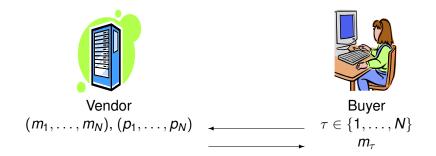
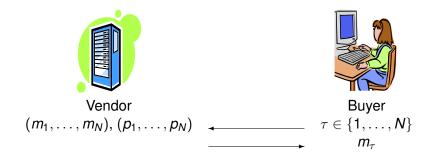
Optimistic Fair Priced Oblivious Transfer

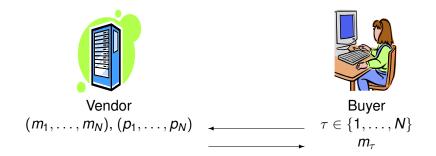

A. Rial B. Preneel

Katholieke Universiteit Leuven - ESAT-COSIC IBBT

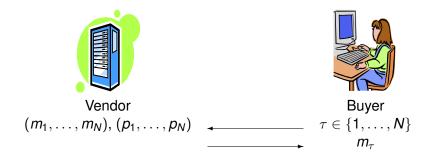
Africacrypt 2010


<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

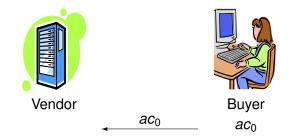
Priced Oblivious Transfer: Definition


- \mathcal{V} does not learn τ .
- *B* does not get any information about other messages.
- \mathcal{B} pays price p_{τ} .

Priced Oblivious Transfer: Definition

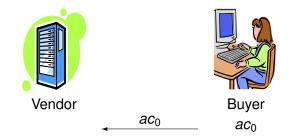

- \mathcal{V} does not learn τ .
- B does not get any information about other messages.
- \mathcal{B} pays price p_{τ} .

Priced Oblivious Transfer: Definition


- \mathcal{V} does not learn τ .
- B does not get any information about other messages.
- \mathcal{B} pays price p_{τ} .

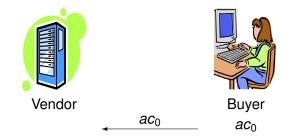
Priced Oblivious Transfer: Definition

- \mathcal{V} does not learn τ .
- B does not get any information about other messages.
- \mathcal{B} pays price p_{τ} .


Priced Oblivious Transfer: Construction

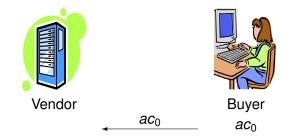
Prepaid Mechanism

- \mathcal{B} makes an initial deposit to \mathcal{V} .
- At each purchase, the price is debited from the deposit.
- V learns neither the price nor the deposit.


Priced Oblivious Transfer: Construction

Prepaid Mechanism

- \mathcal{B} makes an initial deposit to \mathcal{V} .
- At each purchase, the price is debited from the deposit.
- V learns neither the price nor the deposit.


Priced Oblivious Transfer: Construction

Prepaid Mechanism

- \mathcal{B} makes an initial deposit to \mathcal{V} .
- At each purchase, the price is debited from the deposit.
- V learns neither the price nor the deposit.

Priced Oblivious Transfer: Construction

Prepaid Mechanism

- \mathcal{B} makes an initial deposit to \mathcal{V} .
- At each purchase, the price is debited from the deposit.
- V learns neither the price nor the deposit.

Priced Oblivious Transfer: Security

Previous Work

Half-Simulation secure schemes [AIR01, Tob03].

• Vulnerable under attack in [DNO08].

UC-secure scheme [RKP09].

Inefficient.

Efficient Full-Simulation Secure POT

Priced Oblivious Transfer: Security

Previous Work

Half-Simulation secure schemes [AIR01, Tob03].

• Vulnerable under attack in [DNO08].

UC-secure scheme [RKP09].

Inefficient.

Efficient Full-Simulation Secure POT

Priced Oblivious Transfer: Security

Previous Work

Half-Simulation secure schemes [AIR01, Tob03].

• Vulnerable under attack in [DNO08].

UC-secure scheme [RKP09].

Inefficient.

Efficient Full-Simulation Secure POT

Priced Oblivious Transfer: Fairness

Previous Work

Usually, e-commerce protocols are analyzed to prove their fairness [Kre04].

- Non privacy-preserving protocols [EGL85, Gol83].
- Privacy-preserving protocols that provide buyers' anonymity [RR01].
- However, no fair POT scheme has been proposed.
 - Malicious \mathcal{V} can claim \mathcal{B} ran out of funds.
 - Malicious \mathcal{V} can deny delivery.
 - Malicious \mathcal{B} can falsely accuse an honest \mathcal{V} .

