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Optimistic Recovery is a new technique supporting application-independent transparent recovery 
from processor failures in distributed systems. In optimistic recovery communication, computation 
and checkpointing proceed asynchronously. Synchronization is replaced by causal dependency trock- 

ing, which enables a posteriori reconstruction of a consistent distributed system state following a 
failure using process rollback and message replay. 

Because there is no synchronization among computation, communication, and checkpointing, 
optimistic recovery can tolerate the failure of an arbitrary number of processors and yields better 
throughput and response time than other general recovery techniques whenever failures are infre- 
quent. 
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1. INTRODUCTION 

Distributed multiprocessor configurations are replacing centralized processors as 
a result of an increasing demand for both higher throughput and higher availa- 
bility. However, achieving high availability is more difficult in multiprocessor 
configurations because of the more complicated failure modes of such systems. 
This paper addresses the problem of restoring a consistent state of a distributed 
system following the failure of one or more of its processors. 

We consider distributed systems that are constructed from processes, each of 
which maintains private state information and communicates with other proc- 
esses by exchanging messages. As a result of communication, individual process 
states will become dependent on one another. A set of process states in which 
each pair of processes agrees on communication between them has taken place 
and which has not is called a consistent system state. If the state of a process 
that has sent a message is ever lost, then in order for the system state to be 
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Fig. 1. Domino effect: If process PI fails t 
and is restored to checkpoint Clr, it loses its 
memory of having received Mz and having 
sent MS. Thus P2 will have received M3 
which was “never sent.” If Pz rolls back to 
C&, it will have sent message M* which PI 
“never received.” If P2 rolls back to Cz3, PI 
will have sent message Mr not received by 
Pz, necessitating a further rollback of PI. 
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consistent, the state change resulting from the receipt of that message in the 
receiving process must be undone; that is, the process must be rolled back. 

A processor failure will cause the states of some of the processes executing on 
that processor to be lost. Recovery from a failure involves restoring a consistent 
system state. Recovery mechanisms typically recover from the loss of a process’s 
state by retrieving a saved snapshot of an earlier state of that process, called a 
checkpoint. Since it is infeasible to take a checkpoint of an entire distributed 
system “at once,” an attempt to recover may result in the unbounded cascading 
of rollbacks in an attempt to find a consistent set of individual process check- 
points. This problem is called the domino effect [14] and is depicted in Figure 1. 

The domino effect is typically avoided by synchronizing checkpointing with 
communication and computation (see, e.g., [2], [4], [7], [ll], and [12]). 

This paper describes optimistic recovery, a new application-independent, trans- 
parent recovery technique based on dependency tracking, which avoids the domino 
effect while allowing computation, communication, checkpointing, and “commit- 
ting” to proceed asynchronously. Because there are no synchronization delays 
during normal operation, optimistic recovery can make use of stable storage, that 
is, storage that persists beyond processor failures [lo], thereby supporting recov- 
ery from failure of an arbitrary number of processors. The elimination of 
synchronization delays additionally yields improved response time over other 
transparent recovery mechanisms. 

In this paper we describe the optimistic recovery protocols for recovering a 
consistent systemwide state following a failure of one or more processors in a 
distributed system. We do not discuss (1) means for detecting failures, (2) 
mechanisms for determining the new system configuration after a failure, (3) 
mechanisms for implementing a stable store, (4) mechanisms for providing 
reliable communication within the distributed system. Solutions to these prob- 
lems are orthogonal to our recovery technique. The reader is referred to [l], [lo], 
[13], and [19] for further discussion of these issues. 
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1 .l Goals for Distributed System Recovery 

Our approach to distributed recovery has the following goals: 

-Application-independence. The recovery technique should be applicable to 
arbitrary programs. 

-Application-transparency. The recovery technique should be transparent to 
the programs being made recoverable. Application-transparency (1) simplifies 
programming; (2) allows both applications and recovery protocols to evolve 
independently, thereby avoiding the risk that the software becomes obsolete 
as a result of small changes in either the application or the underlying 
hardware; (3) enables preexisting programs to become recoverable without 
modification. 

--High throughput. The CPU resources of all processors should be available for 
productive work when there are no failures. 

-Maximal fault-tolerance. The recovery mechanism should provide recovery 
from failure of any number of processors of the system. 

2. OPTIMISTIC RECOVERY 

2.1 Overview 

In optimistic recovery, computation, communication, and checkpointing proceed 
asynchronously. Instead of consistent checkpoints being maintained at all times, 
enough information is saved to reconstruct a consistent state after a failure. 
When reconstructing a consistent state, we face the following problem: A process 
PI may receive and process a message M from a process Pz, but Pp may fail 
before having recorded enough information on stable storage to enable restoring 
the state from which it sent M. 

Optimistic recovery solves this problem by having each process track its 
dependency on the states of other processes with which it communicates. As a 
result of dependency tracking, it is possible for PI to detect that it has performed 
computations that causally depend on states that the failed process Pz has lost. 
Such computations are sometimes called orphans. If such computations have 
been performed, they will be undone by restoring an earlier state of PI that does 
not depend on lost states. 

A state is restored by first restoring an earlier checkpoint from stable storage 
and then replaying logged messages- that is, reexecuting the process by driving 
it from the sequence of input messages saved in stable storage. Because we control 
the extent of rollback by replaying the correct number of messages, the system 
never rolls back “too far” and hence avoids the domino effect. 

The optimistic recovery protocols ensure that the externally visible behavior 
of a distributed system incorporating these protocols is equivalent to some failure- 
free execution. By “equivalent,” we mean that all messages sent outside the 
distributed system in the failure-free execution that would be sent in the same 
order during actual execution and that no other messages will be sent. Despite 
the existence of processor failures that result in the loss of the recent state of 
some processes, we meet the above correctness criterion by (a) restoring an earlier 
possible state of the failed processes using rollback and replay, (b) rolling back 
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other processes whenever these have been determined by dependency tracking to 
depend on lost states, and (c) committing messages to the outside as soon as it 
is determined from dependency information that the states that generated the 
messages will never need to be rolled back. 

