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Abstract

We present an algorithm based on posterior sampling (aka Thompson sampling)
that achieves near-optimal worst-case regret bounds when the underlying Markov
Decision Process (MDP) is communicating with a finite, though unknown, diameter.
Our main result is a high probability regret upper bound of Õ(D

√
SAT ) for any

communicating MDP with S states, A actions and diameter D, when T ≥ S5A.
Here, regret compares the total reward achieved by the algorithm to the total
expected reward of an optimal infinite-horizon undiscounted average reward policy,
in time horizon T . This result improves over the best previously known upper
bound of Õ(DS

√
AT ) achieved by any algorithm in this setting, and matches the

dependence on S in the established lower bound of Ω(
√
DSAT ) for this problem.

Our techniques involve proving some novel results about the anti-concentration of
Dirichlet distribution, which may be of independent interest.

1 Introduction

Reinforcement Learning (RL) refers to the problem of learning and planning in sequential decision
making systems when the underlying system dynamics are unknown, and may need to be learned by
trying out different options and observing their outcomes. A typical model for the sequential decision
making problem is a Markov Decision Process (MDP), which proceeds in discrete time steps. At each
time step, the system is in some state s, and the decision maker may take any available action a to
obtain a (possibly stochastic) reward. The system then transitions to the next state according to a fixed
state transition distribution. The reward and the next state depend on the current state s and the action
a, but are independent of all the previous states and actions. In the reinforcement learning problem,
the underlying state transition distributions and/or reward distributions are unknown, and need to be
learned using the observed rewards and state transitions, while aiming to maximize the cumulative
reward. This requires the algorithm to manage the tradeoff between exploration vs. exploitation, i.e.,
exploring different actions in different states in order to learn the model more accurately vs. taking
actions that currently seem to be reward maximizing.

Exploration-exploitation tradeoff has been studied extensively in the context of stochastic multi-
armed bandit (MAB) problems, which are essentially MDPs with a single state. The performance of
MAB algorithms is typically measured through regret, which compares the total reward obtained by
the algorithm to the total expected reward of an optimal action. Optimal regret bounds have been
established for many variations of MAB (see Bubeck et al. [2012] for a survey), with a large majority
of results obtained using the Upper Confidence Bound (UCB) algorithm, or more generally, the
optimism in the face of uncertainty principle. Under this principle, the learning algorithm maintains
tight over-estimates (or optimistic estimates) of the expected rewards for individual actions, and
at any given step, picks the action with the highest optimistic estimate. More recently, posterior
sampling, aka Thompson Sampling [Thompson, 1933], has emerged as another popular algorithm
design principle in MAB, owing its popularity to a simple and extendible algorithmic structure, an
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attractive empirical performance [Chapelle and Li, 2011, Kaufmann et al., 2012], as well as provably
optimal performance bounds that have been recently obtained for many variations of MAB [Agrawal
and Goyal, 2012, 2013b,a, Russo and Van Roy, 2015, 2014, Bubeck and Liu, 2013]. In this approach,
the algorithm maintains a Bayesian posterior distribution for the expected reward of every action;
then at any given step, it generates an independent sample from each of these posteriors and takes the
action with the highest sample value.

We consider the reinforcement learning problem with finite states S and finite actions A in a similar
regret based framework, where the total reward of the reinforcement learning algorithm is compared
to the total expected reward achieved by a single benchmark policy over a time horizon T . In our
setting, the benchmark policy is the infinite-horizon undiscounted average reward optimal policy for
the underlying MDP, under the assumption that the MDP is communicating with (unknown) finite
diameter D. The diameter D is an upper bound on the time it takes to move from any state s to any
other state s′ using an appropriate policy, for each pair s, s′. A finite diameter is understood to be
necessary for interesting bounds on the regret of any algorithm in this setting [Jaksch et al., 2010].
The UCRL2 algorithm of Jaksch et al. [2010], which is based on the optimism principle, achieved the
best previously known upper bound of Õ(DS

√
AT ) for this problem. A similar bound was achieved

by Bartlett and Tewari [2009], though assuming the knowledge of the diameter D. Jaksch et al.
[2010] also established a worst-case lower bound of Ω(

√
DSAT ) on the regret of any algorithm for

this problem.

