
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1975

Optimization Among Provably Equivalent Programs Optimization Among Provably Equivalent Programs

Paul Young

Report Number:
75-156

Young, Paul, "Optimization Among Provably Equivalent Programs" (1975). Department of Computer
Science Technical Reports. Paper 103.
https://docs.lib.purdue.edu/cstech/103

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

OPTIMIZATION AMONG PROVABLY EQUIVALENT PROGRAMS

Paul Young
Computer Sciences and Mathematics Department

Purdue UniversIty
Lafayette. Indiana 47907

CSD-TR 156

Abstract. We consider the extent to which it's possible, given 8 program

p for computing a function, f, to Find an optimal program p' which also

computes f and is either provably equivalent to p or else provably an optimal

program. Our methods and problems come chiefly from abstract recurslon­

theoretic complexity theory, but some of our results may be viewed as directly

challenging the intuitive interpretatIon of earlier results In the area.

Key words and phrases: abstract complexity, theory, prOVing equivalence or

correctness of programs.

OPTIHIZATION AHONG PROVABLY EqUIVALENT PROGRAHS

.Paul Young' ,
Computer Sciences and Mathematics Departments

Purdue Unfversity
lafayette, Indiana 47907

I. Motivation

In traditional recursion-theoretic studies of complexity theory, two
programs are regarded as equivalent If they compute the same function. The
efficiency of the running time of a program rs studied by comparing its
(ultimate, a.e.) behavior with the running times of all other programs for the
same functIon.

It '5 not very diffIcult to find programs p and pi whIch in fact both
compute the same function, which can both be proven to halt on all inputs.
yet which can~ be proven to compute the same function. Suppose then that
one is trying to optimize some class of programs, starts with a program p which
Is known to compute some desired functlon, f, and then Is given program p'
as a better program for f. The user must regard the situation as unsatisfactory;
off hand, his only method for verifyIng that the use of program pi Is legitimate
is: after haYing run pi on a given Input x, he must then run program p on
input x to verify that pi Is correct on that input.

In practice then, it seems clear that If one wants to consider program
pi as a possible optimization of program p, one first needs a proof that p
and pi really perform the same task. (l!!. this paper, we assume that this means
that we can prove that programs p and pi really do compute the same function,
i.e •• p and pi are prov~bly equivalent.)

We limit our attention to programs for total functions, and for the
purpose of this study we do not question the usual recursion-theoretic assump-,
tlons that (I) all programs are legitImate objects of study, and (II) Infinite
functions and the ultimate behavIor of run times on large argument yield useful

'Supported by NSF Grant GJ 27127AI. Reselrch perfonned while the authorwas a visiting professor In the Electrical Engineering Ind Computer SciencesDepartment, University of California, Berkeley, 1972-73.

2

insights Into computational complexIty. Our work may be viewed as questioning
the traditional view that any two programs whIch compute the same function
should be regarded as equlv.lent. If this view Is taken seriously, it implies
that many results of recursion theoretic complexity theory should be reexamined.
In the long run, work such as this may have implications for studIes of how
one proves equivalence of programs (FJoyd, Hanna, etc.~ but we make no such
explicit claims here.

In intuitive terms, our two main results may be stated as follows:
i) Every computable function has very good programs which are (nearly)

optIma) (among the provably equfvalent programs).
Ti) Every computable function has' good classes of provably equivalent

programs in whJch It is possible to effectively find very large
speed-ups and to prove both the correctness and the good funning times
of the sped-up programs.

Thus from any practical standpoint, the traditional vIew that questions
of optimality and speed-up are properties of the functions to be computed is
erroneous: from our point of view, questions of optimality and speed-Up are
completely Independent of the function to be computed, but depend instead on
the description of the program used to compute the functIon. ~ith a little
reflection, we believe the reader wJ11 find these results not at all surprising.

~e also observe that the standard method [H-FJ of constructing functions
with well controlled speed-up cannot possibly produce very good programs for
which It is possible to have many provably equivalent programs which are sped-up.
Thus if we are concerned about provably equivalent programs, this standard
method does not produce an.Y "good II InfinIte chains of speed-ups. (Of course,
by (i) above, not~ good programs can have infinIte chains of provably equi­
valent speed-ups, even when the function Itself has speed-Up.)

