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Abstract

We study the performance of optimistic regret-minimization algorithms for both
minimizing regret in, and computing Nash equilibria of, zero-sum extensive-form
games. In order to apply these algorithms to extensive-form games, a distance-
generating function is needed. We study the use of the dilated entropy and dilated
Euclidean distance functions. For the dilated Euclidean distance function we prove
the first explicit bounds on the strong-convexity parameter for general treeplexes.
Furthermore, we show that the use of dilated distance-generating functions enable
us to decompose the mirror descent algorithm, and its optimistic variant, into local
mirror descent algorithms at each information set. This decomposition mirrors
the structure of the counterfactual regret minimization framework, and enables
important techniques in practice, such as distributed updates and pruning of cold
parts of the game tree. Our algorithms provably converge at a rate of T−1, which is
superior to prior counterfactual regret minimization algorithms. We experimentally
compare to the popular algorithm CFR+, which has a theoretical convergence rate
of T−0.5 in theory, but is known to often converge at a rate of T−1, or better, in
practice. We give an example matrix game where CFR+ experimentally converges
at a relatively slow rate of T−0.74, whereas our optimistic methods converge faster
than T−1. We go on to show that our fast rate also holds in the Kuhn poker game,
which is an extensive-form game. For games with deeper game trees however, we
find that CFR+ is still faster. Finally we show that when the goal is minimizing
regret, rather than computing a Nash equilibrium, our optimistic methods can
outperform CFR+, even in deep game trees.

1 Introduction

Extensive-form games (EFGs) are a broad class of games that can model sequential interaction,
imperfect information, and stochastic outcomes. To operationalize them they must be accompanied
by techniques for computing game-theoretic equilibria such as Nash equilibrium. A notable success
story of this is poker: Bowling et al. [1] computed a near-optimal Nash equilibrium for heads-up
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limit Texas hold’em, while Brown and Sandholm [3] beat top human specialist professionals at the
larger game of heads-up no-limit Texas hold’em. Solving extremely large EFGs relies on many
methods for dealing with the scale of the problem: abstraction methods are sometimes used to create
smaller games [16, 26, 20, 14, 6, 21], endgame solving is used to compute refined solutions to the
end of the game in real time [9, 15, 27], and recently depth-limited subgame solving has been very
successfully used in real time [28, 8, 5]. At the core of all these methods is a reliance on a fast
algorithm for computing approximate Nash equilibria of the abstraction, endgame, and/or depth-
limited subgame [28, 8, 5]. In practice the most popular method has been the CFR+ algorithm [38, 35],
which was used within all three two-player poker breakthroughs [1, 28, 3]. CFR+ has been shown to
converge to a Nash equilibrium at a rate of T−0.5, but in practice it often performs much better, even
outperforming faster methods that have a guaranteed rate of T−1 [7, 24, 23, 4].

Recently, another class of optimization algorithms has been shown to have appealing theoretical
properties. Online convex optimization (OCO) algorithms are online variants of first-order methods:
at each timestep t they receive some loss function ℓt (often a linear loss which is a gradient of some
underlying loss function), and must then recommend a point from some convex set based on the
series of past points and losses. While these algorithms are generally known to have a T−0.5 rate of
convergence when solving static problems, a recent series of papers showed that when two optimistic
OCO algorithms are faced against each other, and they have some estimate of the next loss faced,
a rate of T−1 can be achieved [30, 31, 34]. In this paper we investigate the application of these
algorithms to EFG solving, both in the regret-minimization setting, and for computing approximate
Nash equilibria at the optimal rate of O(T−1). The only prior attempt at using optimistic OCO
algorithm in extensive-form games is due to Farina et al. [13]. In that paper, the authors show that by
restricting to the weaker notion of stable-predictive optimism, one can mix and match local stable-
predictive optimistic algorithm at every decision point in the game as desired and obtain an overall
stable-predictive optimistic algorithm that enables O(T−0.75) convergence to Nash equilibrium. The
approach we adopt in this paper is different from that of Farina et al. [13] in that our construction
does not allow one to pick different regret minimizers for different decision points; however, our
algorithms converge to Nash equilibrium at the improved rate O(T−1).

