
Optimistic Recovery in Distributed Systems

ROBERT E. STROM and SHAULA YEMINI

IBM Thomas J. Watson Research Center

Optimistic Recovery is a new technique supporting application-independent transparent recovery
from processor failures in distributed systems. In optimistic recovery communication, computation
and checkpointing proceed asynchronously. Synchronization is replaced by causal dependency trock-

ing, which enables a posteriori reconstruction of a consistent distributed system state following a
failure using process rollback and message replay.

Because there is no synchronization among computation, communication, and checkpointing,
optimistic recovery can tolerate the failure of an arbitrary number of processors and yields better
throughput and response time than other general recovery techniques whenever failures are infre-
quent.

CR Categories Subject Descriptors: [Operating Systems]: reliability; D.4.7 [Operating Systems]:
Organization and Design-distributed systems

General Terms: Algorithms, Reliability

Additional Key Words and Phrases: Distributed algorithms, fault-tolerance message replay, recovery,
optimistic algorithms, orphans transparent recovery

1. INTRODUCTION

Distributed multiprocessor configurations are replacing centralized processors as
a result of an increasing demand for both higher throughput and higher availa-
bility. However, achieving high availability is more difficult in multiprocessor
configurations because of the more complicated failure modes of such systems.
This paper addresses the problem of restoring a consistent state of a distributed
system following the failure of one or more of its processors.

We consider distributed systems that are constructed from processes, each of
which maintains private state information and communicates with other proc-
esses by exchanging messages. As a result of communication, individual process
states will become dependent on one another. A set of process states in which
each pair of processes agrees on communication between them has taken place
and which has not is called a consistent system state. If the state of a process
that has sent a message is ever lost, then in order for the system state to be

Authors’ address: IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY
10598.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1985 ACM 0734-2071/85/0800-0204 $00.75

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985, Pages 204-226.

Optimistic Recovery in Distributed Systems 205

Fig. 1. Domino effect: If process PI fails t
and is restored to checkpoint Clr, it loses its
memory of having received Mz and having
sent MS. Thus P2 will have received M3
which was “never sent.” If Pz rolls back to
C&, it will have sent message M* which PI
“never received.” If P2 rolls back to Cz3, PI
will have sent message Mr not received by
Pz, necessitating a further rollback of PI.

“=gllli cn

Clzil+ .

Q .
Ii c23l

Process Pl Process PZ

consistent, the state change resulting from the receipt of that message in the
receiving process must be undone; that is, the process must be rolled back.

A processor failure will cause the states of some of the processes executing on
that processor to be lost. Recovery from a failure involves restoring a consistent
system state. Recovery mechanisms typically recover from the loss of a process’s
state by retrieving a saved snapshot of an earlier state of that process, called a
checkpoint. Since it is infeasible to take a checkpoint of an entire distributed
system “at once,” an attempt to recover may result in the unbounded cascading
of rollbacks in an attempt to find a consistent set of individual process check-
points. This problem is called the domino effect [14] and is depicted in Figure 1.

The domino effect is typically avoided by synchronizing checkpointing with
communication and computation (see, e.g., [2], [4], [7], [ll], and [12]).

This paper describes optimistic recovery, a new application-independent, trans-
parent recovery technique based on dependency tracking, which avoids the domino
effect while allowing computation, communication, checkpointing, and “commit-
ting” to proceed asynchronously. Because there are no synchronization delays
during normal operation, optimistic recovery can make use of stable storage, that
is, storage that persists beyond processor failures [lo], thereby supporting recov-
ery from failure of an arbitrary number of processors. The elimination of
synchronization delays additionally yields improved response time over other
transparent recovery mechanisms.

In this paper we describe the optimistic recovery protocols for recovering a
consistent systemwide state following a failure of one or more processors in a
distributed system. We do not discuss (1) means for detecting failures, (2)
mechanisms for determining the new system configuration after a failure, (3)
mechanisms for implementing a stable store, (4) mechanisms for providing
reliable communication within the distributed system. Solutions to these prob-
lems are orthogonal to our recovery technique. The reader is referred to [l], [lo],
[13], and [19] for further discussion of these issues.

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.

206 l R. Strom and S. Yemini

1 .l Goals for Distributed System Recovery

Our approach to distributed recovery has the following goals:

-Application-independence. The recovery technique should be applicable to
arbitrary programs.

-Application-transparency. The recovery technique should be transparent to
the programs being made recoverable. Application-transparency (1) simplifies
programming; (2) allows both applications and recovery protocols to evolve
independently, thereby avoiding the risk that the software becomes obsolete
as a result of small changes in either the application or the underlying
hardware; (3) enables preexisting programs to become recoverable without
modification.

--High throughput. The CPU resources of all processors should be available for
productive work when there are no failures.

-Maximal fault-tolerance. The recovery mechanism should provide recovery
from failure of any number of processors of the system.

2. OPTIMISTIC RECOVERY

2.1 Overview

In optimistic recovery, computation, communication, and checkpointing proceed
asynchronously. Instead of consistent checkpoints being maintained at all times,
enough information is saved to reconstruct a consistent state after a failure.
When reconstructing a consistent state, we face the following problem: A process
PI may receive and process a message M from a process Pz, but Pp may fail
before having recorded enough information on stable storage to enable restoring
the state from which it sent M.

Optimistic recovery solves this problem by having each process track its
dependency on the states of other processes with which it communicates. As a
result of dependency tracking, it is possible for PI to detect that it has performed
computations that causally depend on states that the failed process Pz has lost.
Such computations are sometimes called orphans. If such computations have
been performed, they will be undone by restoring an earlier state of PI that does
not depend on lost states.

A state is restored by first restoring an earlier checkpoint from stable storage
and then replaying logged messages- that is, reexecuting the process by driving
it from the sequence of input messages saved in stable storage. Because we control
the extent of rollback by replaying the correct number of messages, the system
never rolls back “too far” and hence avoids the domino effect.

The optimistic recovery protocols ensure that the externally visible behavior
of a distributed system incorporating these protocols is equivalent to some failure-
free execution. By “equivalent,” we mean that all messages sent outside the
distributed system in the failure-free execution that would be sent in the same
order during actual execution and that no other messages will be sent. Despite
the existence of processor failures that result in the loss of the recent state of
some processes, we meet the above correctness criterion by (a) restoring an earlier
possible state of the failed processes using rollback and replay, (b) rolling back

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.

Optimistic Recovery in Distributed Systems 207

other processes whenever these have been determined by dependency tracking to
depend on lost states, and (c) committing messages to the outside as soon as it
is determined from dependency information that the states that generated the
messages will never need to be rolled back.

