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ABSTRACT

This paper introduces a simple e�cient learning algorithms for gen-

eral sequential decision making. The algorithm combines Optimism

for exploration with Maximum Likelihood Estimation for model es-

timation, which is thus named OMLE. We prove that OMLE learns

the near-optimal policies of an enormously rich class of sequen-

tial decision making problems in a polynomial number of samples.

This rich class includes not only a majority of known tractable

model-based Reinforcement Learning (RL) problems (such as tab-

ular MDPs, factored MDPs, low witness rank problems, tabular

weakly-revealing/observable POMDPs and multi-step decodable

POMDPs ), but also many new challenging RL problems especially

in the partially observable setting that were not previously known

to be tractable.

Notably, the new problems addressed by this paper include (1)

observable POMDPs with continuous observation and function ap-

proximation, where we achieve the �rst sample complexity that is

completely independent of the size of observation space; (2) well-

conditioned low-rank sequential decision making problems (also

known as Predictive State Representations (PSRs)), which include

and generalize all known tractable POMDP examples under a more

intrinsic representation; (3) general sequential decision making

problems under SAIL condition, which uni�es our existing under-

standings of model-based RL in both fully observable and partially

observable settings. SAIL condition is identi�ed by this paper, which

can be viewed as a natural generalization of Bellman/witness rank

to address partial observability. This paper also presents a reward-

free variant of OMLE algorithm, which learns approximate dynamic

models that enable the computation of near-optimal policies for all

reward functions simultaneously.
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1 INTRODUCTION

A wide range of modern arti�cial intelligence applications can be

cast as sequential decision making problems, in which an agent in-

teracts with an unknown environment through time, and learns to

make a sequence of decisions using intermediate feedback. Sequen-

tial decision making covers not only problems like Atari games [27],

Go [32], Chess [6] and basic control systems [35], where states are

fully accessible to the learner (the fully observable setting), but also

applications including StarCraft [37], Poker [4], robotics with local

sensors [1], autonomous driving [24] and medical diagnostic sys-

tems [14], where observations only reveal partial information about

the underlying states (the partially observable setting). While the

fully observable sequential decision making problems have been un-

der intense theoretical investigation over recent years, the partially

observable problems remain comparatively less understood.

Distinguished from fully observable systems, a learner in par-

tially observable systems is only able to see the observations that

contain partial information about the underlying states. Observa-

tions in general are no longer Markovian. As a result, it is no longer

su�cient for the learner to make decision based on the observation

or information available at the current step. Instead, the learner

is required to additionally infer the latent states using past histo-

ries (memories). Such histories of observations have exponentially

many possibilities, leading to many well-known hardness results in

the worst case in both computation [28–30, 38] and statistics [22].

To avoid these worst-case barriers, a recent line of results started

to investigate rich subclasses of Partially Observable Markov De-

cision Process (POMDPs) under the basic settings of �nite states

and observations [see, e.g., 18, 26], which still only constitute a rel-

atively small subset of all partially observable problems of practical

interests.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

363

http://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2209.14997
https://doi.org/10.1145/3564246.3585161
https://doi.org/10.1145/3564246.3585161
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3564246.3585161&domain=pdf&date_stamp=2023-06-02


STOC ’23, June 20–23, 2023, Orlando, FL, USA Qinghua Liu, Praneeth Netrapalli, Csaba Szepesvari and Chi Jin

In this paper, we introduce a simple, generic, model-based algorithm—

OMLE, which combines Optimism (O) for exploration with Maxi-

mum Likelihood Estimation (MLE) for model estimation. We prove

that OMLE learns the near-optimal policies of an enormously rich

class of sequential decision making problems in a polynomial num-

ber of samples. This rich class includes not only amajority of known

tractable model-based Reinforcement Learning (RL) problems such

as tabular MDPs, factored MDPs, low witness rank problems [34],

tabular weakly-revealing/observable POMDPs [18, 26] and multi-

step decodable POMDPs [9], but also, more importantly, many new

challenging RL problems especially in the partially observable set-

ting that were not previously known to be tractable (see Section 1.1).

To achieve these new results, this paper develops new frameworks

and techniques which address a set of fundamental challenges that

are uniquely presented in the partially observable systems:

Challenge 1: Continuous observation space and function approxi-

mation with partial observability. Modern applications of sequential

decision making often involve an enormous (or even in�nite) num-

ber of observations, where function approximationmust be deployed

to approximate dynamic models, value functions, or policies. While

function approximation greatly expands the potential reach of ex-

isting frameworks, particularly via deep architectures, it raises a

number of fundamental questions including generalization, model

misspeci�cation, and how to address those issues in presence of ex-

ploration. Function approximation becomes even more complicated

in the partially observable setting when further coupled with the in-

ference of latent states and the use of history dependent policies. As

a result, existing results on function approximation in the partially

observable setting remain very limited [5, 36]. They make rather

restrictive assumptions, and do not provide e�cient guarantees

even to a relatively simple continuous-observation extension of the

basic tabular weakly-revealing or observable POMDPs [13, 26]—

GM-POMDPs (Section 5.1.2), which only add Gaussian noise to the

observations in the original models.

Challenge 2: Learning under intrinsic representation of partially

observable systems. Most existing works on e�cient learning of par-

tially observable problems focus on themodel of POMDPs. POMDPs

are based on latent states that are unobservable and subject to non-

trivial ambiguity—there can exist multiple di�erent POMDPs that

represent the same sequential decision making problem. This ambi-

guity directly leads to the unidenti�ability of latent states even in

the benign settings where learning near-optimal policy is possible.

This paper considers a more intrinsic modeling of partially ob-

servable dynamic system—Predictive State Representations (PSRs)

[25, 33], whichmodel a dynamic system using only observable exper-

iments of futures. It is known that PSRs can represent any low-rank

sequential decision making problems, which are more expressive

than �nite-state POMDPs [15]. However, it remains unclear how

to learn large class of PSRs sample-e�ciently.

Challenge 3: A uni�ed understanding of fully observable and par-

tially observable RL.. There has been a long line of important works

on generic framework of reinforcement learning [8, 10, 16, 19, 34].

However, most of them focus on the fully observable problems and

are only capable of dealing with very special partially observable

problems such as reactive POMDPs. A majority of them critically

rely on the complexity measures that are based on Bellman rank

[16] or witness rank [34] (the model-based version), which assumes

the Bellman error or the model estimation error (in the model-based

setting) to have a bilinear structure. These bilinear-based complex-

ity measures completely fail to explain the tractability of many

basic partially observable problems [9, 13, 26]. It remains open to

develop a uni�ed theoretical framework which explain large classes

of both fully observable and partially observable problems.

This work addresses all three challenges above. For Challenge 1,

we prove that OMLE learns observable POMDPs with continuous

observation and function approximation, where we achieve the

�rst sample complexity that is completely independent of the size

of observation space. For Challenge 2, we show that OMLE learns

well-conditioned PSRs, which include and generalize all known

tractable POMDP examples under a more intrinsic representation;

For Challenge 3, we identify a new condition—Summation of Abso-

lute values of Independent biLinear functions (SAIL)—which can

be viewed as a natural generalization of Bellman/witness rank to

address partial observability. We prove that OMLE learns general

sequential decision making problems under SAIL condition, which

include all problems considered in this paper, and unify our existing

understanding for model-based RL in both fully observable and

partially observable settings.

1.1 Overview of Our Results

This paper introduces a generic algorithm framework of OMLE,

and prove it learns a very rich class of sequential decision making

problems sample-e�ciently. The OMLE algorithm (in its basic form)

was �rst proposed in [26] for sample-e�cient learning of tabular

weakly-revealing POMDPs. Here we introduce some extra �exibility

to the algorithm, address new challenges, and provide learning

guarantees in a signi�cantly more general setup. Speci�cally,

• We identify a su�cient condition for OMLE—generalized

eluder-type condition (Condition 3.1), under which OMLE

is guaranteed to �nd near-optimal policy in a polynomial

number of samples. We will use this generalized eluder-type

condition to analyze all problems considered in this paper.

• We consider sequential decision making with low-rank struc-

ture (also known as Predictive State Representations (PSRs)).

We �rst show that learning generic PSRs is intractable. We

then identify a rich subclass calledwell-conditioned PSRs, and

prove that OMLE learn them sample-e�ciently. Our sample

complexity depends polynomially on the rank of PSRs and

the size of core action sequences, and is independent of the

size of core tests and the size of observation space.

• We show that a wide range of POMDP models fall in to

the class of well-conditioned PSRs. They include not only

previously known tractable problems such as tabular weakly-

revealing/observable POMDPs [18, 26], multistep decodable

POMDPs [9]; but also new problems including observable

POMDPs with continuous observation (in particular, GM-

POMDPs, see Section 5.1.2), and POMDPs with a few known

core action sequence. Our PSR results immediately imply

sample e�cient guarantees of OMLE to learn these POMDP

models.
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Figure 1: A summary of sequential decisionmaking problems

that can be e�ciently learned by OMLE.

• We identify a new SAIL condition which can be viewed as a

natural generalization of Bellman/witness rank, and prove

that OMLE sample-e�ciently learns any sequential decision

making problem with SAIL condition. We show that SAIL

condition holds for well-conditioned PSRs and for all prob-

lems with low witness rank [34]. The latter covers a majority

of known tractable model-based RL problems in the fully

observable setting including factored MDPs, kernel linear

MDPs, sparse linear bandits. Moreover, our sample com-

plexity guarantees for learning low witness rank problems

improve over the existing results [34] by a multiplicative

factor of witness rank.

• We propose a variant of OMLE for reward-free learning.

We show that Reward-free OMLE learns an approximate

dynamic model sample-e�ciently under a slightly stronger

version of the SAIL condition. This approximate dynamic

model allows us to compute the near-optimal policies for all

reward functions simultaneously.

Besides above results, this paper also establishes the rigorous

formulations for overparameterized PSRs, studies their properties,

gives rigorous treatment for PSRs with continuous observation, and

bounds the bracketing number of tabular PSRs, which might be of

independent interests to the community.

