

f̃ Th
t,a (xt), Lemma 11 gives us that

QTh
t,a − fa(xt)→ 0 as nt,a → ∞,

satisfying Assumptions 2 and 4. This same holds for f̂t,a(xt), hence Assumption 3 is satisfied too.

Lemma 13 The exploitative value estimate, f̂t,a(xt), satisfies Assumption 5, for all a ∈ A .

Proof Let a ∈ A , and T > 0 be arbitrary. For any t > T and It = IT ∪ {rT , . . . ,rt−1,
aT , . . . ,at−1} with as 6= a for s ∈ {T, . . . , t − 1}, the regression coefficients b̂t,a are equal to b̂T,a.

Hence

max
x∈[−0.5,0.5]

f̂t,a(x) = max
x∈[−0.5,0.5]

f̂T,a(x).
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The Assumption then follows by noting that S = R.

Proposition 2 Within the described linear regression setting convergence criterion (2) is satisfied

when the LTS or the OBS algorithm is used.

Proof Assumptions 1–5 hold, so the proof follows directly from Theorems 1 and 2.

4.2.4 EXPERIMENTAL RESULTS

The process is run for 10000 independent trials. A time window of T = {1, . . . ,5000} is considered

on each trial. The regression coefficients for the actions are set to (β1,a,β2,a) = (0,1),(0,−1),
(−0.1,0),(0.1,0) for a = 1,2,3,4 respectively. The resulting expected reward functions are plotted

in Figure 6. For each trial:

• ∀t ∈ T sample xt ∼ U(−0.5,0.5)

• ∀a ∈ A and ∀t ∈ T sample zt,a ∼ N(0,σ2
a) with σa = 0.5

• ∀a ∈ A and ∀t ∈ T evaluate potential reward rt,a = β1,a +β2,axt + zt,a

• record the regret incurred using various action selection methods.

We compare the performance of LTS and OBS to an interval estimation method (or LinUCB, in

the terminology of Li et al., 2010) similar to that described in Pavlidis et al. (2008). However we

use the posterior distribution of the mean to evaluate the upper confidence bound rather than using

the predictive distribution. Specifically, the action selection rule used is given by

at = argmax
a∈A

[

f̂t,a(xt)+ σ̂t,a

√

xT
t (X

T
t,aXt,a)−1xt

]

t
1− λ

100
,nt,a−2

where tγ,n denotes the quantile function of Student’s t distribution with n degrees of freedom evalu-

ated at γ. This ensures that the value estimates are consistent, that is, the value estimates converge

to the true expected reward as associated actions are selected infinitely often. We implement the IE

method with parameter values λ = 0.01, λ = 5 and λ = 25.

The results of the simulation can be seen in Figures 7 and 8. Figure 7 (left) shows cumulative

regret averaged over the trials. The OBS algorithm displays the best performance (with respect to

cumulative regret averaged over trials) in the problem considered, and this performance is signifi-

cantly better than that of the LTS algorithm. It is also clear that the IE method performance is highly

sensitive to parameter choice. The best parameter choice in this case is λ = 5, however, it is not

clear how this parameter should be chosen based on the prior information provided. In general, if

λ is ‘too high’, then too much emphasis is put on short term performance and if λ is ‘too low’ then

too much emphasis is put on long term performance. This is indicated by the curves for the λ = 25

and λ = 0.01 methods respectively. Figure 7 (right) shows boxplots indicating the distribution of

final cumulative regret over trials. It is indicated that the IE methods become riskier as the signifi-

cance parameter used is increased and that the significance parameter provides a way of trading off

median efficiency and risk. The only method to compete with OBS on cumulative regret averaged
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Figure 6: The expected reward functions for the 4 actions in linear regression simulation.

over trials is the λ = 5 IE method, however the OBS final regret distribution is more concentrated

than the λ = 5 IE method. In Figure 8, we present plots of the reward ratio (2) through time, for

the first 100 experiments, in order to demonstrate actual results proved in the theoretical part of the

paper. Although convergence of the ratio has not occurred after the 5000 iterations, it is clear that

the ratio is improving over time.

4.3 Web-Based Personalised News Article Recommendation

We now consider the problem of selecting news articles to recommend to internet users based on

information about the users. In our framework, the recommendation choice corresponds to an action

selection and the user information corresponds to a regressor. The objective is to recommend an

article that has the highest probability of being clicked.

We test the performance of the LTS and OBS algorithms on a real-world data set, the Yahoo!

Front Page Today Module User Click Log Data Set (Yahoo! Academic Relations, 2011). A similar

study is performed by Chapelle and Li (2011). However we consider multiple trials over a short

time horizon, as opposed to Chapelle and Li’s single trial over the full data set, to investigate the

short term performance of the algorithms, and in particular to address the claim made in Section

1.2 regarding a potential short term benefit of using OBS over using LTS. It is necessary to average

results over multiple trials given the randomised nature of the OBS and LTS algorithms. We also test

the LinUCB algorithm of Li et al. (2010) with various parameter settings to provide a benchmark

for comparison.
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Figure 7: Performance of various algorithms in linear regression simulations. Left: Cumulative

regret averaged over trials. Right: Distribution of cumulative regret at t = 5000. Results

based on 10000 independent trials.
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Figure 8: Convergence of the ratio (2) in the first 100 linear regression simulations.
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4.3.1 USE OF DATA SET

The data set describes approximately 36M instances of news articles being recommended to inter-

net users on the Yahoo! Front Page Today Module at random times in May 2009. The form and

collection of the data set are both described in detail by Li et al. (2010). For each recommendation,

the data contains information concerning which article was recommended, whether the recommen-

dation was clicked and a feature vector describing the user. The recommended articles are chosen

uniformly at random from a dynamic pool of about 20 choices, with articles being added and re-

moved at various points of the process. The user features, xt , are given as vectors of length 6 with

one component fixed to 1, and are constructed as described by Li et al. (2010). The reward is defined

to be 1 if the recommendation is clicked and 0 otherwise.