2.2 Concepts and Definitions

2.2.1 Logical Machine and Recovery Units. A cluster of machines incorporating
optimistic recovery appears to applications executing on it and to other systems
communicating with it as a single logical machine, as shown in Figure 2.

The logical machine is partitioned into a fixed number of recovery units (RUs),
which communicate with one another through message passing. Application
processes may be created and destroyed dynamically and are assigned to partic-
ular recovery units. In optimistic recovery, recovery units, rather than individual
processes, fail and are recovered.

By allowing each recovery unit to schedule multiple processes, and by holding
the number of recovery units fixed, we simplify the recovery algorithms without
restricting the dynamic variability of the system workload. In addition, it becomes
a system design parameter whether to have many “small” recovery units or a few
“large” ones.

We make the following assumptions about the logical machine:

-Reliable, FIFO channels between recovery units. These can be implemented by
any of a number of communication protocols (see, e.g., [19]). We assume
nothing about the arrival order of messages sent to a recovery unit from two
different sources.

-Fail-stop [15]. All failures are detected immediately and result in halting the
failed recovery units and initiating recovery action. (We later weaken this
assumption. It suffices to require that failures be detected before any event
resulting from them is made visible (“committed”) outside the logical machine.)

-Independence. Failures will not recur if the recovery unit is reexecuted on
another processor. (We later weaken this assumption as well in our discussion
of recovery from software faults.)

-Stable storage. Recovery units store their current state in volatile storage,
which is lost upon their failure. Information needed to reconstruct volatile
storage is maintained in stable storage and persists across failures [lo].

-Spare processing capacity. It is always possible to relocate a failed recovery
unit to some working processor, which will be able to access the previously
logged recovery information on stable storage. We assume that physical proc-
essors will multiplex the workload of several recovery units, Relocating a
recovery unit to another processor may degrade performance but will have no
other visible effect.

2.2.2 State Intervals. We assume the behavior of each recovery unit to be
repeatable and message driven. That is, the state of the recovery unit can be
regenerated by restoring an earlier state, restoring the subsequent input message
queue in its original order (using the message log described below), and replaying
the processing of the recovery unit. Thus, we can identify a state of a recovery
unit by the ordinal number of the last input message that it processed.

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.

208 l R. Strom and S. Yemini

Fig. 2. Logical Machine: The Logical Machine is seen by
the external world as a single machine communicating
through channels, depicted by double lines. Internally, it
contains multiple communicating recovery units.

Suppose RUi has already processed its first n - 1 input messages and is ready
to process its nth input message MJn). Its volatile storage is in some state,
which we shall call Si(n). Given state Si(n) and message Mi(n), RUGS processing
component will execute a series of computations, which we call state interval
1i(n) of RUi. During state interval 1i(n), RUi may conceivably generate output
messages destined to other recovery units or to outside the logical machine.
When RUi’s processing unit is ready to dequeue message Mi(n + l), state interval
li(n + 1) is started (Figure 3).

The property of repeatability implies that an arbitrary state S;(n) of RU; can
always be restored, provided we can recover an earlier state Si(n - d) and the
subsequent messages Mi(n - d) through Mi (n - 1). Si(n) is restored by replaying
the processing of these messages in order, starting at Si(n - d).

2.2.3 Incarnation Numbers and State Indices. Because RUi may roll back and

then resume processing either as a result of its own failure or in response to
failure of another recovery unit RUj which is unable to reconstruct states that
have affected RU; some input message ordinal numbers (and the corresponding
state interval numbers) may be reused. In order to continue to have a unique
way of identifying state intervals, we designate each input message of a given
recovery unit and its corresponding state interval, by a message or state index,
which is a pair [1, p], where p is a message number and L is an incarnation number.
The incarnation number of a recovery unit is incremented each time a recovery
unit resumes processing after having rolled back (see Figure 4.)

2.2.4 Live History. A state interval of a recovery unit RUi is live if it has not
been rolled back. The live history of a recovery unit is the sequence of state
intervals of that recovery unit that have not been rolled back. The live history
constitutes a sequence of state intervals that could have arisen during a failure-
free execution of the recovery unit. For example, in Figure 4, the live history
consists of state intervals [l, I] through [l, 51, 12, 61 through [2, 81, and [3, 91
through [3, 131.

A state interval [L, p] of RUi is a live predecessor of a state interval [L’, ~‘1 iff
[L, P] precedes [I’, ~‘1 within the live history of RUi. We use the symbol -C to

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.

Optimistic Recovery in Distributed Systems 209

t
I

Fig. 3. Numbering messages and inter- m

vals.
e

11. 11

Il. 21

r1, 31

r1, 41

Il. 51

11, 61

[l, 71 P

Fig. 4. Numbering messages in the
presence of rollbacks.

interval I(i)

I

interval Kit 1)
I

, rev m(i)
H m(i)

send x Y

send y -

k rev m(i+l)
/m(i+l)

send z -

I * rci m(i+2) /m(i+2)

t2. 61

7 [2, 71

[2, 81

[2, 91 4 [3, 91

12, 101 [3, 101

[2, 111 [3. 111

[3, 121

[3, 131
4

0

0

0

denote the live predecessor relation. Thus, while the actual execution order
follows the lexicographical order, [L, p] < [L’, ~‘1 means that [L, ~1 < [L’, ~‘1
according to the lexicographical order, and that no other interval that precedes

[l’, PI] supersedes [t, ~1. For example, [l, 51 < [2, lo], whereas [l, 61 #Z [2, lo].
In a correct implementation of optimistic recovery, all messages committed to

outside the logical machine depend only on live histories.

2.2.5 CUZL.SU~ Precedence. State intervals in a logical machine are partially
ordered by a causality relation. Within a recovery unit, the order of the state
intervals in the live history, that is <, determines the causality order: Each
interval is caused by its live predecessor interval. Between recovery units a partial
order is induced by the sending and receiving of messages. State interval [Lo, pi]
of RUi immediately causes interval [Lj, pj] of RUj whenever a message sent from

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.

210 l R. Strom and S. Yemini

RUi during interval [Li, pi] is dequeued by RUj to begin interval [Lj, pj 1. The
transitive closure of the relations “immediately causes” and i results in a partial
ordering over the set of state intervals in the distributed system, which we call
causal precedence or dependency.

2.2.6 Possible States. A state interval is said to be impossible iff it depends on
two state intervals of the same recovery unit that cannot both be live; that is,
the two state intervals have identical message numbers and different incarnation
numbers. Otherwise, it is said to be possible. For example, suppose a state interval
depended on both states [3, 131 and [2, lo] within the recovery unit shown in
Figure 4. Since [3, lo] 4 [3, 131, the state interval also depends on interval [3,
lo] and is therefore impossible.