II. Notation

In stating our results, we use standard intuitive and formal terminology
for abstract complexity theory. Our proof theory for proving equIvalence of
programs Is any formal mathematical system (so the set of theorems is recur­
sively enumerable). which Is adequate for carrying out elementary arithmetical
arguments and which Is sound for arlthn~tlc (no false arithmetIc statements

J
are provable). For examples, first order Peano-arfthmetlc meets theserequirements, and It is commonly believed that any of the standard axiomaticsystems for all of set theory meet these requirements. Although the reader15 free to choose any proof system and set of axioms he pleases within thoseconstraints, this system Is to remain fixed throughout this paper.If S Is a sentence which is provable in this fixed theory, we writeIll- SII. We state our results, not in terms of an arbrtrary standard Indexingof the partial" recursive functions, but Instead In terms of~ provably standardindexing. That Is an indexing for which we have a partial recursive functionu and a total recursive function S and computable pairing function <, >, for whichI- IS Is tot. I '

1- 1
< > is a total one-one onto function from NxN+N'

~'(vl) (Vx) (vy) [U(I,<x,y»-U(S«i ,x» ,y)]'
I-'If", Is a pa-rtlal function computable by a Turing machine, then thereexists an Integer eo such that"" laU(eo'x),

We state without further comment the following fact, which should be clear tothe reader after a little reflectfon. Every Indexing of the partial recursivefunctions ~ntloned- I~ the literature as a reasonhble model for computing allpartial recursive functIons, including, e.g., Turing machines and ALGOL, isprovably standard. We follow standard recursion theoretic procedure andabbreviate)'Jd.l(I,x) as 41 .. We frequently drop universal quantifiers, e.g.,I
writing line 3 above as

,.'U(I.<x,y»-U.(S«I,x» ,V)'
Furthermore, examination of the s~andard proof of the recursion theoremproves that there Is a total recursive function R with the f6110wlng properties:~ In Is total l

f •
We use such facts without further proo . •Finally, we consider, not arbitrary Blum measures for computational complexity,but instead only provable measures; specifically, we require

1- 1 ('111) {domain 41.""domain '%I.]'I I

and ,..Ithe relation '%I. (x).::,y is decidabJe.!IAgain, no examples of nonprovable measures have ever been seriously proposedin the literature.

4

III Results

,
The proof of Theorem 2 depends on the following somewhat paradoxical

result. The reader shouJd'bear In mInd that a result of this form Is possible

only because (as is well-known) our proof me~hods cannot be strong enough to
prove their own correctness.

Theorem I. There is an effective procedure which, given any program

p finds a program a(p) which does compute the same functIon as p and whose

run time in the lImit Is (almost) as good as that of any program provably equt­
valent to p.

large x

,

Note In particular that If every program provably equivalent to p Should

have a large speed-up p~ovably equivalent to It, then we would effectively

have found a program computing the same function as does p, but doing so more

rapidly than any program provably equivalent to p. (Hence we could not prove

(inour formal proof theory) that p and o(p} compute the same function.)

Theorem I Is proven by a straightforward enumeration and simulation of all

programs provably equIvalent to p, which we n~~ outline.

In multi-tape Turing machine tlltlS, we might, for I\Ixample, define ~a(p)

as follows: to compute 4>a(p} (x),. do log (x) steps In the enumeration of

theorems to obtain a ITst of programs p, PO' PI' P
2

, ... r Pm (m<Jog x) provabty

equivalent to program p. Then begin dovetailing the computa~ionsof ~p(x),

IfIPo(x} ..~Pm(x}, taking as output for lfla(p) lx) the first output obtained froill

these dovetailed computations. Thus, if lflp~p(I)' then for all sufficiently

2~ (j(x) < log(x)(~ (")(x»a p - p I

Furthermore, sln.e for all i, f-'1fI =-$ " If we bel ieve that our proof theory is
P Pi

sound, we believe that $ -$ (). In fact, for each fixed x. $ (x)'"pap p
tP () (x), even If 4J (x) is undefined. However, since In general welcannot
ap , P I I" ,

hope that ~(VI}[4Jp.4Jp], there is ~~ priori method to obtain ~4Jp-$a(p)' and

in general we shall s~e that we cannot prove the latter statement.

A careful statement of Theorem 1 would read as follows: For ~ny provably

standard indexing and any provable measure, there are provably total recursive

functiJns a and r such that for all P, tPp=$a(p} and for any pI suc~ that

1-'41 p.lflp '" ¢Io (p) (x) ~ rex. ