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Abstract. In this paper we propose an optimistic two-party fair ex-
change protocol which does not rely on a centralized trusted third party.
Instead, the fairness of the protocol relies on the honesty of part of the
neighbor participants. This new concept, which is based on a generic ver-
ifiable secret sharing scheme, is particularly relevant in networks where
centralized authority can neither be used on-line nor off-line.

1 Introduction

A two-party fair exchange protocol is a protocol in which two participants, an
originator Po and a recipient Pr, wish to exchange items mo and mr in a fair
way, i.e. such that no party can gain any advantage by cheating. There are two
major kinds of two-party fair exchange protocols: those which rely on a Trusted
Third Party (TTP) to ensure the fairness of the protocol, and those which do
not. Even and Yacobi proved however in 1980 [9] that it is impossible to ensure
a perfect fairness between only two participants without using a TTP. Protocols
without TTP (e.g. [3,5,7]) are therefore only able to ensure fairness in a grad-
ual or probabilistic way. The probability of fairness increases with the number
of messages which are exchanged between the two participants. This implies a
communication complexity cost which is too important for most of the practical
applications. Finally, these protocols usually require that the involved parties
have roughly equivalent computational powers, an assumption which is difficult
to guarantee when dealing with heterogeneous networks. The second category
of protocols rely on the use of a TTP to guarantee the fairness of the protocol.
In all protocols the TTP acts as a central authority. TTP can be on-line, i.e.
it is required in every exchange, or off-line (e.g. [1,2,11,15]). In this latter case,
Asokan, Schunter, and Waidner invented the notion of optimistic protocol [1],
where TTP is required only in case of conflict among participants. Fairness is
ensured in a deterministic way and with few exchanges, but items must be either
revocable or generatable by the TTP. Unfortunately, many environments, such
as mobile ad hoc networks (MANET), do not allow either the use of a central-
ized authority (even in an optimistic case) for topologic reason, nor the usage of
gradual protocols, which generate huge communication overheads. It is therefore
important to design protocols based on other concepts. We propose a protocol
which relies on the honesty of some “neighbor participants”: when the exchange

H. Wang et al. (Eds.): ACISP 2004, LNCS 3108, pp. 74–85, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN ----------------------------------------Dateioptionen:     Kompatibilität: PDF 1.3     Für schnelle Web-Anzeige optimieren: Nein     Piktogramme einbetten: Nein     Seiten automatisch drehen: Nein     Seiten von: 1     Seiten bis: Alle Seiten     Bund: Links     Auflösung: [ 2400 2400 ] dpi     Papierformat: [ 595 842 ] PunktKOMPRIMIERUNG ----------------------------------------Farbbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitGraustufenbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 2400 dpi     Downsampling für Bilder über: 3600 dpi     Komprimieren: Ja     Komprimierungsart: CCITT     CCITT-Gruppe: 4     Graustufen glätten: Nein     Text und Vektorgrafiken komprimieren: JaSCHRIFTEN ----------------------------------------     Alle Schriften einbetten: Ja     Untergruppen aller eingebetteten Schriften: Nein     Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten:     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     Nie einbetten: [ ]FARBE(N) ----------------------------------------Farbmanagement:     Farbumrechnungsmethode: Farbe nicht ändern     Methode: StandardGeräteabhängige Daten:     Einstellungen für Überdrucken beibehalten: Ja     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja     Transferfunktionen: Anwenden     Rastereinstellungen beibehalten: JaERWEITERT ----------------------------------------Optionen:     Prolog/Epilog verwenden: Ja     PostScript-Datei darf Einstellungen überschreiben: Ja     Level 2 copypage-Semantik beibehalten: Ja     Portable Job Ticket in PDF-Datei speichern: Nein     Illustrator-Überdruckmodus: Ja     Farbverläufe zu weichen Nuancen konvertieren: Ja     ASCII-Format: NeinDocument Structuring Conventions (DSC):     DSC-Kommentare verarbeiten: Ja     DSC-Warnungen protokollieren: Nein     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja     EPS-Info von DSC beibehalten: Ja     OPI-Kommentare beibehalten: Nein     Dokumentinfo von DSC beibehalten: JaANDERE ----------------------------------------     Distiller-Kern Version: 5000     ZIP-Komprimierung verwenden: Ja     Optimierungen deaktivieren: Nein     Bildspeicher: 524288 Byte     Farbbilder glätten: Nein     Graustufenbilder glätten: Nein     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja     sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments true     /DoThumbnails false     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize false     /ParseDSCCommentsForDocInfo true     /EmitDSCWarnings false     /CalGrayProfile ()     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue true     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.3     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends true     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo true     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /LeaveColorUnchanged     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 300     /EndPage -1     /AutoPositionEPSFiles true     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 2400     /AutoFilterGrayImages true     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 300     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 595.276 841.890 ]     /HWResolution [ 2400 2400 ]>> setpagedevice