1.2 Technical Contribution

Underlying our new results is a set of new techniques for handling

PSRs with in�nite observations.

• New sharp elliptical potential style lemma for SAIL.

A crucial component for analyzing optimistic algorithms is

pigeon-hole’s principle [2, 17] or so-called elliptical potential

lemma [23] which ensures that the size of con�dence set is

shrinking fast enough to guarantee near-optimality of the

learned policy after a small number of rounds. Standard ellip-

tical potential lemma applies to linear bandits whose reward

is a linear function of form ⟨\, G⟩. To analyze POMDPs or

PSRs, we establish a new generalized version of elliptical

potential lemma which applies to Summation of Absolute

values of Independent biLinear functions (SAIL) of form∑<
8=1

∑=
9=1 |⟨\8 , G 9 ⟩|. A similar problem has been studied in

[26] but the bounds derived therein depend on<,=, which

scales with the size of observation space in PSRs/POMDPs.

Such result becomes vacuous in the in�nite-observation set-

ting. We address this issue by developing a signi�cantly

sharper argument, which gives bounds completely indepen-

dent of<,= (thus the size of observation space). Please see

Appendix G.1 for details.

• Projection that approximately preserve the ℓ1-norm.

To apply the new sharp elliptical potential lemma discussed

above, we need a projection operator which maps a func-

tion (or high-dimensional vector) de�ned on the observa-

tion space into a low-dimensional Euclidean space whose

dimension is equal to the intrinsic complexity of POMDPs

or PSRs. Our analysis further requires the resulting vec-

tor after projection to have a small ℓ1-norm. In POMDPs,

we can directly construct such a projection by taking the

pseudo-inverse of emission matrices (as in [26]). However,

such choice does not apply to PSRs as it has less structure

than POMDPs. To address this issue, we consider the general

problem of projecting high-dimensional vectors (that lie in a

low-dimensional subspace) to a low-dimensional Euclidean

space without signi�cantly increasing their ℓ1-norm. We

achieve so by constructing a projection using the Barycen-

tric spanner technique. Please see Lemma G.3 and Step 3 in

Appendix C.4 for details.

• Matrix pseudo-inverse with small ℓ1-norm. To estab-

lish e�cient guarantees for learning observable POMDPs,

we need to construct operator M as in the framework of

PSR, and bound the ℓ1-norm of the operator. All previous

works [e.g., 3, 18, 26, 40, etc] construct such operators us-

ing the pseudo-inverse of emission matrices O†, whose ℓ1-
norm scales with the size of observation space even under

the observable condition (Condition 5.1). Such dependency

prevents their analysis from generalizing to the in�nite ob-

servation setting. We address this issue by adding a matrix

Y that lies in the subspace complementary to O†. We show

that with an optimal choice of Y, O† +Y has a small ℓ1-norm

which is independent of the size of observation space. To our

best knowledge, this operator design is completely new and

has not been considered in the previous POMDP literature.

2 PRELIMINARIES

Notation. For a positive integer =, we let [=] = {1, . . . , =}. We

use the notation G1:= to denote the sequence (G1, . . . , G=). We use

bold upper-case letters B to denote matrices and bold lower-case

letters b to denote vectors. Given a matrix B ∈ R<×= , we use B8 9 to
denote its (8, 9)th entry, ∥B∥? = max∥z∥≠0 ∥Bz∥?/∥z∥? to denote

its matrix ?-norm, and B
† to denote its Moore-Penrose inverse. For

a vector b ∈ R< , we use b8 to denote its 8
th entry, ∥b∥? to denote

its vector ?-norm, and diag(b) to denote a diagonal matrix with

[diag(b)]88 = b8 . Given a setX, we use 2X to denote the collections

of all subsets of X.

2.1 Sequential Decision Making

We consider the general episodic sequential decision making prob-

lems, which can be speci�ed by a tuple (O,A , �, P, '). Here O

and A denote the space of observation and action respectively. �

denotes the length of each episode. P = {Pℎ}�ℎ=1 speci�es the joint
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distribution over observations >1:� conditioned on action sequence

01:� , which can be factorized as:

P(>1:� |01:� ) =
�∏

ℎ=1

Pℎ (>ℎ |>1:ℎ−1, 01:ℎ−1)

P is also known as the system dynamics. ' = {'ℎ}ℎ∈[� ] are the
known reward functions from O to [0, 1] such that the agent will

receive reward 'ℎ (>) when she observes > ∈ O at step ℎ.1 To

simplify the presentation, we also use the notation P(>1:ℎ, 01:ℎ) :=
P(>1:ℎ |01:ℎ) for any trajectory (>1:ℎ, 01:ℎ) to represent the condi-

tional probability over observations conditioned on actions. Through-

out this paper we assume the �nite action space A with |A | = �,
but allow in�nitely large observation space O .

At each step ℎ ∈ [� ] of each episode, the environment �rst

samples an observation >ℎ according to Pℎ (·|>1:ℎ−1, 01:ℎ−1) based
on the observation-action sequence in the past, and then the agent

takes an action 0ℎ . The current episode terminates immediately

after 0� is taken.

Policy and value. A policy c = {cℎ}�ℎ=1 is a collection of �

functions where cℎ : (O × A )ℎ−1 × O → Δ� maps a length-ℎ

observation-action sequence to a distribution over actions. Given

a policy c , we use + c to denote its value, which is de�ned as the

expected total reward received under policy c :

+ c := Ec

[
�∑

ℎ=1

'ℎ (>ℎ)
]

,

where the expectation is with respect to the randomness within

the system dynamics P and the policy c .

Since the action space and the episode length are both �nite,

the maximal value over all policies maxc +
c always exists. We call

maxc +
c the optimal value denoted by+★, and call the policy that

achieves this optimal value the optimal policy denoted by c★.

Learning objective. Our goal is to learn an Y-optimal policy c in

the sense that+ c ≥ +★ − Y, using a number of samples polynomial

in all relevant parameters. We also consider the problem of learning

with low regret. Suppose the agent interacts with the sequential

decision making problem for  episodes, and plays policy c: in

the :th episode for all : ∈ [ ]. The total (expected) regret is then
de�ned as:

Regret( ) =
 ∑

:=1

[+★ −+ c: ] .

The question then is whether a learner can keep the regret small.

Belowwe describe several widely studied reinforcement learning

models that can be cast into the framework of sequential interactive

decision making.

Example 1 (Contextual bandit). In a contextual bandit, the obser-

vation is the context of the problem. The episode length � is equal

to 1 and there exists a distribution ` ∈ ΔO so that the �rst-step

1This is equivalent to assuming that reward information is contained in the observa-
tion. We consider this setup to avoid the leakage of information about the dynamic
system through rewards beyond observations. We remark that all results in this paper
immediately extend to the more general setting where reward' (g� ) can be a function
of the entire observation-action trajectory g� = (>1:� , 01:� ) , and is only received at
the end of each episode.

observation >1 of each episode is independently sampled from `,

i.e., P(>1 = ·) = `.
Example 2 (MDP). In Markov decision process (MDP), the obser-

vation is the state of MDP. The observation-action pair satis�es the

Markovian property. That is, there exist a collection of transition

kernels T = {Tℎ}�ℎ=1 so that Pℎ (>ℎ |>1:ℎ−1, 01:ℎ−1) = Tℎ,0ℎ−1 (>ℎ |
>ℎ−1) for all ℎ ∈ [� ].
Example 3 (POMDP). In partially observable Markov decision

process (POMDP), there is an additional latent state space S , a

collection of transition kernels T = {Tℎ}�ℎ=1, an initial distribution

over the latent state space `1, and a collection of emission kernels

O = {Oℎ}�ℎ=1. In a POMDP, the latent states are hidden from the

agent. At the beginning of each episode, the environment samples

an initial state B1 from `1. At each step ℎ ∈ [� ], the agent �rst ob-
serves >ℎ that is sampled from Oℎ (· | Bℎ), the emission distribution

of hidden state Bℎ at step ℎ. Then the agent takes action 0ℎ and

receives reward Aℎ (>ℎ). After this, the environment transitions to

Bℎ+1, whose distribution follows Tℎ,0ℎ (· | Bℎ).
We note that MDPs are fully observable models while POMDPs

are partially observable models. Distinguished from MDPs where

the optimal policies only depend on the current observation, the

near-optimal policies of POMDPs in general depend on the en-

tire history. This makes both learning and planning in POMDPs

signi�cantly more challenging than in MDPs.

2.2 Model-Based Function Approximation

We consider the interactive decision making problems where the

observation space O , the action space A , the horizon � , and the

reward function ' are known, while the system dynamics P is

unknown. To address in�nitely large observation space, we consider

the setting where we are given a model class Θ, which speci�es a

class of system dynamics {P\ }\ ∈Θ. We denote the system dynamics

of the real model as P\★ . Throughout this paper, we make the

following realizability assumption.

Assumption 2.1 (Realizability). \★ ∈ Θ.
Realizability states that the true model resides in the given model

class, so there is no misspeci�cation error. Realizability is a standard

assumption which appears in a majority of theoretical works in RL.

Following the convention in analyzing MLE [e.g., 11], we use the

bracketing number to control the complexity of the model class Θ.

De�nition 2.2 (Bracketing number). Given two functions ; and D,

the bracket [;, D] is the set of all functions 5 satisfying ; ≤ 5 ≤ D. An
Y-bracket is a bracket [;, D] with ∥D − ; ∥ < Y . The bracketing num-

berN[ ·] (Y, F , ∥·∥) is the minimum number of Y-brackets needed to

cover F .
The bracketing number is required in the existing MLE anal-

ysis [11], which is in general equal or greater than the standard

covering number. Across this paper, we use NΘ (Y) to denote the

Y-bracketing number of function class {P\ }\ ∈Θ with respect to the

policy-weighted ℓ1-distance, where the policy-weighted ℓ1-distance

between two functions ; and D de�ned on (O × A )� is equal to

maxc
∑
g� |; (g� ) −D (g� ) | ×c (g� ) 2, where the maximum is taken

2In the settings with in�nite observations, we replace the summation with integral,

i.e., maxc
∫
g�
|; (g� ) −D (g� ) | × c (g� )3g� .
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Algorithm 1 Optimistic Maximum Likelihood Estimation

(Θ, V)
1: initialize: B1 = Θ,D = {}
2: for : = 1, . . . ,  do

3: compute (\: , c: ) ← argmax\ ∈B: ,c +
c (\ )

4: compute exploration policies Π:exp ← Πexp (c: )
5: for each c ∈ Π:exp do

6: execute policy c and collect a trajectory

g = (>1, 01, . . . , >� , 0� )
7: add (c, g) into datasetD

8: update con�dence set

B:+1 =
{
\̂ ∈ Θ :

∑

(c,g) ∈D
logPc

\̂
(g)

≥ max
\ ′∈Θ

∑

(c,g) ∈D
logPc

\ ′ (g) − V
}⋂

B:

9: output cout that is a uniform mixture of {c: } 
:=1

over all policy c . Intuitively, we need this maximization, because

P\ is a conditional probability of observations given actions.

3 OPTIMISTIC MLE

In this section, we present the generic Optimistic Maximum Likeli-

hood Estimation (OMLE) algorithm. Moreover, we provide a general

su�cient condition—a generalized eluder-type condition (Condi-

tion 3.1), and prove that for any RL problems satisfying this condi-

tion, OMLE learns them within a polynomial number of samples.

3.1 Algorithm

The pseudocode of OMLE is provided in Algorithm 1. We remark

that the OMLE algorithm was �rst proposed in [26] for sample-

e�cient learning of weakly-revealing POMDPs and here we intro-

duce some extra �exibility in the data collection steps to handle

more general learning problems.

Formally, OMLE is a model-based algorithmwhich takes as input

a model class Θ, and executes the following three key steps in each

iteration : ∈ [ ]:
• Optimistic planning (Line 3): OMLE computes the most

optimistic model \: in the model con�dence set B: and its

corresponding optimal policy c: .

• Data collection (Line 4-7): Based on the optimistic policy

c: , OMLE constructs a set of exploration policies Πexp (c: )
and then the learner executes each of them to collect a trajec-

tory. As will be explained in later sections, these exploration

policies could simply be c: or some composite policies that

combine c: with random or certain action sequences, de-

pending on the structure of the problems to solve. Intuitively,

by actively trying exploratory action sequences after c: , the

learner could gather more information about the system dy-

namics under c: . As an example, when applying OMLE to

learning PSRs, the exploration policies will execute the core

action sequences after c: , which we will explain in details

in Section 4.

• Con�dence set update (Line 8): Finally, OMLE updates the

model con�dence set using the newly collected data. Specif-

ically, it constructs B:+1 to include all the models \ ∈ Θ

whose log likelihood on all the historical data collected so

far is close to the maximal log likelihood up to an additive

factor V . This can be viewed as a relaxation of the classic max-

imal likelihood estimation (MLE) approach which chooses

the model estimate to be the one exactly maximizing the

log likelihood. In particular, when V = 0, B:+1 reduces to
the solution set of MLE. One important reason behind this

construction is that by choosing the relaxation parameter

V properly, we can guarantee the true model \★ lies in the

con�dence set for all : ∈ [ ] with high probability, under

the realizability assumption.

3.2 Theoretical Guarantees

In this section, we present the theoretical guarantees for OMLE.

To present our results in the most general form, we �rst introduce

a su�cient condition, called generalized eluder-type condition. We

then provide the sample-e�ciency guarantees for OMLE in learning

any RL problems that satisfy this condition. Let Pc
\
denote the

distribution over (>, 0, A )1:� induced by executing policy c in model

\ .

Condition 3.1 (Generalized eluder-type condition). There exists a

real number 3Θ ∈ R+ and a function b such that: for any ( ,Δ) ∈
N × R+, and for the models {\: }:∈[ ] and the policies {c: }:∈[ ] ,
{Π:exp}:∈[ ] in Algorithm 1, we have

∀: ∈ [ ],
:−1∑

C=1

∑

c ∈ΠC
exp

32TV (P
c
\:
, Pc
\★
) ≤ Δ

⇒
 ∑

:=1

3TV (Pc
:

\:
, Pc

:

\★
) ≤ b (3Θ,  ,Δ, |Πexp |)

(1)

where |Πexp | := maxc |Πexp (c) | is the largest possible number of

exploration policies in each iteration.

At a high level, Condition 3.1 resembles the pigeonhole principle

and the elliptical potential lemma widely used in tabular MDPs

[e.g., 2, 17] and linear bandits/MDPs [e.g., 20, 23] respectively.

Such type of condition is widely used as a su�cient condition for

algorithms using optimistic exploration [31]. Importantly, we will

prove that Condition 3.1 holds for all the problems studied in this

paper, with moderate 3Θ and function b whose leading term scales

as Õ(
√
3ΘΔ|Πexp | ).

For an intuitive understanding of this generalized eluder-type

condition, imagine that in each :th iteration, the learner chooses a

model \: such that \: can accurately predict the behavior of the his-

torical exploration policies inΠ1
exp, . . . ,Π

:−1
exp up to cumulative error

Δ (i.e., the left inequality of (1)). Since \: could be di�erent from

\★, the learner will still su�er an instantaneous error in predicting

the behavior of policy c: using model \: . And b (3Θ,  ,Δ, |Πexp |)
essentially measures the worst-case growth rate of the cumulative

instantaneous error with respect to  .
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The key motivation behind Condition 3.1 is that because of

the way OMLE constructs the con�dence set B: , we can use the

classical analysis of MLE [11] to guarantee that any model inside

B: is close to the true model \★ in TV-distance under the historical

policies in Π
1
exp, . . . ,Π

:−1
exp with high probability. As a result, if the

problem further satis�es the generalized eluder-type condition,

then OMLE immediately enjoys low-suboptimality guarantee by

the optimism of {c: } 
:=1

and Condition 3.1. Formally, we have the

following theoretical guarantee for OMLE.

Theorem 3.2. There exists absolute constant 21, 22 > 0 such that

for any X ∈ (0, 1] and  ∈ N, if we choose V = 21 log()NΘ ()−1)/X)
with ) =  |Πexp | in OMLE (Algorithm 1) and assume Condition 3.1

holds, then with probability at least 1−X , we have∑ 
:=1
[+★−+ c: ] ≤

�b (3Θ,  , 22V, |Πexp |).

As mentioned before, for all problems studied in this paper, the

leading term (in terms of  dependency) of function b scales as

Õ(
√
3ΘV |Πexp | ). Then, Theorem 3.2 immediately leads to a guar-

antee
∑ 
:=1
[+★−+ c: ] ≤ Õ(�

√
3ΘV |Πexp | )+> (

√
 ), which gives

the optimal
√
 dependency up to a polylogarithmic factor. We re-

mark that Theorem 3.2 is not a regret guarantee unlessΠ:exp = {c: },
because it is the policies in {Π:exp} :=1 that are executed by OMLE,

not {c: } 
:=1

.

Sample complexity. Since the output policy cout is a uniform

mixture of {c: } 
:=1

, we have + c
out

= (∑ 
:=1

+ c: )/ . As a result,
Theorem 3.2 immediately implies that with probability at least

1 − X , cout of OMLE is Y-optimal as long as �b (3Θ,  , V)/ ≤ Y/2.
In particular, when b (3Θ,  , V) scales as Õ(

√
 ) with respect to

 , it su�ces to run OMLE for  ≥ Õ(Y−2) episodes, where the

dependency on Y is again optimal up to a polylogarithmic factor.

4 LOW-RANK SEQUENTIAL DECISION

MAKING

In this section, we consider an important large class of sequential

decision making problems which has a low-rank structure. Note

that the entire dynamics of the sequential decision making prob-

lem is fully speci�ed by the joint probability P(>1:� |01:� ). We can

equivalently view this joint probability as system-dynamic matri-

ces {Dℎ}ℎ∈[� ] : for each �xed step ℎ, we call an observation-action

sequence in previous steps up to ℎ, i.e., gℎ = (>1:ℎ, 01:ℎ) a his-

tory, and call an observation-action sequence in future steps, i.e.,

lℎ = (>ℎ+1:<, 0ℎ+1:<) for any < ∈ [ℎ + 1, � ] a future (or test).

Denote the set of all possible histories at step ℎ as Tℎ and the set of

all possible futures as Ωℎ . Then we can de�ne the system-dynamic

matrix Dℎ ∈ R |Tℎ |× |Ωℎ | as a matrix with histories as rows and

futures as columns3 whose entry is speci�ed as

[Dℎ]gℎ,lℎ
= P(gℎ, lℎ) := P(>1:� |01:� ) (2)

The rank of the sequential decision making problem is simply

de�ned as maxℎ∈[� ] rank(Dℎ), which is the maximal rank of the

system-dynamic matrices {Dℎ}ℎ∈[� ] .

3For clean presentation, here wewriteDℎ as amatrix, which requires |Ωℎ | or |O | to be
�nite. We remark that our framework immediately extends to the in�nite observation
setting. See Appendix A for more details.

4.1 Predicative State Representations

Predicative State Representations (PSRs) are proposed by [25, 33] as

a generic approach to model low-rank sequential decision mak-

ing problems. Consider a �xed step ℎ ∈ [� − 1], and denote

A = rank(Dℎ). For any integer 3 ≥ A , there always exist 3 columns

(denoted as Qℎ) of matrix Dℎ , such that the submatrix restricted

to these columns Dℎ [Qℎ] satis�es rank(Dℎ [Qℎ]) = A . These 3

columns correspond to 3 futures Qℎ = {@1, . . . , @3 }, which are

called core tests. Throughout this section, we assume all models

in our model class Θ share the same sets of core tests, which are

known to the learner. While most literature in PSRs often choose

3 = A , in many applications (as shown in the next section), learner

only knows a set of core tests with a larger size. Therefore, we also

consider the setting when 3 > A , to which we refer as overparame-

terized PSR.