The main hurdle to overcome is that in all known OCO algorithms a distance-generating function
(DGF) is needed to maintain feasibility via proximal operators and ensure that the stepsizes of
the algorithms are appropriate for the convex set at hand. For the case of EFGs, the convex set
is known as a treeplex, and the so-called dilated DGFs are known to have appealing properties,
including closed-form iterate updates and strong convexity properties [18, 24]. In particular, the
dilated entropy DGF, which applies the negative entropy at each information set, is known to lead
to the state-of-the-art theoretical rate on convergence for iterative methods [24]. Another potential
DGF is the dilated Euclidean DGF, which applies the ℓ2 norm as a DGF at each information set.
We show the first explicit bounds on the strong-convexity parameter for the dilated Euclidean DGF
when applied to the strategy space of an EFG. We go on to show that when a dilated DGF is paired
with the online mirror descent (OMD) algorithm, or its optimistic variant, the resulting algorithm
decomposes into a recursive application of local online mirror descent algorithms at each information
set of the game. This decomposition is similar to the decomposition achieved in the counterfactual
regret minimization framework, where a local regret minimizer is applied on the counterfactual regret
at each information set. This localization of the updates along the tree structure enables further
techniques, such as distributing the updates [3, 6] or skipping updates on cold parts of the game
tree [2].

It is well-known that the entropy DGF is the theoretically superior DGF when applied to optimization
over a simplex [18]. For the treeplex case where the entropy DGF is used at each information set,
Kroer et al. [24] showed that the strong theoretical properties of the simplex entropy DGF generalize
to the dilated entropy DGF on a treeplex (with earlier weaker results shown by Kroer et al. [22]).
Our results on the dilated Euclidean DGF confirm this finding, as the dilated Euclidean DGF has a
similar strong convexity parameter, but with respect to the ℓ2 norm, rather than the ℓ1 norm for dilated
entropy (having strong convexity with respect to the ℓ1 norm leads to a tighter convergence-rate
bound because it gives a smaller matrix norm, another important constant in the rate).

In contrast to these theoretical results, for the case of computing a Nash equilibrium in matrix games
it has been found experimentally that the Euclidean DGF often performs much better than the entropy
DGF. This was shown by Chambolle and Pock [11] when using a particular accelerated primal-dual
algorithm [10, 11] and using the last iterate (as opposed to the uniformly-averaged iterate as the
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theory suggests). Kroer [19] recently showed that this extends to the theoretically-sound case of using
linear or quadratic averaging in the same primal-dual algorithm, or in mirror prox [29] (the offline
variant of optimistic OMD). In this paper we replicate these results when using OCO algorithms: first
we show it on a particular matrix game, where we also exhibit a slow T−0.74 convergence rate of
CFR+ (the slowest CFR+ rate seen to the best of our knowledge). We show that for the Kuhn poker
game the last iterate of optimistic OCO algorithms with the dilated Euclidean DGF also converges
extremely fast. In contrast to this, we show that for deeper EFGs CFR+ is still faster. Finally we
compare the performance of CFR+ and optimistic OCO algorithms for minimizing regret, where we
find that OCO algorithms perform better.

2 Regret Minimization Algorithms

In this section we present the regret-minimization algorithms that we will work with. We will operate
within the framework of online convex optimization [37]. In this setting, a decision maker repeatedly
plays against an unknown environment by making decision x1,x2, . . . ∈ X for some convex compact
set X . After each decision xt at time t, the decision maker faces a linear loss xt 7→ 〈ℓt,xt〉, where
ℓt is a vector in X . Summarizing, the decision maker makes a decision xt+1 based on the sequence
of losses ℓ1, . . . , ℓt as well as the sequence of past iterates x1, . . . ,xt.

The quality metric for a regret minimizer is its cumulative regret, which is the difference between the
loss cumulated by the sequence of decisions x1, . . . ,xT and the loss that would have been cumulated
by playing the best-in-hindsight time-independent decision x̂. Formally, the cumulative regret up to
time T is

RT :=

T
∑

t=1

〈ℓt,xt〉 − min
x̂∈X

{ T
∑

t=1

〈ℓt, x̂〉
}

.

A “good” regret minimizer is such that the cumulative regret grows sublinearly in T .

The algorithms we consider assume access to a distance-generating function d : X → R, which
is 1-strongly convex (with respect to some norm) and continuously differentiable on the inte-
rior of X . Furthermore d should be such that the gradient of the convex conjugate ∇d(g) =
argmaxx∈X 〈g,x〉 − d(x) is easy to compute. Following Hoda et al. [18] we say that a DGF sat-
isfying these properties is a nice DGF for X . From d we also construct the Bregman divergence
D(x ‖ x′) := d(x)− d(x′)− 〈∇d(x′),x− x′〉.
First we present two classical regret minimization algorithms. The online mirror descent (OMD)
algorithm produces iterates according to the rule

xt+1 = argmin
x∈X

{

〈ℓt,x〉+ 1

η
D(x ‖ xt)

}

. (1)

The follow the regularized leader (FTRL) algorithm produces iterates according to the rule [32]

xt+1 = argmin
x∈X

{〈 t
∑

τ=1

ℓτ ,x

〉

+
1

η
d(x)

}

. (2)

OMD and FTRL satisfy regret bounds of the form RT ≤ O
(

D(x∗‖x1)L
√
T
)

(e.g. Hazan [17]).

The optimistic variants of the classical regret minimization algorithms take as input an additional
vector mt+1, which is an estimate of the loss faced at time t+ 1 [12, 30]. Optimistic OMD produces
iterates according to the rule [30] (note that xt+1 is produced before seeing ℓt+1, while zt+1 is
produced after)

xt+1 = argmin
x∈X

{

〈mt+1,x〉+ 1

η
D(x ‖ zt)

}

, zt+1 = argmin
z∈X

{

〈ℓt+1, z〉+ 1

η
D(z ‖ zt)

}

. (3)

Thus it is like OMD, except that xt+1 is generated by an additional step taken using the loss estimate.
This additional step is transient in the sense that xt+1 is not used as a center for the next iterate.
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OFTRL produces iterates according to the rule [30, 34]

xt+1 = argmin
x∈X

{〈

mt+1 +
t
∑

τ=1

ℓτ ,x

〉

+
1

η
d(x)

}

. (4)

Again the loss estimate is used in a transient way: it is used as if we already saw the loss at time t+1,
but then discarded and not used in future iterations.

2.1 Connection to Saddle Points

A bilinear saddle-point problem is a problem of the form minx∈X maxy∈Y
{

x⊤Ay
}

,where X ,Y
are closed convex sets. This general formulation allows us to capture, among other settings, several
game-theoretical applications such as computing Nash equilibria in two-player zero-sum games. In
that setting, X and Y are convex polytopes whose description is provided by the sequence-form
constraints, and A is a real payoff matrix [36].

The error metric that we use is the saddle-point residual (or gap) ξ of (x̄, ȳ), defined as ξ(x̄, ȳ) :=
maxŷ∈Y〈x̄,Aŷ〉 − minx̂∈X 〈x̂,Aȳ〉. A well-known folk theorem shows that the average of a se-

quence of regret-minimizing strategies for the choice of losses ℓtX : X ∋ x 7→ (−Ayt)⊤x, ℓtY : Y ∋
y 7→ (A⊤xt)⊤y leads to a bounded saddle-point residual, since one has

ξ(x̄, ȳ) =
1

T
(RT

X +RT
Y). (5)

When X ,Y are the players’ sequence-form strategy spaces, this implies that the average strategy
profile produced by the regret minimizers is a 1/T(RT

X +RT
Y)-Nash equilibrium. This also implies

that by using online mirror descent or follow-the-regularizer-leader, one obtains an anytime algorithm
for computing a Nash equilibrium. In particular, at each time T , the average strategy output by each
of the two regret minimizers forms a ǫ-Nash equilibrium, where ǫ = O(T−0.5).

2.2 RVU Property and Fast Convergence to Saddle Points

Both optimistic OMD and optimistic FTRL satisfy the Regret bounded by Variation in Utilities (RVU)
property, as given by Syrgkanis et al.:

Definition 1 (RVU property, [34]). We say that a regret minimizer satisfies the RVU property if there
exist constants α > 0 and 0 < β ≤ γ, as well as a pair of dual norms (‖ · ‖, ‖ · ‖∗) such that, no
matter what the loss functions ℓ1, . . . , ℓT are,

RT ≤ α+ β

T
∑

t=1

‖ℓt −mt‖2∗ − γ

T
∑

t=1

‖xt − xt−1‖2. (RVU)

The definition given here is slightly more general than that of Syrgkanis et al. [34]: we allow a general
estimate mt of ℓt, whereas their definition requires using mt = ℓt−1. While the choice mt = ℓt−1

is often reasonable, in some cases other definitions of the loss prediction are more natural [13]. In
practice, both optimistic OMD and optimistic FTRL satisfy a parametric notion of the RVU property,
which depends on the value of the step-size parameter that was chosen to set up either algorithm.

Theorem 1 (Syrgkanis et al. [34]). For all step-size parameters η > 0, Optimistic OMD satisfies
the RVU conditions with respect to the primal-dual norm pair (‖ · ‖1, ‖ · ‖∞) with parameters
α = R/η, β = η, γ = 1/(8η), where R is a constant that scales with the maximum allowed norm of
any loss function ℓ.

Theorem 2. For all step-size parameters η > 0, OFTRL satisfies the RVU conditions with respect
to any primal-dual norm pair (‖ · ‖, ‖ · ‖∗) with parameters α = ∆d/η, β = η, γ = 1/(4η), where
∆d := maxx,y∈X {d(x)− d(y)}.

Our proof, available in the appendix of the full paper, generalizes the work by Syrgkanis et al. [34]
by extending the proof beyond simplex domains and beyond the fixed choice mt = ℓt−1.

It turns out that this is enough to accelerate the convergence to a saddle point in the construction of

Section 2.1. In particular, by letting the predictions be defined as mt
X := ℓt−1

X ,mt
Y := ℓt−1

Y , we
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obtain that the residual ξ of the average decisions (x̄, ȳ) satisfies

Tξ(x̄, ȳ) ≤ 2α′

η
+ η

T
∑

t=1

(

‖−Ayt +Ayt−1‖2∗ + ‖A⊤xt −A⊤xt−1‖2∗
)

− γ ′

η

T
∑

t=1

(

‖xt − xt−1‖2 + ‖yt − yt−1‖2
)

≤ 2α′

η
+

(

η‖A‖2op −
γ ′

η

)

(

T
∑

t=1

‖xt − xt−1‖2 +
T
∑

t=1

‖yt − yt−1‖2
)

,

where the first inequality holds by plugging (RVU) into (5), and the second inequality by noting
that the operator norm ‖ · ‖op of a linear function is equal to the operator norm of its transpose.

This implies that when the step-size parameter is chosen as η =
√
γ ′

‖A‖op
, the saddle-point gap ξ(x̄, ȳ)

satisfies ξ(x̄, ȳ) ≤ 2α′‖A‖op

T
√
γ ′

= O(T−1).

3 Treeplexes and Sequence Form

We formalize a sequential decision process as follows. We assume that we have a set of decision
points J . Each decision point j ∈ J has a set of actions Aj of size nj . Given a specific action at j,
the set of possible decision points that the agent may next face is denoted by Cj,a. It can be an empty
set if no more actions are taken after j, a. We assume that the decision points form a tree, that is,
Cj,a ∩ Cj′,a′ = ∅ for all other convex sets and action choices j′, a′. This condition is equivalent to
the perfect-recall assumption in extensive-form games, and to conditioning on the full sequence of
actions and observations in a finite-horizon partially-observable decision process. In our definition,
the decision space starts with a root decision point, whereas in practice multiple root decision points
may be needed, for example in order to model different starting hands in card games. Multiple root
decision points can be modeled by having a dummy root decision point with only a single action.

The set of possible next decision points after choosing action a ∈ Aj at decision point j ∈ J ,
denoted Cj,a, can be thought of as representing the different decision points that an agent may
face after taking action a and then making an observation on which she can condition her next
action choice. In addition to games, our model of sequential decision process captures, for example,
partially-observable Markov decision processes and Markov decision processes where we condition
on the entire history of observations and actions.

X0

X3

X6

X2

X5

X1

X4

start

fold call fold call fold call

check raise check raise check raise

jack queen king

check raise check raise check raise

Figure 1: Sequential action space for the
first player in the game of Kuhn poker.
denotes an observation point; represents
the end of the decision process.

As an illustration, consider the game of Kuhn
poker [25]. Kuhn poker consists of a three-card deck:
king, queen, and jack. The action space for the
first player is shown in Figure 1. For instance, we
have: J = {0, 1, 2, 3, 4, 5, 6}; n0 = 1; nj = 2
for all j ∈ J \ {0}; A0 = {start}, A1 = A2 =
A3 = {check, raise}, A4 = A5 = A6 = {fold, call};
C0,start = {1, 2, 3}, C1,raise = ∅, C3,check = {6}; etc.

The expected loss for a given strategy is non-linear
in the vectors of probability masses for each decision
point j. This non-linearity is due to the probability of
reaching each j, which is computed as the product of
the probabilities of all actions on the path to from the
root to j. An alternative formulation which preserves
linearity is called the sequence form. In the sequence-

form representation, the simplex strategy space at a generic decision point j ∈ J is scaled by the
decision variable associated with the last action in the path from the root of the process to j. In this
formulation, the value of a particular action represents the probability of playing the whole sequence
of actions from the root to that action. This allows each term in the expected loss to be weighted only
by the sequence ending in the corresponding action. The sequence form has been used to instantiate
linear programming [36] and first-order methods [18, 22, 24] for computing Nash equilibria of
zero-sum EFGs. Formally, the sequence-form representation X of a sequential decision process can
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be obtained recursively, as follows: for every j ∈ J , a ∈ Aj , we let X↓j,a :=
∏

j′∈Cj,a
X↓j′ , where

Π denotes Cartesian product; at every decision point j ∈ J , we let

X↓j := {(λ1, . . . , λnj
, λ1xa1

, . . . , λnj
xanj

) : (λ1, . . . , λn) ∈ ∆nj ,xa ∈ X↓j,a ∀ a ∈ Aj},
where we assumed Aj = {a1, . . . , anj

}.

The sequence form strategy space for the whole sequential decision process is then X := {1} × X↓r,
where r is the root of the process. The first entry, identically equal to 1 for any point in X , corresponds
to what is called the empty sequence. Crucially, X is a convex and compact set, and the expected
loss of the process is a linear function over X . With the sequence-form representation the problem
of computing a Nash equilibrium in an EFG can be formulated as a bilinear saddle-point problem
(see Section 2.1), where X and Y are the sequence-form strategy spaces of the sequential decision
processes faced by the two players, and A is a sparse matrix encoding the leaf payoffs of the game.

As we have already observed, vectors that pertain to the sequence form have one entry for each
sequence of the decision process. We denote with vφ the entry in v corresponding to the empty
sequence, and vja the entry corresponding to any other sequence (j, a) where j ∈ J , a ∈ Aj .
Sometimes, we will need to slice a vector v and isolate only those entries that refer to all decision
points j′ and actions a′ ∈ Aj′ that are at or below some j ∈ J ; we will denote such operation as v↓j .
Similarly, we introduce the syntax vj to denote the subset of nj = |Aj | entries of v that pertain to
all actions a ∈ Aj at decision point j ∈ J . Finally, note that for any j ∈ J − {r} there is a unique
sequence (j′, a′), denoted pj and called the parent sequence of decision point j, such that j ∈ Cj′a′ .
When j = r is the root decision point, we let pr := φ, the empty sequence.

4 Dilated Distance Generating Functions

We will be interested in a particular type of DGF which is suitable for sequential decision-making
problems: a dilated DGF. A dilated DGF is constructed by taking a sum over suitable local DGFs for
each decision point, where each local DGF is dilated by the parent variable leading to the decision

point: d(x) =
∑

j∈J xpj
dj

(

xj

xpj

)

. Each “local” DGF dj is given the local variable xj divided by

xpj
, so that

xj

xpj

∈ ∆nj . The idea is that dj can be any DGF suitable for ∆nj ; by multiplying dj by

xpj
and taking a sum over J we construct a DGF for the whole treeplex from these local DGFs.

Hoda et al. [18] showed that dilated DGFs have many of the desired properties of a DGF for an
optimization problem over a treeplex.

We now present two local DGFs for simplexes, that are by far the most common in practice. In
the following we let b be a vector in the n-dimensional simplex ∆n. First, the Euclidean DGF
d(b) = ‖b‖22, which is 1-strongly convex with respect to the ℓ2 norm; secondly, the negative entropy
DGF d(b) =

∑n
i=1

bi log(bi) (we will henceforth drop the “negative” and simply refer to it as
the entropy DGF), which is 1-strongly convex with respect to the ℓ1 norm. The strong convexity
properties of the dilated entropy DGF were shown by Kroer et al. [24] (with earlier weaker results
shown by Kroer et al. [22]). However, for the dilated Euclidean DGF a setup for achieving a strong-
convexity parameter of 1 was unknown until now; Hoda et al. [18] show that a strong-convexity
parameter exists, but do not show what it is for the general case (they give specific results for a
particular class of uniform treeplexes). We now show how to achieve this.

We are now ready to state our first result on dilated regularizers that are strongly convex with respect
to the Euclidean norm:

Theorem 3. Let d(x) =
∑

j∈J xpj
dj(xj/xpj

) where for all j, dj is µj-strongly convex with

respect to the Euclidean norm over ∆nj . Furthermore, define σja :=
µj

2
−∑j′∈Cja

µj′ , and

σ̄ := minja σja. Then, d is σ̄-strongly convex with respect to the Euclidean norm over X .

We can immediately use Theorem 3 to prove the following corollary:

Corollary 1. Let σ̄ > 0 be arbitrary, and for all j let dj be a µj-strongly convex function over ∆nj

with respect to the Euclidean norm, where the µj’s satisfy

µj = 2σ̄ + 2max
a∈Aj

∑

j′∈Cja

µj′ . (6)

Then, d(x) =
∑

j∈J xpj
dj(xj/xpj

) is σ̄-strongly convex over X with respect to the Euclidean norm.
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5 Local Regret Minimization

We now show that OMD and Optimistic OMD run on a treeplex X with a dilated DGF can
both be interpreted as locally minimizing a modified variant of loss at each information set, with
correspondingly-modified loss predictions. The modified local loss at a given information set j takes
into account the loss and DGF below j by adding the expectation with respect to the next iterate xt

↓j .

In practice this modified loss is easily handled by computing xt bottom-up, thereby visiting j after
having visited the whole subtree below.

We first show that the problem of computing the prox mapping, the minimizer of a linear term
plus the Bregman divergence, decomposes into local prox mappings at each simplex of a treeplex.
This will then be used to show that OMD and Optimistic OMD can be viewed as a tree of local
simplex-instantiations of the respective algorithms.

5.1 Decomposition into Local Prox Mappings with a Dilated DGF

We will be interested in solving the following prox mapping, which takes place in the sequence form:

Prox(g, x̂) = argmin
x∈X

{

〈g,x〉+D(x ‖ x̂)
}

. (7)

The reason is that the update applied at each iteration of several OCO algorithms run on the sequence-
form polytope of X can be described as an instantiation of this prox mapping. We now show that this
update can be interpreted as a local prox mapping at each decision point, but with a new loss ĝj that
depends on the update applied in the subtree beneath j.

Proposition 1 (Decomposition into local prox mappings). A prox mapping (7) on a treeplex with a
Bregman divergence constructed from a dilated DGF decomposes into local prox mappings at each
decision point j where the solution is as follows:

x∗
j = xpj

· argmin
bj∈∆

nj

{

〈ĝj , bj〉+Dj

(

bj

∥

∥

∥

∥

x̂j

x̂pj

)}

,

where

ĝj,a = gj,a +
∑

j′∈Cj,a

[

d∗↓j′
(

− g↓j′ +∇d↓j′(x̂↓j′)
)

− dj′

(

x̂j

x̂pj

)

+

〈

∇dj′

(

x̂j′

x̂pj′

)

,
x̂j′

x̂pj′

〉]

.

Hoda et al. [18] and Kroer et al. [23] gave variations on a similar result: that the convex conjugate
d∗↓j(−g) can be computed in bottom-up fashion similar to the recursion we show here. Proposition 1

is slightly different in that we additionally show that the Bregman divergence also survives the
decomposition and can be viewed as a local Bregman divergence. This latter difference will be
necessary for showing that OMD can be interpreted as a local RM.

5.2 Decomposition into Local Regret Minimizers

With Proposition 1 it follows almost directly that OMD and Optimistic OMD can be seen as a set of
local regret minimizers, one for each simplex. Each produces iterates from their respective simplex,
with the overall strategy produced by then applying the sequence-form transformation to these local
iterates.

Theorem 4. OMD with a dilated DGF for a treeplex X corresponds to running OMD locally at each

simplex j, with the local loss ℓ̂t constructed according to Proposition 1. Optimistic OMD corresponds

to the optimistic variant of this local OMD with local loss predictions ℓ̂t, m̂t+1
j again constructed

according to Proposition 1 using xt as Bregman divergence center and xt+1 for aggregating losses
below each simplex. Here the modified loss uses zt

↓j′ and xt+1 as Bregman divergence center and

aggregating loss below, respectively. The prediction m̂t+1
j uses zt

↓j′ and zt+1.

Unlike OMD and its optimistic variant, it is not the case that FTRL has a nice interpretation as a local
regret minimizer. The reason is that the prox mapping in (2) or (4) minimizes the sum of losses, rather

than the most recent loss. Because of this, the expected value 〈∑t
τ=1

ℓτ↓j ,x
t+1

↓j 〉 at simplex j, which
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influences the modified loss at parent simplexes, is computed based on xt+1 for all t losses. Thus
there is no local modified loss that could be received at rounds 1 through t that accurately reflects the
modified loss needed in Proposition 1.

6 Experimental Evaluation

We experimentally evaluate the performance of optimistic regret minimization methods instantiated
with dilated distance-generating functions. We experiment on three games:

• Smallmatrix, a small 2× 2 matrix game. Given a mixed strategy x = (x1, x2) ∈ ∆2 for Player
1 and a mixed strategy y = (y1, y2) ∈ ∆2 for Player 2, the payoff function for player 1 is
u(x, y) = 5x1y1 − x1y2 + x2y2.

• Kuhn poker, already introduced in Section 3. In Kuhn poker, each player first has to put a payment
of 1 into the pot. Each player is then dealt one of the three cards, and the third is put aside unseen.
A single round of betting then occurs: first, Player 1 can check or bet 1. Then,

– If Player 1 checks Player 2 can check or raise 1.
∗ If Player 2 checks a showdown occurs; if Player 2 raises Player 1 can fold or call.

· If Player 1 folds Player 2 takes the pot; if Player 1 calls a showdown occurs.
– If Player 1 raises Player 2 can fold or call.

∗ If Player 2 folds Player 1 takes the pot; if Player 2 calls a showdown occurs.
If no player has folded, a showdown occurs where the player with the higher card wins.

• Leduc poker, a standard benchmark in imperfect-information game solving [33]. The game is
played with a deck consisting of 5 unique cards with 2 copies of each, and consists of two rounds.
In the first round, each player places an ante of 1 in the pot and receives a single private card. A
round of betting then takes place with a two-bet maximum, with Player 1 going first. A public
shared card is then dealt face up and another round of betting takes place. Again, Player 1 goes
first, and there is a two-bet maximum. If one of the players has a pair with the public card, that
player wins. Otherwise, the player with the higher card wins. All bets in the first round are 1, while
all bets in the second round are 2. This game has 390 decision points and 911 sequences per player.

Fast Last-Iterate Convergence. In the first set of experiments (Figure 2, top row), we compare
the saddle-point gap of the strategy profiles produced by optimistic OMD and optimistic FTRL to
that produced by CFR and CFR+. Optimistic OMD and optimistic FTRL were set up with the
step-size parameter η = 0.1 in Smallmatrix and η = 2 in Kuhn Poker, and the plots show the
last-iterate convergence for the optimistic algorithms, which has recently received attention in the
works by Chambolle and Pock [11] and Kroer [19]. Finally, we instantiated optimistic OMD and
optimistic FTRL with the Euclidean distance generating function as constructed in Corollary 1. The
plots show that—at least in these shallow games—optimistic methods are able to produce even up to
12 orders of magnitude better-approximate saddle-points than CFR and CFR+.

Interestingly, Smallmatrix appears to be a hard instance for CFR+: linear regression on the first 20 000
iterations of CFR+ shows, with a coefficient of determination of roughly 0.96, that log ξ(xT

∗ ,y
T
∗ ) ≈

−0.7375 · log(T )− 2.1349, where (xT
∗ ,y

T
∗ ) is the average strategy profile (computed using linear

averaging, as per CFR+’s construction) up to time T . In other words, we have evidence of at least
one game in which the approximate saddle-point computed by CFR+ experimentally has residual
bounded below by Ω(T−0.74). This observation suggests that the analysis of CFR+ might actually
be quite tight, and that CFR+ is not an accelerated method.