2.2 Concepts and Definitions 

2.2.1 Logical Machine and Recovery Units. A cluster of machines incorporating 
optimistic recovery appears to applications executing on it and to other systems 
communicating with it as a single logical machine, as shown in Figure 2. 

The logical machine is partitioned into a fixed number of recovery units (RUs), 
which communicate with one another through message passing. Application 
processes may be created and destroyed dynamically and are assigned to partic- 
ular recovery units. In optimistic recovery, recovery units, rather than individual 
processes, fail and are recovered. 

By allowing each recovery unit to schedule multiple processes, and by holding 
the number of recovery units fixed, we simplify the recovery algorithms without 
restricting the dynamic variability of the system workload. In addition, it becomes 
a system design parameter whether to have many “small” recovery units or a few 
“large” ones. 

We make the following assumptions about the logical machine: 

-Reliable, FIFO channels between recovery units. These can be implemented by 
any of a number of communication protocols (see, e.g., [19]). We assume 
nothing about the arrival order of messages sent to a recovery unit from two 
different sources. 

-Fail-stop [15]. All failures are detected immediately and result in halting the 
failed recovery units and initiating recovery action. (We later weaken this 
assumption. It suffices to require that failures be detected before any event 
resulting from them is made visible (“committed”) outside the logical machine.) 

-Independence. Failures will not recur if the recovery unit is reexecuted on 
another processor. (We later weaken this assumption as well in our discussion 
of recovery from software faults.) 

-Stable storage. Recovery units store their current state in volatile storage, 
which is lost upon their failure. Information needed to reconstruct volatile 
storage is maintained in stable storage and persists across failures [lo]. 

-Spare processing capacity. It is always possible to relocate a failed recovery 
unit to some working processor, which will be able to access the previously 
logged recovery information on stable storage. We assume that physical proc- 
essors will multiplex the workload of several recovery units, Relocating a 
recovery unit to another processor may degrade performance but will have no 
other visible effect. 

2.2.2 State Intervals. We assume the behavior of each recovery unit to be 
repeatable and message driven. That is, the state of the recovery unit can be 
regenerated by restoring an earlier state, restoring the subsequent input message 
queue in its original order (using the message log described below), and replaying 
the processing of the recovery unit. Thus, we can identify a state of a recovery 
unit by the ordinal number of the last input message that it processed. 
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Fig. 2. Logical Machine: The Logical Machine is seen by 
the external world as a single machine communicating 
through channels, depicted by double lines. Internally, it 
contains multiple communicating recovery units. 

Suppose RUi has already processed its first n - 1 input messages and is ready 
to process its nth input message MJn). Its volatile storage is in some state, 
which we shall call Si( n). Given state Si( n) and message Mi( n), RUGS processing 
component will execute a series of computations, which we call state interval 
1i( n) of RUi. During state interval 1i( n), RUi may conceivably generate output 
messages destined to other recovery units or to outside the logical machine. 
When RUi’s processing unit is ready to dequeue message Mi(n + l), state interval 
li(n + 1) is started (Figure 3). 

The property of repeatability implies that an arbitrary state S;(n) of RU; can 
always be restored, provided we can recover an earlier state Si(n - d) and the 
subsequent messages Mi( n - d) through Mi ( n - 1). Si( n) is restored by replaying 
the processing of these messages in order, starting at Si(n - d). 

2.2.3 Incarnation Numbers and State Indices. Because RUi may roll back and 

then resume processing either as a result of its own failure or in response to 
failure of another recovery unit RUj which is unable to reconstruct states that 
have affected RU; some input message ordinal numbers (and the corresponding 
state interval numbers) may be reused. In order to continue to have a unique 
way of identifying state intervals, we designate each input message of a given 
recovery unit and its corresponding state interval, by a message or state index, 
which is a pair [ 1, p], where p is a message number and L is an incarnation number. 
The incarnation number of a recovery unit is incremented each time a recovery 
unit resumes processing after having rolled back (see Figure 4.) 

2.2.4 Live History. A state interval of a recovery unit RUi is live if it has not 
been rolled back. The live history of a recovery unit is the sequence of state 
intervals of that recovery unit that have not been rolled back. The live history 
constitutes a sequence of state intervals that could have arisen during a failure- 
free execution of the recovery unit. For example, in Figure 4, the live history 
consists of state intervals [l, I] through [l, 51, 12, 61 through [2, 81, and [3, 91 
through [3, 131. 

A state interval [L, p] of RUi is a live predecessor of a state interval [L’, ~‘1 iff 
[L, P] precedes [I’, ~‘1 within the live history of RUi. We use the symbol -C to 
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denote the live predecessor relation. Thus, while the actual execution order 
follows the lexicographical order, [L, p] < [L’, ~‘1 means that [L, ~1 < [L’, ~‘1 
according to the lexicographical order, and that no other interval that precedes 

[l’, PI ] supersedes [t, ~1. For example, [l, 51 < [2, lo], whereas [l, 61 #Z [2, lo]. 
In a correct implementation of optimistic recovery, all messages committed to 

outside the logical machine depend only on live histories. 

2.2.5 CUZL.SU~ Precedence. State intervals in a logical machine are partially 
ordered by a causality relation. Within a recovery unit, the order of the state 
intervals in the live history, that is <, determines the causality order: Each 
interval is caused by its live predecessor interval. Between recovery units a partial 
order is induced by the sending and receiving of messages. State interval [Lo, pi] 
of RUi immediately causes interval [ Lj, pj ] of RUj whenever a message sent from 
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RUi during interval [Li, pi] is dequeued by RUj to begin interval [ Lj, pj 1. The 
transitive closure of the relations “immediately causes” and i results in a partial 
ordering over the set of state intervals in the distributed system, which we call 
causal precedence or dependency. 