Our main contribution is a posterior sampling based algorithm with a high probability worst-case
regret upper bound of Õ(D

√
SAT + DS7/4A3/4T 1/4), which is Õ(D

√
SAT ) when T ≥ S5A.

This improves the previously best known upper bound for this problem by a factor of
√
S, and

matches the dependence on S in the lower bound, for large enough T .

Our algorithm uses an ‘optimistic version’ of the posterior sampling heuristic, while utilizing several
ideas from the algorithm design structure in Jaksch et al. [2010], such as an epoch based execution
and the extended MDP construction. The algorithm proceeds in epochs, where in the beginning of
every epoch, it generates ψ = Õ(S) sample transition probability vectors from a posterior distribution
for every state and action, and solves an extended MDP with ψA actions and S states formed using
these samples. The optimal policy computed for this extended MDP is used throughout the epoch.

Posterior Sampling for Reinforcement Learning (PSRL) approach has been used previously in Osband
et al. [2013], Abbasi-Yadkori and Szepesvari [2014], Osband and Van Roy [2016], but in a Bayesian
regret framework. Bayesian regret is defined as the expected regret over a known prior on the
transition probability matrix. Osband and Van Roy [2016] demonstrate an Õ(H

√
SAT ) bound on

the expected Bayesian regret for PSRL in finite-horizon episodic Markov decision processes, when
the episode length is H . In this paper, we consider the stronger notion of worst-case regret, aka
minimax regret, which requires bounding the maximum regret for any instance of the problem. 1

Further, we consider a non-episodic communicating MDP setting, and produce a comparable bound
of Õ(D

√
SAT ) for large T , where D is the unknown diameter of the communicating MDP. In

comparison to a single sample from the posterior in PSRL, our algorithm is slightly inefficient as
it uses multiple (Õ(S)) samples. It is not entirely clear if the extra samples are only an artifact
of the analysis. In an empirical study of a multiple sample version of posterior sampling for RL,
Fonteneau et al. [2013] show that multiple samples can potentially improve the performance of
posterior sampling in terms of probability of taking the optimal decision. Our analysis utilizes some
ideas from the Bayesian regret analysis, most importantly the technique of stochastic optimism from
Osband et al. [2014] for deriving tighter deviation bounds. However, bounding the worst-case regret
requires several new technical ideas, in particular, for proving ‘optimism’ of the gain of the sampled
MDP. Further discussion is provided in Section 4.

We should also compare our result with the very recent result of Azar et al. [2017], which provides
an optimistic version of value-iteration algorithm with a minimax (i.e., worst-case) regret bound of

1Worst-case regret is a strictly stronger notion of regret in case the reward distribution function is known
and only the transition probability distribution is unknown, as we will assume here for the most part. In case of
unknown reward distribution, extending our worst-case regret bounds would require an assumption of bounded
rewards, where as the Bayesian regret bounds in the above-mentioned literature allow more general (known)
priors on the reward distributions with possibly unbounded support. Bayesian regret bounds in those more
general settings are incomparable to the worst-case regret bounds presented here.
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Õ(
√
HSAT ) when T ≥ H3S3A. However, the setting considered in Azar et al. [2017] is that of an

episodic MDP, where the learning agent interacts with the system in episodes of fixed and known
length H . The initial state of each episode can be arbitrary, but importantly, the sequence of these
initial states is shared by the algorithm and any benchmark policy. In contrast, in the non-episodic
setting considered in this paper, the state trajectory of the benchmark policy over T time steps can be
completely different from the algorithm’s trajectory. To the best of our understanding, the shared
sequence of initial states and the fixed known length H of episodes seem to form crucial components
of the analysis in Azar et al. [2017], making it difficult to extend their analysis to the non-episodic
communicating MDP setting considered in this paper.

