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Optimization Algorithms Exploiting
Unitary Constraints

Jonathan H. Manton, Member, IEEE

Abstract—This paper presents novel algorithms that iteratively
converge to a local minimum of a real-valued function ( ) sub-
ject to the constraint that the columns of the complex-valued ma-
trix are mutually orthogonal and have unit norm. The algo-
rithms are derived by reformulating the constrained optimization
problem as an unconstrained one on a suitable manifold. This sig-
nificantly reduces the dimensionality of the optimization problem.
Pertinent features of the proposed framework are illustrated by
using the framework to derive an algorithm for computing the
eigenvector associated with either the largest or the smallest eigen-
value of a Hermitian matrix.

Index Terms—Constrained optimization, eigenvalue problems,
optimization on manifolds, orthogonal constraints.

I. INTRODUCTION

T HIS paper derives novel algorithms for numerically mini-
mizing a cost function , subject to the

orthogonality constraint , where denotes Hermi-
tian transpose, andis the identity matrix. The complex-valued
case is considered for generality; the results in this paper re-
main valid if all quantities are restricted to being real-valued. It
has been shown recently [8] that the geometrically correct set-
ting for this constrained minimization problem is on the Stiefel
manifold in general and on the Grassmann manifold if
possesses the symmetrical property that for
any unitary (that is, ) matrix .
However, not only did [8] consider only the real-valued case,
the approach therein relied on endowing the Stiefel manifold
with a Riemannian structure. The present paper presents a sim-
pler framework for orthogonally constrained optimization prob-
lems.

Orthogonally constrained optimization problems tend to
occur in signal processing problems involving subspaces. This
is because the constraint requires the columns of
to form an orthonormal basis, meaning that the cost function

can be interpreted as a function of an ordered set of
orthonormal basis vectors. Similarly, if for
any unitary matrix , then is a function of the subspace
spanned by the columns of, or equivalently, the range space
of . This is because the range spaces ofand are the
same.
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It is candidly stated that in terms of convergence speed
and computational complexity, the proposed algorithms
are not necessarily the best algorithms for any given cost
function. Rather, the justification for this work is that it is
believed to be the first work that presents general purpose and
ready-to-use algorithms for solving optimization problems
with complex-valued orthogonality constraints. Indeed, the
only prerequisite for being able to implement the four main
optimization algorithms (namely, Algorithm 15 of Section V-A,
Algorithm 17 of Section V-B, Algorithm 24 of Section VII-A,
and Algorithm 26 of Section VII-B) is to be able to compute
the derivative and Hessian of a cost function ,
as defined in Section II. The relevance of these algorithms to
signal processing is now delineated.

A. Applications

As the opening paragraph of [29] states, many signal pro-
cessing tasks involve the constrained minimization of the func-
tion tr , where is a possibly time-varying
covariance matrix. If the constraint is , then it is by
now well known [10], [29] that the minimum occurs when the
columns of span the same subspace as spanned by the eigen-
vectors associated with thesmallest eigenvalues of; this is
an example where for any unitary . There-
fore, the algorithms in this paper, when applied to the specific
cost function tr , complement the growing
literature on subspace estimation and tracking problems [6], [7],
[11], [14], [15], [19], [23], [25], [37] with applications in an-
tenna array processing [27], [36], frequency estimation [26], and
so forth. This is discussed further in Section VIII.

Other problems in linear algebra can also be expressed as or-
thogonally constrained minimization problems [3], [10]. Exam-
ples include finding the singular value decomposition (SVD)
of a matrix and computing a total least-squares solution [9].
Whereas iterative methods, such as those presented here, have
yet to outperform traditional methods for solving linear algebra
problems in general, one advantage of iterative methods is their
applicability to adaptive engineering applications where minor
corrections to present estimates need to be performed regularly.
Another advantage is their computational robustness; iterative
refinement can be used to improve a solution obtained by tradi-
tional means.

When no closed-form solution exists to a problem, it be-
comes necessary to use an iterative method. Several examples
appearing in the more recent literature are now given.

The joint diagonalization problem, which appears in blind
source separation [1], [24], blind beamforming [4], [32], [34],
and other [20], [33] applications, is to find a unitary matrix
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such that for given matrices , the matrices
for are all (approximately) diagonal.

It can be posed as an orthogonally constrained minimization
problem by choosing the cost function to be the sum of
the squares of the off-diagonal elements of the (cf. [1,
Eq. (20)]).

The weighted low-rank approximation problem [12] is to find
a matrix having a prespecified rank and that best approximates
a given matrix under a weighted norm. It is shown in [18] that
the weighted low rank approximation problem can be reformu-
lated as an orthogonally constrained minimization problem, and
moreover, it is proved that the formulation is the most natural
one because it uses the least possible number of parameters. A
similar idea is used in [17] to reformulate the convolutive re-
duced rank Wiener filtering problem as an orthogonally con-
strained minimization problem. (Prior to this reformulation, the
authors were unaware of any general solution to the convolutive
reduced-rank Wiener filtering problem.)

In summary, a significant number of engineering problems
can be formulated naturally as an orthogonally constrained min-
imization problem. The present paper not only provides novel
algorithms for solving such problems, but it provides a general
framework in which existing methods can be better understood.

B. Related Work

Although the references in [31] show that the theory behind
the minimization of a cost function on a manifold was already
being studied in the seventies, general-purpose algorithms for
solving orthogonally constrained minimization problems did
not appear until the 1990s [8], [13], [28].

The key principle in [8], [13], [28] was to exploit the geom-
etry of the constraint surface, and in all cases, the algorithms
performed a series of descent steps, with each descent step taken
along a geodesic. (A geodesic is the generalization of a straight
line to curved surfaces.)

The present paper breaks with tradition by not moving
along geodesics. The reason for this is now explained. There
is no inherent connection between the (Riemannian) geom-
etry imposed in [8], [13], and [28] on the constraint surface

and an arbitrary cost function .
(See Section IX for greater detail.) That is to say, although
moving along geodesics is a sensible thing to do, it is not
the only sensible thing that can be done. A disadvantage of
moving along geodesics is the computational cost involved in
computing the path of a geodesic. This paper, by choosing not
to follow geodesics, is able to achieve a modest reduction in
the computational complexity of the algorithms.

The main distinction of the present paper, however, is that
it considers the complex-valued case. The reason why the al-
gorithms in [8], [13], and [28] do not generalize immediately
to the complex-valued case is because a nonconstant cost func-
tion cannot be analytic. This means that the gra-
dient and Hessian of on a complex Riemannian mani-
fold are not well defined. Although the solution is straightfor-
ward—simply treat as a function of the real and imaginary
components of (that is, ) whenever ap-
propriate—it necessitates the algorithms for the complex-valued
case to be derived from scratch.