2.2.6 Possible States. A state interval is said to be impossible iff it depends on 
two state intervals of the same recovery unit that cannot both be live; that is, 
the two state intervals have identical message numbers and different incarnation 
numbers. Otherwise, it is said to be possible. For example, suppose a state interval 
depended on both states [3, 131 and [2, lo] within the recovery unit shown in 
Figure 4. Since [3, lo] 4 [3, 131, the state interval also depends on interval [3, 
lo] and is therefore impossible. 

If a state interval is possible, its dependencies can be encoded by a single index 
into the live history of each of the recovery units. This index denotes the “latest” 
state interval of each recovery unit on which the possible state interval depends 
and indicates a causal dependency on that state interval and all its live predeces- 
sors. 

2.2.7 Logging. Each recovery unit periodically logs information to stable stor- 
age in order to support recovery. Logging to stable storage is not synchronized 
with communication, There are two kinds of information saved on stable storage: 
checkpoints and input message logs. 

Checkpoints are snapshots of the complete state of a recovery unit. Checkpoint 
frequency is a tuning option: More frequent checkpoints may imply more disk 
activity; less frequent checkpoints may result in recovery taking a longer time. 

An input message is said to be “logged” whenever both its data and the ordinal 
position in which it is processed can be obtained on demand during recovery. 
(There exist optimizations in which it is not necessary to actually write some or 
all of the message to stable store in order to “log” it, because the message is 
known to be reconstructible from other stable information in the system.) 

2.2.8 Lost Messages, Lost States, and Orphans. Messages processed but not yet 
logged by a recovery unit at the time of a failure are lost messages; the correspond- 
ing state intervals are called lost state intervals. Messages and state intervals that 
are either lost or causally dependent on lost state intervals are called orphans. 
State intervals that will never become orphans are called committable. 

Note that a message can be considered “lost,” even when its data value is 
completely recoverable, if the ordinal position the message occupied in the input 
message stream of the receiving recovery unit is unrecoverable. This is because 
the relative order in which messages sent by different recovery units are merged 
is not deterministic, and, therefore, upon recovery the message might be merged 
in a different order, and the computation may be different. 

2.3 Components and Data Structures 

A recovery unit consists of (1) a set of input and output half-sessions, (2) a merge 
component, (3) a processing component, and (4) a recovery manager component. 
Each recovery unit maintains (1) a dependency vector, (2) a log vector, and (3) an 
incarnation start table, as well as checkpoint and message logs on stable storage 
(Figure 5). 
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Fig. 5. Structure of a recovery unit. 

2.3.1 Sessions and Boundary Functions. Each recovery unit may receive mes- 
sages from other recovery units and from input devices external to the logical 
machine. Each recovery unit may also send messages to other recovery units and 
to output devices external to the logical machine. 

The protocol by which a recovery unit receives data from an external device is 
called the input boundary function; the protocol by which a recovery unit sends 
data to an external device is called the output boundary function. Between each 
pair of recovery units, there is a pair of unidirectional sessions. A session consists 
of a pair of half-session protocols-an output half-session in the sender and an 
input half-session in the receiver. Figure 6 shows a session between recovery 
units in the dashed box. 

Session protocols serve the purpose of detecting lost and duplicate messages 
resulting from failures. Boundary function protocols are mostly device specific; 
however, output boundary functions additionally delay messages intended to be 
sent outside the system until they are committable. 

2.3.2 Merge Component. The merge component combines all the input message 
streams from the input half-sessions and the input boundary functions into a 
merged input stream. This component assigns each message in the merged input 
stream an ordinal position number, which corresponds to the order in which 
messages will be processed by the processing component. The merge component 
may be implemented very simply-for example, first-come, first-served-or it 
may be more sophisticated, For example, it may take advantage of the fact that 
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Fig. 6. Sessions between recovery units. 

the recovery unit schedules many processes, and it may delay inserting a message 
into the input stream if it is destined for a process that is not ready to receive it. 
The merge component is not required to be deterministic, because its output is 
logged, and the log is used to reconstruct the merged sequence if replay is 
required. 

2.3.3 Processing Component. The processing component is that part of a 
recovery unit where the application processes execute. Application processes 
running in the processing component keep their state in volatile storage. The 
application processes are unaware of the recovery protocols. If several application 
processes are allocated to a single recovery unit, the processing component is 
responsible for scheduling these processes. 

The processing component is driven by the merged input stream. The process- 
ing component must be deterministic. 

2.3.4 Recovery Manager Component. Each recovery unit’s recovery manager is 
responsible for maintaining recovery information on stable storage. This includes 
scheduling checkpointing, logging messages, and reclaiming obsolete checkpoints 
and messages. The recovery manager is also responsible for recovering its recovery 
unit following a failure. Recovery consists of restoring the recovery unit’s earliest 
checkpoint and replaying the subsequent message log. When the message log is 
exhausted, the recovery manager is responsible for broadcasting an appropriate 
recovery message. 

2.3.5 Dependency Vector. In a logical machine with m recovery units, the 
causal predecessors of a possible state interval I of a recovery unit RUi can be 
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encoded by a vector of state indices, (dl, dz, . . . , d,), provided that RUi never 
enters an impossible state. The causal predecessors of I in each RUj are the set 
of state intervals d, such that d 5 di. We call this vector a dependency vector. 

As part of its internal state, each recovery unit RUi maintains a dependency 
vector DVi, which identifies the causal predecessors of RU{s current state 

interval. The ith component of DVi, DVi(i), is the index of RUls current state 
interval. 