The use of past data presents a problem in evaluating a decision-making algorithm. Specifically,

within the data a random article is recommended on each instance, which might well be different to

the article that the decision-making algorithm selects during testing. This problem can be avoided

by implementing the unbiased offline evaluator procedure of Li et al. (2011). Under this procedure,

if the action selected by the algorithm does not match the action selected in the data point, the

current data point, and subsequent data points, are ignored until a data point which matches user

data and action selection occurs. The observed reward from this data point is then awarded to the

algorithm, and the user data from the next recommendation instance in the data is used in the next

evaluation step.

4.3.2 ALGORITHM IMPLEMENTATION

The LTS and OBS algorithms are implemented using the logistic regression model of Chapelle and

Li (2011). It is assumed that there is an unknown weight vector, wa, for each article a ∈ A such that

P(rt = 1|at = a,xt = x) = (1+ exp(−wT
a x))−1.

Approximate posterior distributions for each wa are estimated to be Gaussian with mean and vari-

ance updates as described in Algorithm 3 of Chapelle and Li (2011). For our numerical experiment,

we set the unspecified regularisation parameter of Chapelle and Li (2011) to 100. The LTS algo-

rithm can easily be implemented by sampling weight vectors from the posteriors and selecting the

article with the weight vector forming the highest scalar product with the current user feature vector.

The OBS algorithm can easily be implemented by also considering posterior means of these scalar

products. We also test the LinUCB algorithm, as implemented by Chapelle and Li (2011), with

parameter α set to each of 0.5, 1 and 2.

4.3.3 NUMERICAL EXPERIMENTS

As previously mentioned, our focus is short term performance averaged over numerous trials. We

focus on the case of only 4 articles, and therefore remove all instances outwith these 4 articles from

the data set. On each of 2,500 trials, we run each of the 5 algorithms until 5,000 interactions are

accepted using data from the start of the supplied data set (Yahoo! Academic Relations, 2011); we

use only data from the start of the data set to avoid confounding the algorithm evaluations with the

non-stationarity of the data.

The concept of regret is difficult to use as a performance measure in this setting, since there is no

true model given for comparison. We instead consider the percentage of past timesteps resulting in

clicks, otherwise known as the click-through rate (CTR), and percentage benefit of OBS over LTS
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Figure 9: Normalised Click Through Rate through time for various algorithms. Results averaged

over 2,500 independent trials.

with respect to CTR. Again, to avoid issues of non-stationarity, we normalise all CTRs by dividing

by the CTR achieved (on these four articles) in the original data set.

The results of the experiment can be found in Figures 9 and 10. Figure 9 shows the normalised

CTR for all 5 algorithms, averaged over all 2500 runs. It is clear that the performance of the

LinUCB algorithm is sensitive to parameter choice; the version with parameter set to 1 performs

much better than the version set to 0.5, and it is not clear in advance of implementing the algorithm

which parameter will be optimal. As a caveat on these results, it is worth noting that the portion of

the data set used for each trial is the same, and also that the LinUCB algorithms are deterministic

given past information (except in the case of a tie in action values), so it is hard to extrapolate

general results relating to the performance of LinUCB algorithms. Furthermore Chapelle and Li

(2011) explain that the performance of the LinUCB algorithm degrades significantly with increasing

feedback delay, while the LTS and OBS algorithms are more robust to the delay, so the strong

performance of the highest-performing LinUCB algorithm in this experiment should not be taken

as conclusive evidence of high real-world performance. Unfortunately it is not possible to produce

plots comparable to Figures 5 and 8 in this case since the true optimal actions are not known.

Figure 10 shows the difference in performance of OBS and LTS, expressed as a percentage of LTS

performance, averaged over all 2500 runs. It is clear that the OBS algorithm outperforms the LTS

algorithm across the time period considered, validating the intuition in Section 1.2. The short term

improvement is small, but in many web-based application, a small difference in performance can be

significant (Graepel et al., 2010).
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Figure 10: OBS CTR as a percentage improvement of LTS CTR through time. Results averaged

over 2,500 independent trials.

5. Discussion

The assumptions made for the theoretical results in Section 3 are mild in the sense that one would

expect them to hold if the true posterior distributions and expectations are used. It is worth noting

that convergence criterion (2) is satisfied even when approximations to the posterior distributions

and expectations for the fa(xt) are used with the LTS and OBS algorithms, so long as the relevant

assumptions are satisfied. Hence, convergence is guaranteed for a large class of algorithms.

We have seen that both the LTS and the OBS algorithms are easy to implement in the cases

considered. They are also computationally cheap and robust to the use of posterior approximations,

when compared to belief-lookahead methods, such as Gittins indices. The simulation results for

the OBS algorithm are very encouraging. In every case, the OBS algorithm outperformed the LTS

algorithm and performed well compared to recent benchmarks.
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