Optimistic Fair Exchange Based on Publicly Verifiable Secret Sharing 75

runs well, no communication overhead is required to any third party, but when a
conflict occurs, neighbor participants are requested to restore fairness, by recov-
ering the unreceived item. The recovery protocol relies on a publicly verifiable
secret sharing scheme (PVSS). Indeed, a secret sharing scheme allows to share
a secret among participants such that only certain subsets of participants can
recover the secret. When the scheme is publicly verifiable, anybody is able to
check whether the distributed shares are correct.
In what follows we define the protocol requirements, and the communication
and security model. In Section 2, we recall briefly the verifiable secret sharing
concept and describe such a practical protocol. We propose then our optimistic
two-party fair exchange protocol based on a generic PVSS. A security analysis
is finally provided in Section 4.

2 Communication and Security Model

2.1 Requirements

Several (different) definitions for the fair exchange are available in the literature;
most of them are context-dependent. We use the following common definition.

Definition 1 (exchange protocol). An exchange protocol between an origi-
nator Po and a recipient Pr is a protocol in which Po and Pr own some items
mo and mr respectively and aim at exchanging them. We define the security
properties as follows.

1. Completeness: when there is no malicious misbehavior, Po gets mr and Pr

gets mo at the end of the protocol.
2. Fairness: when at least one of the two participants follows the protocol,

the exchange terminates so that either Po gets mr and Pr gets mo (success
termination), or Po gets no information about mr and Pr gets no information
about mo (failure termination).

3. Timeliness: the exchange eventually terminates.
4. Privacy: no other participant gets any information about mo and mr.
5. Optimism: no other participant is involved when Po and Pr are honest.

We say that the protocol is a fair exchange protocol when it is complete, fair,
and timely.

According to this definition, we design in this paper an optimistic fair exchange
protocol between two parties, that do not require centralized TTP, implies rea-
sonably low communication overhead, and protects privacy.

2.2 Threat Model

We say that an active participant is honest if he follows the protocol; otherwise
he is dishonest. Note that due to the communication assumptions (below), all
messages from honest participants are eventually delivered. The fairness of the
protocol is ensured when either Po or Pr is dishonest. Note that we do not
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need to consider the case where both Po and Pr are dishonest: in this case they
obviously always have the ability to halt the exchange on an unfair termination.
We now consider the passive participants’ behaviors.

– B1: participants who honestly collaborate with both Po and Pr.
– B2: participants who may harm Po by colluding with Pr.
– B3: participants who may harm Pr by colluding with Po.
– B4: participants who do not collaborate at all.

Note that B1, B2, B3, and B4 form a partition of the passive participants P. We
denote bi = |Bi| where 1 ≤ i ≤ 4. We assume that participants cannot move
from one set to another, focusing on the “honesty status” at the time of the
recovery protocol only.

2.3 Communication Model and Hypothesis
Definition 2 (secure channel). A channel is said to be secure if it ensures
confidentiality, integrity, authentication, sequentiality, and timeliness.
Confidentiality ensures that the message is kept secret from any third party. In-
tegrity ensures that the message cannot be modified by any third party. Authen-
tication ensures that no third party can insert a forged message in the channel.
Sequentiality ensures that the sequence of messages received by one party is equal
to the sequence of messages sent by the other party in the same ordering at some
time. Timeliness ensures that a message inserted into the channel is eventually
delivered.

Remark 1. Sequentiality ensures that no messages are swapped, dropped, or
replayed.

Definition 3 (environment). We say that two entities P and P ′ are in the
same environment if and only if P and P ′ are able to communicate through a
secure channel. We let EnvP denote the set of all the entities which are in the
same environment as P

Remark 2. The relation P ′ ∈ EnvP between P and P ′ is symmetric but not
transitive due to the timeliness requirement.