Fair POT

Priced Oblivious Transfer: Fairness

Previous Work

Usually, e-commerce protocols are analyzed to prove their fairness [Kre04].

- Non privacy-preserving protocols [EGL85, Gol83].
- Privacy-preserving protocols that provide buyers' anonymity [RR01].
- However, no fair POT scheme has been proposed.
 - Malicious \mathcal{V} can claim \mathcal{B} ran out of funds.
 - Malicious \mathcal{V} can deny delivery.
 - Malicious \mathcal{B} can falsely accuse an honest \mathcal{V} .

Fair POT

Priced Oblivious Transfer: Fairness

Previous Work

Usually, e-commerce protocols are analyzed to prove their fairness [Kre04].

- Non privacy-preserving protocols [EGL85, Gol83].
- Privacy-preserving protocols that provide buyers' anonymity [RR01].
- However, no fair POT scheme has been proposed.
 - Malicious \mathcal{V} can claim \mathcal{B} ran out of funds.
 - Malicious \mathcal{V} can deny delivery.
 - Malicious \mathcal{B} can falsely accuse an honest \mathcal{V} .

Fair POT

Priced Oblivious Transfer: Fairness

Previous Work

Usually, e-commerce protocols are analyzed to prove their fairness [Kre04].

- Non privacy-preserving protocols [EGL85, Gol83].
- Privacy-preserving protocols that provide buyers' anonymity [RR01].

However, no fair POT scheme has been proposed.

- Malicious \mathcal{V} can claim \mathcal{B} ran out of funds.
- Malicious \mathcal{V} can deny delivery.
- Malicious \mathcal{B} can falsely accuse an honest \mathcal{V} .

Fair POT

Priced Oblivious Transfer: Fairness

Previous Work

Usually, e-commerce protocols are analyzed to prove their fairness [Kre04].

- Non privacy-preserving protocols [EGL85, Gol83].
- Privacy-preserving protocols that provide buyers' anonymity [RR01].

However, no fair POT scheme has been proposed.

- Malicious \mathcal{V} can claim \mathcal{B} ran out of funds.
- Malicious \mathcal{V} can deny delivery.
- Malicious \mathcal{B} can falsely accuse an honest \mathcal{V} .

Fair POT

Priced Oblivious Transfer: Fairness

Previous Work

Usually, e-commerce protocols are analyzed to prove their fairness [Kre04].

- Non privacy-preserving protocols [EGL85, Gol83].
- Privacy-preserving protocols that provide buyers' anonymity [RR01].

However, no fair POT scheme has been proposed.

- Malicious \mathcal{V} can claim \mathcal{B} ran out of funds.
- Malicious \mathcal{V} can deny delivery.

• Malicious \mathcal{B} can falsely accuse an honest \mathcal{V} .

Fair POT

Priced Oblivious Transfer: Fairness

Previous Work

Usually, e-commerce protocols are analyzed to prove their fairness [Kre04].

- Non privacy-preserving protocols [EGL85, Gol83].
- Privacy-preserving protocols that provide buyers' anonymity [RR01].

However, no fair POT scheme has been proposed.

- Malicious \mathcal{V} can claim \mathcal{B} ran out of funds.
- Malicious \mathcal{V} can deny delivery.
- Malicious \mathcal{B} can falsely accuse an honest \mathcal{V} .

Fair POT

Priced Oblivious Transfer: Fairness

Previous Work

Usually, e-commerce protocols are analyzed to prove their fairness [Kre04].

- Non privacy-preserving protocols [EGL85, Gol83].
- Privacy-preserving protocols that provide buyers' anonymity [RR01].

However, no fair POT scheme has been proposed.

- Malicious \mathcal{V} can claim \mathcal{B} ran out of funds.
- Malicious \mathcal{V} can deny delivery.
- Malicious \mathcal{B} can falsely accuse an honest \mathcal{V} .

Fair POT

- Construction
- Comparison with Previous Work

- Definition
- Construction

Construction Comparison with Previous Work

Outline

Efficient Priced Oblivious Transfer

- Construction
- Comparison with Previous Work

2 Optimistic Fair POT

- Definition
- Construction

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

Construction Comparison with Previous Work

Outline

- Construction
- Comparison with Previous Work

2 Optimistic Fair POT

- Definition
- Construction

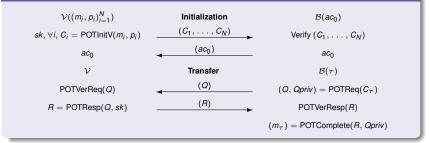
<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Construction Comparison with Previous Work

Overview

Our POT scheme is based on the OT scheme of [CNS07] and thus follows an assisted decryption approach.