If state interval I of RUi depends on intervals dl , dz, . . . , d, of the m recovery 
units of a logical machine, then if any one of these intervals cannot be recovered 
after a failure, I must be rolled back. 

2.3.6 Incarnation Start Table. To be able to identify rolled back states, each 
recovery unit keeps an incarnation start table, which records the earliest message 
number in each incarnation of each recovery unit. We use the notation IST(L, k) 
to denote the earliest message number in incarnation L of RUk. For example, if 
RUk is the recovery unit shown in Figure 4, then IST(l, k) = 1, IST(2, k) = 6, 
and IST(3, k) = 9. The incarnation start table enables the processing component 
to determine whether a given state interval is part of the live history of a recovery 
unit, or whether it has been rolled back. 

An interval [L, P] is part of the live history of RUk iff 

31’ 3 1’ > L A IST(l’, 12) I CL, 

that is, that there does not exist a later incarnation 1’ of RUk that starts at 
message number cc or less. 

The incarnation start table entry for an incarnation L is needed only as long 
as messages depending on incarnation numbers less than 1 still exist in the logical 
machine. In practice, if the logical machine has been failure free for a long 
enough time, there is only one relevant incarnation number for each recovery 
unit, and the incarnation start tables can be empty. 

2.3.7 Log Vector. Each recovery unit logs its input messages in the back- 
ground-the more messages logged, the more computations become committable. 

In order that a recovery unit be able to determine which of its computations 
are committable, it must know both the status of its own logging progress and 
the logging progress of the other recovery units in the logical machine. This 
information is recorded in a log vector LV, maintained in each recovery unit. The 
ith component of LVk is a state index li of a state in RUi such that it and all its 
live predecessors have been logged. LVI, reflects the current logging status of the 
recovery units in the logical machine as perceived by RUk. 

The actual logging status of a logical machine may be further ahead than 
indicated by any of the local log vectors. Log vectors are updated by periodically 
and asynchronously broadcasting local log vectors to other recovery units. Since 
messages once logged remain logged forever, log vectors are strictly monotonically 
increasing. Log vectors are used to determine the committability of state inter- 
vals. 
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Fig. 7. Sample history of a logical machine: Message M depends on interval [0, 61 of RUi. 

The receipt of message M begins interval [0, 31 of RUj, which now depends on interval [0, 61 

of RUi. Message N depends on both interval [0, 31 of RUj and interval [0,6] of RUi. A failure 

of RU, at time t, will necessitate a rollback of RUj, but a failure at time ts will not. 

2.4 Algorithms 

2.4.1 Example. We illustrate the algorithms of optimistic recovery with an 
example (Figure 7) depicting two recovery units RUi and RUj. In this example, 
the sixth message received by RUi gives rise to state interval [0, 61. During 
interval [0, 61 RUi sends a message it4 to RUj. The receipt of M begins state 
interval [0,3] of RUj. Thus, [0, 61 of RUi is a causal predecessor of [0,3] of RUj. 
As a result of M, RUj sends message N to a printer outside of the logical machine. 
We illustrate the operation of the algorithms in the failure-free case and in 
several possible failure cases. 

2.4.2 Processing Component Algorithms. In addition to performing computa- 
tions, the processing component has the responsibility of avoiding impossible 
states, maintaining the current dependency vector, and labeling the dependencies 
of each output message. 

2.4.2.1 CHECKING POSSIBLE STATES AND MAINTAINING THE DEPENDENCY 
VECTOR. When the processing component of RUk dequeues an input message M, 
thereby beginning a new state interval, it is necessary to check that accepting M 
does not lead to an impossible state, because the dependency vector encoding is 
only meaningful for possible states. 
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The processing component of RUk maintains a dependency vector DV,, = ( [I1 , 

MII, v2, K.1, . * . , [I,, M,]) subject to the following invariant: 

-The current state is a possible state. 
-The current state is not currently known to be an orphan, that is, for each i, 

3 i 3 L > Ii A IST(L, i) 5 Mj. 

When a new message M with dependency vector ([Lo, ~~1, [ 12, ~21, . . . , [L,, ~~1) 
is dequeued, it is checked that processing M preserves the above invariant. There 
are three possible cases: 

(1) Usual case. For each i, 

and 

313(IiClI li A IST(L, i) 5 Mi) 

Zli 3 (Li < L A IST(L, i) I hi). 

The first condition guarantees that if [lip Mi] lexicographically precedes [Li, pi], 
it is also a live predecessor and, therefore, that dequeuing the message will lead 
to a possible state. The second condition guarantees that the new message is not 
itself known to be an orphan. (If the system has been failure free for some time, 
then li = Ii, in which case the first test is not needed, and li will be the most 
recent incarnation of RUi, in which case the second test is trivially satisfied.) 

In the normal case, M is accepted, and DVk must be updated to reflect the new 
state dependency, as follows: 

([Ii, Mi + 11 
Dvk(i) t Imax([Ii, Mi], [ci, pi]) 

for i = k, 
for i # k, 

where max is defined on pairs using the usual lexicographical ordering. 

(2) M depends on a new incarnation of some recovery unit RUi with an as yet 
unknown start number, that is, such that IST(Li, i) is undefined. (The message 
has arrived at RUk before the incarnation start table has been updated.) Since a 
new incarnation is known to exist, but its start number is not yet known, it is 
possible that the current state of RUk depends on a state of RUi that has been 
rolled back. In this case the processing of M is delayed until the recovery message 
announcing the new incarnation’s start number has been received by the recovery 
manager. 

Notice that this situation, which results in a delay of a recovery unit, only 
occurs in the case in which another recovery unit has failed and is restarting, 
and does not arise in failure-free operation. 