If a state interval is possible, its dependencies can be encoded by a single index
into the live history of each of the recovery units. This index denotes the “latest”
state interval of each recovery unit on which the possible state interval depends
and indicates a causal dependency on that state interval and all its live predeces-
sors.

2.2.7 Logging. Each recovery unit periodically logs information to stable stor-
age in order to support recovery. Logging to stable storage is not synchronized
with communication, There are two kinds of information saved on stable storage:
checkpoints and input message logs.

Checkpoints are snapshots of the complete state of a recovery unit. Checkpoint
frequency is a tuning option: More frequent checkpoints may imply more disk
activity; less frequent checkpoints may result in recovery taking a longer time.

An input message is said to be “logged” whenever both its data and the ordinal
position in which it is processed can be obtained on demand during recovery.
(There exist optimizations in which it is not necessary to actually write some or
all of the message to stable store in order to “log” it, because the message is
known to be reconstructible from other stable information in the system.)

2.2.8 Lost Messages, Lost States, and Orphans. Messages processed but not yet
logged by a recovery unit at the time of a failure are lost messages; the correspond-
ing state intervals are called lost state intervals. Messages and state intervals that
are either lost or causally dependent on lost state intervals are called orphans.
State intervals that will never become orphans are called committable.

Note that a message can be considered “lost,” even when its data value is
completely recoverable, if the ordinal position the message occupied in the input
message stream of the receiving recovery unit is unrecoverable. This is because
the relative order in which messages sent by different recovery units are merged
is not deterministic, and, therefore, upon recovery the message might be merged
in a different order, and the computation may be different.

2.3 Components and Data Structures

A recovery unit consists of (1) a set of input and output half-sessions, (2) a merge
component, (3) a processing component, and (4) a recovery manager component.
Each recovery unit maintains (1) a dependency vector, (2) a log vector, and (3) an
incarnation start table, as well as checkpoint and message logs on stable storage
(Figure 5).

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.

Optimistic Recovery in Distributed Systems l 211

Proctwelng Component

a HS

P

Fig. 5. Structure of a recovery unit.

2.3.1 Sessions and Boundary Functions. Each recovery unit may receive mes-
sages from other recovery units and from input devices external to the logical
machine. Each recovery unit may also send messages to other recovery units and
to output devices external to the logical machine.

The protocol by which a recovery unit receives data from an external device is
called the input boundary function; the protocol by which a recovery unit sends
data to an external device is called the output boundary function. Between each
pair of recovery units, there is a pair of unidirectional sessions. A session consists
of a pair of half-session protocols-an output half-session in the sender and an
input half-session in the receiver. Figure 6 shows a session between recovery
units in the dashed box.

Session protocols serve the purpose of detecting lost and duplicate messages
resulting from failures. Boundary function protocols are mostly device specific;
however, output boundary functions additionally delay messages intended to be
sent outside the system until they are committable.

2.3.2 Merge Component. The merge component combines all the input message
streams from the input half-sessions and the input boundary functions into a
merged input stream. This component assigns each message in the merged input
stream an ordinal position number, which corresponds to the order in which
messages will be processed by the processing component. The merge component
may be implemented very simply-for example, first-come, first-served-or it
may be more sophisticated, For example, it may take advantage of the fact that

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.

212 - R. Strom and S. Yemini

Fig. 6. Sessions between recovery units.

the recovery unit schedules many processes, and it may delay inserting a message
into the input stream if it is destined for a process that is not ready to receive it.
The merge component is not required to be deterministic, because its output is
logged, and the log is used to reconstruct the merged sequence if replay is
required.

2.3.3 Processing Component. The processing component is that part of a
recovery unit where the application processes execute. Application processes
running in the processing component keep their state in volatile storage. The
application processes are unaware of the recovery protocols. If several application
processes are allocated to a single recovery unit, the processing component is
responsible for scheduling these processes.

The processing component is driven by the merged input stream. The process-
ing component must be deterministic.

2.3.4 Recovery Manager Component. Each recovery unit’s recovery manager is
responsible for maintaining recovery information on stable storage. This includes
scheduling checkpointing, logging messages, and reclaiming obsolete checkpoints
and messages. The recovery manager is also responsible for recovering its recovery
unit following a failure. Recovery consists of restoring the recovery unit’s earliest
checkpoint and replaying the subsequent message log. When the message log is
exhausted, the recovery manager is responsible for broadcasting an appropriate
recovery message.

2.3.5 Dependency Vector. In a logical machine with m recovery units, the
causal predecessors of a possible state interval I of a recovery unit RUi can be

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.

Optimistic Recovery in Distributed Systems l 213

encoded by a vector of state indices, (dl, dz, . . . , d,), provided that RUi never
enters an impossible state. The causal predecessors of I in each RUj are the set
of state intervals d, such that d 5 di. We call this vector a dependency vector.

As part of its internal state, each recovery unit RUi maintains a dependency
vector DVi, which identifies the causal predecessors of RU{s current state

interval. The ith component of DVi, DVi(i), is the index of RUls current state
interval.

If state interval I of RUi depends on intervals dl , dz, . . . , d, of the m recovery
units of a logical machine, then if any one of these intervals cannot be recovered
after a failure, I must be rolled back.

2.3.6 Incarnation Start Table. To be able to identify rolled back states, each
recovery unit keeps an incarnation start table, which records the earliest message
number in each incarnation of each recovery unit. We use the notation IST(L, k)
to denote the earliest message number in incarnation L of RUk. For example, if
RUk is the recovery unit shown in Figure 4, then IST(l, k) = 1, IST(2, k) = 6,
and IST(3, k) = 9. The incarnation start table enables the processing component
to determine whether a given state interval is part of the live history of a recovery
unit, or whether it has been rolled back.

An interval [L, P] is part of the live history of RUk iff

31’ 3 1’ > L A IST(l’, 12) I CL,

that is, that there does not exist a later incarnation 1’ of RUk that starts at
message number cc or less.

The incarnation start table entry for an incarnation L is needed only as long
as messages depending on incarnation numbers less than 1 still exist in the logical
machine. In practice, if the logical machine has been failure free for a long
enough time, there is only one relevant incarnation number for each recovery
unit, and the incarnation start tables can be empty.

2.3.7 Log Vector. Each recovery unit logs its input messages in the back-
ground-the more messages logged, the more computations become committable.