C. Outline of Paper

Two types of algorithms are derived in this paper. The first
type is based on the traditional steepest descent algorithm cou-
pled with Armijo’s method for choosing the step size at each
iteration [22]. Although steepest descent algorithms were de-
rived in [7], only the case of being a column vector was con-
sidered, and no step size rule was given. Steepest descent-type
algorithms were not explicitly considered in [8], which concen-
trated instead on conjugate gradient and Newton-type methods.

The second type of algorithm derived in this paper is based
on the traditional Newton algorithm [22]. Although [8] derived
similar Newton type algorithms to the ones presented here (al-
beit for the real-valued case only), there is an important differ-
ence; in [8], the pertinent manifold was locally parameterized
by using the exponential map, whereas this paper locally pa-
rameterizes the manifold by a Euclidean projection of the tan-
gent space onto the manifold. This difference affects the com-
putational complexity and the rate of convergence of the algo-
rithms. The performance of the algorithms resulting from the
two different parameterizations was compared in [18] for a par-
ticular cost function, and it was shown that the Euclidean-pro-
jection-based parameterization resulted in less computational
complexity and faster convergence. (For other cost functions,
the converse may well be true. A more detailed discussion ap-
pears in Section IX.)

Remark: Each algorithm is not simply an application of the
steepest descent or Newton method in some parameter space of
reduced dimension. The novel feature is that the local cost func-
tion to which the steepest descent or Newton method is applied
changes at each iteration.

The reason for presenting both steepest descent and Newton
type algorithms is because each one has its own advantages
and disadvantages. Steepest descent-type algorithms coupled
with Armijo’s step-size rule almost always converge to a local
minimum [22]. However, their rate of convergence is only
linear, meaning that asymptotically, the number of correct
digits increases by a fixed amount per iteration (see [22]
for a precise definition). Newton-type algorithms, by using
second-order derivatives, are able to achieve quadratic conver-
gence, meaning that the number of correct digits ultimately
doubles per iteration. This faster rate of convergence comes
with two disadvantages: increased computational complexity
per iteration and no guarantee that the algorithm will converge
to a local minimum. Indeed, without appropriate checks, the
Newton method will converge to the closest critical point,
whether it is a local maximum, local minimum, or a saddle
point. In practice, the steepest descent and Newton algorithms
are often used together; a few iterations of the steepest descent
algorithm are performed first to move close to a local minimum
before the Newton algorithm is applied.

The rest of this paper is organized as follows. Section II de-
fines the derivative and Hessian of a cost function
and is the only prerequisite for being able to implement the al-
gorithms in this paper. The theory behind these algorithms is
covered in Sections III–VII. Section III derives formulae for cal-
culating the critical point of a quadratic function defined on var-
ious vector spaces. These formulae are required in subsequent
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sections of the paper. Section IV introduces the complex Stiefel
manifold, its tangent space, and the Euclidean projection oper-
ator. Section V derives two algorithms for minimizing a cost
function on the Stiefel manifold. Similarly, Section VI intro-
duces the Grassmann manifold, and Section VII derives algo-
rithms for minimizing a cost function on the Grassmann man-
ifold. A worked example, which is of independent interest in
its own right, is given in Section VIII. Section IX discusses var-
ious aspects of the optimization framework presented here. Sec-
tion X concludes the paper.

Notation: The superscripts and denote transpose and
Hermitian transpose, respectively. The Frobenius norm is used
throughout, that is, tr , where tr is the trace
operator. The vec operator vec is the vector obtained by
stacking the columns of the matrix on top of each other.
Kronecker’s product is denoted by. The symbol denotes
the identity matrix whose size can be determined from its con-
text. Similarly, denotes the -by- identity matrix, whereas

denotes the -by- matrix with ones along the diagonal.
A square matrix satisfying is called unitary.
Given a matrix satisfying , its comple-
ment is defined to be any matrix that satisfies

. Since is not uniquely defined, im-
plicit in any statement involving is that the statement holds
for any choice of . The square matrix is skew-Hermitian
if . It is Hermitian if . The subspace
spanned by the columns of a matrixis denoted by . The
expression denotes a (possibly matrix-valued) function
of such that remains bounded as , where
denotes absolute value (or norm). The symboldenotes ,
whereas and denote the real and imaginary parts of a com-
plex quantity, respectively.

II. SECOND-ORDER APPROXIMATION

This paper chooses to express the second-order Taylor series
approximation of an arbitrary (but sufficiently differentiable)
function in the form

tr

vec vec

vec vec (1)

where is the derivative of evaluated at , and
are the Hessian of evaluated at . To

ensure uniqueness, it is required that and satisfy
and .

Remark: For the real-valued case , the matrix
should be omitted from (1).

The term tr in (1) was chosen because the Eu-
clidean inner product tr is the unique inner
product inducing the Frobenius norm tr on

space. The consequence of this choice is that theth el-
ement of equals

(2)

Although similar formulae can be derived for and , it is
often easier to determine , , and analogously to the
following example.

Example 1: If tr with
Hermitian and , then

tr (3)

tr tr (4)

tr vec vec (5)

proving that , , and , the
last equality following from the fact that vec

vec . Note that and , as required.

III. CRITICAL POINTS OF A QUADRATIC FUNCTION

This section derives formulae for finding critical points1 of
the quadratic function defined by

tr vec vec

vec vec (6)

where , are arbitrary matrices sat-
isfying and , subject to being restricted
to one of the following three vector spaces. The reason for con-
sidering these particular vector spaces will become clear in Sec-
tions V-B and VII-B. Let and be
given matrices such that .

V1) , where
is skew-Hermitian, and is arbi-

trary.
V2) , where

is skew-Hermitian and has zero diagonal ele-
ments ( ), whereas is arbitrary.

V3) , where
is arbitrary.

Since is not analytic, it is necessary to think of it as a
quadratic function in the real and imaginary parts of. The
consequence is that the vector spaces are treated as
real vector spaces.

Proposition 2: Let be a real vector space (such
as , or ), and define as in (6). The point

is a critical point of if and only if is a
matrix in satisfying the linear constraints

tr vec vec

vec (7)

Proof: Let for be an arbi-
trary basis for , where is the dimension of . Express

, where . Then

tr vec vec

vec vec (8)

1A critical point of a function is a point at which the first-order directional
derivatives are all zero. A nondegenerate quadratic function has a unique critical
point.
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TABLE I
MATLAB CODE THAT COMPUTES THE CRITICAL POINT OF THE QUADRATIC FUNCTION

~g(Z) = < trfZ Dg+ (1=2)vecfZg H vecfZg+ (1=2)<fvecfZg C vecfZgg, WHEREZ IS RESTRICTED TOBE OF THEFORMZ = XA+X B WITH

A SKEW-HERMITIAN (cf. SECTION III). I T IS REQUIRED THAT [XX ] [XX ] = I ,H = H AND C = C . (Xc CORRESPONDS TOX .)

If is a critical point, then for .
Since the span , (8) shows that this requirement is equiva-
lent to (7).