Among other related work, Burnetas and Katehakis [1997] and Tewari and Bartlett
[2008] present optimistic linear programming approaches that achieve logarithmic regret
bounds with problem dependent constants. Strong PAC bounds have been provided in
Kearns and Singh [1999], Brafman and Tennenholtz [2002], Kakade et al. [2003], Asmuth et al.
[2009], Dann and Brunskill [2015]. There, the aim is to bound the performance of the policy
learned at the end of the learning horizon, and not the performance during learning as quantified here
by regret. Notably, the BOSS algorithm proposed in Asmuth et al. [2009] is similar to the algorithm
proposed here in the sense that the former also takes multiple samples from the posterior to form
an extended (referred to as merged) MDP. Strehl and Littman [2005, 2008] provide an optimistic
algorithm for bounding regret in a discounted reward setting, but the definition of regret is slightly
different in that it measures the difference between the rewards of an optimal policy and the rewards
of the learning algorithm along the trajectory taken by the learning algorithm.

2 Preliminaries and Problem Definition

2.1 Markov Decision Process (MDP)

We consider a Markov Decision ProcessM defined by tuple {S,A, P, r, s1}, where S is a finite
state-space of size S, A is a finite action-space of size A, P : S ×A → ∆S is the transition model,
r : S ×A → [0, 1] is the reward function, and s1 is the starting state. When an action a ∈ A is taken
in a state s ∈ S, a reward rs,a is generated and the system transitions to the next state s′ ∈ S with
probability Ps,a(s′), where

∑
s′∈S Ps,a(s′) = 1.

We consider ‘communicating’ MDPs with finite ‘diameter’ (see Bartlett and Tewari [2009]
for an in-depth discussion). Below we define communicating MDPs, and recall some useful known
results for such MDPs.

Definition 1 (Policy). A deterministic policy π : S → A is a mapping from state space to action
space.

Definition 2 (Diameter D(M)). Diameter D(M) of an MDPM is defined as the minimum time
required to go from one state to another in the MDP using some deterministic policy:

D(M) = max
s 6=s′,s,s′∈S

min
π:S→A

Tπs→s′ ,

where Tπs→s′ is the expected number of steps it takes to reach state s′ when starting from state s and
using policy π.

Definition 3 (Communicating MDP). An MDPM is communicating if and only if it has a finite
diameter. That is, for any two states s 6= s′, there exists a policy π such that the expected number of
steps to reach s′ from s, Tπs→s′ , is at most D, for some finite D ≥ 0.

Definition 4 (Gain of a policy). The gain of a policy π, from starting state s1 = s, is defined as the
infinite horizon undiscounted average reward, given by

λπ(s) = E[ lim
T→∞

1

T

T∑
i=1

rst,π(st)|s1 = s].

where st is the state reached at time t.

Lemma 2.1 (Optimal gain for communicating MDPs). For a communicating MDPM with diameter
D:
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(a) (Puterman [2014] Theorem 8.1.2, Theorem 8.3.2) The optimal (maximum) gain λ∗ is state
independent and is achieved by a deterministic stationary policy π∗, i.e., there exists a
deterministic policy π∗ such that

λ∗ := max
s′∈S

max
π

λπ(s′) = λπ
∗
(s),∀s ∈ S.

Here, π∗ is referred to as an optimal policy for MDPM.

(b) (Tewari and Bartlett [2008], Theorem 4) The optimal gain λ∗ satisfies the following equa-
tions,

λ∗ = min
h∈RS

max
s,a

rs,a + PTs,ah− hs = max
a

rs,a + PTs,ah
∗ − h∗s,∀s (1)

where h∗, referred to as the bias vector of MDPM, satisfies:
max
s
h∗s −min

s
h∗s ≤ D.

Given the above definitions and results, we can now define the reinforcement learning problem
studied in this paper.

2.2 The reinforcement learning problem

The reinforcement learning problem proceeds in rounds t = 1, . . . , T . The learning agent starts from
a state s1 at round t = 1. In the beginning of every round t, the agent takes an action at ∈ A and
observes the reward rst,at as well as the next state st+1 ∼ Pst,at , where r and P are the reward
function and the transition model, respectively, for a communicating MDPM with diameter D.

The learning agent knows the state-space S, the action space A, as well as the rewards rs,a,∀s ∈
S, a ∈ A, for the underlying MDP, but not the transition model P or the diameterD. (The assumption
of known and deterministic rewards has been made here only for simplicity of exposition, since the
unknown transition model is the main source of difficulty in this problem. Our algorithm and results
can be extended to bounded stochastic rewards with unknown distributions using standard Thompson
Sampling for MAB, e.g., using the techniques in Agrawal and Goyal [2013b].)

The agent can use the past observations to learn the underlying MDP model and decide future actions.
The goal is to maximize the total reward

∑T
t=1 rst,at , or equivalently, minimize the total regret over

a time horizon T , defined as
R(T,M) := Tλ∗ −

∑T
t=1 rst,at (2)

where λ∗ is the optimal gain of MDPM.

We present an algorithm for the learning agent with a near-optimal upper bound on the regret
R(T,M) for any communicating MDPM with diameter D, thus bounding the worst-case regret
over this class of MDPs.

3 Algorithm Description

Our algorithm combines the ideas of Posterior sampling (aka Thompson Sampling) with the extended
MDP construction used in Jaksch et al. [2010]. Below we describe the main components of our
algorithm.

Some notations: N t
s,a denotes the total number of times the algorithm visited state s and played

action a until before time t, and N t
s,a(i) denotes the number of time steps among these N t

s,a steps
where the next state was i, i.e., a transition from state s to i was observed. We index the states from 1
to S, so that

∑S
i=1N

t
s,a(i) = N t

s,a for any t. We use the symbol 1 to denote the vector of all 1s, and
1i to denote the vector with 1 at the ith coordinate and 0 elsewhere.

Doubling epochs: Our algorithm uses the epoch based execution framework of Jaksch et al. [2010].
An epoch is a group of consecutive rounds. The rounds t = 1, . . . , T are broken into consecutive
epochs as follows: the kth epoch begins at the round τk immediately after the end of (k− 1)th epoch
and ends at the first round τ such that for some state-action pair s, a, Nτ

s,a ≥ 2Nτk
s,a. The algorithm

computes a new policy π̃k at the beginning of every epoch k, and uses that policy through all the
rounds in that epoch. It is easy to observe that irrespective of how the policy π̃k is computed, the
number of epochs in T rounds is bounded by SA log(T ).
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Posterior Sampling: We use posterior sampling to compute the policy π̃k in the beginning of
every epoch. Dirichlet distribution is a convenient choice maintaining posteriors for the transition
probability vectors Ps,a for every s ∈ S, a ∈ A, as they satisfy the following useful property: given
a prior Dirichlet(α1, . . . , αS) on Ps,a, after observing a transition from state s to i (with underlying
probability Ps,a(i)), the posterior distribution is given by Dirichlet(α1, . . . , αi + 1, . . . , αS). By this
property, for any s ∈ S, a ∈ A, on starting from prior Dirichlet(1) for Ps,a, the posterior at time t is
Dirichlet({N t

s,a(i) + 1}i=1,...,S).

Our algorithm uses a modified, optimistic version of this approach. At the beginning of every epoch
k, for every s ∈ S, a ∈ A such that Ns,a ≥ η, it generates multiple samples for Ps,a from a ‘boosted’
posterior. Specifically, it generates ψ = O(S log(SA/ρ)) independent sample probability vectors
Q1,k
s,a, . . . , Q

ψ,k
s,a as

Qj,ks,a ∼ Dirichlet(Mτk
s,a),

where Mt
s,a denotes the vector [M t

s,a(i)]i=1,...,S , with

M t
s,a(i) := 1

κ (N t
s,a(i) + ω), for i = 1, . . . , S. (3)

Here, κ = O(log(T/ρ)), ω = O(log(T/ρ)), η =
√

TS
A + 12ωS2, and ρ ∈ (0, 1) is a parameter of

the algorithm. In the regret analysis, we derive sufficiently large constants that can be used in the
definition of ψ, κ, ω to guarantee the bounds. However, no attempt has been made to optimize those
constants, and it is likely that much smaller constants suffice.

For every remaining s, a, i.e., those with small Ns,a (Ns,a < η) the algorithm use a simple optimistic
sampling described in Algorithm 1. This special sampling for s, awith smallNs,a has been introduced
to handle a technical difficulty in analyzing the anti-concentration of Dirichlet posteriors when the
parameters are very small. We suspect that with an improved analysis, this may not be required.

Extended MDP: The policy π̃k to be used in epoch k is computed as the optimal policy of an
extended MDP M̃k defined by the sampled transition probability vectors, using the construction of
Jaksch et al. [2010]. Given sampled vectors Qj,ks,a, j = 1, . . . , ψ, for every state-action pair s, a, we
define extended MDP M̃k by extending the original action space as follows: for every s, a, create
ψ actions for every action a ∈ A, denoting by aj the action corresponding to action a and sample
j; then, in MDP M̃k, on taking action aj in state s, reward is rs,a but transitions to the next state
follows the transition probability vector Qj,ks,a.

Note that the algorithm uses the optimal policy π̃k of extended MDP M̃k to take actions in the action
space A which is technically different from the action space of MDP M̃k, where the policy π̃k is
defined. We slightly abuse the notation to say that the algorithm takes action at = π̃(st) to mean that
the algorithm takes action at = a ∈ A when π̃k(st) = aj for some j.

Our algorithm is summarized as Algorithm 1.

4 Regret Bounds

We prove the following bound on the regret of Algorithm 1 for the reinforcement learning problem.
Theorem 1. For any communicating MDP M with S states, A actions, and diameter D, with
probability 1− ρ. the regret of Algorithm 1 in time T ≥ CDA log2(T/ρ) is bounded as:

R(T,M) ≤ Õ
(
D
√
SAT +DS7/4A3/4T 1/4 +DS5/2A

)
where C is an absolute constant. For T ≥ S5A, this implies a regret bound of

R(T,M) ≤ Õ
(
D
√
SAT

)
.

Here Õ hides logarithmic factors in S,A, T, ρ and absolute constants.

The rest of this section is devoted to proving the above theorem. Here, we provide a sketch of the
proof and discuss some of the key lemmas, all missing details are provided in the supplementary
material.
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Algorithm 1 A posterior sampling based algorithm for the reinforcement learning problem
Inputs: State space S, Action space A, starting state s1, reward function r, time horizon
T , parameters ρ ∈ (0, 1], ψ = O(S log(SA/ρ)), ω = O(log(T/ρ)), κ = O(log(T/ρ)), η =√

TS
A + 12ωS2.

Initialize: τ1 := 1, Mτ1
s,a = ω1.

for all epochs k = 1, 2, . . . , do

Sample transition probability vectors: For each s, a, generate ψ independent sample probability
vectors Qj,ks,a, j = 1, . . . , ψ, as follows:
• (Posterior sampling): For s, a such that Nτk

s,a ≥ η, use samples from the Dirichlet
distribution:

Qj,ks,a ∼ Dirichlet(Mτk
s,a),

• (Simple optimistic sampling): For remaining s, a, with Nτk
s,a < η, use the following

simple optimistic sampling: let

P−s,a = P̂s,a −∆,

where P̂s,a(i) =
N
τk
s,a(i)

N
τk
s,a

, and ∆i = min

{√
3P̂s,a(i) log(4S)

N
τk
s,a

+ 3 log(4S)

N
τk
s,a

, P̂s,a(i)

}
, and

let z be a random vector picked uniformly at random from {11, . . . ,1S}; set

Qj,ks,a = P−s,a + (1−
∑S
i=1 P

−
s,a(i))z.

Compute policy π̃k: as the optimal gain policy for extended MDP M̃k constructed using sample
set {Qj,ks,a, j = 1, . . . , ψ, s ∈ S, a ∈ A}.

Execute policy π̃k:
for all time steps t = τk, τk + 1, . . . , until break epoch do

Play action at = π̃k(st).
Observe the transition to the next state st+1.
Set N t+1

s,a (i),M t+1
s,a (i) for all a ∈ A, s, i ∈ S as defined (refer to Equation (3)).

If N t+1
st,at ≥ 2Nτk

st,at , then set τk+1 = t+ 1 and break epoch.
end for

end for

4.1 Proof of Theorem 1

As defined in Section 2, regretR(T,M) is given byR(T,M) = Tλ∗ −
∑T
t=1 rst,at , where λ∗ is

the optimal gain of MDPM, at is the action taken and st is the state reached by the algorithm at
time t. Algorithm 1 proceeds in epochs k = 1, 2, . . . ,K, where K ≤ SA log(T ). To bound its regret
in time T , we first analyze the regret in each epoch k, namely,

Rk := (τk+1 − τk)λ∗ −
∑τk+1−1
t=τk

rst,at ,

and boundRk by roughly

D
∑
s,a

N
τk+1
s,a −Nτk

s,a√
Nτk
s,a

where, by definition, for every s, a, (N
τk+1
s,a −Nτk

s,a) is the number of times this state-action pair is
visited in epoch k. The proof of this bound has two main components:

(a) Optimism: The policy π̃k used by the algorithm in epoch k is computed as an optimal gain policy
of the extended MDP M̃k. The first part of the proof is to show that with high probability, the
extended MDP M̃k is (i) a communicating MDP with diameter at most 2D, and (ii) optimistic,
i.e., has optimal gain at least (close to) λ∗. Part (i) is stated as Lemma 4.1, with a proof provided
in the supplementary material. Now, let λ̃k be the optimal gain of the extended MDP M̃k. In
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Lemma 4.2, which forms one of the main novel technical components of our proof, we show that
with probability 1− ρ,

λ̃k ≥ λ∗ − Õ(D
√

SA
T ).

We first show that above holds if for every s, a, there exists a sample transition probability vector
whose projection on a fixed unknown vector (h∗) is optimistic. Then, in Lemma 4.3 we prove this
optimism by deriving a fundamental new result on the anti-concentration of any fixed projection
of a Dirichlet random vector (Proposition A.1 in the supplementary material).
Substituting this upper bound on λ∗, we have the following bound onRkwith probability 1− ρ:

Rk ≤
∑τk+1−1
t=τk

(
λ̃k − rst,at + Õ(D

√
SA
T )
)
. (4)

(b) Deviation bounds: Optimism guarantees that with high probability, the optimal gain λ̃k for MDP
M̃k is at least λ∗. And, by definition of π̃k, λ̃k is the gain of the chosen policy π̃k for MDP M̃k.
However, the algorithm executes this policy on the true MDPM. The only difference between
the two is the transition model: on taking an action aj := π̃k(s) in state s in MDP M̃k, the next
state follows the sampled distribution

P̃s,a := Qj,ks,a, (5)

where as on taking the corresponding action a in MDPM, the next state follows the distribution
Ps,a. The next step is to bound the difference between λ̃k and the average reward obtained by the
algorithm by bounding the deviation (P̃s,a − Ps,a). This line of argument bears similarities to the
analysis of UCRL2 in Jaksch et al. [2010], but with tighter deviation bounds that we are able to
guarantee due to the use of posterior sampling instead of deterministic optimistic bias used in
UCRL2. Now, since at = π̃k(st), using the relation between the gain λ̃k, the bias vector h̃, and
reward vector of optimal policy π̃k for communicating MDP M̃k (refer to Lemma 2.1)∑τk+1−1

t=τk

(
λ̃− rst,at

)
=

∑τk+1−1
t=τk

(P̃st,at − 1st)
T h̃

=
∑τk+1−1
t=τk

(P̃st,at − Pst,at + Pst,at − 1st)
T h̃ (6)

where with high probability, h̃ ∈ RS , the bias vector of MDP M̃k satisfies

maxs h̃s −mins h̃s ≤ D(M̃k) ≤ 2D (refer to Lemma 4.1).