$(C_1, \ldots, C_N) \longrightarrow (ac_0)$	
≺ (ac ₀)	
(Q)	
(R)	


<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Construction Comparison with Previous Work

Our POT scheme is based on the OT scheme of [CNS07] and thus follows an assisted decryption approach.

Generic POT scheme

Overview

Construction Comparison with Previous Work

Details: Initialization

\mathcal{V} computes the ciphertexts (C_1, \ldots, C_N).

- Computes bilinear map setup $(p, \mathbb{G}, \mathbb{G}_t, e, g)$.
- Pick secret key $h \in \mathbb{G}$.
- Ciphertext $C_i = (A_i = g^{1/(x+p_i)}, B_i = e(h, A_i) \cdot m_i, p_i).$

 \mathcal{B} verifies each A_i and makes the initial deposit ac_0 .

<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

Construction Comparison with Previous Work

Details: Initialization

- \mathcal{V} computes the ciphertexts (C_1, \ldots, C_N).
 - Computes bilinear map setup $(p, \mathbb{G}, \mathbb{G}_t, e, g)$.
 - Pick secret key $h \in \mathbb{G}$.
 - Ciphertext $C_i = (A_i = g^{1/(x+p_i)}, B_i = e(h, A_i) \cdot m_i, p_i).$

 \mathcal{B} verifies each A_i and makes the initial deposit ac_0 .

<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

Construction Comparison with Previous Work

Details: Initialization

- \mathcal{V} computes the ciphertexts (C_1, \ldots, C_N).
 - Computes bilinear map setup $(p, \mathbb{G}, \mathbb{G}_t, e, g)$.
 - Pick secret key $h \in \mathbb{G}$.
 - Ciphertext $C_i = (A_i = g^{1/(x+p_i)}, B_i = e(h, A_i) \cdot m_i, p_i).$

 \mathcal{B} verifies each A_i and makes the initial deposit ac_0 .

<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

Construction Comparison with Previous Work

Details: Initialization

- \mathcal{V} computes the ciphertexts (C_1, \ldots, C_N).
 - Computes bilinear map setup $(p, \mathbb{G}, \mathbb{G}_t, e, g)$.
 - Pick secret key $h \in \mathbb{G}$.
 - Ciphertext $C_i = (A_i = g^{1/(x+p_i)}, B_i = e(h, A_i) \cdot m_i, p_i).$

 \mathcal{B} verifies each A_i and makes the initial deposit ac_0 .

Construction Comparison with Previous Work

Details: Initialization

- \mathcal{V} computes the ciphertexts (C_1, \ldots, C_N).
 - Computes bilinear map setup $(p, \mathbb{G}, \mathbb{G}_t, e, g)$.
 - Pick secret key $h \in \mathbb{G}$.
 - Ciphertext $C_i = (A_i = g^{1/(x+p_i)}, B_i = e(h, A_i) \cdot m_i, p_i).$

 \mathcal{B} verifies each A_i and makes the initial deposit ac_0 .

Construction Comparison with Previous Work

Transfer phase "j": Request

 \mathcal{B} computes a request (POTReq) for item τ :

- B picks v ← Z_p and blinds V = A^v_τ, computes a commitment C_j to new deposit value ac_{j-1} − p_τ and a proof that:
 - She possesses a signature on price p_{τ} .
 - C_j commits to $ac_{j-1} p_{\tau}$.
 - *C_j* commits to a non-negative value [CCS08].

Construction Comparison with Previous Work

Transfer phase "j": Request

 \mathcal{B} computes a request (POTReq) for item τ :

- B picks v ← Z_p and blinds V = A^v_τ, computes a commitment C_j to new deposit value ac_{j-1} − p_τ and a proof that:
 - She possesses a signature on price p_τ.
 - C_j commits to $ac_{j-1} p_{\tau}$.
 - *C_j* commits to a non-negative value [CCS08].

Construction Comparison with Previous Work

Transfer phase "j": Request

 \mathcal{B} computes a request (POTReq) for item τ :

- B picks v ← Z_p and blinds V = A^v_τ, computes a commitment C_j to new deposit value ac_{j-1} − p_τ and a proof that:
 - She possesses a signature on price *p*_τ.
 - C_j commits to $ac_{j-1} p_{\tau}$.
 - C_j commits to a non-negative value [CCS08].

Construction Comparison with Previous Work

Transfer phase "j": Request

 \mathcal{B} computes a request (POTReq) for item τ :

- B picks v ← Z_p and blinds V = A^v_τ, computes a commitment C_j to new deposit value ac_{j-1} − p_τ and a proof that:
 - She possesses a signature on price p_τ.
 - C_j commits to $ac_{j-1} p_{\tau}$.
 - C_j commits to a non-negative value [CCS08].