In order that a recovery unit be able to determine which of its computations
are committable, it must know both the status of its own logging progress and
the logging progress of the other recovery units in the logical machine. This
information is recorded in a log vector LV, maintained in each recovery unit. The
ith component of LVk is a state index li of a state in RUi such that it and all its
live predecessors have been logged. LVI, reflects the current logging status of the
recovery units in the logical machine as perceived by RUk.

The actual logging status of a logical machine may be further ahead than
indicated by any of the local log vectors. Log vectors are updated by periodically
and asynchronously broadcasting local log vectors to other recovery units. Since
messages once logged remain logged forever, log vectors are strictly monotonically
increasing. Log vectors are used to determine the committability of state inter-
vals.

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.

214 l FL Strom and S. Yemini

checkpts
RUi o

+ msg log rev ro,51

f Icrl
0

0
m ro,llo
e 0

[O.ZlO
rev [0,61

[0,3lEz 0
send M \

[0,4. 0

LO,510

t1 ___- _ --__- _ -.__- ___-_ _________.__._.” _.____. _.

EO.611

rev io.71

[0.710 0

t2 .---_.-_-..---_--_--_ _ .___-._-__-_.__-__._-.-.
0

I
0

i

RUj
checkpts

0
+ msg log

0
I

0
[O,l!n

0
10.2kzl

x rev LO,31

send N

o-

rev ro.41

Fig. 7. Sample history of a logical machine: Message M depends on interval [0, 61 of RUi.

The receipt of message M begins interval [0, 31 of RUj, which now depends on interval [0, 61

of RUi. Message N depends on both interval [0, 31 of RUj and interval [0,6] of RUi. A failure

of RU, at time t, will necessitate a rollback of RUj, but a failure at time ts will not.

2.4 Algorithms

2.4.1 Example. We illustrate the algorithms of optimistic recovery with an
example (Figure 7) depicting two recovery units RUi and RUj. In this example,
the sixth message received by RUi gives rise to state interval [0, 61. During
interval [0, 61 RUi sends a message it4 to RUj. The receipt of M begins state
interval [0,3] of RUj. Thus, [0, 61 of RUi is a causal predecessor of [0,3] of RUj.
As a result of M, RUj sends message N to a printer outside of the logical machine.
We illustrate the operation of the algorithms in the failure-free case and in
several possible failure cases.

2.4.2 Processing Component Algorithms. In addition to performing computa-
tions, the processing component has the responsibility of avoiding impossible
states, maintaining the current dependency vector, and labeling the dependencies
of each output message.

2.4.2.1 CHECKING POSSIBLE STATES AND MAINTAINING THE DEPENDENCY
VECTOR. When the processing component of RUk dequeues an input message M,
thereby beginning a new state interval, it is necessary to check that accepting M
does not lead to an impossible state, because the dependency vector encoding is
only meaningful for possible states.

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.

Optimistic Recovery in Distributed Systems 215

The processing component of RUk maintains a dependency vector DV,, = ([I1 ,

MII, v2, K.1, . * . , [I,, M,]) subject to the following invariant:

-The current state is a possible state.
-The current state is not currently known to be an orphan, that is, for each i,

3 i 3 L > Ii A IST(L, i) 5 Mj.

When a new message M with dependency vector ([Lo, ~~1, [12, ~21, . . . , [L,, ~~1)
is dequeued, it is checked that processing M preserves the above invariant. There
are three possible cases:

(1) Usual case. For each i,

and

313(IiClI li A IST(L, i) 5 Mi)

Zli 3 (Li < L A IST(L, i) I hi).

The first condition guarantees that if [lip Mi] lexicographically precedes [Li, pi],
it is also a live predecessor and, therefore, that dequeuing the message will lead
to a possible state. The second condition guarantees that the new message is not
itself known to be an orphan. (If the system has been failure free for some time,
then li = Ii, in which case the first test is not needed, and li will be the most
recent incarnation of RUi, in which case the second test is trivially satisfied.)

In the normal case, M is accepted, and DVk must be updated to reflect the new
state dependency, as follows:

([Ii, Mi + 11
Dvk(i) t Imax([Ii, Mi], [ci, pi])

for i = k,
for i # k,

where max is defined on pairs using the usual lexicographical ordering.

(2) M depends on a new incarnation of some recovery unit RUi with an as yet
unknown start number, that is, such that IST(Li, i) is undefined. (The message
has arrived at RUk before the incarnation start table has been updated.) Since a
new incarnation is known to exist, but its start number is not yet known, it is
possible that the current state of RUk depends on a state of RUi that has been
rolled back. In this case the processing of M is delayed until the recovery message
announcing the new incarnation’s start number has been received by the recovery
manager.

Notice that this situation, which results in a delay of a recovery unit, only
occurs in the case in which another recovery unit has failed and is restarting,
and does not arise in failure-free operation.

In Figure 7, if RUi fails at time ti, it will restore checkpointed state C1 and
replay its first five messages. RUi will then begin a new incarnation, number 1.
If RUi subsequently sends a message to RUj, the dependency vector on that
message will contain incarnation number 1 in the ith component. If this message
arrives at RUj prior to the arrival of the recovery message containing incarnation
l’s start message number, then the processing of the message will be delayed.

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.

216 l R. Strom and S. Yemini

(3) The new message is an orphan. That is,

3(~, i) 3 li < 1 A IST(L, i) 5 pi.

In this case, the orphan message is discarded.
Orphans will be detected in this way whenever the sending recovery unit has

not yet learned that it depends on lost states, but the receiving recovery unit has
received a recovery message identifying these states as lost.

Since logging is not synchronized with computation, the orphan may have
already been logged. If the message has been logged, the log must be undone. If
no other recovery unit has been informed that the message was logged, the

message may simply be erased. Otherwise, the recovery unit responds as if it had
crashed itself, in order to undo the effects of logging this message; that is, it must
begin a new incarnation and send a recovery message.

2.4.2.2 SENDING MESSAGES. The processing component appends the CUT-
rent value of the dependency vector to the header of each message it sends.

The overhead associated with tracking dependency is (in a naive implementa-
tion) m cells in each message header, where m is the number of recovery units in
the logical machine. For logical machines having large numbers of recovery units,

there are space-saving optimizations that lower this overhead, such as sending
only those dependency vector values that have changed since the last message
on this session.

2.4.3 Half-Session Algorithms. The half-session of the sender:

(1) appends successive session sequence numbers (SSNs) to each message it
sends on the channel. Note that these sequence numbers are relative to a
particular channel between two recovery units and are unrelated to message
indices, which are relative to a particular recovery unit.