Core tests allow the system-dynamic matrix Dℎ to be factorized

as follows for certain matrix Wℎ :

Dℎ = Dℎ [Qℎ] ·W⊤ℎ , Dℎ [Qℎ] ∈ R
|Tℎ |×3 ,Wℎ ∈ R |Ωℎ |×3 (3)

This implies an important property: for any history gℎ , the g
th
ℎ

row

of Dℎ [Qℎ], which we denote as 7 (gℎ) := (P(gℎ, @1), . . . , P(gℎ, @3 )),
serves as a su�cient statistics for the history gℎ in predicting the the

probabilities of all futures conditioned on gℎ . In sum, PSR captures

the state of a dynamic system using 7 (gℎ)—a vector of predictions
for future tests.

Formally, PSR models the dynamic system using a tuple (5,M,
70), where 5 = {5� (>, 0)} (>,0) ∈O×A is a set of vectors where

5� (>, 0) ∈ R |Q�−1 | ; M = {Mℎ (>, 0)} (ℎ,>,0) ∈[�−1]×O×A is a set

of matrices where Mℎ (>, 0) ∈ R |Qℎ |× |Qℎ−1 | , and 70 is a vector in

R |Q0 | . The tuple satis�es following two equations:

P(>1:� |01:� ) =5� (>� , 0� )⊤M�−1 (>�−1, 0�−1) · · ·M1 (>1, 01)70,
(4)

7 (>1:ℎ, 01:ℎ) =Mℎ (>ℎ, 0ℎ) · · ·M1 (>1, 01)70, (5)

for any ℎ ∈ [0, � − 1] and any observation-action sequence (>1:ℎ,
01:ℎ). That is, in PSR, the joint probability P(>1:� |01:� ) can be fac-

torized as a product of matrices and vectors where each matrix only

depends on the observation and action at the corresponding step.

The second condition (5) further requires the product of the �rst ℎ

matrices to have a probabilistic interpretation—the su�cient sta-

tistics 7 (>1:ℎ, 01:ℎ) for the history (>1:ℎ, 01:ℎ). In condition (5), we

include the special case ℎ = 0, where the history gℎ is empty ∅, and
the condition becomes 7 (∅) := (P(@1), . . . , P(@3 )) = 70 for core

tests {@1, . . . , @3 } in Q0. We call the sets of core tests {Qℎ}ℎ∈[�−1]
along with the tuple (5,M, 70) the PSR representation of the dy-

namic system. Finally, we de�ne the rank of a PSR to be the rank

of the underlying sequential decision making problem that the PSR

describes (according to (4)).

Representation power of PSRs. The following theorem [see e.g., 25,

33] guarantees the existence of such PSR representation (5,M, 70)
for any low-rank sequential decision making problem.

Theorem 4.1. Any rank-A sequential decision making problem

can be represented by a PSR with sets of core tests whose sizes are no

larger than A . That is, there always exist sets of core tests {Qℎ}ℎ∈[�−1]
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with sizemaxℎ∈[�−1] |Qℎ | ≤ A , and a corresponding tuple (5,M, 70)
which jointly satisfy Equation (4) (5).

Theorem 4.1 demonstrates the superior expressive power of PSR,

in the sense that any low-rank sequential decision making prob-

lem admits an equivalent and compact PSR representation. This

is in sharp contrast to other models of dynamical systems such as

POMDPs which not only implicitly require the system dynamics

being low-rank but also explicitly assume the existence of latent

nominal states so that the current state of the system can be repre-

sented as a probability distribution over these unobservable nominal

states. As a result, PSRs can model strictly more complex dynamical

systems than POMDPs with �nite states, e.g., the probability clock

introduced in [15].

Linear weight vectors. According to low rank factorization (3),

we know there exist linear weight vectors {m(lℎ)}lℎ ∈Ωℎ
only

depending on the futures (where m(lℎ) can be the l th
ℎ

row of

Wℎ matrix) such that for any future lℎ and history gℎ , the joint

probability can be written in the bilinear form

P(gℎ, lℎ) = m(lℎ)⊤7 (gℎ). (6)

Equation (4) and (5) give two natural constructions for weight vec-

tors. First, consider futures of full lengthΩ
(1)
ℎ

:= (O×A )�−ℎ . Equa-
tion (4) gives theweight vector of any futurelℎ = (>ℎ+1:� , 0ℎ+1:� ) ∈
Ω
(1)
ℎ

as:

m1 (lℎ)⊤ = 5� (>� , 0� )⊤M�−1 (>�−1, 0�−1) · · ·Mℎ+1 (>ℎ+1, 0ℎ+1)
(7)

Next, consider the future set of Ω
(2)
ℎ

:= O ×A ×Qℎ+1. Equation (5)

gives the weight vector of any future lℎ = (>ℎ+1, 0ℎ+1, @8 ) ∈ Ω
(2)
ℎ

(where @8 ∈ Qℎ+1 is the 8th core test of Qℎ+1)as:

m2 (lℎ)⊤ = e⊤8 Mℎ+1 (>ℎ+1, 0ℎ+1) (8)

We note that in the overparameterized setting (|Qℎ | > rank(Dℎ)),
the choice of linear weights m(·) in (6) may not be unique. As a

result, the constructions in (7) and (8) are not necessarily related in

general, unless a further self-consistent condition is satis�ed (see

discussion in Appendix C.3 for more details).

Core action sequences. We note that multiple core tests might use

the same action sequence 0ℎ+1:< for< ∈ [ℎ + 1, � ]. Therefore, in
many occasions, it is convenient to consider the set of core action

sequences Qa
ℎ
, which is the set of unique actions sequences within

the set of core tests Qℎ . We know immediately that |Qa
ℎ
| ≤ |Qℎ |

and any rank-A system-dynamic matrix Dℎ admits at least one set

of core action sequences with size |Qa
ℎ
| ≤ A . The size of core action

sequences |Qa
ℎ
| determines the number of experiments we need to

conduct in the dynamic system in order to estimate 7 (gℎ). As we
will see later, all our sample complexity results only depend on |Qa

ℎ
|

instead of |Qℎ |. WLOG, we assume that no core action sequence is

a pre�x of another core action sequence.

Continuous observation. For clean presentation, we write the re-

sults in this section using the formulation with �nite observations.

As we will see, our sample complexity results are completely inde-

pendent of the number of observations, which allows our results to

readily extend to the setting of continuous observation. For rigor-

ous treatment, we note that in our current de�nition each core test

is a single observation-action sequence, which has probability 0 to

be observed if the observation is continuous. In Appendix A, we

provide two approaches to modify the PSR formulation to resolve

this issue. One approach is to consider a dense set of core tests with

in�nitely many futures, and generalize 7 (g) and M(>, 0) from vec-

tors and matrices to functions and linear operators in Hilbert space.

Our results remain meaningful even with in�nitely many core tests

as long as the number of core action sequences is small. The second

approach is to generalize the de�nition of core test to be an event of

whether the future lands in a measurable subset of future space. We

defer the details of rigorous treatment of continuous observation

to Appendix A.

4.2 Well-Conditioned PSRs

Since PSR includes POMDP as a special case, it naturally inherits

all the hardness results of learning POMDPs. In particular, even

when the observation space, the action space and the sets of core

tests are all small, �nding a near-optimal policy still requires an

exponential number of samples in the worst case.

Proposition 4.2. There exists a family of PSRs with |O |, |A |,
maxℎ |Qℎ | = O(1) so that any algorithm requires at least Ω(2� )
samples to learn a (1/4)-optimal policy with probability 1/6 or higher.

The proof of Proposition 4.2 essentially follows from Theorem 6

in [26] which shows the hardness for learning POMDPs when the

weakly-revealing coe�cient is bad. See Appendix C.2 for details.

Intuitively, the hard instances in Proposition 4.2 is due to the

following reason: in the de�nition of PSR, we require that for each

step ℎ, the core tests Qℎ satis�es rank(Dℎ [Qℎ]) = rank(Dℎ) := A .
However, this requirement alone does not prohibit the submatrix

Dℎ [Qℎ] to be extremely close to some matrix whose rank is strictly

less than A . That is, matrix Dℎ [Qℎ] can be highly ill-conditioned.

This will lead to high non-robustness in predicting the probabil-

ity of P(gℎ, lℎ) = m(lℎ)⊤7 (gℎ) when the vector 7 (gℎ) needs
to be estimated—the corresponding linear weight m(lℎ) can be

extremely large such that we need to estimate 7 (gℎ) up to an ex-

tremely high accuracy. Indeed, in the hard instances of Proposition

4.2, there exists some future lℎ such that ∥m(lℎ)∥1 ≥ Ω(2� ).
To rule out such hard instances, core tests are required to not

only guarantee rank(Dℎ [Qℎ]) := A , but also ensure Dℎ [Qℎ] to be

“well-conditioned” in certain sense. In this paper, we enforce such

condition by assuming an upper bound on the magnitude of linear

weight vectors.

Condition 4.3 (W-well-conditioned PSR). We say a PSR is W-well-

conditioned if for any ℎ ∈ [� − 1] and any policy c independent of

the history before step ℎ + 1, the weight vectors m1 (·),m2 (·) and
the corresponding future sets Ω

(1)
ℎ
,Ω
(2)
ℎ

in (7) (8) satisfy:

max
8∈{1,2}

max
x∈R|Qℎ |
∥x∥1≤1

∑

lℎ ∈Ω (8 )ℎ

c (lℎ) · |m8 (lℎ)⊤x| ≤
1

W
. (9)

Remark 4.4. Condition 4.3 requires max8∈{1,2} because for overpa-
rameterized PSR, linear weight vectors are not unique. Thus,m1,m2 in

general are not related. However, if they are related by self-consistency

369



STOC ’23, June 20–23, 2023, Orlando, FL, USA Qinghua Liu, Praneeth Netrapalli, Csaba Szepesvari and Chi Jin

(see Appendix C.3 for details), then it is su�cient to assume the in-

equality (9) only for m1,Ω
(1)
ℎ

.