Construction Comparison with Previous Work

Transfer phase "j": Response

 ${\cal V}$ verifies request (POTVerReq) and computes a response (POTResp):

•
$$W = e(h, V)$$
.

• and a proof that secret key *h* was used to compute *W*.

B verifies response (POTVerResp) and obtains the message (POTComplete):

•
$$m_{\tau} = B_{\tau}/(W^{1/\nu}) = (\frac{m_{\tau} \cdot e(A_i,h)}{e(h,A_i^{\nu})^{(1/\nu)}})$$

Construction Comparison with Previous Work

Transfer phase "j": Response

 ${\cal V}$ verifies request (POTVerReq) and computes a response (POTResp):

• W = e(h, V).

• and a proof that secret key *h* was used to compute *W*.

 \mathcal{B} verifies response (POTVerResp) and obtains the message (POTComplete):

•
$$m_{\tau} = B_{\tau}/(W^{1/v}) = (\frac{m_{\tau} \cdot e(A_i,h)}{e(h,A_i^v)^{(1/v)}})$$

Construction Comparison with Previous Work

Transfer phase "j": Response

 ${\cal V}$ verifies request (POTVerReq) and computes a response (POTResp):

•
$$W = e(h, V)$$
.

• and a proof that secret key h was used to compute W.

 ${\cal B}$ verifies response (POTVerResp) and obtains the message (POTComplete):

•
$$m_{\tau} = B_{\tau}/(W^{1/\nu}) = (\frac{m_{\tau} \cdot e(A_i,h)}{e(h,A_i^{\nu})^{(1/\nu)}})$$

Construction Comparison with Previous Work

Outline

- Construction
- Comparison with Previous Work

2 Optimistic Fair POT

- Definition
- Construction

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Construction Comparison with Previous Work

Comparison with Previous Work

UC Secure vs Our Scheme

	[RKP09]	Our Scheme
UC	Yes	No
Standard Model	Yes	Yes
Static Corruptions	Yes	Yes
CRS	Yes	No
Assumptions	DLIN, TDH, HSDH	SDH, BDHE
Efficient	No	Yes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Construction Comparison with Previous Work

Efficiency

Given the upper bound of the deposit $D = d^a$.

Communication Efficiency

	[RKP09]	Our Scheme	
Ciph	$(12N+3d+11)\cdot \mathbb{G} + \mathbb{Z}_p $	$(2N+2d+2)\cdot \mathbb{G} + (N+1)\cdot \mathbb{Z}_p + 2\cdot \mathbb{G}_t $	
Req	(86 + 30 <i>a</i>) · ∣ℂ∣	$(a+7)\cdot \mathbb{G} +(2a+7)\cdot \mathbb{Z}_p +(a+1)\cdot \mathbb{G}_t $	
Resp	28 · G	$3 \cdot \mathbb{G}_t + \mathbb{Z}_{p} $	

・ロ> < 回> < 回> < 回> < 回> < 回

Definition Construction

Outline

Efficient Priced Oblivious Transfer

- Construction
- Comparison with Previous Work

2 Optimistic Fair POT

- Definition
- Construction

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Outline

Efficient Priced Oblivious Transfer

- Construction
- Comparison with Previous Work

Optimistic Fair POTDefinition

Construction

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

Definition

Definition Construction

Definition

Transformation that turns any secure POT scheme into an Optimistic Fair POT scheme.

Properties:

- Third party \mathcal{A} to resolve disputes.
- \mathcal{A} is only involved in case of dispute (optimistic).
- A must be neutral to guarantee fairness.
- Privacy-properties of POT are guaranteed (even if A is corrupted).
 - \mathcal{A} and \mathcal{V} cannot learn τ .
 - \mathcal{A} and \mathcal{B} cannot learn non-purchased messages.
- Without harming efficiency.

Definition Construction

Definition

Transformation that turns any secure POT scheme into an Optimistic Fair POT scheme.

Properties:

- Third party \mathcal{A} to resolve disputes.
- \mathcal{A} is only involved in case of dispute (optimistic).
- A must be neutral to guarantee fairness.
- Privacy-properties of POT are guaranteed (even if A is corrupted).
 - \mathcal{A} and \mathcal{V} cannot learn τ .
 - \mathcal{A} and \mathcal{B} cannot learn non-purchased messages.
- Without harming efficiency.

Definition Construction

Definition

Transformation that turns any secure POT scheme into an Optimistic Fair POT scheme.