A matrix expression for if is given later in
Proposition 3. If or , however, a simple ma-
trix expression does not exist. In order for the algorithms in this
paper to be immediately implementable, the Matlab code for
solving (7) for when is given in Table I. (It works
by forming a basis as in the proof of Proposition 2 and then
finding to make (8) zero.) If , then the following mod-
ifications must be made to Table I. The dimensiondefined on
line 2 should be changed to , and lines
5 to 7 (the loop labeled “Diagonal elements of”) should
be omitted.

Proposition 3: Define as in (6). A critical point
of occurs when , where
satisfies

vec
vec

vec
vec

(9)

and where and
. If , then (9) simplifies to

vec vec (10)

Proof: Since and are restricted to lie in , they
must be expressible as and . Thus,
(7) implies that must satisfy

tr vec vec

vec (11)

vec vec

vec vec

vec (12)

for all matrices . Splitting all terms into their real and imagi-
nary parts proves that must be given by (9). If , then
it is readily seen that (9) can be written in the complex-valued
form (10).
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IV. COMPLEX STIEFEL MANIFOLD

This section derives a number of fundamental properties of
the complex Stiefel manifold. Although the complex Stiefel
manifold has been studied from a number of perspectives in the
literature [10], [21], the author has been unable to find explicit
statements of this section’s results elsewhere.

Definition 4 (Stiefel Manifold):The complex Stiefel mani-
fold is the set

(13)

The complex Stiefel manifold embeds naturally in . It
inherits the usual topology on , and in particular, it is a
compact manifold.

The projection of an arbitrary matrix onto the Stiefel man-
ifold is defined to be the point on the Stiefel manifold closest
to in the Euclidean norm. There is no unique solution if
does not have full column rank. Proposition 7, which is shown
later, proves the converse; there is a unique solution ifhas
full column rank.

Definition 5 (Projection): Let be a rank matrix.
The projection operator onto the Stiefel
manifold is defined to be

(14)

The following useful lemma follows immediately from the
fact that if and are unitary.

Lemma 6: If and are unitary matrices,
then .

Proposition 7: Let be a rank matrix. Then,
is well defined. Moreover, if the SVD of is
, then .

Proof: It is shown that the unique solution of
is , which, when com-

bined with Lemma 6, proves that (14) has the unique solution
. Since tr

tr tr , it is sufficient to show that
tr tr with equality if and only if

. The inequality holds because and
, where the latter is implied by .

Moreover, for if and only if ,
proving the only if part.

Associated with each point of a manifold is a vector space
called the tangent space. The tangent space of an abstract man-
ifold is only unique up to isomorphism. For example, two dif-
ferent representations of the tangent space about each point of
the real Stiefel manifold appear in [14] and [8]. The representa-
tion in [14] comes from the Lie group structure, whereas the rep-
resentation in [8] comes from the embedding of the real Stiefel
manifold in . This paper chooses to use a representation
of the tangent space that comes from the projection operator.
This choice fits in naturally with the optimization scheme pro-
posed in the next section.

Let , and consider the perturbed point
for some matrix and scalar .

(For sufficiently small, has full rank, and hence,
is well defined.) Since does not fill up the

whole space, certain directionsdo not cause
to move away from as increases. The collection of direc-
tions such that is called the normal
space at of . The tangent space is defined to be the
orthogonal complement of the normal space. (Orthogonality is
with respect to the Euclidean inner product because this inner
product induces the Euclidean norm; see Section II.) The tan-
gent and normal spaces are determined as follows.

Remark: It can be shown that the above nonstandard defini-
tion of a tangent space meets all the criteria required of a tangent
space in differential geometry. Moreover, the above definition
leads to a concrete representation of the tangent space, which is
the most suitable one for this paper.

Lemma 8: Let , and choose any
satisfying . An

arbitrary matrix is uniquely decomposable as
, where is skew-Hermitian,

is arbitrary, and is Hermitian.
Furthermore

(15)

Proof: That is a unique decomposi-
tion of is clear. Define , and let be its
derivative at so that . Since

, must
satisfy . This constraint is most easily en-
forcible by expressing as , where

is skew-Hermitian, is arbitrary, and
is Hermitian. Then, is equivalent

to . By definition, is the closest point on the Stiefel
manifold to . Thus, must minimize

for sufficiently small . The minimum occurs when and
(which is a consequence of Lemma 10 shown later),

completing the proof.
Lemma 8 shows that , and in fact,

it can be shown that for sufficiently
small. This leads to the following definition.

Definition 9 (Normal Space):The normal space
at of the Stiefel manifold is

(16)
Lemma 8 suggests that the tangent space consists of direc-

tions of the form . The following lemma confirms
that these directions are indeed orthogonal to the normal space.

Lemma 10: Let and sat-
isfy . Then, for any skew-Hermitian

, arbitrary , and Hermitian ,
tr . That is, is or-

thogonal to , and furthermore,
.

Proof: Since is skew-Hermitian and is Hermitian,
tr tr . Further-

more, tr
tr

.
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Definition 11 (Tangent Space):The tangent space
at of the Stiefel manifold is

(17)

It is readily verified that is a real vector space. Its di-
mension, when considered as a vector space over, is computed
as follows. Since has complex-valued elements, it
contributes an amount to the overall dimension of

. Because is skew-Hermitian, it is completely spec-
ified once its complex-valued upper diagonal
elements are given as well as itsdiagonal elements, which
must be purely imaginary. Thus, the overall dimension is

(18)

The second-order approximation of the projection from the
tangent space to the Stiefel manifold is required in the next sec-
tion.

Proposition 12: If and , then
.

Proof: Lemma 8 proves that the first-order term is.
Define , and let be such that

. Since , direct ex-
pansion shows that must satisfy .
Subject to this constraint, must also minimize

for sufficiently small . Applying the La-
grange multiplier technique proves that .

V. OPTIMIZATION ON THE COMPLEX STIEFEL MANIFOLD

This section derives two algorithms (one is a modified
steepest descent method, and the other is a modified Newton
method) for minimizing subject to , where

, and is real valued. Note that if the cost
function is such that for any unitary
matrix , then the algorithms in Section VII should
be used instead.

The main principle behind optimization on manifolds is to
rewrite the optimization problem in terms of a local parame-
terization at each iteration. A local parameterization about the
point is a mapping from
an open subset of the vector space to the Stiefel
manifold with the property that any point suffi-
ciently close to can be uniquely written as with

. There are an infinite number of local parameteriza-
tions to choose from. For instance, the exponential map (which
is only defined after the Stiefel manifold is endowed with a Rie-
mannian structure) is used in [8] as a local parameterization.
The present paper proposes to use the local parameterization

defined by , where
is the projection operator (see Definition 5). Later, lemma 13

will prove that is well defined. This local parameterization
is not only simpler than the one in [8], but simulations in [18]
demonstrate that it leads to faster convergence in certain appli-
cations.

Lemma 13: For arbitrary and ,
the matrix has full rank. In particular, the local parame-
terization is well defined.