Definition 4 (participant). We say that an entity which is involved in the
protocol, either during the exchange stage or the recovery stage, is a partici-
pant. Participants which are only involved in the recovery stage are said passive;
otherwise they are said active.

Remark 3. In an optimistic two-party fair exchange, only participants Po and Pr

are active.

Hypothesis 1. In what follows we assume that Pr ∈ EnvPo ; Pr knows a subset of
passive participants P of EnvPo

∩ EnvPr and a constant Tmax < +∞ such that
messages from Pr to any participant in P are always delivered within a time
delay less than Tmax; b1 > 0; and Po and Pr know some constant k such that
b2 < k ≤ b2 + b1.
We give here two examples in order to illustrate this assumption.
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Example 1. If Po and Pr know that there is a majority of honest participants in
the network i.e. b1 > n

2 then we take k =
⌈

n
2

⌉
.

Example 2. If Po knows that at least 40% of the network is honest with him
(i.e. b1 + b3 ≥ 2n

5 ) and Pr knows that at least 70% of the network is honest with
him (i.e. b1 + b2 ≥ 7n

10 ) then we can take k such that
⌊ 6n

10

⌋
< k ≤ ⌈ 7n

10

⌉
. For

instance, if n = 100, k is chosen such that 60 < k ≤ 70. We show in Section 3
that k is actually the threshold of the secret sharing.

3 Optimistic Two-Party Fair Exchange Protocol

In this section, we first recall the notion of publicly verifiable secret-sharing; then
we give an optimistic two-party fair exchange protocol. The main idea consists of
sharing items among n participants such as k participants are enough to recover
these items in case of conflict. The constraints on k will be analyzed in Section 4.

3.1 Publicly Verifiable Secret Sharing

Secret sharing [4,13] allows to share a secret m among several participants such
that only some specific subsets of participants can recover m by collusion. In
the Shamir secret sharing scheme, there is a threshold k so that only subsets of
at least k participants can reconstruct m. A drawback of the Shamir scheme is
that participants cannot verify that the distributed shares effectively allow to
recover the secret m. In other words, the basic secret sharing scheme assumes
that the dealer is not malicious. Verifiable secret sharing [6,10,12,14] resists to a
malicious dealer who sends wrong shares: each participant can indeed check his
own share. In Publicly verifiable secret sharing [12,14], introduced by Stadler in
1996, anybody can perform this verification and not only the participants. Below
we describe a model for non-interactive publicly verifiable secret sharing (PVSS).

Distribution stage. The dealer generates the shares mi of m and then
publishes the encrypted values Ei(mi) such that only the participant Pi is
able to decrypt Ei(mi). The dealer also publishes an information ∆ containing
θ = W(m) where W is a one-way function. This information allows to prove
that the distributed shares are correct i.e. they allow to recover some m such
that W(m) = θ.

Verification stage. Given the Pis’ public keys, the Ei(mi)s, ∆, and a
verification algorithm, anybody can verify that the shares allow to recover some
m such that W(m) = θ.

Reconstruction stage. The participants decrypt their share mi from Ei(mi)
and pool them in order to recover m.
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3.2 A Practical Publicly Verifiable Secret Sharing Scheme

We describe in this section a practical publicly verifiable secret sharing scheme
which has been proposed by Stadler in [14]. This scheme relies on both
ElGamal’s public key cryptosystem [8] and on the double discrete logarithms
assumption [14]. Let p be a large prime number so that q = (p − 1)/2 is also
prime, and let h ∈ (Z/pZ)∗ be an element of order q. Let G be a group of
order p, and let g be a generator of G such that computing discrete logarithms
to the base g is difficult. Let m ∈ Z/pZ be the secret and let W(m) = gm.
As in Shamir’s scheme, we assume that a publicly known element xi ∈ Z/pZ,
xi �= 0, is assigned to each participant Pi. We assume also that each participant
Pi owns a secret key zi ∈ Z/qZ and the corresponding public key yi = hzi mod p.

Distribution stage. The dealer chooses random elements aj ∈ Z/pZ (j =
1, ..., k − 1) and publishes the values Aj = gaj (j = 1, ..., k − 1) in ∆. Then he
securely computes the share

mi = m +
k−1∑

j=1

ajx
j
i mod p (1)

for Pi and he publishes the value gmi in ∆ (1 ≤ i ≤ n). He uses the ElGamal
encryption: he chooses a random value αi ∈ Z/qZ, computes the pair

Ei(mi) = (σ1
i , σ2

i ) = (hαi , m−1
i . yαi

i ) mod p

and publishes it in ∆ (1 ≤ i ≤ n). The precise content of ∆ is described below.