Properties:

- Third party \mathcal{A} to resolve disputes.
- A is only involved in case of dispute (optimistic).
- A must be neutral to guarantee fairness.
- Privacy-properties of POT are guaranteed (even if A is corrupted).
 - \mathcal{A} and \mathcal{V} cannot learn τ .
 - \mathcal{A} and \mathcal{B} cannot learn non-purchased messages.
- Without harming efficiency.

Definition Construction

Definition

Transformation that turns any secure POT scheme into an Optimistic Fair POT scheme.

Properties:

- Third party \mathcal{A} to resolve disputes.
- A is only involved in case of dispute (optimistic).
- \mathcal{A} must be neutral to guarantee fairness.
- Privacy-properties of POT are guaranteed (even if A is corrupted).
 - \mathcal{A} and \mathcal{V} cannot learn τ .
 - A and B cannot learn non-purchased messages.
- Without harming efficiency.

Definition Construction

Definition

Transformation that turns any secure POT scheme into an Optimistic Fair POT scheme.

Properties:

- Third party \mathcal{A} to resolve disputes.
- A is only involved in case of dispute (optimistic).
- A must be neutral to guarantee fairness.
- Privacy-properties of POT are guaranteed (even if A is corrupted).
 - \mathcal{A} and \mathcal{V} cannot learn τ .
 - \mathcal{A} and \mathcal{B} cannot learn non-purchased messages.
- Without harming efficiency.

Definition Construction

Definition

Transformation that turns any secure POT scheme into an Optimistic Fair POT scheme.

Properties:

- Third party \mathcal{A} to resolve disputes.
- A is only involved in case of dispute (optimistic).
- A must be neutral to guarantee fairness.
- Privacy-properties of POT are guaranteed (even if A is corrupted).
 - \mathcal{A} and \mathcal{V} cannot learn τ .
 - ${\mathcal A}$ and ${\mathcal B}$ cannot learn non-purchased messages.
- Without harming efficiency.

Definition Construction

Definition

Transformation that turns any secure POT scheme into an Optimistic Fair POT scheme.

Properties:

- Third party \mathcal{A} to resolve disputes.
- A is only involved in case of dispute (optimistic).
- A must be neutral to guarantee fairness.
- Privacy-properties of POT are guaranteed (even if A is corrupted).
 - \mathcal{A} and \mathcal{V} cannot learn τ .
 - \mathcal{A} and \mathcal{B} cannot learn non-purchased messages.
- Without harming efficiency.

Definition Construction

Outline

Efficient Priced Oblivious Transfer

- Construction
- Comparison with Previous Work

Construction

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Verifiably Encrypted Signatures

A VES scheme consists of algorithms

- Kg(1^{κ}), Sign(*sk*, *m*) and Vf(*pk*, σ , *m*).
- AdjKg(1^k) output a key pair (ask, apk) for A.
- Create(sk, apk, m) computes a VES ω.
- VesVf(pk, apk, ω , m) verifies a VES ω .
- Adj(pk, ask, apk, ω , m) extracts σ form ω .

Properties:

- Unforgeability.
- Opacity.

Verifiably Encrypted Signatures

A VES scheme consists of algorithms

- Kg(1^{κ}), Sign(*sk*, *m*) and Vf(*pk*, σ , *m*).
- AdjKg(1^k) output a key pair (ask, apk) for A.
- Create(sk, apk, m) computes a VES ω.
- VesVf(pk, apk, ω , m) verifies a VES ω .
- Adj(pk, ask, apk, ω , m) extracts σ form ω .

Properties:

- Unforgeability.
- Opacity.

Definition Construction

Protocol based on VES

Non privacy-preserving e-commerce protocol based on VES:

- B requests an item and sends a VES.
- \mathcal{V} sends the item.
- B reveals a valid signature.
- If \mathcal{B} does not reveal it, \mathcal{V} complains.
 - \mathcal{A} verifies \mathcal{V} fulfills delivery.
 - \mathcal{A} reveals a signature to \mathcal{V} .
- If \mathcal{V} does not fulfill delivery, \mathcal{B} complains.
 - \mathcal{A} verifies \mathcal{V} fulfills delivery.
 - \mathcal{A} reveals a signature to \mathcal{V} .

Definition Construction

Protocol based on VES

Non privacy-preserving e-commerce protocol based on VES:

- B requests an item and sends a VES.
- V sends the item.
- \mathcal{B} reveals a valid signature.
- If \mathcal{B} does not reveal it, \mathcal{V} complains.
 - \mathcal{A} verifies \mathcal{V} fulfills delivery.
 - \mathcal{A} reveals a signature to \mathcal{V} .
- If \mathcal{V} does not fulfill delivery, \mathcal{B} complains.
 - \mathcal{A} verifies \mathcal{V} fulfills delivery.
 - \mathcal{A} reveals a signature to \mathcal{V} .