In Figure 7, if RUi fails at time ti, it will restore checkpointed state C1 and 
replay its first five messages. RUi will then begin a new incarnation, number 1. 
If RUi subsequently sends a message to RUj, the dependency vector on that 
message will contain incarnation number 1 in the ith component. If this message 
arrives at RUj prior to the arrival of the recovery message containing incarnation 
l’s start message number, then the processing of the message will be delayed. 
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(3) The new message is an orphan. That is, 

3(~, i) 3 li < 1 A IST(L, i) 5 pi. 

In this case, the orphan message is discarded. 
Orphans will be detected in this way whenever the sending recovery unit has 

not yet learned that it depends on lost states, but the receiving recovery unit has 
received a recovery message identifying these states as lost. 

Since logging is not synchronized with computation, the orphan may have 
already been logged. If the message has been logged, the log must be undone. If 
no other recovery unit has been informed that the message was logged, the 

message may simply be erased. Otherwise, the recovery unit responds as if it had 
crashed itself, in order to undo the effects of logging this message; that is, it must 
begin a new incarnation and send a recovery message. 

2.4.2.2 SENDING MESSAGES. The processing component appends the CUT- 
rent value of the dependency vector to the header of each message it sends. 

The overhead associated with tracking dependency is (in a naive implementa- 
tion) m cells in each message header, where m is the number of recovery units in 
the logical machine. For logical machines having large numbers of recovery units, 

there are space-saving optimizations that lower this overhead, such as sending 
only those dependency vector values that have changed since the last message 
on this session. 

2.4.3 Half-Session Algorithms. The half-session of the sender: 

(1) appends successive session sequence numbers (SSNs) to each message it 
sends on the channel. Note that these sequence numbers are relative to a 
particular channel between two recovery units and are unrelated to message 
indices, which are relative to a particular recovery unit. 

(2) “saves” (i.e., is responsible for reconstructing) each sent message until 
notified by the receiver that the message has been logged. 

It is safe to use volatile storage to save these messages, since, if the sender 
fails, messages needed by the receiver will be recreated by replay. (As detailed 
below, the sender always resumes from its earliest checkpoint, and no checkpoint 
is discarded unless it is no longer needed for purposes of regenerating messages 
not yet logged by the receiver.) Any messages that would not be recreated by 
replay are orphans, and so are not needed, since the receiver would have had to 
back them out had it not failed. 

The half-session of the receiver: 

(1) Notifies the sender of the messages it has logged so that the sender may give 
up recovery responsibility. 

(2) Maintains an “expected” session sequence number and an “expected” sender 
incarnation number. The receiver compares the actual and expected session 
sequence numbers on each message it receives. There are three possible cases: 

(a) Normalcase. The actual and expected session sequence numbers are 
equal. In this case the half-session passes the message to the merge 
function and increments its expected session sequence number. 
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(b) Sender failed. The sender’s session sequence number is lower than ex- 
pected. There are two possible actions, depending on whether the sender’s 
incarnation number (which is stored in the message as part of the 
dependency vector) is greater than the incarnation number expected by 
the receiver: 

(bl) The message’s incarnation number is lower than or equal to the 
expected incarnation number. In this case the message is a dupli- 
cate, sent by the recovering unit during replay. Such a message is 
discarded by the input half-session. 

(b2) The message’s incarnation number is higher than the expected 
incarnation number. In this case the sender has completed recovery, 
and the receiver accepts the message and modifies its expected 
session sequence number and incarnation number to be the next 
higher sequence number of the new incarnation. 

In the example (Figure 7), suppose that RUi fails at time tl. Suppose 
that just prior to the failure it had sent two messages to RUi: a message 
from state [0,2] with session sequence number 101, and message M from 
state [0, 61, with session sequence number 102. After RUi restores 
checkpoint C1, it replays state intervals [0, l] through [0, 51, thereby 
resending the message with session sequence number 101. Since RUj 
expects sequence number 103, and since message 101 arrives from the 
earlier incarnation, the message is discarded. After replaying, RUi starts 
a new incarnation, number 1. The next message sent to RUi will carry 
sequence number 102, but incarnation number 1. RUj will accept this 
message and reset its expected sequence and incarnation number. 

Receiver failed. In this case the session sequence number of the received 
message will be higher than the expected message. The receiver will 
retrieve the missing messages by obtaining any logged messages from the 
log and any unlogged messages from the sender. 

The actions of the receiver half-session as a result of comparing session 
sequence numbers are summarized in Figure 8. 

2.4.4 Output Boundary Function Algorithm. The outside world, that is, any 
entity outside of the logical machine, is not guaranteed to be able to participate 
in the optimistic recovery algorithms, since it may be unable to back out 
computations. Therefore, all output messages with destinations outside the logical 
machine are buffered in output boundary functions (OBFs), until the states from 
which they were sent became committable. The following theorem allows us to 
ascertain when a state interval can be determined to be committable: 

THEOREM 1. Let (all, dp, . . . , d,,,) be the dependency vector of an arbitrary 
possible state interval [L, ~1. Then, if there is a log vector LV such that for each i, 
di 5 LV(i) then [L, ~1 is a committable state. 

PROOF. Suppose that interval [L, ~1 were not committable. Then by definition 
of “committable,” at some time in the future, there will exist a lost state interval 
of one of the recovery units, say, RUi, on which [L, ~1 depends. Call that state 
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Fig. 8. Possible actions of a receiver half-session. 

interval si+ By the definition of the dependency vector for possible state intervals, 
si 5 di. But,‘by the definition of the log vector, di and all its live predecessors 
have been logged. Therefore si must have been logged, so it cannot have been 
lost. q 

The output boundary function of RUk may release any messages whose de- 
pendency vectors satisfy the condition 

di 5 LVk(i) for all i. 