Proof: As in Definition 11, write . If
did not have full rank, then there would exist a nonzero

vector such that . Premultiplying
by shows that this implies . However, this is
not possible since , being skew-Hermitian, has purely imagi-
nary eigenvalues. That is well-defined now follows from
Proposition 7.

Given a local parameterization, the local cost function is
defined to be , which is the composition of and . For
instance, if , then the local cost function

is

(19)

Whereas the cost function is defined on a -dimensional
vector space ( -space has dimensions when considered
as a vector space over), the local cost function is defined on
a -dimensional vector space [cf. (18)]. This reduction
in dimension is especially significant whenis large.

The general framework for optimization on manifolds is as
follows. Given a point , choose
so that . Move to the new
point , and repeat until convergence. Sections V-A
and B propose two ways of choosingat each step, leading to
two algorithms for solving orthogonally constrained optimiza-
tion problems.

A. Modified Steepest Descent on the Complex Stiefel Manifold

This section derives an algorithm for minimizing sub-
ject to . It requires the evaluation of and its
first derivative at each step.

For a given , let be the local
cost function . Since is a vector
space, the well-known steepest descent algorithm (see, for in-
stance, [22]) can be used to find a, which locally minimizes

. However, since the range of covers only part of
the Stiefel manifold, it is more sensible to perform just a single
descent step using the local cost function .

Performing a descent step requires the computation of the
gradient of . The gradient is only defined once
is given an inner product. Ideally, the inner product should be
chosen to make the level sets of approximately spherical
[22]. However, since is not known in advance, it is neces-
sary to make an arbitrary choice for the inner product. Just as the
Euclidean inner product is customarily used for optimization on

, the inner product

tr

(20)

is commonly used on [see [8] for the derivation of
(20) in the real-valued case].

The reason why (20) is a natural choice for an inner product
is because it has the following geometrically pleasing interpre-
tation. Express as , and let
be the matrix whose elements are all zero except for theth ele-
ment, which is one. Then, under (20), the “elementary” tangent
directions and for appropriate values of

and are mutually orthogonal and have unit norm [the norm
of a tangent direction is ]. This is a
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desirable property because the perturbation is
obtained by rotating theth column of in the direction of the
th column of by an angle of , whereas the pertur-

bation is obtained by rotating both the
th and th columns of by an angle of .

The gradient of the local cost function at
the origin is, by definition, the unique in such that

(21)

holds for all . The steepest descent direction is
the negative of the gradient. It is expressible in terms of the first
derivative of as follows.

Theorem 14 (Steepest Descent):Given the cost function
, let be the local cost func-

tion about a given point . The steepest descent
direction of at the origin under the canonical inner
product (20) is

(22)

where is any matrix such that

tr (23)

Proof: It follows from Lemma 8 and (23) that

tr (24)

The following calculation shows that
makes (21) and (24) equivalent

tr (25)

tr

tr (26)

tr (27)

where the last equality follows from Lemma 10 and the fact that
. Finally, it can be shown that

is skew-Hermitian, verifying that is an element of the
tangent space and completing the proof.

Remark: Although one choice of in (23) is the derivative
of (see Section II), other choices are possible since (23)
only requires to be the derivative of in the tangent
directions . This fact sometimes can be exploited
to simplify the computation of .

Once the steepest descent direction , which is defined
in (22), has been calculated, it is necessary to choose a positive
step size so that . The Armijo step size
rule [22] states that should be chosen to satisfy the inequalities

(28)

(29)

Rule (28) ensures that the step will “significantly”
decrease the cost, whereas (29) ensures that the step
would not be a better choice. A straightforward method for
finding a suitable is to keep on doubling until (29) no

longer holds and then halving until it satisfies (28). [From
(21), it is readily seen that such acan always be found.]

Consolidating the above ideas yields the following algorithm.
The algorithm almost always converges to a local minimum, the
exception being if it lands directly on a saddle point first. Indeed,
it is proved in [22] that the Armijo step size rule ensures that

decreases to a critical point, providedis differentiable
and that the level sets of are bounded. The latter criteria is
always true here because the Stiefel manifold is com-
pact.

Algorithm 15 (Modified Steepest Descent on Stiefel Mani-
fold): Given a cost function , the following al-
gorithm almost always converges to a local minimum of
subject to the constraint that . It requires that a
matrix satisfying (23) can be computed for any

.

1) Choose such that . Set step size
.

2) Compute , which is the derivative of at [cf. (23)].
3) Compute the descent direction .
4) Evaluate tr . If

is sufficiently small, then stop.
5) If , then set ,

and repeat Step 5. [The projection can be evaluated
using the SVD; see Proposition 7.]

6) If , then set
, and repeat Step 6.

7) Set . Go to Step 2.

B. Modified Newton Method on the Complex Stiefel Manifold

This section derives an alternative algorithm for minimizing
subject to . It requires the evaluation of

and its first two derivatives at each step. Unlike Algorithm 15,
the algorithm in this section only converges to a local minimum
if it is initialized to a point sufficiently close to the local min-
imum. However, when it does converge, it achieves2 a quadratic
rate of convergence. By comparison, Algorithm 15 exhibits only
a linear rate of convergence.

As in Section V-A, let be the local cost
function about the point .
This section proposes to take a Newton step at each iteration
based on a quadratic approximation of at the origin. Unlike
in Section V-A, it is not necessary to give an inner
product.

The following proposition derives the second-order Taylor se-
ries approximation of the local cost function at the origin.

Proposition 16: Given the cost function , let
be the local cost function about a given

point . Then, for any

tr vec

vec

vec vec (30)

where and are the derivative
and Hessian of at , respectively (cf. Section II).

2Although this fact is not proved here, the convergence proofs in [14] and
[16] can be adapted to the algorithms in this paper.



642 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 3, MARCH 2002

Proof: Using Proposition 12 and (1) gives

(31)

tr

vec vec

vec

vec (32)

tr vec vec

tr

vec vec (33)

tr vec vec

tr

vec vec (34)

The result now follows from the fact that tr
vec vec for any matrix .

The Newton step is defined to be the value ofconfined to
the tangent space at which the quadratic approxima-
tion in (30) has its critical point. The location of the critical point
can be found by applying the theory in Section III; observe that

in Section III is the vector space .
If the Hessian of is singular, then the critical point of the

quadratic approximation of the local cost function is not unique.
It is therefore important to ensure that the cost functiondoes
not possess symmetries. The two most common symmetries that

may possess are for unitary and
, where diag is a diagonal unitary

matrix. In the former case, the theory in Section VII-B must be
used. In the latter case, it suffices to restrictto lie in , which
is the vector space defined in Section III. This necessitates a
minor modification of the following algorithm; see Remark 1
later.

Algorithm 17 (Modified Newton Method on Stiefel Mani-
fold): Given a twice-differentiable cost function ,
the following algorithm attempts to converge to a local min-
imum of subject to the constraint that . It
requires that the derivative and the Hessian

of at the point can be computed for
any .

1) Choose and such that
.

2) Compute , which is the derivative of at , and
, which is the Hessian of at , as defined in

Section II. If tr is suffi-
ciently small, then stop.

3) Compute the Newton step
,

where is defined in Table I. (See Remark 1 later.)
4) If , then abort. [The projection

can be evaluated using the SVD; see Proposition 7.]
5) Use the SVD to compute, and such that

. Set , and set to the last
columns of . Go to Step 2.

Remarks:

1) If for any diagonal unitary matrix ,
then the following modifications must be made to
in Table I. The dimension defined on line 2 should be
changed to , and lines 5 to 7 (the

loop labeled “Diagonal elements of”) should be
omitted.

2) The quantity tr in Step 2

of Algorithm 17 is equal to in Step 4 of Algo-
rithm 15, that is, it equals the norm of the gradient ofat

.
3) Step 5 of Algorithm 17 results in and an

such that .

As is the case with all Newton-type algorithms, Algorithm
17 can fail to take a descent direction if the current pointis
not sufficiently close to a minimum to ensure that the Hessian
is positive definite. If Algorithm 17 fails to take a descent step,
several iterations of Algorithm 15 can be used to move closer to
a minimum before restarting Algorithm 17.

VI. COMPLEX GRASSMANN MANIFOLD

If the cost function is such that for
any unitary matrix , it should be minimized on the Grassmann
manifold rather than on the Stiefel manifold. This is because the
Grassmann manifold treats pointsand as being equiva-
lent, leading to a further reduction in the dimension of the opti-
mization problem.

This section derives a number of fundamental properties of
the complex Grassmann manifold. The derivation of the results
in this and the next section parallels that done in the last two
sections for the complex Stiefel manifold. However, unlike the
complex Stiefel manifold, the complex Grassmann manifold
does not embed in space. Therefore, the derivations here
are not identical to the derivations in previous sections.

Definition 18 (Complex Grassmann Manifold):The
complex Grassmann manifold is the set of all -di-
mensional complex subspaces of.

There is a close connection between the Grassmann and
Stiefel manifolds. If is a point on the Stiefel
manifold, then its columns form an orthonormal basis for a
-dimensional subspace. That is, if denotes the subspace

spanned by the columns of , then implies
. Conversely, every point in is

obtainable in this way.
For the purposes of this paper, the Grassmann manifold is

best thought of as a quotient space of the Stiefel manifold. This
is now explained. Define two points on the
Stiefel manifold to be equivalent and denoted if there
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exists a unitary matrix such that . It is
clear that if and only if . Therefore, there is
a one-to-one correspondence between points on the Grassmann
manifold and equivalence classes of .

Since the Grassmann manifold does not embed in
space, the projection of an arbitrary matrixonto the Grass-
mann manifold is defined in terms of the projection onto the
Stiefel manifold. There is no unique solution if does not
have full column rank. Later, Proposition 20 will prove the
converse; there is a unique solution ifhas full column rank.

Definition 19 (Projection): Let be a rank ma-
trix. The projection operator onto the
Grassmann manifold is defined to be

(35)

Whereas was used in earlier sections to denote projection
onto the Stiefel manifold, henceforth,refers to the projection
operator onto the Grassmann manifold, unless otherwise stated.

Proposition 20: Let be a rank matrix. Then,
. Moreover, if the SVD of is ,

then , and if the decomposition of is
, then .

Proof: Proposition 7 implies that is well defined and
equals . Moreover, . Since

has rank , . Finally, fol-
lows immediately from [9, Th. 5.2.1].

Remark: The usefulness of expressing the projection in
terms of the SVD or decomposition is that both and

are elements of .
Since the Grassmann manifold is a quotient space of the

Stiefel manifold, its tangent space is a subspace of the Stiefel
manifold’s tangent space. This fact can also be seen from
the nonstandard definition of a tangent space in terms of the
projection operator given in Section IV; certain elementsin
the tangent space of the Stiefel manifold will no longer cause

to move away from as increases. Specifically,
for a given , let be an element
of the tangent space of . Applying Lemma 8 shows that

(36)

where the last equality follows from the fact that
, provided is invertible. Thus, the

subspace generated by is not part of the tangent space of
. Conversely, implies ,

proving that the tangent space of is the subspace
generated by matrices of the form .

Definition 21 (Tangent Space):Let . Then, the
tangent space at of the Grassmann
manifold is

(37)
The dimension of , which is considered to be a

vector space over, is [cf. (18)].
The second-order approximation of the projection from the

tangent space to the Grassmann manifold is required in the next
section.

Proposition 22: Let . If is an
element of the tangent space at of the Grass-
mann manifold , then .

Proof: From Proposition 12

(38)

(39)

(40)

(41)

VII. OPTIMIZATION ON THE COMPLEX GRASSMANNMANIFOLD

Whereas Section V derived algorithms for minimizing a gen-
eral cost function subject to , this section de-
rives specialized algorithms for the case when satisfies
either one or both of the following assumptions.

A1) for all and unitary
.

A2) for all and invertible
.

Such symmetries occur in subspace tracking [5], [23], [25] as
well as in blind identification [1], [30]. In the former case, it is
because a subspace is invariant to unitary transformations (that
is, ), whereas in the latter case, it is caused by
the inability of second-order statistics to discriminate between
unitary transformations of certain parameters of interest.

Whereas Section V consideredas a function on the Stiefel
manifold , this section considersas a function on the
Grassmann manifold. Specifically, sincesatisfies A1), there
exists a function such that

(42)

The local cost function about the point
, where , is defined to be (cf.

Section V)

(43)

where is the projection onto the Grassmann manifold defined
in Definition 19. (It follows from Lemma 13 that is de-
fined for all .) One advantage of using the Grassmann mani-
fold rather than the Stiefel manifold is that has only

dimensions, whereas in Section V has
dimensions.

From a numerical point of view, it is not practical to work ex-
plicitly with the cost function . Instead, the local cost function
(43) can be rewritten in the alternative form

qf (44)

where qf is the “ -Factor” operator defined as follows. If
is the decomposition of the matrix ,

then qf is defined to be the first columns of . That (44)
is equivalent to (43) follows immediately from Proposition 20.

Using the same framework as in Section V, Section VII-A
derives a modified steepest descent algorithm, whereas Sec-
tion VII-B derives a modified Newton algorithm.
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A. Modified Steepest Descent on the Complex Grassmann
Manifold

This section derives an algorithm for minimizing sub-
ject to when satisfies either A1) or both A1)
and A2) in Section VII. It requires the evaluation of and
its derivative at each iteration.

The steepest descent direction of the local cost function (43)
is only defined once is given an inner product struc-
ture. Since , the natural choice of an
inner product on is the one obtained by restricting
the canonical inner product (20) on to . In
fact, when restricted to , (20) simplifies to the Eu-
clidean inner product

tr

(45)

Theorem 23 (Steepest Descent):Given the cost function
, let be the local cost

function about a given point , where is defined
in (42). The steepest descent direction of at the origin

under the canonical inner product (45) is

(46)

where is any matrix such that

tr (47)

Proof: It is clear that , where is
the projection operator onto the Stiefel manifold (Definition 5).
Thus, is given by (24). The following calculation shows
that makes (21) and (24) equivalent for
all

tr (48)

tr tr (49)

tr (50)

where the last equality follows from the fact that if
, then and so .

Finally, it is readily seen that , verifying that is an
element of the tangent space and completing the
proof.

Remark: Although one choice of in (47) is the derivative
of (see Section II), other choices are possible since (47)
only requires to be the derivative of in the tangent
directions .

Combining Theorem 23 with the Armijo step-size rule de-
scribed in Section V-A leads to the following analog of Algo-
rithm 15.

Algorithm 24 (Modified Steepest Descent on Grassmann
Manifold): Given a differentiable cost function
that satisfies (A1) in Section VII, the following algorithm
almost always converges to a local minimum of subject
to the constraint that . It requires that a ma-
trix satisfying (47) can be computed for any

.

1) Choose such that . Set step size
.

2) Compute , which is the derivative of at [cf. (47)].
3) Compute the descent direction .
4) Evaluate tr . If is sufficiently

small, then stop.
5) If qf , then set

, and repeat Step 5. [The-Factor operator qf is
defined in (44).]

6) If qf , then set
, and repeat Step 6.

7) Set qf . Go to Step 2.
If the cost function satisfies A2) in Section VII, then Al-

gorithm 24 simplifies slightly; under A2), qf
holds for any full rank matrix . Therefore, the

-Factor operator can be omitted from Steps 5 and 6 of
Algorithm 24.

B. Modified Newton Method on the Complex Grassmann
Manifold

This section derives another algorithm for minimizing
subject to when satisfies either A1) or both
A1) and A2) in Section VII. It requires the evaluation of
and its first two derivatives at each iteration. Unlike Algorithm
24, the algorithm in this section only converges to a local
minimum if it is initialized to a point sufficiently close to the
local minimum. However, when it does converge, it achieves a
quadratic rate of convergence, as opposed to the linear rate of
convergence exhibited by Algorithm 24.

By definition, the Newton step moves to the critical point of
the quadratic approximation of the local cost function (43). The
quadratic approximation is given in the following proposition.

Proposition 25: Given a cost function satis-
fying A1) of Section VII, let be the local
cost function about a given point , where is de-
fined in (42). Then, for any

tr vec

vec

vec vec (51)

where and are the derivative
and Hessian of at , respectively (see Section II). Ifsatisfies
A2) of Section VII, then (51) simplifies to

tr vec vec

vec vec (52)

Proof: It is clear that , where is
the projection operator onto the Stiefel manifold (Definition 5).
Thus, is given by (30) in general. If satisfies A2), then

for all . Thus, Proposition 22 shows
that

(53)

from which (52) follows from (1).
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The location of the critical point of (51) can be found by ap-
plying Proposition 3; observe that in Section III is the vector
space .

Algorithm 26 (Modified Newton Method on Grassmann Man-
ifold): Given a cost function , which is twice dif-
ferentiable and satisfies A1) of Section VII, the following algo-
rithm attempts to converge to a local minimum of subject
to the constraint that . It requires that the derivative

and the Hessian of at the
point can be computed for any .

1) Choose and such that
.

2) Compute , which is the derivative of at , and
, which is the Hessian of at , as defined in

Section II. If tr is sufficiently small,
then stop.

3) Compute the Newton step as follows. Set

and .
Solve

vec
vec

vec
vec

(54)

for . Set .
4) If qf , then abort. [The -Factor

operator qf is defined in (44).]
5) Set qf . Go to Step 2.

Remark: The quantity tr in Step 2 of

Algorithm 26 equals in Step 4 of Algorithm 24, that
is, it equals the norm of the gradient ofat .

If the cost function satisfies (A2) of Section VII, then
Proposition 25 shows that in Step 3 of Algorithm 26 simpli-
fies to . Furthermore, as in
Section VII-A, the -Factor operator can be omitted in Step 4
of Algorithm 26.

As is the case with all Newton-type algorithms, Algorithm
26 can fail to take a descent direction if the current pointis
not sufficiently close to a minimum to ensure that the Hessian
is positive definite. If Algorithm 26 fails to take a descent step,
several iterations of Algorithm 24 can be used to move closer to
a minimum before restarting Algorithm 26.

VIII. C OMPUTING AN EXTREME EIGENVECTOR

A. Introduction

It is well known [9], [10] that for a Hermitian matrix
, achieves its minimum, subject to

, when corresponds to a minimal eigenvector,
that is, an eigenvector associated with the smallest eigenvalue of

. This section specializes Algorithm 24, which is the modified
steepest descent on the Grassmann manifold algorithm, to this
particular cost function. An attractive feature of this specializa-

tion is that the Armijo step size rule is replaced by the optimal
step size rule.

The reasons for deriving a novel algorithm for computing a
minimal eigenvector are now listed.

1) It serves as a worked example of how to apply the opti-
mization algorithms in this paper.

2) It is used to demonstrate that the algorithms in this paper
can have significantly different properties compared with
classical algorithms for solving the same problem.

3) It can be used in a number of signal processing appli-
cations [6], [36] that require the computation and subse-
quent tracking of a minimal eigenvector.

4) It has several advantages over existing algorithms for
computing a minimal eigenvector.

Computing a minimal eigenvector appears to be intrinsically
more difficult than computing a maximal eigenvector [7], [9],
[11], [14], [15], [19], [29], [35]–[37]. The two standard methods
that almost always converge to a minimal eigenvector are the
inverse iteration method (described later) and steepest descent
methods [7], [15]. Other methods, such as Newton methods
[14], Rayleigh quotient iterations [9], and so forth, converge to
the “nearest” eigenvector rather than to a minimal eigenvector.

One advantage of the novel algorithm derived here is that un-
like the recently proposed steepest descent algorithms in [7] and
[15], it takes a step of optimal size at each iteration. This feature
is particularly attractive in tracking applications wherevaries
over time. Furthermore, it suggests that in certain applications
at least, the Euclidean-projection-based parameterization of the
Grassmann manifold in this paper is a more useful choice than
the geodesic-based parameterization used in [7] and [15]; it does
not appear to be possible to compute the optimal step size for
the algorithms in [7] and [15].

The other advantages are that the algorithm is guaranteed to
converge to a minimal eigenvector, provided the initial vector
is not orthogonal to the space spanned by the minimal eigen-
vectors, and unlike the classical inverse iteration method, the
algorithm is not sensitive to closely spaced eigenvalues. These
properties are proved in the following section and corroborated
by simulations in Section VIII-C.

B. Algorithm and Its Derivation

The notation and results in Sections II and VII are used here
with the minor change that the matricesand are replaced
by the vectors and . The steepest descent directiondefined
in Step 3 of Algorithm 24 is readily calculated from Example 1
of Section II under the assumption that :

(55)

It is convenient to interpret as a weighted average of the
eigenvalues of . Let

(56)
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be the eigendecomposition of, where is Dirac’s delta func-
tion, and let be such that . Then

(57)

is a weighted sum of the eigenvaluesof . In particular

(58)

The -Factor operator appearing in Algorithm 24 is readily
evaluated when applied to a vector. Indeed

qf (59)

for arbitrary . It will be shown that the decrease in cost
qf can be expressed in terms of the fol-

lowing variables.

(60)

Note that and are both real-valued since and
since it is assumed that . Straightforward

manipulation shows that

qf

(61)

(62)

Differentiating (62) with respect to and setting the result to
zero shows that the greatest decrease in cost occurs whenis
the unique positive root of the quadratic equation

(63)

Let denote this optimal value. It is interesting to note (cf.
Step 6 of Algorithm 24) that

qf (64)

Algorithm 24 specializes to the following. Note that the ex-
pressions for and in Step 3 of Algorithm 27 are equivalent
to those in (60). In addition, note that and must be real
valued.

Algorithm 27 (Computing a Minimal Eigenvector):Let
be an arbitrary Hermitian matrix. The following algo-

rithm converges to a minimal eigenvector ofwith probability
one (see Theorem 28 later).

1) Randomly choose an with unit norm ( ).
2) Compute the descent direction , where

. If is sufficiently small, then stop.
3) Compute and .

Set to the positive root of .
4) Set . Renormalize by setting .

Go to Step 2.

Before proving global convergence, two properties of Algo-
rithm 27 are stated. Algorithm 27 is invariant to shifts; replacing

with for any has no effect. This supports
the empirical evidence (see Section VIII-C) that closely spaced
eigenvalues, which are known to reduce severely the rate of con-
vergence of power methods [9], do not affect the performance
of Algorithm 27. Algorithm 27 is also invariant to orthogonal
changes of coordinates. That is, if Algorithm 27 produces the
sequence , then replacing with and

with will produce the sequence .
Theorem 28 (Global Convergence):Let be the initial

vector chosen in Step 1 of Algorithm 27. If is the smallest
eigenvalue of and there exists an eigenvector satisfying
both and , then Algorithm 27 converges
to an eigenvector satisfying .

Proof: Referring to Algorithm 27, since if and
only if is an eigenvector of , it is clear that Algorithm 27
converges to an eigenvectorof . Let be the eigenvalue
associated with . Assume to the contrary that . Since
must then be orthogonal to, this implies . It will be
shown below that one iteration of Algorithm 27 increases
if the step size satisfies

(65)

Since , it follows that , and
. This means there will come a time when

, and hence, (65) will also hold for all subsequent
iterations. This contradicts , proving that .

To show that (65) implies that will increase, note first
that direct substitution proves that

(66)

Since , it is readily verified that

if and only if (65) holds.

That is, (65) implies that will increase unless .
However, the latter cannot occur because, from (58), ,
and therefore, can never be zero.

Finally, it is remarked that Algorithm 26 may also be applied
to the cost function . Since ,

, and (see Example 1), Step 3 of Algorithm
26 becomes , where satisfies the linear
equation

(67)

C. Simulations

This section studies the convergence rate of Algorithm 27 and
compares it with traditional methods for calculating extremal
eigenvectors. It is demonstrated that the performance of Algo-
rithm 27 is relatively insensitive to the actual eigenvalue distri-
bution.

The inverse iteration method [9] for finding an eigenvector of
the matrix associated with the eigenvalue having the smallest
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Fig. 1. Graph comparing the convergence rates of the steepest
descent and inverse iteration algorithms when applied to the matrix
A = diagf1; 1:01; 1:02; 1:03; 1:04g.

Fig. 2. Graph comparing the convergence rates of the steepest
descent and inverse iteration algorithms when applied to the matrix
A = diagf1; 2; 3; 4; 5g.

absolute value3 is to generate a sequence of vectors ac-
cording to the rule

(68)

Figs. 1–4 compare the inverse iteration method (68) with the
steepest descent method (Algorithm 27). Figs. 1 and 3 show
that Algorithm 27 outperforms (68) if the eigenvalues ofare
closely spaced, whereas Figs. 2 and 4 demonstrate that the con-
verse holds as well. This is now explained in more detail.

It is well-known that the convergence rate of the power and
inverse iteration methods [9] applied to the matrixcritically

3It is important to note that steepest descent algorithms converge to the
smallest eigenvalue, whereas the inverse iteration method converges to the
eigenvalue having the smallest absolute value. Similarly, the power method
(which will be mentioned later) converges to the eigenvalue having the largest
absolute value, whereas steepest ascent algorithms converge to the largest
eigenvalue. Therefore, when comparing algorithms, it is important to choose
A to be positive definite.

Fig. 3. Graph comparing the convergence rates of the steepest descent and
inverse iteration algorithms when applied to ten randomly generated 20-by-20
matrices with eigenvalues uniformly distributed between 10 and 11.

Fig. 4. Graph comparing the convergence rates of the steepest descent and
inverse iteration algorithms when applied to ten randomly generated 20-by-20
matrices with eigenvalues uniformly distributed between 0 and 1.

depends on the eigenvalue distribution of. Indeed, replacing
with for some constant (which is known as a

shift in the literature) significantly alters the convergence rate of
(68). In comparison, Section VIII shows that such shifts do not
alter Algorithm 27 at all. It is therefore expected that the inverse
iteration method will exhibit convergence rates ranging from
extremely poor to extremely good, depending on the eigenvalue
distribution of , whereas Algorithm 27 is expected to achieve
a steady rate of convergence over a wide range of eigenvalue
distributions.

This hypothesis was tested by plotting the log of the
error, which is defined as ,
where is the smallest eigenvalue of , against
the iteration number . (The fact that the resulting graphs
in Figs. 1–4 are essentially straight lines shows that both
algorithms achieve a linear rate of convergence [22].)
Fig. 1 was generated by applying the algorithms to the
matrix diag . (In all
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simulations, the initial starting vector was chosen to be
.) Since the eigenvalues are closely

spaced, Algorithm 27 significantly outperforms (68). Con-
versely, Fig. 2 shows that (68) outperforms Algorithm 27
when applied to the matrix diag . Figs. 3
and 4 suggest that this behavior is typical. Fig. 4 shows the
performance of the two algorithms when applied to ten ran-
domly generated 20-by-20 matrices with eigenvalues uniformly
distributed between 0 and 1. The same ten matrices were then
shifted so that their eigenvalues lay between 10 and 11 (that is,
each was replaced with ) and the results plotted in
Fig. 3. Whereas the performance of Algorithm 27 is unaltered,
(68) performs badly in Fig. 3 but exceptionally well in Fig. 4.