Next, we bound the deviation (P̃s,a − Ps,a)T h̃ for all s, a, to bound the first term in above.
Note that h̃ is random and can be arbitrarily correlated with P̃ , therefore, we need to bound
maxh∈[0,2D]S (P̃s,a − Ps,a)Th. (For the above term, w.l.o.g. we can assume h̃ ∈ [0, 2D]S).

For s, a such that Nτk
s,a > η, P̃s,a = Qj,ks,a is a sample from the Dirichlet posterior. In Lemma 4.4,

we show that with high probability,

max
h∈[0,2D]S

(P̃ ks,a − Ps,a)Th ≤ Õ(
D√
Nτk
s,a

+
DS

Nτk
s,a

). (7)

This bound is an improvement by a
√
S factor over the corresponding deviation bound obtainable

for the optimistic estimates of Ps,a in UCRL2. The derivation of this bound utilizes and extends
the stochastic optimism technique from Osband et al. [2014]. For s, awithNτk

s,a ≤ η, P̃s,a = Qj,ks,a
is a sample from the simple optimistic sampling, where we can only show the following weaker
bound, but since this is used only while Nτk

s,a is small, the total contribution of this deviation will
be small:

max
h∈[0,2D]S

(P̃ ks,a − Ps,a)Th ≤ Õ

(
D

√
S

Nτk
s,a

+
DS

Nτk
s,a

)
. (8)

Finally, to bound the second term in (6), we observe that E[1Tst+1
h̃|π̃k, h̃, st] = PTst,at h̃ and use

Azuma-Hoeffding inequality to obtain with probability (1− ρ
SA ):∑τk+1−1

t=τk
(Pst,at − 1st)

T h̃ ≤ O(
√

(τk+1 − τk) log(SA/ρ)). (9)
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Combining the above observations (equations (4), (6), (7), (8), (9)), we obtain the following bound
onRk within logarithmic factors:

D(τk+1−τk)

√
SA

T
+D

∑
s,a

N
τk+1
s,a −Nτk

s,a√
Nτk
s,a

(
1(Nτk+1

s,a > η) +
√
S1(Nτk+1

s,a ≤ η)
)

+D
√
τk+1 − τk.

(10)

We can finish the proof by observing that (by definition of an epoch) the number of visits of any
state-action pair can at most double in an epoch,

Nτk+1
s,a −Nτk

s,a ≤ Nτk
s,a,

and therefore, substituting this observation in (10), we can bound (within logarithmic factors) the
total regretR(T ) =

∑K
k=1Rk as:

K∑
k=1

(
D(τk+1 − τk)

√
SA
T +D

∑
s,a:N

τk
s,a>η

√
Nτk
s,a +D

∑
s,a:N

τk
s,a<η

√
SNτk

s,a +D
√
τk+1 − τk

)
≤ D

√
SAT +D log(K)(

∑
s,a

√
NτK
s,a ) +D log(K)(SA

√
Sη) +D

√
KT

where we used Nτk+1
s,a ≤ 2Nτk

s,a and
∑
k(τk+1 − τk) = T . Now, we use that K ≤ SA log(T ),

and SA
√
Sη = O(S7/4A3/4T 1/4 + S5/2A log(T/ρ)) (using η =

√
TS
A + 12ωS2). Also, since∑

s,aN
τK
s,a ≤ T , by simple worst scenario analysis,

∑
s,a

√
NτK
s,a ≤

√
SAT , and we obtain,

R(T,M) ≤ Õ(D
√
SAT +DS7/4A3/4T 1/4 +DS5/2A).

4.2 Main lemmas

Following lemma form the main technical components of our proof. All the missing proofs are
provided in the supplementary material.