Intuitively, the parameter W−1 above measures how much the

future weight vectors {m(lℎ)}lℎ ∈Ωℎ
can amplify the error x aris-

ing from estimating the probability of core tests, in an averaged

sense that the future lℎ is sampled from policy c . Being W-well-

conditioned naturally requires this error ampli�cation to be not

extremely large since otherwise the hard instances mentioned be-

fore will come into play. In Section 5, we will prove many common

partially observable RL problems are naturally W-well-conditioned

PSRs with moderate W , e.g., observable POMDPs and multistep

decodable POMDPs.

4.3 Theoretical Results

In this subsection, we present the theoretical guarantees for learn-

ing well-conditioned PSRs with OMLE. To analyze OMLE, we �rst

need to specify the exploration policy function Πexp. Denote by

a (c,ℎ, a) a composite policy that �rst executes policy c for step

1 to step ℎ − 1, then takes random action at step ℎ, and after that

executes action sequence a = (0ℎ+1, . . . , 0<) till certain step<, and

�nally �nishes the remaining steps of the current episode by tak-

ing random actions. We construct the following exploration policy

function:

Πexp (c) :=
⋃

ℎ∈[�−1]
{a (c,ℎ, a) : a ∈ Qa

ℎ
}. (10)

By using the above exploration policy function in OMLE, we have

the following polynomial sample-e�ciency guarantee for learning

well-conditioned PSRs.

Theorem 4.5. Let 2 > 0 be an absolute constant large enough and

Θ be a rank-A W-well-conditioned PSR class. For any X ∈ (0, 1] and ∈
N, if we choose V = 2 log()NΘ ()−1)X−1) with ) =  � maxℎ |Qaℎ |
and Πexp speci�ed by Equation (10) in OMLE (Algorithm 1), then

with probability at least 1 − X , we have

+★ −+ cout ≤ poly(A,W−1,max
ℎ
|Qa
ℎ
|, �, �, log ) ×

√
V

 
.

The result in Theorem 4.5 scales polynomially with respect to

the rank of the PSR A , the inverse well-conditioned parameter W−1,
the number of core action sequencesmaxℎ |Qaℎ |, the log-bracketing
number of the model class logNΘ, the number of actions �, and

the episode length � . In particular, (1) it does not depend on the

size of core tests, but instead only depend on the size of core ac-

tion sequence; (2) it is completely independent of the size of the

observation space. Both empower our results to handle problems

with continuous observations. Moreover, when the bracketing num-

ber satis�es logNΘ ()−1) ≤ O(polylog() )) (e.g., in tabular PSRs

and POMDPs with mixture of Gaussian observations), Theorem

4.5 guarantees that  = Õ(Y−2) episodes su�ces for �nding an

Y-optimal policy, which is optimal up to a polylogarithmic factor.

The proof of Theorem 4.5 relies on the following key lemma,

which states that any class of well-conditioned PSRs satisfy the

generalized eluder-type condition (Condition 3.1) with favorable

3Θ and Z .

Lemma 4.6. Let Θ be a family of rank-A W-well-conditioned PSRs.

Then Condition 3.1 holds with Πexp de�ned in Equation (10),

3Θ = (AW−2�2max
ℎ
|Qa
ℎ
|)2poly(� ),

and

b (3Θ,Δ, |Πexp |,  ) = Õ(
√
3ΘΔ|Πexp | ) .

Once Lemma 4.6 is established, Theorem 4.5 follows immediately

from combining it with the guarantee of OMLE (Theorem 3.2).

Technical challenge. One of the key steps in proving Lemma 4.6

is to establish a generalized version of elliptical potential lemma

for Summation of Absolute values of Independent biLinear (SAIL)

functions of form
∑<
8=1

∑=
9=1 |⟨\8 , G 9 ⟩|. Despite similar problems

have been investigated in the previous analysis of OMLE [26], the

bound derived therein scales with<,=, which depend on the num-

ber of observations. As a result, that bound is incapable to handle

the settings with in�nite observations. To address this issue, we

develop a much tighter elliptical potential lemma which completely

get rids of the<,= dependence. With the help of this strengthened

elliptical potential lemma and other newly developed techniques,

we are able to prove Lemma 4.6 without su�ering any dependence

on the size of the observation space. We refer an interesting reader

to Appendix G.1 for more technical details.

4.3.1 Special cases: tabular PSRs. To apply Theorem 4.5, we still

need to upper bound the bracketing number of model class Θ. The

following proposition states that in tabular PSRs (i.e., PSRs with

�nite observations and actions) the log-bracketing number of Θ is

always upper bounded.

Theorem 4.7 (bracketing number of tabular PSRs). Let Θ be

the collections of all rank-A PSRs with $ observations, � actions and

episode length � . Then logNΘ (Y) ≤ O(A2$��2 log(A$��/Y)).

We remark that the bracketing number in Theorem 4.7 is in-

dependent of the size of core tests or core action sequences. This

is because the representation power of rank-A PSRs is limited to

rank-A sequential decision making problems regardless the choices

of core tests.

The key intermediate step in proving Theorem 4.7 is to show

every low rank sequential decision making problem admits an ob-

servable operator model (OOM) representation wherein the norm

of the operators are well controlled. Once this argument is estab-

lished, we can upper bound the bracketing number by discretizing

those operators. In comparison, recent works on PSRs [40] simply

assume every PSR representation has bounded operator norm with-

out proving it. To our knowledge, Theorem 4.7 provides the �rst

polynomial upper bound for the bracketing number of tabular PSRs

without any additional assumptions.

Finally, by plugging the above upper bound back into Theorem

4.5, we immediately obtain the following sample complexity bound

for learning tabular PSRs:

poly(A,W−1,max
ℎ
|Qa
ℎ
|,$,�, �, log(Y−1X−1)) · Y−2 .

5 IMPORTANT PSR SUBCLASSES

In this section, we introduce several partially observable RL prob-

lems of interests and prove that they are all special subclasses of
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W-well-conditioned PSRs with moderate W . All the proofs for this

section are deferred to Appendix D.

5.1 Observable POMDPs

We �rst consider observable POMDPs [13] 4 —an important, natural

and rich subclass of POMDPs wherein there exists an integer< ∈
[� ] so that any two di�erent distributions over latent states induce
di�erent<-step observation-action distributions. We will prove a

new result that OMLE can sample-e�ciently learn any observable

POMDP even with in�nite or continuous observation. We remark

that while such a result have been proved in the setting of �nite

observations [26], the sample complexity in [26] has a polynomial

dependency on the number of observations, thus does not extend

to the setting of continuous observation. Our new result is highly

non-trivial: in addition to the sample-complexity guarantees of well-

conditioned PSRs with continuous observation (Theorem 4.5), our

result further requires new techniques on matrix pseudo-inverse

with small ℓ1-norm (Appendix G.3) and a new core tests design

technique (Appendix D.2),

To formally state the observability condition, we �rst de�ne the

<-step observation-action probability kernels as follows:

{Gℎ ∈ {O< ×A
<−1 → R}( }ℎ∈[�−<+1]

For an observation sequence o of length<, a latent state B and an

action sequence a of length< − 1, the value of the Bth probability

function in Gℎ at point (o, a) ∈ O< ×A<−1, denoted as Gℎ,B (o, a),
is equal to the probability density of observing o provided that the

action sequence a is used from state B and step ℎ:

Gℎ,B (o, a) := P(>ℎ:ℎ+<−1 = o | Bℎ = B, 0ℎ:ℎ+<−2 = a) . (11)

And we say a POMDP is<-step U-observable (< ∈ [� ] and U >

0), if its<-step observation-action probability kernels satisfy the

following condition.

Condition 5.1 (<-step U-observable condition). For any .1,.2 ∈
ΔS and ℎ ∈ [� −< + 1],

∥EB∼.1 [Gℎ,B ] − EB∼.2 [Gℎ,B ] ∥1 ≥ U ∥.1 − .2∥1 . (12)

In the above condition, we use ∥ 5 −6∥1 =
∫
G ∈X |5 (G) −6(G) |3G

to denote the ℓ1-distance between two functions from X to R. Intu-

itively, Condition 5.1 can be viewed as a robust version of assuming

that the ( probability functions in eachGℎ are linearly independent,

which guarantees that for any two di�erent latent state mixtures

.1,.2 ∈ Δ( , there exists an action sequence a of length< − 1 so
that these two mixtures can be distinguished from the distributions

over the next<-step observations provided that action sequence a

is executed.

The following theorem states that any <-step U-observable

POMDP admits an U/(( +�<−1)-well-conditioned PSR representa-

tion with core action sets equal to A<−1.

4[26] considers a similar subclass called weakly-revealing POMDPs, which assumes

the ( th singular value of matrix Gℎ to be lower bounded. Here Gℎ is a matrix of size

$<�<−1 ×( whose entry is de�ned in (11). [26] proved that observable POMDPs and
weakly-revealing POMDPs are equivalent up to a polynomial factor that depends on
the number of states and observations. Therefore, there is essentially no di�erence in
proving polynomial sample complexity for two classes in the tabular setting. However,
observable POMDPs extend more naturally to the setting of continuous observation,
and natural examples in continuous observation such as GM-POMDPs in Section 5.1.2
do not satisfy weakly-revealing condition.

Theorem 5.2. Let Θ be a model class of <-step U-observable

POMDPs. Then Θ satis�es Condition 4.3 with W = O(U/() and
Q�
ℎ
= A min{<−1,�−ℎ} .

New PSR operators for observable POMDPs. The key challenge

in proving Theorem 5.2 is to construct a set of PSR operators that

satisfy Condition 4.3 with parameter W independent of the number

of observations $ . For simplicity of illustration, let us consider 1-

step U-observable tabular POMDPs as examples in this paragraph.