(2) “saves” (i.e., is responsible for reconstructing) each sent message until
notified by the receiver that the message has been logged.

It is safe to use volatile storage to save these messages, since, if the sender
fails, messages needed by the receiver will be recreated by replay. (As detailed
below, the sender always resumes from its earliest checkpoint, and no checkpoint
is discarded unless it is no longer needed for purposes of regenerating messages
not yet logged by the receiver.) Any messages that would not be recreated by
replay are orphans, and so are not needed, since the receiver would have had to
back them out had it not failed.

The half-session of the receiver:

(1) Notifies the sender of the messages it has logged so that the sender may give
up recovery responsibility.

(2) Maintains an “expected” session sequence number and an “expected” sender
incarnation number. The receiver compares the actual and expected session
sequence numbers on each message it receives. There are three possible cases:

(a) Normalcase. The actual and expected session sequence numbers are
equal. In this case the half-session passes the message to the merge
function and increments its expected session sequence number.

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.

Optimistic Recovery in Distributed Systems l 217

(b) Sender failed. The sender’s session sequence number is lower than ex-
pected. There are two possible actions, depending on whether the sender’s
incarnation number (which is stored in the message as part of the
dependency vector) is greater than the incarnation number expected by
the receiver:

(bl) The message’s incarnation number is lower than or equal to the
expected incarnation number. In this case the message is a dupli-
cate, sent by the recovering unit during replay. Such a message is
discarded by the input half-session.

(b2) The message’s incarnation number is higher than the expected
incarnation number. In this case the sender has completed recovery,
and the receiver accepts the message and modifies its expected
session sequence number and incarnation number to be the next
higher sequence number of the new incarnation.

In the example (Figure 7), suppose that RUi fails at time tl. Suppose
that just prior to the failure it had sent two messages to RUi: a message
from state [0,2] with session sequence number 101, and message M from
state [0, 61, with session sequence number 102. After RUi restores
checkpoint C1, it replays state intervals [0, l] through [0, 51, thereby
resending the message with session sequence number 101. Since RUj
expects sequence number 103, and since message 101 arrives from the
earlier incarnation, the message is discarded. After replaying, RUi starts
a new incarnation, number 1. The next message sent to RUi will carry
sequence number 102, but incarnation number 1. RUj will accept this
message and reset its expected sequence and incarnation number.

Receiver failed. In this case the session sequence number of the received
message will be higher than the expected message. The receiver will
retrieve the missing messages by obtaining any logged messages from the
log and any unlogged messages from the sender.

The actions of the receiver half-session as a result of comparing session
sequence numbers are summarized in Figure 8.

2.4.4 Output Boundary Function Algorithm. The outside world, that is, any
entity outside of the logical machine, is not guaranteed to be able to participate
in the optimistic recovery algorithms, since it may be unable to back out
computations. Therefore, all output messages with destinations outside the logical
machine are buffered in output boundary functions (OBFs), until the states from
which they were sent became committable. The following theorem allows us to
ascertain when a state interval can be determined to be committable:

THEOREM 1. Let (all, dp, . . . , d,,,) be the dependency vector of an arbitrary
possible state interval [L, ~1. Then, if there is a log vector LV such that for each i,
di 5 LV(i) then [L, ~1 is a committable state.

PROOF. Suppose that interval [L, ~1 were not committable. Then by definition
of “committable,” at some time in the future, there will exist a lost state interval
of one of the recovery units, say, RUi, on which [L, ~1 depends. Call that state

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.

218 l R. Strom and S. Yemini

SSN test
Incarnation
number Meaning

actual = expected IlOMl

actual a expected receiver fai led

sender fai led;
actual rexpetted message is a

dup I i cate

actual < expected

sender failed;
actual sexpetted message begins a

new incarnation

Actlon

accept rsessage

obtain missing
messages from log
and/or sender

ignore message

accept message;
modify expected SSN
and incarnation
nunber

Fig. 8. Possible actions of a receiver half-session.

interval si+ By the definition of the dependency vector for possible state intervals,
si 5 di. But,‘by the definition of the log vector, di and all its live predecessors
have been logged. Therefore si must have been logged, so it cannot have been
lost. q

The output boundary function of RUk may release any messages whose de-
pendency vectors satisfy the condition

di 5 LVk(i) for all i.

Note that committing requires only local information-the current log vector of
the recovery unit committing the message and the message’s dependency vector.

In Figure 7, message N is not committable until both message [0, 31 of RUi
and message [0, 61 of RUi have been logged. Theorem 1 asserts that the
commitment can be guaranteed whenever RUj’s message [0,3] and RU:s message
[0, 61 are both logged.

Data destined for outside the logical machine are subject to a commitment
delay that can be affected by (a) the speed with which units log their inputs, and
(b) the delay between logging and communicating the log vector.

If the system designer knows that the message is destined for an external
entity which itself has rollback capability (e.g., a transaction processing system),
then it is possible to improve response time by sending uncommitted messages
for early processing by the external entity and later sending it “commit” or
“abort” messages, allowing the transaction processing to proceed in parallel with
the period of uncertainty about the message. This, in effect, “extends the logical
machine” to include the entity with rollback capability.

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.

Optimistic Recovery in Distributed Systems 219

2.45 Recovery Manager
2.4.5.1 LOGGING. From time to time, the recovery manager takes a check-

point of the entire volatile state of the recovery unit. (In practice, there exist
optimizations for incremental checkpointing.)

The recovery manager logs all input messages on stable storage in the order in
which the merge function determines that they are to be dequeued by the
processing component.

As a result of buffering, queuing, and I/O delays, messages may be logged either
before or after they are processed by the processing component; there is no
synchronization between logging and processing. Thus in Figure 7, by time tl, RUi
has logged its input messages only up to the fifth, but is already processing its
sixth input message. Because there is no synchronization, it is possible to perform
optimizations in the stable storage I/O that are not possible with synchronous
logs, such as blocking several log entries into a single disk track before writing
them out.

2.4.5.2 MAINTAINING THE LOG VECTOR. It is necessary to let other recovery
units know what has been logged, since this information is used to commit
computations to outside the logical machine and to reclaim obsolete checkpoint
and log storage. Whereas dependency information must be communicated on
every transmission between recovery units in order for the algorithm to work
correctly, log vector information (provided it is eventually transmitted) can be
sent more infrequently, if desired. However, the sooner the log vector is broadcast
to other recovery units, the sooner these recovery units can commit computations,
and hence the better the response time observed outside the logical machine.