Verification stage. The first step of this procedure consists in verifying the
consistency of the shares. Anybody is able to perform this step by checking

whether gmi = gm.
∏k−1

j=1 A
xj

i
j , obtained by exponentiating (1), is satisfied in G

(Note that ∆ includes gm, gmi , Aj).

The second step consists in verifying that the pairs (σ1
i , σ2

i ) really encrypt the
discrete logarithms of public elements gmi . This verification is based on the
fact that the discrete logarithm of σ1

i = hαi to the base h equals the double
discrete logarithm of gmiσ

2
i = g(yαi

i ) to the bases g and yi. One may give a zero-
knowledge interactive verification procedure between the dealer and participants
as described on Fig. 1; we describe here the non-interactive version which is
obtained by simulating the verifier by a hash function. We assume that the
dealer randomly picked some values wi,� ∈ Z/qZ (1 ≤ � ≤ L where L ≈ 100
from [14]) for each share mi and computed:

δi,� := hwi,� mod p

γi,� := gy
wi,�
i

ri,� := wi,� − ci,�αi mod q
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where ci,� denotes the �-th bit of ci = H(gmi‖σ1
i ‖σ2

i ‖δi,1‖γi,1‖...‖δi,L‖γi,L) with
H a hash function from {0, 1}∗ to {0, 1}L. Participants have therefore to check
whether δi,� = hri,�σ1

i
ci,� mod p and γi,� = (g1−ci,�gmici,�σ2

i )y
ri,�
i for all �.

∆ finally contains gm, the gmis, the ri,�s, the δi,�s, the γi,�s, and Aj .

Reconstruction stage. Each participant Pi decrypts his own share mi by
computing

mi =
(σ1

i )zi

σ2
i

mod p.

A subset of k participants can then recover m by using the Lagrange’s interpo-
lation formula.

dealer participant

pick wi ∈ Z/qZ
δi=hwi ,γi=g

y
wi
i−−−−−−−−−−−−−−−→

ci←−−−−−−−−−−−−−−− pick ci ∈ {0, 1}
ri=wi−ciαi−−−−−−−−−−−−−−−→ check whether

δi = hriσ1
i

ci mod p

γi = (g1−cigmiciσ2
i )y

ri
i

Fig. 1. Interactive verification procedure

3.3 Primitives

We define in this section some primitives which will be used in our protocol.
These primitives are not related to a particular PVSS.

Signature. We consider Po’s authentication function So which, given a message
m, outputs the signed version m′ = So(m) and the corresponding verification
function Vo. Note that So is either a signature with message recovery or the
concatenation of the message with the signature.

Item description. As is typically assumed in the literature, we suppose that
Po and Pr have committed to their items beforehand. We consider therefore that
Po and Pr established a legal agreement linking the authentic human-readable
descriptions of the items with mathematical descriptions of these items descr(mo)
and descr(mr). For instance, descr(m) = W(m) = gm. According to the fact that
the authentic descriptions match the mathematical descriptions (a conflict at this
layer can only be resolved by legal means), participants will be satisfied if they
receive an item m which is consistent with its description descr(m). To check
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that, we consider the public contract Ω = So(Po‖Pr‖descr(mo)‖descr(mr)‖T ),
where T is the expiration date after what the exchange has to be considered as
null and void.

m −−−−→
Check −−−−→ true or false

descr(m) −−−−→

Encryption. We consider Pi’s encryption function Ei which, given a message
m, outputs the encrypted message m′ = Ei(m) for Pi and the corresponding
decryption function Di such that, given an encrypted message m′, outputs the
plain message m = Di(m′).

Verifiable secret sharing. We consider a publicly verifiable secret sharing
scheme using the functions Share, Verify, and Recover. Given a message m and
some participants Pi (1 ≤ i ≤ n), Share outputs the encrypted shares E1(m1), ...,
En(mn), and the proof ∆, as described in Section 3.2; given a list of encrypted
shares, a list of participants, ∆, and descr(m), Verify outputs true if the shares
allow any subset of k participants to recover m and false otherwise; given some
shares mi1 , ..., mik

and participants Pi (i ∈ {i1, ..., ik}), Recover outputs the
message m.

m −−−−→ −−−−→ E1(m1), ..., En(mn)
Share

P1, ..., Pn −−−−→ −−−−→ ∆

E1(m1), ..., En(mn) −−−−→
P1, ..., Pn −−−−→

Verify
−−−−→ true or false

∆ −−−−→
descr(m) −−−−→

mi1 , ..., mik
−−−−→

Recover −−−−→ m
Pi1 , ..., Pik

−−−−→
Verifiable encryption. We describe the CheckEnc function which is pretty
similar to the Check function except that its input is Eo(m) rather than m. This
function is used by the passive participants. We will not detail this function for
the sake of simplicity but it could come from a PVSS with a single participant.
We only sketch the primitives related to CheckEnc:

−−−−→ Eo(m)
m −−−−→ Enc

−−−−→ ∆′

Eo(m) −−−−→
∆′ −−−−→ CheckEnc −−−−→ true or false

descr(m) −−−−→
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Eo(m) −−−−→ Dec −−−−→ m

3.4 Description of the Protocols

Two participants Po and Pr wish to exchange items mo and mr in a set of
participants P such that P ⊂ EnvPo ∩ EnvPr with |P| = n. Note that for the
sake of simplicity, we exclude Po and Pr from P, although it is not mandatory;
so P contains only passive participants. Here are the exchange protocol and the
recovery protocol.

Exchange protocol. The exchange protocol (Fig. 2) implies only the active
participants, Po and Pr, and consists in exchanging items mo and mr after a
commitment step. This commitment gives to Pr the ability to restore fairness of
the exchange, helped by the passive participants, in case of conflict with Po.

– Step 1: Po picks a random element a and computes b such that mo = a + b.
He computes Share(a, P1, ..., Pn) and sends E1(a1), ..., En(an), ∆, Ω, b to Pr.

– Step 2: Pr checks that Verify(E1(a1), ..., En(an), P1, ..., Pn, ∆, descr(a)) is
true where descr(a) is deduced from descr(mo) (extracted from Ω) and
b, e.g. ga = gm × g−b; if the test succeeds then he sends mr to Po; oth-
erwise he has just to wait until the expiration date T to give up the exchange.

– Step 3: Po checks that mr is correct running Check(mr, descr(mr)). If it is
the case then Po sends mo to Pr. Otherwise, he has just to wait until the
expiration date T in order to give up the exchange.

– Step 4: If Pr does not receive mo or if Check(mo, descr(mo)) is false then he
runs the recovery protocol.

Po Pr

Share
E1(a1),...,En(an),∆,Ω,b−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

mr←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Verify

Check mo−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Check

Fig. 2. Exchange protocol

Recovery protocol. The recovery protocol (Fig. 3) is started before T −Tmax by
the recipient, Pr, when he is injured, that is if the third message of the exchange,
mo, is wrong or missing.

– Step 1: Pr encrypts mr for Po and sends Ei(ai), Eo(mr), ∆′, and Ω to Pi.
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– Step 2: Pi computes CheckEnc(Eo(mr), descr(mr), ∆′) where descr(mr) is
extracted from Ω; if the output is true and if the expiration date, contained
in Ω, has not expired, Pi sends ai to Pr and Eo(mr) to Po.

– Step 3: after having received k shares, Pr runs Recover. From a he computes
mo = a + b.

Po
Pi

(1 ≤ i ≤ n) Pr

Ei(ai),Eo(mr),∆′,Ω←−−−−−−−−−−−−−−− Enc

Dec
Eo(mr)←−−−−−−−−−−−−−−− CheckEnc

ai−−−−−−−−−−−−−−−→ Recover

Fig. 3. Recovery protocol

Remark 4. In optimistic fair exchange protocols using TTP (e.g. [11]), the TTP
is stateful: the TTP keeps in mind whether the recovery or abort protocol has
already been performed. Due to our distributed architecture we cannot use this
model here and we prefer using expiration dates.