Note that committing requires only local information-the current log vector of 
the recovery unit committing the message and the message’s dependency vector. 

In Figure 7, message N is not committable until both message [0, 31 of RUi 
and message [0, 61 of RUi have been logged. Theorem 1 asserts that the 
commitment can be guaranteed whenever RUj’s message [0,3] and RU:s message 
[0, 61 are both logged. 

Data destined for outside the logical machine are subject to a commitment 
delay that can be affected by (a) the speed with which units log their inputs, and 
(b) the delay between logging and communicating the log vector. 

If the system designer knows that the message is destined for an external 
entity which itself has rollback capability (e.g., a transaction processing system), 
then it is possible to improve response time by sending uncommitted messages 
for early processing by the external entity and later sending it “commit” or 
“abort” messages, allowing the transaction processing to proceed in parallel with 
the period of uncertainty about the message. This, in effect, “extends the logical 
machine” to include the entity with rollback capability. 
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2.45 Recovery Manager 
2.4.5.1 LOGGING. From time to time, the recovery manager takes a check- 

point of the entire volatile state of the recovery unit. (In practice, there exist 
optimizations for incremental checkpointing.) 

The recovery manager logs all input messages on stable storage in the order in 
which the merge function determines that they are to be dequeued by the 
processing component. 

As a result of buffering, queuing, and I/O delays, messages may be logged either 
before or after they are processed by the processing component; there is no 
synchronization between logging and processing. Thus in Figure 7, by time tl, RUi 
has logged its input messages only up to the fifth, but is already processing its 
sixth input message. Because there is no synchronization, it is possible to perform 
optimizations in the stable storage I/O that are not possible with synchronous 
logs, such as blocking several log entries into a single disk track before writing 
them out. 

2.4.5.2 MAINTAINING THE LOG VECTOR. It is necessary to let other recovery 
units know what has been logged, since this information is used to commit 
computations to outside the logical machine and to reclaim obsolete checkpoint 
and log storage. Whereas dependency information must be communicated on 
every transmission between recovery units in order for the algorithm to work 
correctly, log vector information (provided it is eventually transmitted) can be 
sent more infrequently, if desired. However, the sooner the log vector is broadcast 
to other recovery units, the sooner these recovery units can commit computations, 
and hence the better the response time observed outside the logical machine. 

The log vector is maintained as follows. Each recovery unit, upon a receipt of 
a new log vector ([L*, Ml], . . . , [Lo, M,]), computes the union of the sets of 
logged messages indicated by taking the pointwise maximum of the components 
of the old and new log vectors. Let LVk = [II, Ml], [12, Mz], . . . , [I,,,, Mm]. Then 

Lvk(i) + ma-d[Ii, Mil, [G, Wi]) for i = 1 . . . m, 

where max is defined on pairs using lexicographical ordering. 
A typical protocol for propagating the log vector would be to have the output 

half-session piggyback the current log vector on each data message sent out of a 
recovery unit. In this case, in order to ensure progress, it may be necessary to 
periodically send a message containing only a log vector on any channel that has 
remained idle for a sufficiently long time. 

2.4.5.3 RECOVERY AFTER FAILURE. After a failure or roliback, a recovery 
unit restores its earliest checkpoint and replays its log until either an orphan or 
the end of the log is reached. It then begins a new incarnation by (1) increasing 
the incarnation number and (2) sending a recovery message to other recovery 
units in the system informing them of the starting message number of the new 
incarnation. Each input half-session is given an expected session sequence 
number and incarnation number based on the last processed message received 
from that half-session. 

In our example, if RUi fails at time tl, it will restore checkpoint Cl, replay 
logged messages through [0, 51, and then begin a new incarnation starting at 
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state [l, 61. It will send a recovery message informing other recovery units (e.g., 
RUj) that the new incarnation has begun, and that states 6 or greater of earlier 
incarnations (in this case, incarnation number 0) are lost. 

When a recovery unit RUk receives a recovery message announcing the start 
of a new incarnation L of some recovery unit RUi, it updates its incarnation start 
table by adding a new entry IST(L, i). It then examines its current dependency 
vector to see whether its current state is still a possible state. If the current state 
of the recovery unit depends on a state that is no longer live, that is, 

DV,(i) = [Ii, Mi] and IST(l, ;) 5 Mi, 

then the recovery unit must roll back to an earlier state that does not depend on 
the no longer live messages of RUi, 

In our example (Figure 7), suppose RUi fails at time tl, after RUj has processed 
message M, but before RUi has logged its message [0, 61 on which M depends. 
After the failure, RUi will replay through messages [0, 51, and begin a new 
incarnation with interval [l, 61. When RUj receives the recovery message an- 
nouncing that RUi has begun incarnation 1 with message number 6, it will 
examine its dependency vector, which will show a dependency on RUi’s interval 
[0, 61. Since this interval is now known to be lost, RUj will roll back and act 
exactly as if it had failed. It will restore its checkpoint C1, replay messages [0, l] 
and [0, 21, and then begin a new incarnation of its own, sending other recovery 
units a recovery message with the new incarnation start number. 

2.4.5.4 RECLAIMING CHECKPOINTS AND LOGS. During normal operation, 
each recovery unit accumulates checkpoint and log records in stable storage. 

A recovery unit may discard a checkpoint Ci whenever it knows that it will 
never be required to recover any interval between Ci and the following checkpoint 
Ci+l either (a) to roll back for the purposes of undoing the effects of orphan 
messages (state backout), or (b) to roll back for the purpose of resending messages 
lost by a receiving recovery unit that has failed (message recovery). 

A recovery unit can determine that no interval between checkpoints Ci and 
Ci+l will ever need to be recovered for state backout when Ci+l’s state is 
committable, as determined by its dependency vector and current log vector. 