Previous work [26] and concurrent works [7, 40] all adopt the

following operator construction:

Mℎ (>, 0) = Oℎ+1Tℎ,0diag(Oℎ (> | ·))O†ℎ ∈ R
$×$ ,

where Tℎ,0 ∈ R(×( is the transition matrix of action 0, Oℎ ∈ R$×(
is the observation matrix and Oℎ (> | ·) is the >th row of Oℎ , all for

step ℎ. However, the above operators have W scaling as O(U/
√
$)

in the worst case, which hinders generalization to the in�nite-

observation settings. To address this issue, we propose a di�erent

operator construction based on a novel ℓ1-norm matrix inverse

technique (Lemma G.4):

Mℎ (>, 0) = Oℎ+1Tℎ,0diag(Oℎ (> | ·)) (Yℎ + O†ℎ) ∈ R
$×$

where Yℎ ∈ argmin
Ỹ∈R(×$

∥Ỹ + O†
ℎ
∥1,

which, importantly, satis�es Condition 4.3 with W = O(U/() com-

pletely independent of$ .Whenmoving from the single-step observ-

able tabular setting to the more challenging multi-step observable

in�nite-observation setting, the same idea still plays an important

role in constructing well-conditioned PSR operators, where we �rst

use a novel partition technique to group di�erent observations to

obtain an (U/2)-observable meta-POMDP with �nite but exponen-

tially many meta-observations and then apply the above operator

construction on top of the meta-POMDP. For more technical details,

please refer to Appendix D.1 and D.2.

Sample complexity. By combining Theorem 5.2 with Theorem 4.5,

we immediately obtain the following sample-e�ciency guarantee

for learning observable POMDPs with OMLE.

Corollary 5.3. Let Θ be a model class of<-step U-observable

POMDPs. There exists an absolute constant 2 > 0 such that for any

X ∈ (0, 1] and  ∈ N, if we choose V = 2 log()NΘ ()−1)X−1) with
) =  ��< in OMLE (Algorithm 1), then with probability at least

1 − X ,

+★ −+ cout ≤ poly(U−1, (, �<, �, log ) ×
√
V

 
.

Di�erent from previous works on tabular POMDPs [12, 20, 26]

where the sample complexity scales with the number of observa-

tions, The result in Corollary 5.3 completely gets rid of the depen-

dence on$ thanks to our novel PSR operator design as is discussed

above. As a result, it also applies to learning observable POMDPs

with continuous observations as long as the log-bracketing number

of model class Θ is well controlled, whereas previous works cannot.

5.1.1 Observable tabular POMDPs. We �rst consider tabular ob-

servable POMDPs where the number of observations is �nite. In

this case, the<-step observation-action probability kernel Gℎ is

equivalent to an $<�<−1 by ( matrix wherein the entry at the
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intersection of the (o, a)th row and the Bth column is equal to

P(>ℎ:ℎ+<−1 = o | Bℎ = B, 0ℎ:ℎ+<−2 = a). And the observable condi-

tion (Condition 5.1) can be equivalently written as:

max
ℎ∈[�−<+1]

∥Gℎ (.1 − .2)∥1 ≥ U ∥.1 − .2∥1 . (13)

To apply OMLE to tabular POMDPs with ( states, $ observations

and � actions, we choose the model class Θ to consist of all the

legitimate POMDP parameterizations \ = (T,O, -1) whose corre-
sponding <-step observation-action probability matrices satisfy

Equation (13). By simple discretization argument [e.g., see Appendix

B in 26], we can bound the Y-bracketing number of Θ by

logNΘ (Y) ≤ O(� ((2� + ($) log((�$�Y−1)) . (14)

Plugging the above upper bound back into Theorem 5.2, we imme-

diately recover the sample e�ciency guarantee for learning tabular

observable POMDPs in [26].

5.1.2 Observable POMDPs with Gaussian emission. To showcase

the power of Theorem 5.2 in handling POMDPs with continuous

observations, we consider the model of POMDPs with Gaussian

mixture emissions (abbreviated as GM-POMDP hereafter), which

can be intuitively viewed as tabular observable or weakly reveal-

ing POMDPs with observations corrupted by Gaussian noise. The

Gaussian emissions further allow us to directly control the bracket-

ing number. We start with the formal de�nition of GM-POMDPs.

De�nition 5.4 (GM-POMDPs). A 3-dimensional =-components

GM-POMDP is a POMDP where the observation distributions are

3-dimensional Gaussian mixtures of size =, i.e.,

Oℎ (· | B) =
=∑

8=1

Wℎ (8 | B) × Gauss(xℎ,8 , fℎ · I3×3 )

whereWℎ (· | B) ∈ Δ= , xℎ,8 ∈ R3 and fℎ > 0.

Without further assumptions on GM-POMDPs, the observable

condition can be arbitrarily violated and sample-e�cient learning is

in general impossible. Therefore, we introduce the following natural

separation condition on the Gaussian mixtures in GM-POMDPs,

which, once being satis�ed, immediately implies the observable

condition holds. To condense notations, denote W := [Wℎ (· |
B)]B∈S ∈ R=×( .

Condition 5.5 ([-separable condition). For allℎ ∈ [� ], 8 ≠ 9 ∈ [=]
and .1,.2 ∈ ΔS , we have

{
∥xℎ8 − xℎ9 ∥2 ≥ 4

√
log(3 + 1) × fℎ,

∥Wℎ (.1 − .2)∥1 ≥ [∥.1 − .2∥1 .

Condition 5.5 requires that (a) di�erent base Gaussian compo-

nents are well separated, which is standard in learning Gaussian

mixtures in classic theory of statistics, and (b) di�erent latent state

distributions induce di�erent weights over the base Gaussian com-

ponents, which resembles the one-step observable condition for

tabular POMDPs. Importantly, in Lemma D.2 in Appendix D.3, we

show that any GM-POMDPs satisfying the [-separable condition

are Ω([)-observable POMDPs. We remark that GM-POMDPs be-

longs to the in�nite observation extension of tabular observable

POMDP but not tabular weakly-revealing POMDPs, this is also the

major reason we choose to present observable POMDPs in section

5.1.

To apply OMLE to learning [-separable GM-POMDPs with (

states, � actions and = base Gaussian components in R3 , we con-

struct the model class Θ to include all the valid POMDP models

wherein (a) the observation distributions are [-separable (Condi-

tion 5.5) and (b) the norm of the mean and variance of the base

Gaussian components are well behaved. Formally, de�ne

Θ :=

{
(
T,W, {(xℎ,8 , fℎ · I3×3 )}ℎ,8 , -1

)
:

[-separable, ∥xℎ,8 ∥2 ≤ �G and �f ≤ fℎ ≤ �f
}
.

By carefully discretizing the parameter space and constructing the

envelope functions, we can derive the following upper bound for

the bracketing number of model class Θ (Lemma D.3 in Appendix

D.3):

NΘ (Y) ≤ exp

(
Θ

(
� ((2� + (= + =3)

× log(�(�=3 (�f/�f ) (�G/�f ) · Y−1)
))

:= NΘ (Y) .
(15)

Now that we know [-separable GM-POMDPs are Ω([)-observable
and have bounded bracketing number, we can invoke Theorem

5.2, which gives the following sample complexity guarantee for

learning [-separable GM-POMDPs with OMLE.

Proposition 5.6. Suppose Condition 5.5 holds. There exists an ab-

solute constant 2 > 0 such that for any X ∈ (0, 1] and  ∈ N, if we
choose V = 2 log( NΘ ( −1)X−1) in OMLE (Algorithm 1) with NΘ

speci�ed by Equation (15), then with probability at least 1 − X ,

+★ −+ cout ≤ poly
(
[−1, (, �, �, =, 3,

log , log(�f/�f ), log(�G/�f )
)
×  −1/2 .

Despite the observation space being in�nitely large and un-

bounded, the above sample complexity only scales polynomially

with respect to the dimension of the observation space and other

relevant �nite parameters. Finally, we emphasize that although we

only focus on POMDPs with Gaussian mixture observations in this

subsection, our main result (Theorem 5.2) also applies to learning

other types of continuous observation distributions as long as the

observable condition (Condition 5.1) holds and the model class has

bounded bracketing number.

5.2 Multi-Step Decodable POMDPs

Multi-step decodable POMDPs [9] is subclass of POMDPs in which

a su�x of length< of the most recent history contains su�cient

information to decode the latent state. To simplify notations, denote

<(ℎ) = min{ℎ −< + 1, 1}. Formally,

Condition 5.7. [<-step decodable POMDPs, 9] There exists an

unknown decoder Z = {Zℎ}�ℎ=1 such that for every (>, 0)1:� we

have Bℎ = Z (Iℎ) for all ℎ ∈ [� ], where Iℎ = [(>, 0)< (ℎ) :ℎ−1, >ℎ].
We remark that neither of multi-step decodable POMDPs or

multi-step observable POMDPs is more general than the other. That

is, each of them contains statistically tractable POMDP instances

that are not included by the other class (see Lemma D.4 in Appendix

372



Optimistic MLE: A Generic Model-Based Algorithm for Partially Observable Sequential Decision Making STOC ’23, June 20–23, 2023, Orlando, FL, USA

D.5 for the concrete constructions). Nonetheless, the following

theorem states that multi-step decodable POMDPs also falls into

the family of W-well-conditioned PSRs with W = 1 and the sets

of core test actions equal to A< . As a result, OMLE also enjoys

polynomial sample e�ciency guarantee for learning multi-step

decodable POMDPs.

Theorem 5.8. LetΘ be a model class of<-step decodable POMDPs.

Then Θ admits rank-A PSR representations with Q�
ℎ
= A min{<,�−ℎ}

and satis�es Condition 4.3 with W = 1. Moreover, there exists an

absolute constant 2 > 0 such that for any X ∈ (0, 1] and  ∈ N,
if we choose V = 2 log()NΘ ()−1)X−1) with ) =  ��< in OMLE

(Algorithm 1), then with probability at least 1 − X ,

+★ −+ cout ≤ poly(A, �<, �, log ) ×
√
V

 
,

where we always have A ≤ ( in any POMDP and A ≤ 3lin when

the underlying MDP can be represented as a 3lin-dimensional kernel

linear MDP.

Similar to the results in previous sections, the sample complexity

in Theorem 5.8 is independent of the number of observations, which

means it also applies to the cases with in�nite observations as long

as the log-bracketing number of Θ is �nite. Moreover, the above

result scales with the rank of the PSR representations A instead of

the number of latent states ( . Although it is well-known A ≤ ( in
any POMDPs, the rank can be much smaller than the number of

latent states in certain settings of interest. For example, when the

underlying MDP can be represented as a 3lin-dimensional linear

kernel MDP [39], we have A ≤ 3lin while ( can be arbitrarily large.

Finite observations. When the number of observations is �nite,

we can easily upper bound the bracketing number of Θ by the

standard discretization arguments as in Equation (14). And by plug-

ging the bound back into Theorem 5.8, we immediately obtain a

poly((,�<,$, �, log Y−1) ×Y−2 sample complexity upper bound for

�nding an Y-optimal policy with OMLE in tabular<-step decodable

POMDPs.

5.3 POMDPs with A Few Known Core Action

Sequences

In Section 5.1, we prove that if a POMDP satis�es that any two state

mixtures can be distinguished from the observation distributions

induced by taking<-step random actions, then it can be represented

as anwell-conditioned PSR and OMLE can learn it sample e�ciently.

However, the sample complexity there scales exponentially with

respect to < due to <-step random exploration, which could be

prohibitively large even for moderate<. In this subsection, we show

that it is possible to get rid of this exponential dependence when

there exist a small set of known exploratory action sequences so that

any two state mixtures can be distinguished from the observation

distributions induced by at least one exploratory action sequence.

To simplify notations, we �rst de�ne the observation-action

probability kernel Kℎ at step ℎ ∈ [� ]: For a latent state B and

an action sequence a of length ; ≤ � − ℎ, Kℎ (B, a) is equal to
the probability density function over >ℎ:ℎ+; provided that action

sequence a is used from state B and step ℎ. Formally, we consider

the following observable-style condition.

Condition 5.9. For any ℎ ∈ [� ], there exists known Aℎ so that

for any \ ∈ Θ and .1,.2 ∈ Δ( :
max
a∈Aℎ

EB∼.1 [Kℎ (B, a)] −EB∼.2 [Kℎ (B, a)]

1
≥ U ∥.1−.2∥1 . (16)

Notice that in Condition 5.9, the exploratory action sequences

in Aℎ can be length-Ω(� ), which means a POMDP class Θ that

satis�es Condition 5.9 could satisfy the<-step observable condition

only for< = Ω(� ). Nonetheless, the following theorem states that

as long as Θ satis�es Condition 5.9 with Aℎ of small cardinality,

then OMLE is guaranteed to learn a near-optimal policy for any

\ ∈ Θ within a number of samples that scales only polynomially

with respect to maxℎ |Aℎ |.
Theorem 5.10. Let Θ be a model class of POMDPs that satisfy

Condition 5.9 with U and {Aℎ}�ℎ=1. Then Θ satis�es Condition 4.3

with W = U/(( + |Aℎ |) and Q�ℎ = Aℎ . Moreover, there exists an

absolute constant 2 > 0 such that for any X ∈ (0, 1] and  ∈ N, if we
choose V = 2 log()NΘ ()−1)X−1) with ) =  � maxℎ |Aℎ | in OMLE

(Algorithm 1), then with probability at least 1 − X ,

+★ −+ cout ≤ poly(U−1, (,max
ℎ
|Aℎ |, �, log ) ×

√
V

 
.

When the number of exploratory action sequences (maxℎ |Aℎ |)
is small but their length (maxℎ maxa∈Aℎ

|a|) is large, Theorem 5.10

o�ers exponentially sharper sample complexity guarantee than

Theorem 5.2. As an extreme case, when each Aℎ contains a sin-

gle action sequence of length � − ℎ, Theorem 5.10 improves over

Theorem 5.2 by a factor of �Ω (� ) .

6 BEYOND LOW-RANK SEQUENTIAL

DECISION MAKING

In this section, we extend the sample e�ciency guarantees of OMLE

to any sequential decision making problems under a new struc-

tural condition—SAIL condition. We will show that SAIL condition

holds not only in all well-conditioned low-rank sequential decision

making problems studied in Section 4, but also in problems beyond

low-rank sequential decision making, such as factored MDPs, low

witness rank problems.

6.1 SAIL Condition

In the fully observable setting, RL with general function approx-

imation has been intensively studied in the theory community,

and various complexity measures have been proposed, including

Bellman rank [16], witness rank [34], and more [8, 19]. Most of

them critical relies on the Bellman error (model-free setting) or

the error in model estimation (model-based setting) to have a bi-

linear structure. Unfortunately, partially observability signi�cantly

complicates the learning problem, and neither structure mentioned

above hold for even the basic tabular weakly-revealing POMDPs.

Here, we introduce a new general structural condition that is also

capable of addressing partially observable setting. Our new condi-

tion can be viewed as a generalizations of the bilinear structures

mentioned above. Since our focus is OMLE which is a model-based

algorithm, our new condition requires the model estimation error

to be upper and lower bounded by Summation of Absolute values

of Independent biLinear functions (SAIL). Formally, let Π denote

the universal policy space.
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Condition 6.1 (SAIL condition). We say model class Θ satis�es

(3, ^, �)-SAIL condition with exploration policy function Πexp :

Π → 2Π , if there exist two sets of mappings {5ℎ,8 } (ℎ,8) ∈[� ]×[<] ,
{6ℎ,8 } (ℎ,8) ∈[� ]×[=] from Θ to R3 such that for any \, \ ′ ∈ Θ, and
the optimal policy c\ of model \ :
∑
c̃ ∈Πexp (c\ ) 3TV (P

c̃
\★
, Pc̃
\ ′
) ≥^−1∑�

ℎ=1

∑<
8=1

∑=
9=1 |⟨5ℎ,8 (\ ), 6ℎ,9 (\ ′)⟩|,

3TV (Pc\\★, P
c\
\
) ≤∑�

ℎ=1

∑<
8=1

∑=
9=1 |⟨5ℎ,8 (\ ), 6ℎ,9 (\ )⟩|,

(∑<
8=1 ∥ 5ℎ,8 (\ )∥1

)
·
(∑=

9=1 ∥6ℎ,9 (\ ′)∥∞
)
≤ �.

The �rst inequality requires the model estimation error of \ ′

(measured by TV distance) on the exploration policies computed

using \ to be lower bounded by a coe�cient ^−1 times SAIL. In

particular, the summand ⟨5ℎ,8 (\ ), 6ℎ,9 (\ ′)⟩ is a bilinear function,

because it is a linear function of 5ℎ,8 (\ ) (features of \ ) when \ ′ is
�xed, and it is also a linear function of6ℎ,9 (\ ′) (features of \ ′) when
\ is �xed. The second inequality requires the model estimation error

of \ on its optimal policy c\ to be upper bounded by SAIL. The

third inequality is a normalization condition.

At a high-level, standard Bellman rank or witness rank can be

viewed as conditions similar to SAIL, with the LHS of the �rst

two inequalities replaced by appropriate error measure and the

RHS of the �rst two inequalities replaced by a bilinear function

⟨5 (\ ), 6(\ ′)⟩. SAIL condition generalize them by allowing multiple

feature functions {58 }8∈[<] , {6 9 } 9 ∈[=] which are indexed by 8, 9 ,

and taking summation of them. One key structure here is that the

indexes are decoupled between two features 5 , 6, and summation

is taken over two indexes independently. This is crucial in many

partially observable applications where<,= are extremely large

and we do not want to su�er any dependency on<,= in the sample

complexity.

We will prove in Section 6.3 that SAIL condition is very general,

which holds not only in all well-conditioned low-rank sequential

decision making problems studied in Section 4, but also in prob-

lems beyond low-rank sequential decision making, such as factored

MDPs, low witness rank problems.

6.2 Theoretical Guarantees for SAIL

Now we present the theoretical guarantees for OMLE in learning

sequential decision problems that satisfy the SAIL condition.

Theorem 6.2. There exists an absolute constant 2 > 0 such that

for any X ∈ (0, 1] and  ∈ N, if we choose V = 2 log()NΘ ()−1)X−1)
with ) =  |Πexp | in OMLE (Algorithm 1) and assume (3, ^, �)-SAIL
condition holds, then with probability at least 1 − X , we have

 ∑

:=1

(
+★ −+ c:

)
≤ poly(� )3

(
� + ^

√
V |Πexp | 

)
log2 ( ).

The result in Theorem 6.2 scales polynomially with respect

to the parameters (3, ^, �) and the number of exploration poli-

cies |Πexp | in the SAIL condition. Moreover, the result is com-

pletely independent of the number of the feature mappings <

and =, which is key in addressing the case of well-conditioned

PSRs where the SAIL condition requires exponentially many fea-

ture mappings. When the log bracketing number has a reasonable

growth rate logNΘ ()−1) ≤ polylog() ), Theorem 6.2 guarantees

that  = Õ(^232 logNΘ (Y−1) · Y−2) episodes su�ces for �nding an

Y-optimal policy. The Y-dependency is optimal up to polylogarith-

mic factors.

The critical step in proving Theorem 6.2 is our new elliptical

potential style lemma for SAIL, which signi�cantly generalizes

the standard elliptical potential lemma that only applies to bilinear

functions. Our new lemma immediately implies the following result.

Lemma 6.3. (3, ^, �)-SAIL condition implies the generalized eluder-

type condition (Condition 3.1) with 3Θ = ^232 |Πexp |poly(� ) and
b (3Θ,Δ, |Πexp |,  ) = Õ

(√
3ΘΔ|Πexp | + 3�poly(� )

)
.