The log vector is maintained as follows. Each recovery unit, upon a receipt of
a new log vector ([L*, Ml], . . . , [Lo, M,]), computes the union of the sets of
logged messages indicated by taking the pointwise maximum of the components
of the old and new log vectors. Let LVk = [II, Ml], [12, Mz], . . . , [I,,,, Mm]. Then

Lvk(i) + ma-d[Ii, Mil, [G, Wi]) for i = 1 . . . m,

where max is defined on pairs using lexicographical ordering.
A typical protocol for propagating the log vector would be to have the output

half-session piggyback the current log vector on each data message sent out of a
recovery unit. In this case, in order to ensure progress, it may be necessary to
periodically send a message containing only a log vector on any channel that has
remained idle for a sufficiently long time.

2.4.5.3 RECOVERY AFTER FAILURE. After a failure or roliback, a recovery
unit restores its earliest checkpoint and replays its log until either an orphan or
the end of the log is reached. It then begins a new incarnation by (1) increasing
the incarnation number and (2) sending a recovery message to other recovery
units in the system informing them of the starting message number of the new
incarnation. Each input half-session is given an expected session sequence
number and incarnation number based on the last processed message received
from that half-session.

In our example, if RUi fails at time tl, it will restore checkpoint Cl, replay
logged messages through [0, 51, and then begin a new incarnation starting at

ACM “hansactions on Computer Systems, Vol. 3, No. 3, August 1985.

220 l R. Strom and S. Yemini

state [l, 61. It will send a recovery message informing other recovery units (e.g.,
RUj) that the new incarnation has begun, and that states 6 or greater of earlier
incarnations (in this case, incarnation number 0) are lost.

When a recovery unit RUk receives a recovery message announcing the start
of a new incarnation L of some recovery unit RUi, it updates its incarnation start
table by adding a new entry IST(L, i). It then examines its current dependency
vector to see whether its current state is still a possible state. If the current state
of the recovery unit depends on a state that is no longer live, that is,

DV,(i) = [Ii, Mi] and IST(l, ;) 5 Mi,

then the recovery unit must roll back to an earlier state that does not depend on
the no longer live messages of RUi,

In our example (Figure 7), suppose RUi fails at time tl, after RUj has processed
message M, but before RUi has logged its message [0, 61 on which M depends.
After the failure, RUi will replay through messages [0, 51, and begin a new
incarnation with interval [l, 61. When RUj receives the recovery message an-
nouncing that RUi has begun incarnation 1 with message number 6, it will
examine its dependency vector, which will show a dependency on RUi’s interval
[0, 61. Since this interval is now known to be lost, RUj will roll back and act
exactly as if it had failed. It will restore its checkpoint C1, replay messages [0, l]
and [0, 21, and then begin a new incarnation of its own, sending other recovery
units a recovery message with the new incarnation start number.

2.4.5.4 RECLAIMING CHECKPOINTS AND LOGS. During normal operation,
each recovery unit accumulates checkpoint and log records in stable storage.

A recovery unit may discard a checkpoint Ci whenever it knows that it will
never be required to recover any interval between Ci and the following checkpoint
Ci+l either (a) to roll back for the purposes of undoing the effects of orphan
messages (state backout), or (b) to roll back for the purpose of resending messages
lost by a receiving recovery unit that has failed (message recovery).

A recovery unit can determine that no interval between checkpoints Ci and
Ci+l will ever need to be recovered for state backout when Ci+l’s state is
committable, as determined by its dependency vector and current log vector.

A recovery unit can determine that an interval is no longer needed for message
recovery when all messages sent from that interval have been logged by their
receiving recovery units. If no interval between Ci and Ci+l is needed for message
recovery, then Ci is not needed for message recovery.

Whenever Ci may be discarded, all the subsequent log entries up to Ci+l can
also be discarded.

THEOREM 2. If a state interval I of RIJk is committable, and if all messages sent
by RUk in intervals preceding I are recoverable, then a systemwide consistent state
can thereafter always be found without having to back out interval I.

PROOF. (1) By definition, state interval I does not depend on any orphan
messages. Therefore, it is possible to recover all other recovery units to a point
where they have sent any message that RUk has received from them (i.e., RUk
will never have to be backed out to undo orphans). (2) All messages sent by RUk
to other recovery units are recoverable, so they will eventually all be received

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.

Optimistic Recovery in Distributed Systems 221

(i.e., RUk will never have to be backed out for the purpose of message recov-
ery). Cl

THEOREM 3. Provided that no recovery unit indefinitely delays (1) logging its
input, (2) transmitting its log vector, and (3) taking another checkpoint, then each
recovery unit will eventually be able to safely discard its oldest checkpoint.

PROOF. Any given recovery unit will eventually take a second checkpoint
(third assumption). That second checkpoint will depend on some set of states of
each of the other recovery units. But the log vector of each of the recovery units
will continue to increase monotonically (first assumption), and that fact will be
transmitted to the given recovery unit (second assumption). Therefore the log
vector will eventually encompass all the states on which the second checkpoint
depends, making the state at that second checkpoint committable. Any messages
sent between the first and second checkpoint will also eventually be logged.
Therefore, eventually both conditions will be met for discarding the oldest
checkpoint. Cl

COROLLARY. There is no domino effect. This follows from the fact that backout
is bounded by the earliest checkpoint that has not been discarded and from the fact

that checkpoints are continuously being discarded.

2.4.5.5 RECLAIMING INCARNATION START TABLES. The recovery manager
also reclaims obsolete entries in the incarnation start table. Information for a
given incarnation L of a recovery unit can be discarded when there are no more
messages from incarnation L - 1 left in any of the recovery units or in the
channels between them. This fact can be determined by means of a periodic
broadcast from each recovery unit of the oldest (smallest) incarnation number
for every other recovery unit that resides in its log or in any output message
queue for which it has message recovery responsibility. The minimum of these
incarnation numbers can be used to determine a bound below which any incar-
nation number is obsolete.

Since increments of incarnation numbers are rare and the extra storage in the
incarnation start tables is negligible, reclaiming incarnation start table entries
can be given extremely low priority and requires negligible overhead in normal
operation.

2.5 Recovery from Non-Fail-Stop Failures

The fail-stop and independence assumptions are not always met in practice,
because (1) some errors are not immediately detected, and processing will
continue until the faulty state results in a failure; (2) failures resulting from
faulty operating system software will repeat themselves if the identical conditions
are restored.

Although the repeatability of software failures is advantageous for debugging
in that it is easier to locate the fault by replaying the crash than by examining a
postmortem dump, recovery entails avoiding the replay of the events leading to
the error.

To maximize the chance of full recovery from a software failure, it is necessary
to discard as much of recent past history as possible. To do so, we compute for

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.