4 Security Analysis

We prove in this section that our protocol is complete, fair, timely and respects
the privacy property even in case of misbehaviors. We recall that the security
parameter k, which is the threshold of the PVSS, is such that b2 < k ≤ b2 + b1.
We defined in Section 2.2 the set of passive participants B1, B2, B3, and B4. We
rewrite these definitions here according to our protocol defined in Section 3.4:
B1: participants who honestly collaborate with both Po and Pr; B2: participants
Pi such that when Pr sends Ei(ai) to Pi ∈ B2, Pi decrypts Ei(ai) and sends ai to
Pr (even if the date is expired) but does not send mr to Po; B3: participants Pi

such that when Pr sends Ei(ai) to Pi ∈ B3, Pi sends Eo(mr) to Po (even if the
date is expired) but does not decrypt Ei(ai) for Pr; B4: participants who do not
collaborate at all. We denote M1, M2, and M3 the three messages of the exchange
protocol consisting respectively of [E1(a1), ..., En(an), ∆, Ω, b], [mr], and [mo].

4.1 Completeness of the Protocol

Proving that the protocol is complete when Po and Pr are honest is straightfor-
ward. In case of late discovery of M3 due to communication protocol reasons, Pr

runs the recovery protocol. Since b2 < k ≤ b2 +b1 we have at least k participants
who will collaborate with Pr and at least one who will collaborate with Po.
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4.2 Fairness of the Protocol

We saw in the previous section that the protocol is fair if both active participants
are honest. We explained furthermore in Section 2.2 that the case where both
active participants are dishonest is not relevant.

Po is honest and Pr is dishonest. Since Po is honest, M1 is correctly formed.
On the other hand M2 is wrong (or missing) otherwise both Po and Pr would be
honest. Here Po can detect that M2 is wrong using Check(mr,descr(mr)); there-
fore he does not transmit M3 and waits for T . If Pr does not run the recovery
protocol then nobody can obtain anything valuable on the expected items and
the exchange is trivially fair. If Pr starts the recovery protocol after T then he
cannot obtain mo since b2 < k. If Pr starts the recovery protocol before T (note
that if he only contacts participants in B2 or B4 before T then we fall into the
previous case) then Po receives mr from a passive participant either in B1 or B3;
therefore the protocol is fair iff Pr can obtain mo that is if and only if b1+b2 ≥ k.

Po is dishonest and Pr is honest. Since Po is dishonest, we consider the case
where M1 is wrong (or missing) and the case where M1 is correct but M3 is not
(or missing). If M1 is wrong (or missing), the exchange will die after T ; indeed
Pr can perform Verify(E1(a1), ..., En(an), P1, ..., Pn, ∆, descr(a)) and detects so
that M1 is wrong; he decides therefore not to disclose mr. The exchange ends
therefore on a trivially fair termination after T . Secondly, if M1 is correct but M3
is not (or missing): Pr can detect such a wrong M3 using Check(mo,descr(m0))
and therefore start the recovery protocol. The fairness of the exchange relies thus
on the ability of the passive participant to supply a to Pr, that is if and only if
b1 + b2 ≥ k. The fairness is so ensured since Po has already received mr in M2.

4.3 Timeliness of the Protocol

Timeliness of the protocol is straightforward.

4.4 Privacy of the Protocol

Privacy of the protocol is straightforward. If the recovery protocol is not per-
formed, then only information between Po and Pr are exchanged and passive
participants receive nothing. If the recovery protocol is used, then some par-
ticipants receive shares of ai. However, although k participants colluding can
recover a, they cannot recover mo since they do not know b. Obviously, they
cannot discover mr either. Privacy is here a great improvement with regard to
previous optimistic fair exchange protocol where we usually assume that the
trusted third party is able to regenerate expected items.

4.5 Complexity of the Protocol

When both Po and Pr are honest, the complexity in terms of exchanged mes-
sages is very small since only the three messages of the exchange protocol are
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sent. When somebody misbehaves, the complexity obviously increases since the
recovery procedure is performed. In the worst case, the n passive participants
are contacted by Pr, each receives one message and sends at most two messages,
so the complexity is only O(3n) in terms of exchanged messages.

5 Conclusion

We proposed an optimistic two-party fair exchange protocol using publicly ver-
ifiable secret sharing. Our protocol is the first optimistic fair exchange protocol
which does not rely on a centralized trusted third party. This concept is therefore
particularly suitable for ad-hoc networks. We proved that our protocol ensures
fairness and privacy even in quite dishonest environment and implies only low
communication overheads. Our protocol works assuming that a majority of par-
ticipants are honest or that only one is honest but we can estimate the number
b2 of participants who may harm Po by colluding with Pr.
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