The steepest ascent method, which is obtained by replacing
with in Algorithm 27, was compared with the power

method for converging to an eigenvector associated with the
largest eigenvalue of . The power method updates
according to the rule [cf. (68)] .
Figs. 5 and 6 were generated analogously to Figs. 3 and 4. They
demonstrate that Algorithm 27 achieves a convergence rate that
is much less sensitive to the location of the eigenvalues of
than the power method does.

Finally, the rapid convergence of the Newton method (Algo-
rithm 26 applied to the cost function as
in Section VIII) for finding a minimal eigenvector is illustrated
in Fig. 7. (The Newton method converged to the exact answer
up to machine precision on the third iteration.) Note that two
iterations of Algorithm 27 were performed before running the
Newton method since otherwise, the Newton method would fail
to converge to a minimal eigenvector.

IX. DISCUSSION

This section discusses the conceptual differences between the
optimization approach in this paper and the approach in [8]. It
also gives a qualitative description of when the Newton algo-
rithms here are expected to outperform the Newton algorithms
in [8].

It is first noted that the general framework in Section V for
minimizing a function on a manifold—namely, given a point

on the manifold, apply a single iteration of the steepest de-
scent or Newton algorithm to the local cost function

, where is a local parameterization about, then
move to the new point and repeat—is more general
than the framework in [8]. Choosing to be the exponential
map (which corresponds to using geodesics to locally parame-
terise the manifold) results in the Newton algorithm in [8]. The
differences between the algorithms can therefore be understood
by determining what effect the choice of the local parameteri-
zation has on the computational complexity and the rate
of convergence of the algorithms.

As mentioned earlier, the local parameterization used in this
paper is computationally simpler to compute than the one in [8].
The asymptotic rate of convergence of the modified Newton al-
gorithms here is the same as for the Newton methods in [8], that
is, they all asymptotically achieve a quadratic rate of conver-
gence. However, for a given cost function, it can be expected that
one algorithm will converge faster than the other one. (Which

Fig. 5. Graph comparing the convergence rates of the steepest ascent and
power method algorithms when applied to ten randomly generated 20-by-20
matrices with eigenvalues uniformly distributed between 10 and 11.

Fig. 6. Graph comparing the convergence rates of the steepest ascent and
power method algorithms when applied to ten randomly generated 20-by-20
matrices with eigenvalues uniformly distributed between 0 and 1.

Fig. 7. Graph showing the rapid convergence of the Newton method when
used to find the minimal eigenvector of the matrixA = diagf1; 2; 3; 4; 5g.
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algorithm is the faster depends on the cost function.) The fol-
lowing example is used to explain this phenomenon.

Consider the ordinary Newton method applied to the two
cost functions and

. Note that and represent
the same function expressed in different coordinate systems.
Specifically, , where is the mapping
from Cartesian to polar coordinates. The Newton method ap-
proximates the cost function by a quadratic cost at each iteration.
Since is quadratic about any point ,
the Newton method applied toconverges in a single iteration.
However, since is not quadratic about any
point , the Newton method will not converge in a single
iteration when applied to. Conversely, a “Newton algorithm
in polar coordinates” would converge in one iteration when ap-
plied to but take longer to converge when applied to.

In the above example, the change of coordinatesis analo-
gous to the local parameterizationused to define Newton algo-
rithms on a manifold. In a qualitative sense, it implies that the
algorithm that achieves the faster convergence for a particular
cost function is the algorithm that uses the local param-
eterization (either the exponential map in [8] or the Eu-
clidean projection operator in this paper), resulting in the local
cost function more closely approximating a quadratic
function. Simulations in [18] show that for one particular class
of cost functions, the algorithms here converge faster than the
algorithms in [8]. However, the preceding argument suggests
that there may exist another class of cost functions for which
the converse is true.

Since the performance of the algorithms depends on the
choice of local parameterization relative to the cost
function , it is worthwhile understanding the motivation
behind the choice of local parameterization here and in [8].

In [8], the Stiefel manifold was made into a Riemannian man-
ifold by endowing it with its canonical metric.4 A connection
function5 (the Levi-Civita connection) was also given to the
manifold. Doing this made it possible to calculate the gradient
and Hessian of a function on the manifold. Roughly speaking,
the classical formula for computing the Newton step was gener-
alized in [8] by replacing the first- and second-order derivatives
in Newton’s formula by the gradient and Hessian of the cost
function on the manifold. Newton’s formula results in a vector
pointing in the direction to move, and since following a geodesic
corresponds to walking in a straight line, it is natural for [8] to
interpret Newton’s formula as requiring the Newton step to be
taken along a geodesic.

The motivation for considering a different approach in this
paper is that there does not seem to be an intrinsic connection
between the Riemannian geometry of the Stiefel manifold and
the minimization of an arbitrary cost function. Why follow a
geodesic, which is costly to compute, if it is not essential?

The algorithms in this paper avoid giving the Stiefel mani-
fold a metric structure and a connection function. They are able
to do this because they never compute a gradient or a Hessian of

4A metric is an inner product structure given to each tangent space that varies
in a smooth way [2].

5A connection function is required before “second-order derivatives” can be
meaningfully calculated on a manifold.

a function on the manifold. Instead, at each iteration, they form
a local cost function whose domain is a vector space and not
a manifold. Although the derivative and Hessian of this local
cost function can only be calculated once the vector space is
given an inner product structure (which is tantamount to giving
the Stiefel manifold a metric structure except that there is no
smoothness requirement),the Newton step is independent of the
inner product structure chosen. Therefore, the Newton algo-
rithms in this paper can claim (for better or for worse) to be un-
related to any Riemannian structure put on the manifold. (They
do, however, depend on the choice of norm used to define the
projection operator.)

While the approach in [8] depends on the Riemannian struc-
ture given to the Stiefel manifold, the approach in this paper
depends on the projection operator used to define the local pa-
rameterization. The Euclidean norm in Definition 5 was chosen
somewhat arbitrarily; a number of interesting cost functions can
be written in terms of a Euclidean norm so that it seemed sen-
sible to use the Euclidean norm to define the projection operator
as well. A positive consequence of this choice is that it allows
the optimal step size to be computed in Section VIII for a par-
ticular cost function.

X. CONCLUSION

This paper derived novel algorithms for the minimization of a
cost function subject to the constraint .
The key feature of the algorithms is that they reduce the dimen-
sionality of the optimization problem by reformulating the opti-
mization problem as an unconstrained one on either the Stiefel
or Grassmann manifolds. A consequence of this is that the con-
vergence properties of the algorithms may be different from
those of traditional methods. To verify this assertion, the algo-
rithms were applied to the problem of finding an eigenvector
associated with the smallest eigenvalue of a Hermitian matrix.
Simulations showed that the performance of the resulting al-
gorithms exhibited quite different behavior from the traditional
power and inverse iteration methods for computing an extremal
eigenvector.
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