Figure 2 (bottom left) shows the performance of OFTRL in Leduc Poker, compared to CFR and
CFR+ (we do not show optimistic OMD, which we found to have worse performance than OFTRL).
Here OFTRL performs worse than CFR+. This shows that in deeper games, more work has to be
done to fully exploit the accelerated bounds of optimistic regret minimization methods.

Comparing the Cumulative Regret. We also compared the algorithms based on the sum of cumula-
tive regrets (again we omit optimistic OMD, which performed worse than OFTRL). In all three games,
OFTRL leads to lower sum of cumulative regrets. Figure 2 (bottom right) shows the performance of

OFTRL in Leduc Poker. Here, we used the usual average of iterates x̄ := 1/T
∑T

t=1
xt (note that the

choice of averaging strategy has no effect on the bottom right plot.)

8



100 101 102 103
10−16

10−12

10−8

10−4

100

OFTRL

OOMD

CFR

CFR+

Iteration number (T )

S
ad

d
le

-p
o
in

t
g
ap

(ξ
)

Smallmatrix

100 101 102 103

10−16

10−12

10−8

10−4

100

OFTRL

OOMD

CFR

CFR+

Iteration number (T )

S
ad

d
le

-p
o
in

t
g
ap

(ξ
)

Kuhn

100 101 102 103

10−3

10−2

10−1

100

101

OFTRL

CFR

CFR+

Iteration number (T )

S
ad

d
le

-p
o
in

t
g
ap

(ξ
)

Leduc

100 101 102 103

101

101.5

OFTRL

CFR

CFR+

Iteration number (T )

C
u
m

u
la

ti
v
e

re
g
re

t

Leduc

Figure 2: (Left and upper right) Saddle-point gap as a function of the number of iterations. The plots
show the last-iterate convergence for OOMD and OFTRL.(Lower right) Sum of cumulative regret for
both players in Leduc. Optimistic OMD (OOMD) and OFTRL use step-size parameter η = 0.1 in
Smallmatrix and η = 2 in Kuhn. OFTRL uses step-size parameter η = 200 in Leduc.

OFTRL’s performance matches the theory from Theorem 2 and Section 2.2. In particular, we observe
that while OFTRL does not beat the state-of-the-art CFR+ in terms of saddle-point gap, it beats it
according to the regret sum metric. The fact that CFR+ performs worse with respect to the regret sum
metric is somewhat surprising: the entire derivation of CFR and CFR+ is based on showing bounds
on the regret sum. However, the connection between regret and saddle-point gap (or exploitability) is
one-way: if the two regret minimizers (one per player) have regret R1 and R2, then the saddle point
gap can be easily shown to be less than or equal to (R1 +R2)/T . However, nothing prevents it from
being much smaller than (R1 + R2)/T . What we empirically find is that for CFR+ this bound is
very loose. We are not sure why this is the case, and it potentially warrants further investigation in
the future.

7 Conclusions

We studied how optimistic regret minimization can be applied in the context of extensive-form games,
and introduced the first instantiations of regret-based techniques that achieve T−1 convergence to
Nash equilibrium in extensive-form games. These methods rely crucially on having a tractable
regularizer to maintain feasibility and control the stepsizes on the domain at hand—in our case, the
sequence-form polytope. We provided the first explicit bound on the strong convexity properties
of dilated distance-generating functions with respect to the Euclidean norm. We also showed
that when optimistic regret minimization methods are instantiated with dilated distance-generating
functions, the regret updates are local to each information set in the game, mirroring the structure of
the counterfactual regret minimization framework. This localization of the updates along the tree
structure enables further techniques, such as distributing the updates or skipping updates on cold
parts of the game tree. Finally, when used in self play, these optimistic regret minimization methods
guarantee an optimal T−1 convergence rate to Nash equilibrium.

We demonstrate that in shallow games, methods based on optimistic regret minimization can signifi-
cantly outperform CFR and CFR+—even up to 12 orders of magnitude. In deeper games, more work
has to be done to fully exploit the accelerated bounds of optimistic regret minimization methods.
However, while the strong CFR+ performance in large games remains a mystery, we elucidate some
points about its performance—including showing that its theoretically slow convergence bound is
somewhat tight. Finally, we showed that when the goal is minimizing regret, rather than computing a
Nash equilibrium, optimistic methods can outperform CFR+ even in deep game trees.
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