Definition Construction

Protocol based on VES

Non privacy-preserving e-commerce protocol based on VES:

- B requests an item and sends a VES.
- \mathcal{V} sends the item.
- \mathcal{B} reveals a valid signature.
- If ${\mathcal B}$ does not reveal it, ${\mathcal V}$ complains.
 - \mathcal{A} verifies \mathcal{V} fulfills delivery.
 - \mathcal{A} reveals a signature to \mathcal{V} .
- If \mathcal{V} does not fulfill delivery, \mathcal{B} complains.
 - \mathcal{A} verifies \mathcal{V} fulfills delivery.
 - \mathcal{A} reveals a signature to \mathcal{V} .

Definition Construction

Protocol based on VES

Non privacy-preserving e-commerce protocol based on VES:

- B requests an item and sends a VES.
- \mathcal{V} sends the item.
- \mathcal{B} reveals a valid signature.
- If \mathcal{B} does not reveal it, \mathcal{V} complains.
 - \mathcal{A} verifies \mathcal{V} fulfills delivery.
 - \mathcal{A} reveals a signature to \mathcal{V} .
- If \mathcal{V} does not fulfill delivery, \mathcal{B} complains.
 - \mathcal{A} verifies \mathcal{V} fulfills delivery.
 - \mathcal{A} reveals a signature to \mathcal{V} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition Construction

Protocol based on VES

Non privacy-preserving e-commerce protocol based on VES:

- B requests an item and sends a VES.
- \mathcal{V} sends the item.
- \mathcal{B} reveals a valid signature.
- If \mathcal{B} does not reveal it, \mathcal{V} complains.
 - \mathcal{A} verifies \mathcal{V} fulfills delivery.
 - \mathcal{A} reveals a signature to \mathcal{V} .
- If \mathcal{V} does not fulfill delivery, \mathcal{B} complains.
 - \mathcal{A} verifies \mathcal{V} fulfills delivery.
 - \mathcal{A} reveals a signature to \mathcal{V} .

Definition Construction

Protocol based on VES

Non privacy-preserving e-commerce protocol based on VES:

- B requests an item and sends a VES.
- \mathcal{V} sends the item.
- \mathcal{B} reveals a valid signature.
- If \mathcal{B} does not reveal it, \mathcal{V} complains.
 - \mathcal{A} verifies \mathcal{V} fulfills delivery.
 - \mathcal{A} reveals a signature to \mathcal{V} .
- If \mathcal{V} does not fulfill delivery, \mathcal{B} complains.
 - A verifies V fulfills delivery.
 - \mathcal{A} reveals a signature to \mathcal{V} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition Construction

Protocol based on VES

Non privacy-preserving e-commerce protocol based on VES:

- B requests an item and sends a VES.
- \mathcal{V} sends the item.
- \mathcal{B} reveals a valid signature.
- If \mathcal{B} does not reveal it, \mathcal{V} complains.
 - \mathcal{A} verifies \mathcal{V} fulfills delivery.
 - \mathcal{A} reveals a signature to \mathcal{V} .
- If \mathcal{V} does not fulfill delivery, \mathcal{B} complains.
 - \mathcal{A} verifies \mathcal{V} fulfills delivery.
 - \mathcal{A} reveals a signature to \mathcal{V} .

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Definition Construction

OFPOT based on VES

In non-privacy preserving protocols, A can easily verify whether V fulfills delivery.

- In POT \mathcal{A} can learn neither m_1, \ldots, m_N nor τ .
- However, correctness of requests and responses can be publicly verified.
 - POTVerReq does not need secret key *sk*.
 - POTVerResp does not need τ .

Definition Construction

OFPOT based on VES

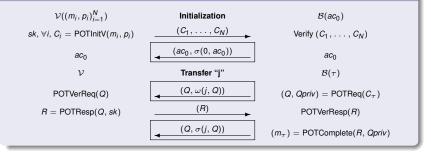
- In non-privacy preserving protocols, A can easily verify whether V fulfills delivery.
- In POT \mathcal{A} can learn neither m_1, \ldots, m_N nor τ .
- However, correctness of requests and responses can be publicly verified.
 - POTVerReq does not need secret key sk.
 - POTVerResp does not need τ .

Definition Construction

OFPOT based on VES

- In non-privacy preserving protocols, A can easily verify whether V fulfills delivery.
- In POT \mathcal{A} can learn neither m_1, \ldots, m_N nor τ .
- However, correctness of requests and responses can be publicly verified.
 - POTVerReq does not need secret key sk.
 - POTVerResp does not need τ .