Lemma 4.1. Assume T ≥ CDA log2(T/ρ) for a large enough constant C. Then, with probability
1− ρ, for every epoch k, the diameter of MDP M̃k is bounded by 2D.

Lemma 4.2. With probability 1− ρ, for every epoch k, the optimal gain λ̃k of the extended MDP
M̃k satisfies:

λ̃k ≥ λ∗ −O
(
D log2(T/ρ)

√
SA
T

)
,

where λ∗ the optimal gain of MDPM and D is the diameter.

Proof. Let h∗ be the bias vector for an optimal policy π∗ of MDPM (refer to Lemma 2.1 in the
preliminaries section). Since h∗ is a fixed (though unknown) vector with |hi − hj | ≤ D, we can
apply Lemma 4.3 to obtain that with probability 1− ρ, for all s, a, there exists a sample vector Qj,ks,a
for some j ∈ {1, . . . , ψ} such that

(Qj,ks,a)Th∗ ≥ PTs,ah∗ − δ

where δ = O
(
D log2(T/ρ)

√
SA
T

)
. Now, consider the policy π for MDP M̃k which for any s, takes

action aj , with a = π∗(s) and j being a sample satisfying above inequality. Let Qπ be the transition
matrix for this policy, whose rows are formed by the vectors Qj,ks,π∗(s), and Pπ∗ be the transition
matrix whose rows are formed by the vectors Ps,π∗(s). Above implies Qπh∗ ≥ Pπ∗h

∗ − δ1.
We use this inequality along with the known relations between the gain and the bias of optimal
policy in communicating MDPs to obtain that the gain λ̃(π) of policy in π for MDP M̃k satisfies
λ̃(π) ≥ λ∗ − δ (details provided in the supplementary material), which proves the lemma statement
since by optimality λ̃k ≥ λ̃(π).
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Lemma 4.3. (Optimistic Sampling) Fix any vector h ∈ RS such that |hi − hi′ | ≤ D for any i, i′,
and any epoch k. Then, for every s, a, with probability 1− ρ

SA there exists at least one j such that

(Qj,ks,a)Th ≥ PTs,ah−O
(
D log2(T/ρ)

√
SA
T

)
.

Lemma 4.4. (Deviation bound) With probability 1− ρ, for all epochs k, sample j, all s, a

max
h∈[0,2D]S

(Qj,ks,a − Ps,a)Th ≤


O

(
D

√
log(SAT/ρ)

Nτk
s,a

+D
S log(SAT/ρ)

Nτk
s,a

)
, Nτk

s,a > η

O

(
D

√
S log(SAT/ρ)

Nτk
s,a

+D
S log(S)

Nτk
s,a

)
, Nτk

s,a ≤ η

5 Conclusions

We presented an algorithm inspired by posterior sampling that achieves near-optimal worst-case
regret bounds for the reinforcement learning problem with communicating MDPs in a non-episodic,
undiscounted average reward setting. Our algorithm may be viewed as a more efficient randomized
version of the UCRL2 algorithm of Jaksch et al. [2010], with randomization via posterior sampling
forming the key to the

√
S factor improvement in the regret bound provided by our algorithm. Our

analysis demonstrates that posterior sampling provides the right amount of uncertainty in the samples,
so that an optimistic policy can be obtained without excess over-estimation.

While our work surmounts some important technical difficulties in obtaining worst-case regret bounds
for posterior sampling based algorithms for communicating MDPs, the provided bound is tight in
its dependence on S and A only for large T (specifically, for T ≥ S5A). Other related results on
tight worst-case regret bounds have a similar requirement of large T (Azar et al. [2017] produce an
Õ(
√
HSAT ) bound when T ≥ H3S3A). Obtaining a cleaner worst-case regret bound that does

not require such a condition remains an open question. Other important directions of future work
include reducing the number of posterior samples required in every epoch from Õ(S) to constant or
logarithmic in S, and extensions to contextual and continuous state MDPs.
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