With this lemma, we can directly invoke the guarantee for OMLE

(Theorem 3.2), which gives the bound in Theorem 6.2.

Sharper guarantee for single feature mapping. For sequential deci-

sion making problems that satisfy the SAIL condition with a single

pair of feature mappings (5ℎ, 6ℎ) for each ℎ ∈ [� ], e.g., sparse
linear bandits, factored MDPs, and linear MDPs, we can further

derive the following sharper sample complexity guarantee.

Theorem 6.4. Suppose (3, ^, �)-SAILcondition holds with < =

= = 1. Then under the same choice of parameters as in Theorem 6.2,

OMLE satis�es that with probability at least 1 − X ,
 ∑

:=1

(
+★ −+ c:

)
= Õ

(
poly(� )

(
3� + ^

√
3V |Πexp | 

))
.

Theorem 6.4 directly implies a regret bound with leading-order

term Õ(^
√
3 logNΘ ( −1) ) when the exploration policy function

Πexp is equal to identity. This improves a
√
3 factor over Theorem

6.2. Theorem 6.4 also implies a Õ(^23 logNΘ (Y−1) · Y−2) sample

complexity upper bound for �nding an Y-optimal policy when the

log-bracketing number ofΘ grows polylogarithmically with respect

to the covering precision, which improves a3 factor over the sample

complexity implied by Theorem 6.2.

6.3 Important Examples of SAIL

In this section, we present several widely studied sequential deci-

sion making problems that satisfy the SAIL condition. We remark

that all problems considered in this section are MDPs so we will

use {Bℎ}�ℎ=1 to denote states.

6.3.1 Low-rank sequential decision making. To demonstrate the

generality of the SAIL condition, we prove the following proposi-

tion which states that (a) any well-conditioned PSR satis�es the

SAIL condition with moderate (3, ^, �), and (b) there exist sequen-

tial decision making problems, whose system dynamics matrices

have exponentially large rank though, which still satisfy the SAIL

condition with mild (3, ^, �).
Proposition 6.5 (well-conditioned PSR ⊆ SAIL⊈ low-rank sequen-

tial decision making).

(a) Any rank-A W-well-conditioned PSR class Θ satis�es the SAIL

condition with 3 = A and ^, � = poly(A, W−1,maxℎ |Q�ℎ |, �, � )
and the same choice of Πexp as in Theorem 4.5.

(b) For any = ∈ N, there exists Θ satisfying the SAIL condition

with 3, ^, � = O(=) and Πexp (c) = c , but for some \ ∈ Θ the

system dynamics matrices have rank Ω(2=).
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6.3.2 Fully observable problems with low witness rank.

Witness rank. Witness rank [34] was introduced as a structural

parameter for measuring the di�culty of model-based RL. [34]

proved that the witness rank of a model class being small su�ces

to guarantee sample-e�cient learning, and several RL settings of

interest (e.g., factored MDPs) possess rather moderate witness rank.

To simplify notations, let D\ (Bℎ, 0ℎ) := P\ ((Aℎ, Bℎ+1) = · | Bℎ, 0ℎ).
And the witness rank is de�ned as following:

De�nition 6.6 (Q/V-type witness conditions (slightly modi�ed

version5 of [34])). We say model class Θ satis�es (3, ^, �)-witness
condition, if there exist two sets of mappings {5ℎ}ℎ∈[� ] , {6ℎ}ℎ∈[� ]
from Θ to R3 , so that for any \, \ ′ ∈ Θ and ℎ ∈ [� ]:




E
Bℎ∼P

c\

\★
, 0ℎ∼a (Bℎ) [∥D\ ′ (Bℎ, 0ℎ) − D\★ (Bℎ, 0ℎ)∥1]

≥ ^−1 |⟨5ℎ (\ ), 6ℎ (\ ′)⟩| ,
E
Bℎ∼P

c\

\★
, 0ℎ∼a (Bℎ) [∥D\ ′ (Bℎ, 0ℎ) − D\★ (Bℎ, 0ℎ)∥1]

≤ |⟨5ℎ (\ ), 6ℎ (\ ′)⟩| ,
∥ 5ℎ (\ )∥1 × ∥6ℎ (\ ′)∥∞ ≤ �,

where a is typically chosen as c\ (Q-type) or c\ ′ (V-type).

The Q-type witness condition requires that at each single step

the expected model discrepancy between the true model \★ and

model candidate \ ′ under the state-action distribution induced

by the optimal policy of \ is roughly proportional to the inner

product of the features of \ and \ ′. And the V-type version is

de�ned similarly except that the last action 0ℎ is sampled from c\ ′

instead of c\ . By basic algebra, we can easily relate the above per-

step model discrepancy in witness condition to the whole-trajectory

model discrepancy in SAIL condition, which leads to the following

conclusion that the SAIL condition is satis�ed with almost the same

(3, ^, �) whenever either Q-type or V-type witness condition holds.

Proposition 6.7. For any model class Θ, we always have

• Q-type (3, ^, �)-witness condition implies (3, 2^, �)-SAIL con-

dition with Πexp (c) = {c}, and< = = = 1.

• V-type (3, ^, �)-witness condition implies (3, 2�^, �)-SAIL con-
dition with Πexp (c) = {c1:ℎ ◦Uniform(A ) : ℎ ∈ [0, � −1]},
and< = = = 1.

In the case when logNΘ grows polylogarithmically with respect

to the covering precision, by plugging Proposition 6.7 back into

Theorem 6.4, we immediately obtain a Õ(�2^23 logNΘ (Y−1)Y−2)
sample complexity upper bound for OMLE in the V-type witness

rank setting, which improves over the quadratic dependence on 3

in [34]. Moreover, OMLE further enjoys a Õ(^
√
3 logNΘ ( −1) )

regret guarantee in the Q-type witness rank setting, which is new

to our knowledge.

Factored MDPs. In factored MDPs, the state admits a factored

structure. Concretely, each state B consists of< factors denoted as

(B [1], . . . , B [<]) ∈ X< . Moreover, each factor 8 ∈ [<] has a parent
set denoted by pa8 ⊆ [<], with respect to which the transition

admits the following factorized form:

P(Bℎ+1 | Bℎ, 0ℎ) =
<∏

8=1

P8 (Bℎ+1 [8] | Bℎ [pa8 ], 0ℎ) . (17)

In other words, the transition of the 8th factor of states are only

determined by a subset of all factors, that is pa8 , instead of the whole

state. In factored MDPs, it is standard to assume the factorization

structure and the reward function are known [21, 34]. Therefore,

our model class Θ only needs to parameterize the transitions under

the given factorization structure.

The following proposition states that when the factorization

structure is known, factoredMDPs admit lowwitness rank structure.

Proposition 6.8. Let Θ consist of all the factored MDPs with the

same factorization structure {pa8 }<8=1. ThenΘ satis�es Q-type witness

condition with 3 = �
∑<
8=1 |X| |pa8 | , ^ =<, and � =

∑<
8=1 |X| |pa8 | .

Kernel linear MDPs. In kernel linear MDPs [39], the transition

functions can be represented as a linear functions of the tensor

product of two known feature mappings. Formally, the learner is pro-

vided with features q : S ×A → R3lin andk : S → R3lin so that

for any ℎ ∈ [� ], there exists Wℎ ∈ R3lin×3lin satisfying Pℎ (Bℎ+1 |
Bℎ, 0ℎ) = q (Bℎ, 0ℎ)⊤Wℎk (Bℎ+1) for all (Bℎ, 0ℎ, Bℎ+1) ∈ S ×A ×S .

Besides, kernel linear MDPs satisfy the normalization condition: (a)

∥q (Bℎ, 0ℎ)∥2 ≤ �q for all (Bℎ, 0ℎ), (b) ∥
∑
Bℎ+1 k (Bℎ+1) 5 (Bℎ+1)∥1 ≤

�k for all ∥ 5 ∥∞ ≤ 1, and (c) ∥Wℎ ∥2 ≤ �, .

For simplicity, we assume the reward function is known. Previous

works [e.g., 39] have shown that kernel linear MDPs are capable of

representing various examples with moderate dimension 3lin, e.g.,

tabular MDPs with 3lin = (�. The following proposition states that

kernel linear MDPs also fall into the low witness rank framework

with the same ambient dimension.

Proposition 6.9. Let Θ be the family of 3lin-dimensional kernel

linear MDPs. Then Θ satis�es V-type witness condition with 3 = 3lin,

^ = 1, and � = 2(
√
3lin�q�,�k + 1).

Sparse linear bandits. In sparse linear bandits, the mean reward

function can be represented as a sparse linear function of the arm

feature. Formally, we have '\ (0) = ⟨0, \⟩ where (i) 0 ∈ A ⊆
�
3lin
�A

(0), (ii) Θ := {\ ∈ �3lin
�Θ

(0) : ∥\ ∥0 ≤ < and ⟨\, 0⟩ ∈ [0, 1]
for any 0 ∈ A }. Without loss of generality, assume the stochastic

reward feedback is binary6. The following proposition states that

the witness rank of sparse linear bandits is no larger than the

ambient dimension 3lin.

Proposition 6.10. Let Θ be the family of 3lin-dimensional<-sparse

linear bandit. Then Θ satis�es Q-type witness condition with 3 = 3lin,

^ = 1, and � = 4
√
3lin�Θ�A .

By combining Proposition 6.10 with Proposition 6.7 and 6.4, we

recover the optimal regret for sparse linear bandits Õ(
√
<3lin )

up to a polylogarithmic factor.

ACKNOWLEDGMENTS

Chi Jin gratefully acknowledges the funding support from Google

LLC, Princeton Project X innovation fund, and NSF CAREER IIS-

2239297.

6If the reward feedback Â is a real number in [0, 1], we can binarize it by sampling G
from Bernoulli(Â ) and then using G as the reward feedback instead. Such modi�cation
will not change the mean reward.
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