Definition Construction


OFPOT based on VES

- In non-privacy preserving protocols, A can easily verify whether V fulfills delivery.
- In POT \mathcal{A} can learn neither m_1, \ldots, m_N nor τ .
- However, correctness of requests and responses can be publicly verified.
 - POTVerReq does not need secret key *sk*.
 - POTVerResp does not need τ .

Definition Construction

OFPOT based on VES: construction

Generic OFPOT scheme

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

OFPOT based on VES: disputes

$\ensuremath{\mathcal{V}}$ complains:

- \mathcal{V} sends request $Q, \omega(j, Q)$ and response R to \mathcal{A} .
- \mathcal{A} verifies request and response.
- \mathcal{A} sends R to \mathcal{B} and reveals $\sigma(j, Q)$ to \mathcal{V} .

 \mathcal{B} complains:

- \mathcal{B} sends request $Q, \omega(j, Q)$ to \mathcal{A} .
- \mathcal{A} verifies request and sends it to \mathcal{V} .
- \mathcal{V} returns a response to \mathcal{A} .
- \mathcal{A} verifies the response.
- \mathcal{A} sends response to \mathcal{B} and reveals $\sigma(j, Q)$ to \mathcal{V} .

OFPOT based on VES: disputes

$\ensuremath{\mathcal{V}}$ complains:

- \mathcal{V} sends request $Q, \omega(j, Q)$ and response R to \mathcal{A} .
- \mathcal{A} verifies request and response.
- \mathcal{A} sends R to \mathcal{B} and reveals $\sigma(j, Q)$ to \mathcal{V} .

B complains:

- \mathcal{B} sends request $Q, \omega(j, Q)$ to \mathcal{A} .
- \mathcal{A} verifies request and sends it to \mathcal{V} .
- \mathcal{V} returns a response to \mathcal{A} .
- \mathcal{A} verifies the response.
- \mathcal{A} sends response to \mathcal{B} and reveals $\sigma(j, Q)$ to \mathcal{V} .

OFPOT based on VES: disputes

$\ensuremath{\mathcal{V}}$ complains:

- \mathcal{V} sends request $Q, \omega(j, Q)$ and response R to \mathcal{A} .
- \mathcal{A} verifies request and response.
- \mathcal{A} sends R to \mathcal{B} and reveals $\sigma(j, Q)$ to \mathcal{V} .

 \mathcal{B} complains:

- \mathcal{B} sends request $Q, \omega(j, Q)$ to \mathcal{A} .
- \mathcal{A} verifies request and sends it to \mathcal{V} .
- \mathcal{V} returns a response to \mathcal{A} .
- \mathcal{A} verifies the response.
- \mathcal{A} sends response to \mathcal{B} and reveals $\sigma(j, Q)$ to \mathcal{V} .

OFPOT based on VES: disputes

- $\ensuremath{\mathcal{V}}$ complains:
 - \mathcal{V} sends request $Q, \omega(j, Q)$ and response R to \mathcal{A} .
 - \mathcal{A} verifies request and response.
 - \mathcal{A} sends R to \mathcal{B} and reveals $\sigma(j, Q)$ to \mathcal{V} .
- \mathcal{B} complains:
 - \mathcal{B} sends request $Q, \omega(j, Q)$ to \mathcal{A} .
 - \mathcal{A} verifies request and sends it to \mathcal{V} .
 - \mathcal{V} returns a response to \mathcal{A} .
 - \mathcal{A} verifies the response.
 - \mathcal{A} sends response to \mathcal{B} and reveals $\sigma(j, Q)$ to \mathcal{V} .

OFPOT based on VES: disputes

- $\ensuremath{\mathcal{V}}$ complains:
 - \mathcal{V} sends request $Q, \omega(j, Q)$ and response R to \mathcal{A} .
 - \mathcal{A} verifies request and response.
 - \mathcal{A} sends R to \mathcal{B} and reveals $\sigma(j, Q)$ to \mathcal{V} .
- \mathcal{B} complains:
 - \mathcal{B} sends request $Q, \omega(j, Q)$ to \mathcal{A} .
 - \mathcal{A} verifies request and sends it to \mathcal{V} .
 - \mathcal{V} returns a response to \mathcal{A} .
 - \mathcal{A} verifies the response.
 - \mathcal{A} sends response to \mathcal{B} and reveals $\sigma(j, Q)$ to \mathcal{V} .

OFPOT based on VES: disputes

- $\ensuremath{\mathcal{V}}$ complains:
 - \mathcal{V} sends request $Q, \omega(j, Q)$ and response R to \mathcal{A} .
 - \mathcal{A} verifies request and response.
 - \mathcal{A} sends R to \mathcal{B} and reveals $\sigma(j, Q)$ to \mathcal{V} .