222 l R. Strom and S. Yemini

each RUi the earliest state index ai such that no output boundary function
committed any message dependent on interval si. It is then safe for each recovery
unit to roll back, acting as if all messages with indices si and later had not been
merged. Those of the unmerged messages that depend only on committed states
will be retained and remerged, while the rest will be discarded completely. To
reduce further the likelihood of repeating the software failure, the nondetermin-
istic merge algorithm can be perturbed, so that remerged messages will be
processed in a different order.

Similarly, if a failure is detected after a lapse of time and it is determined that
several recent state intervals are invalid, recovery is still possible, provided that
no output boundary function has yet committed output that depends on the
invalid state intervals. These intervals can be backed out, together with any
computations in other recovery units that depend on them.

Although optimistic recovery cannot recover from failures that are detected
too late, or from operating system software failures that repeat themselves despite
perturbation of the system state, the fact that dependency tracking makes it
possible to reconstruct several past consistent states gives optimistic recovery an
advantage over recovery systems such as those in [2] and [4], which can recon-
struct only the latest consistent state.

3. RELATED WORK

We distinguish the following categories of recovery schemes:
-application-specific recovery,
-transaction-based recovery,
-pessimistic recovery.

3.1 Application-Specific Recovery

In application-specific recovery, recovery is explicitly programmed as part of the
application. The recovery code may involve intimate knowledge of both the
application domain and of the underlying hardware (see, e.g., [161 for a survey of
some such techniques). Small changes in either the application or the underlying
hardware may entail substantial redesign of the recovery algorithms.

3.2 Transaction Recovery

In the transaction model [3, 6, 7, 111 computation is divided into units of work
called transactions. A transaction system is expected to behave as if individual
transactions were executed in some serial order (serializability), although, to
reduce response time, the transactions are actually executed in parallel through
multiprogramming or multiprocessing.

Transactions terminate by either aborting, or by committing their updates to
stable storage. In distributed environments, transaction commitment involves
synchronous checkpointing (“force-writing”) to stable storage by each of the
processors at each transaction boundary [121.

The protocols supporting the committing and aborting of transactions are
easily extended to handle recovery from machine failures by treating failures as

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.

Optimistic Recovery in Distributed Systems l 223

Fig. 9. Short transactions: Commits are frequent, and little concurrency
is achievable, since within a given layer each message modifies the same
data.

aborts. These protocols can be built into an operating system and can therefore
be made transparent to applications.

Unfortunately, not all programs can be expressed as transactions. Transaction
systems are based on several assumptions:

-Serializability is required.

-The probability that different transactions contend for the same data is low,

-Transactions are “long enough,” that is, involve enough computation to am-
ortize the I/O delays of synchronous commits at each transaction boundary.

For applications that are structured as transactions and that satisfy the above
assumptions, transaction-based recovery is likely to be cost effective, since there
is little additional overhead involved. However, transactions are only a special
case of the more general model of communicating asynchronous processes, for
which serializability may be an unnecessary restriction.

Consider, for example, a layered communication protocol, consisting of three
layers: L1, Lp, and LB. Each layer consists of a process that maintains state
information. Messages passirig through such a layered protocol typically change
the same state information in each layer; for example, the layer sequence number
is updated by each message. Thus the assumption of low conflict is not satisfied.

We consider two possibilities for defining transaction boundaries in such a
system:

(1) Short transactions. Passing through a single layer is considered a complete
transaction. Since upon completion transactions synchronously force-write in-
formation to stable storage, the resulting synchronization delays due to I/O to
stable storage at each commit point would be unacceptably high. See Figure 9.

(2) Long transactions. A single transaction consists of passing through mul-
tiple layers (see Figure 10). Each layer supports messages going out into the
network (down) and messages coming in from the network (up). In this case the
serializability requirement of the transaction model is overly restrictive. The
following sequence of updates is perfectly acceptable for the communication
protocol: L1 (up); Lp (down); Lp (up); L1 (down). However, this sequence is not
serializable, because Lz’s data sees the transactions in the order “down-up,” and

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.

224 * R. Strom and S. Yemini

Fig. 10. Long transactions: Transactions
span multiple layers in order to reduce the
frequency of commits. Serialization im-
poses delays because interleaving conflicts
with serialization.

Ll’r L26 L2f Ll$

Ll’s data sees the order “up-down.” Serialization would substantially reduce the
level of concurrency in such a system.

In our view, transactions are best viewed as a technique for efficiently imple-
menting a single logically serial process, such as a database manager, by executing
its noninterfering parts in parallel and not as a general recovery technique.

3.3 Pessimistic Recovery

Both Tandem NonStop’” [2], and AuragenTM [4]) are systems that support
transparent, application-independent recovery. Unlike optimistic recovery, these
systems synchronize communication and computation with checkpointing. We
call such systems pessimistic, since they delay processing each message until both
the state of sender and the state of the receiver have been checkpointed to avoid
an inconsistency in the rare case of a failure. To avoid the substantial delays
associated with checkpointing onto a stable storage medium such as mirrored
disks, pessimistic systems typically use a backup process on another processor to
hold checkpoints.

All communication then requires a multiway synchronization of the primary
and backup of both sender and receiver, and multiple failures can no longer be
tolerated: If both the primary’s processor and the backup’s processor fail, recovery
is no longer possible.

4. SUMMARY AND CONCLUSIONS

Optimistic recovery is a transparent recovery mechanism. That is, applications
can be written as if they were to be executed on an ideal failure-free machine.
Transparency is important for any system that does not have a single, permanent,
hard-wired application. If the application is to be modified, or if new applications
are to be written, or if old applications written without recovery in mind are to
be run on the system, then transparent recovery will save programming effort
and reduce the risk of introducing errors.

Optimistic recovery applies to any system that can be viewed as a collection of
recovery units communicating by message passing. It is not restricted, as trans-
action-based recovery is, to applications that can be structured as units of work
accessing a global database to which concurrency control is applied.

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.

Optimistic Recovery in Distributed Systems l 225

We believe that optimistic recovery pays a low price for transparent recovery.
Unlike pessimistic recovery techniques, there is no synchronization required
upon communication. Therefore, as long as the I/O bandwidth to the disk is
sufficiently high, logging delays do not slow down computation. Because logging
may be asynchronous, several log entries may be blocked into a buffer and written
out in a single I/O operation. Provided that an input message is logged by the
time the computation it engendered has completed and is ready to return a result
to the external user, there is no response time delay.

Optimistic recovery has the further advantages over pessimistic recovery that
a backup processor is not required for checkpointing, that recovery is possible
even after the temporary loss of all processors, and that some failures not
satisfying the fail-stop condition can be recovered.