A recovery unit can determine that an interval is no longer needed for message 
recovery when all messages sent from that interval have been logged by their 
receiving recovery units. If no interval between Ci and Ci+l is needed for message 
recovery, then Ci is not needed for message recovery. 

Whenever Ci may be discarded, all the subsequent log entries up to Ci+l can 
also be discarded. 

THEOREM 2. If a state interval I of RIJk is committable, and if all messages sent 
by RUk in intervals preceding I are recoverable, then a systemwide consistent state 
can thereafter always be found without having to back out interval I. 

PROOF. (1) By definition, state interval I does not depend on any orphan 
messages. Therefore, it is possible to recover all other recovery units to a point 
where they have sent any message that RUk has received from them (i.e., RUk 
will never have to be backed out to undo orphans). (2) All messages sent by RUk 
to other recovery units are recoverable, so they will eventually all be received 
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(i.e., RUk will never have to be backed out for the purpose of message recov- 
ery). Cl 

THEOREM 3. Provided that no recovery unit indefinitely delays (1) logging its 
input, (2) transmitting its log vector, and (3) taking another checkpoint, then each 
recovery unit will eventually be able to safely discard its oldest checkpoint. 

PROOF. Any given recovery unit will eventually take a second checkpoint 
(third assumption). That second checkpoint will depend on some set of states of 
each of the other recovery units. But the log vector of each of the recovery units 
will continue to increase monotonically (first assumption), and that fact will be 
transmitted to the given recovery unit (second assumption). Therefore the log 
vector will eventually encompass all the states on which the second checkpoint 
depends, making the state at that second checkpoint committable. Any messages 
sent between the first and second checkpoint will also eventually be logged. 
Therefore, eventually both conditions will be met for discarding the oldest 
checkpoint. Cl 

COROLLARY. There is no domino effect. This follows from the fact that backout 
is bounded by the earliest checkpoint that has not been discarded and from the fact 

that checkpoints are continuously being discarded. 

2.4.5.5 RECLAIMING INCARNATION START TABLES. The recovery manager 
also reclaims obsolete entries in the incarnation start table. Information for a 
given incarnation L of a recovery unit can be discarded when there are no more 
messages from incarnation L - 1 left in any of the recovery units or in the 
channels between them. This fact can be determined by means of a periodic 
broadcast from each recovery unit of the oldest (smallest) incarnation number 
for every other recovery unit that resides in its log or in any output message 
queue for which it has message recovery responsibility. The minimum of these 
incarnation numbers can be used to determine a bound below which any incar- 
nation number is obsolete. 

Since increments of incarnation numbers are rare and the extra storage in the 
incarnation start tables is negligible, reclaiming incarnation start table entries 
can be given extremely low priority and requires negligible overhead in normal 
operation. 

2.5 Recovery from Non-Fail-Stop Failures 

The fail-stop and independence assumptions are not always met in practice, 
because (1) some errors are not immediately detected, and processing will 
continue until the faulty state results in a failure; (2) failures resulting from 
faulty operating system software will repeat themselves if the identical conditions 
are restored. 

Although the repeatability of software failures is advantageous for debugging 
in that it is easier to locate the fault by replaying the crash than by examining a 
postmortem dump, recovery entails avoiding the replay of the events leading to 
the error. 

To maximize the chance of full recovery from a software failure, it is necessary 
to discard as much of recent past history as possible. To do so, we compute for 
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each RUi the earliest state index ai such that no output boundary function 
committed any message dependent on interval si. It is then safe for each recovery 
unit to roll back, acting as if all messages with indices si and later had not been 
merged. Those of the unmerged messages that depend only on committed states 
will be retained and remerged, while the rest will be discarded completely. To 
reduce further the likelihood of repeating the software failure, the nondetermin- 
istic merge algorithm can be perturbed, so that remerged messages will be 
processed in a different order. 

Similarly, if a failure is detected after a lapse of time and it is determined that 
several recent state intervals are invalid, recovery is still possible, provided that 
no output boundary function has yet committed output that depends on the 
invalid state intervals. These intervals can be backed out, together with any 
computations in other recovery units that depend on them. 

Although optimistic recovery cannot recover from failures that are detected 
too late, or from operating system software failures that repeat themselves despite 
perturbation of the system state, the fact that dependency tracking makes it 
possible to reconstruct several past consistent states gives optimistic recovery an 
advantage over recovery systems such as those in [2] and [4], which can recon- 
struct only the latest consistent state. 

3. RELATED WORK 

We distinguish the following categories of recovery schemes: 
-application-specific recovery, 
-transaction-based recovery, 
-pessimistic recovery. 

3.1 Application-Specific Recovery 

In application-specific recovery, recovery is explicitly programmed as part of the 
application. The recovery code may involve intimate knowledge of both the 
application domain and of the underlying hardware (see, e.g., [ 161 for a survey of 
some such techniques). Small changes in either the application or the underlying 
hardware may entail substantial redesign of the recovery algorithms. 

3.2 Transaction Recovery 

In the transaction model [3, 6, 7, 111 computation is divided into units of work 
called transactions. A transaction system is expected to behave as if individual 
transactions were executed in some serial order (serializability), although, to 
reduce response time, the transactions are actually executed in parallel through 
multiprogramming or multiprocessing. 

Transactions terminate by either aborting, or by committing their updates to 
stable storage. In distributed environments, transaction commitment involves 
synchronous checkpointing (“force-writing”) to stable storage by each of the 
processors at each transaction boundary [ 121. 

The protocols supporting the committing and aborting of transactions are 
easily extended to handle recovery from machine failures by treating failures as 
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Fig. 9. Short transactions: Commits are frequent, and little concurrency 
is achievable, since within a given layer each message modifies the same 
data. 

aborts. These protocols can be built into an operating system and can therefore 
be made transparent to applications. 