 \mathcal{B} complains:

- \mathcal{B} sends request $Q, \omega(j, Q)$ to \mathcal{A} .
- \mathcal{A} verifies request and sends it to \mathcal{V} .
- \mathcal{V} returns a response to \mathcal{A} .
- \mathcal{A} verifies the response.
- \mathcal{A} sends response to \mathcal{B} and reveals $\sigma(j, Q)$ to \mathcal{V} .

OFPOT based on VES: disputes

- $\ensuremath{\mathcal{V}}$ complains:
 - \mathcal{V} sends request $Q, \omega(j, Q)$ and response R to \mathcal{A} .
 - \mathcal{A} verifies request and response.
 - \mathcal{A} sends R to \mathcal{B} and reveals $\sigma(j, Q)$ to \mathcal{V} .

 \mathcal{B} complains:

- \mathcal{B} sends request $Q, \omega(j, Q)$ to \mathcal{A} .
- \mathcal{A} verifies request and sends it to \mathcal{V} .
- \mathcal{V} returns a response to \mathcal{A} .
- \mathcal{A} verifies the response.
- \mathcal{A} sends response to \mathcal{B} and reveals $\sigma(j, Q)$ to \mathcal{V} .

OFPOT based on VES: disputes

- $\ensuremath{\mathcal{V}}$ complains:
 - \mathcal{V} sends request $Q, \omega(j, Q)$ and response R to \mathcal{A} .
 - \mathcal{A} verifies request and response.
 - \mathcal{A} sends R to \mathcal{B} and reveals $\sigma(j, Q)$ to \mathcal{V} .

 \mathcal{B} complains:

- \mathcal{B} sends request $Q, \omega(j, Q)$ to \mathcal{A} .
- \mathcal{A} verifies request and sends it to \mathcal{V} .
- \mathcal{V} returns a response to \mathcal{A} .
- \mathcal{A} verifies the response.
- \mathcal{A} sends response to \mathcal{B} and reveals $\sigma(j, Q)$ to \mathcal{V} .

Conclusion

POT scheme.

- Full-simulation secure.
- Standard model.
- Efficient.

Optimistic fair POT.

- \mathcal{A} only involved in case of dispute.
- Privacy preserved when \mathcal{A} corrupted.
- Efficient.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Construction

Conclusion

POT scheme.

- Full-simulation secure.
- Standard model.
- Efficient.

Optimistic fair POT.

- \mathcal{A} only involved in case of dispute.
- Privacy preserved when \mathcal{A} corrupted.
- Efficient.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Construction

For Further Reading I

- William Aiello, Yuval Ishai, and Omer Reingold.
 Priced oblivious transfer: How to sell digital goods.
 In Birgit Pfitzmann, editor, *EUROCRYPT*, volume 2045 of *Lecture Notes in Computer Science*, pages 119–135.
 Springer, 2001.
- Jan Camenisch, Rafik Chaabouni, and Abhi Shelat. Efficient protocols for set membership and range proofs. In Josef Pieprzyk, editor, *ASIACRYPT*, volume 5350 of *Lecture Notes in Computer Science*, pages 234–252. Springer, 2008.

For Further Reading II

- Jan Camenisch, Gregory Neven, and Abhi Shelat. Simulatable adaptive oblivious transfer. In Moni Naor, editor, EUROCRYPT, volume 4515 of Lecture Notes in Computer Science, pages 573–590. Springer, 2007.
- Ivan Damgård, Jesper Buus Nielsen, and Claudio Orlandi. Essentially optimal universally composable oblivious transfer.

Cryptology ePrint Archive, Report 2008/220, 2008. http://eprint.iacr.org/.

Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing contracts. *Commun. ACM*, 28(6):637–647, 1985.

◇ @ > ▲ E > ▲ E > E E の Q @

For Further Reading III

Oded Goldreich.

A simple protocol for signing contracts. In *CRYPTO*, pages 133–136, 1983.

Steve Kremer.

Formal analysis of optimistic fair exchange protocols, 2004.

Alfredo Rial, Markulf Kohlweiss, and Bart Preneel. Universally composable adaptive priced oblivious transfer. In Hovav Shacham and Brent Waters, editors, *Pairing*, volume 5671 of *Lecture Notes in Computer Science*, pages 231–247. Springer, 2009.

For Further Reading IV

Indrakshi Ray and Indrajit Ray. An anomymous fair exchange e-commerce protocol. In *IPDPS*, page 172. IEEE Computer Society, 2001.

Christian Tobias.

Practical oblivious transfer protocols.

In *IH '02: Revised Papers from the 5th International Workshop on Information Hiding*, pages 415–426, London, UK, 2003. Springer-Verlag.