Optimistic recovery is a special case of optimistic algorithms [181. An optimistic
algorithm is one that guesses that an uncertain but highly probable event will
happen, and executes “guarded” computations dependent on that assumption. If
the assumption should prove true, the optimistic algorithm commits the guarded
computations; otherwise, it rolls them back. Optimistic algorithms perform better
than their pessimistic counterparts whenever the net gain (the performance
improvement when the guess succeeds less the performance loss when the guess
fails, weighted by the respective probabilities) is greater than the fixed overhead
of tracking dependencies and maintaining rollback capability.

The “guess” in optimistic recovery is that the set of state intervals named in
the dependency vector of an input message will be made recoverable before the
next failure. The fixed overhead during failure-free operation is

-appending a session sequence number to each message traveling between
recovery units and checking it upon arrival;

-maintaining a dependency vector in each recovery unit, copying the vector to
the header of each message sent, and updating the dependency vector on each
message received;

-periodically checkpointing the full state of each recovery unit and incremen-
tally logging input messages;

-periodically transmitting and updating the log vector;

-buffering messages in the output boundary function until they are committable.

Because the optimistic recovery algorithms gamble that failures will not occur,
we expect optimistic recovery to recover somewhat more slowly when failures
occur. However, since in most distributed systems failures are very infrequent,
we expect optimistic recovery to perform significantly better overall than other
recovery techniques.

ACKNOWLEDGMENTS

The authors are indebted to David Jefferson for valuable discussions of our
research. Jefferson’s own work on virtual time and the time warp mechanism [8]
proved to be inspirational for turning our thoughts into precise algorithms.
Jefferson’s work, while designed for concurrency control and distributed simu-
lation rather than for recovery, has a number of points in common with ours.
Our work differs from Jefferson’s in our use of a separate time-line for each

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.

226 l R. Strom and S. Yemini

recovery unit, together with a partial ordering based on causality rather than a
single global time scale as in [9], and in our use of rollback to recover from
processor failures.

We wish to thank Marc Auslander and Irving Traiger for useful discussions
regarding the implementability of our technique, and Giacomo Cioffi, Arthur
Goldberg and Yehuda Afek for valuable criticisms of earlier drafts of this paper.

REFERENCES

Note: References [5], and [171 are not cited in text.

1. AGHILI, H., KIM, W., MCPHERSON, J., SCHKOLNICK, M, AND STRONG, R. A highly available

database system. IBM Research Rep. RJ 3755, IBM, Jan. 1983.

2. BARTLE~, J. F. A ‘nonstop’ operating system. In 11th Hawaii International Conference on

System Sciences. University of Hawaii, 1978.

3. BJORK, L. Recovery scenario for a DB/DC system. In Proceedings of the ACM Annual Confer-

ence (Atlanta, Ga., Aug. 24-29). ACM, New York, 1973, pp. 142-146.

4. BORG, A., BAUMBACH, J., AND GLAZER, S. A message system supporting fault tolerance. In 9th

ACM Symposium on Operating Systems Principles (Bretton Woods, N.H., Oct. 11-13). Oper.

Syst. Reu. 17, 5 (Oct. 1983), pp. 90-99.

5. CHANDY, K. M., AND LAMPORT L. Distributed snapshots: Determining global states in distrib-

uted systems. ACM Trans. Computer Syst. 3, 1 (Feb. 1985), 63-75.

6. DAVIES, C. T. Recovery semantics for a DB/DC system. In Proceedings of the ACM Annual

Conference (Atlanta, Ga., Aug., 24-29). ACM, New York, 1973, pp. 136-141.

7. GRAY, J., MCJONES, P., BLASGEN, M., LINDSAY, B., LORIE, R., PRICE, T., PVTZOLU, F., AND

TRAIGER, I. The recovery manager of the System R Database Manager. ACM Computing Sur.

13, 2, (June 1981), 223-242.

8. JEFFERSON, D. Virtual time. USC Tech. Rep. TR-83-213, Univ. of Southern California, Los

Angeles, May 1983.

9. LAMPORT, L. Time clocks, and the ordering of events in a distributed system. Commun. ACM

21, (July 1978), 558-564.
10. LAMPSON, B., AND STURGIS, H. Crash recovery in a distributed storage system. Xerox PARC

Tech. Rep., Xerox Palo Alto Research Center, Palo Alto, Calif., Apr. 1979.

11. LISKOV, B., AND SCHEIFLER R., Guardians and actions: Linguistic support for robust distributed

programs. In The 9th Annual Symposium on Principles of Programming Languages (Albuquerque,

New Mex., Jan. 25-27). ACM, New York, 1982, pp. 7-19.

12. MOHAN, C., AND LINDSAY, B. Efficient commit protocols for the tree of processes model of

distributed transactions. In Proceedings of the 2nd ACM SIGACTfSIGOPS Symposium on

Principles of Distributed Computing (Montreal, Canada, Aug.), 1983, pp. 76-80.

13. MOHAN, C., STRONG, H. R., AND FINKELSTEIN, S. Method for distributed transaction commit

and recovery using Byzantine agreement within clusters of processors. IBM Res. Rep. RJ 3882,

IBM, San Jose, Calif., June 1983.
14. RUSSELL, D. L. State restoration in systems of communicating processes. IEEE Trans. Softw.

Eng. SE-6, (2), (Mar. 1980), 193-194.

15. SCHNEIDER, F. B. Fail-stop processors. In Digest of Papers from Spring Compcon ‘83 (Mar.).

IEEE Computer Society, San Francisco, 1983.

16. SCOTT, R. K., GAULT, J. W., MCALLISTER, D. G., AND WIGGS, J. Experimental validation of

six fault-tolerant software reliability models. In Proceedings of 14th Annual Symposium on Fault-

Tolerant Computer Systems (Kissimmee, Fla., June 20-22). 1984.

17. STROM, R. E., AND YEMINI, S. Optimistic recovery: An asynchronous approach to fault tolerance

in distributed systems. Proceedings of the 14th Annual Symposium on Fault Tolerant Computer

Systems (June 20-22, 1984).

18. STROM, R., AND YEMINI, S. Synthesizing distributed and parallel programs through optimistic

transformations. IBM Res. Rep. RC 10797, IBM, 1984.

19. TANNENBAUM, A. S. Computer Networks. Prentice-Hall, Englewood Cliffs, N.J., 1981.

Received December 1983; revised February 1985; accepted April 1985

ACM Transactions on Computer Systems, Vol. 3, No. 3, August 1985.