Unfortunately, not all programs can be expressed as transactions. Transaction 
systems are based on several assumptions: 

-Serializability is required. 

-The probability that different transactions contend for the same data is low, 

-Transactions are “long enough,” that is, involve enough computation to am- 
ortize the I/O delays of synchronous commits at each transaction boundary. 

For applications that are structured as transactions and that satisfy the above 
assumptions, transaction-based recovery is likely to be cost effective, since there 
is little additional overhead involved. However, transactions are only a special 
case of the more general model of communicating asynchronous processes, for 
which serializability may be an unnecessary restriction. 

Consider, for example, a layered communication protocol, consisting of three 
layers: L1, Lp, and LB. Each layer consists of a process that maintains state 
information. Messages passirig through such a layered protocol typically change 
the same state information in each layer; for example, the layer sequence number 
is updated by each message. Thus the assumption of low conflict is not satisfied. 

We consider two possibilities for defining transaction boundaries in such a 
system: 

(1) Short transactions. Passing through a single layer is considered a complete 
transaction. Since upon completion transactions synchronously force-write in- 
formation to stable storage, the resulting synchronization delays due to I/O to 
stable storage at each commit point would be unacceptably high. See Figure 9. 

(2) Long transactions. A single transaction consists of passing through mul- 
tiple layers (see Figure 10). Each layer supports messages going out into the 
network (down) and messages coming in from the network (up). In this case the 
serializability requirement of the transaction model is overly restrictive. The 
following sequence of updates is perfectly acceptable for the communication 
protocol: L1 (up); Lp (down); Lp (up); L1 (down). However, this sequence is not 
serializable, because Lz’s data sees the transactions in the order “down-up,” and 
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Fig. 10. Long transactions: Transactions 
span multiple layers in order to reduce the 
frequency of commits. Serialization im- 
poses delays because interleaving conflicts 
with serialization. 

Ll’r L26 L2f Ll$ 

Ll’s data sees the order “up-down.” Serialization would substantially reduce the 
level of concurrency in such a system. 

In our view, transactions are best viewed as a technique for efficiently imple- 
menting a single logically serial process, such as a database manager, by executing 
its noninterfering parts in parallel and not as a general recovery technique. 

3.3 Pessimistic Recovery 

Both Tandem NonStop’” [2], and AuragenTM [4]) are systems that support 
transparent, application-independent recovery. Unlike optimistic recovery, these 
systems synchronize communication and computation with checkpointing. We 
call such systems pessimistic, since they delay processing each message until both 
the state of sender and the state of the receiver have been checkpointed to avoid 
an inconsistency in the rare case of a failure. To avoid the substantial delays 
associated with checkpointing onto a stable storage medium such as mirrored 
disks, pessimistic systems typically use a backup process on another processor to 
hold checkpoints. 

All communication then requires a multiway synchronization of the primary 
and backup of both sender and receiver, and multiple failures can no longer be 
tolerated: If both the primary’s processor and the backup’s processor fail, recovery 
is no longer possible. 

4. SUMMARY AND CONCLUSIONS 

Optimistic recovery is a transparent recovery mechanism. That is, applications 
can be written as if they were to be executed on an ideal failure-free machine. 
Transparency is important for any system that does not have a single, permanent, 
hard-wired application. If the application is to be modified, or if new applications 
are to be written, or if old applications written without recovery in mind are to 
be run on the system, then transparent recovery will save programming effort 
and reduce the risk of introducing errors. 

Optimistic recovery applies to any system that can be viewed as a collection of 
recovery units communicating by message passing. It is not restricted, as trans- 
action-based recovery is, to applications that can be structured as units of work 
accessing a global database to which concurrency control is applied. 
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We believe that optimistic recovery pays a low price for transparent recovery. 
Unlike pessimistic recovery techniques, there is no synchronization required 
upon communication. Therefore, as long as the I/O bandwidth to the disk is 
sufficiently high, logging delays do not slow down computation. Because logging 
may be asynchronous, several log entries may be blocked into a buffer and written 
out in a single I/O operation. Provided that an input message is logged by the 
time the computation it engendered has completed and is ready to return a result 
to the external user, there is no response time delay. 

Optimistic recovery has the further advantages over pessimistic recovery that 
a backup processor is not required for checkpointing, that recovery is possible 
even after the temporary loss of all processors, and that some failures not 
satisfying the fail-stop condition can be recovered. 

Optimistic recovery is a special case of optimistic algorithms [ 181. An optimistic 
algorithm is one that guesses that an uncertain but highly probable event will 
happen, and executes “guarded” computations dependent on that assumption. If 
the assumption should prove true, the optimistic algorithm commits the guarded 
computations; otherwise, it rolls them back. Optimistic algorithms perform better 
than their pessimistic counterparts whenever the net gain (the performance 
improvement when the guess succeeds less the performance loss when the guess 
fails, weighted by the respective probabilities) is greater than the fixed overhead 
of tracking dependencies and maintaining rollback capability. 

The “guess” in optimistic recovery is that the set of state intervals named in 
the dependency vector of an input message will be made recoverable before the 
next failure. The fixed overhead during failure-free operation is 

-appending a session sequence number to each message traveling between 
recovery units and checking it upon arrival; 

-maintaining a dependency vector in each recovery unit, copying the vector to 
the header of each message sent, and updating the dependency vector on each 
message received; 

-periodically checkpointing the full state of each recovery unit and incremen- 
tally logging input messages; 

-periodically transmitting and updating the log vector; 

-buffering messages in the output boundary function until they are committable. 

Because the optimistic recovery algorithms gamble that failures will not occur, 
we expect optimistic recovery to recover somewhat more slowly when failures 
occur. However, since in most distributed systems failures are very infrequent, 
we expect optimistic recovery to perform significantly better overall than other 
recovery techniques. 
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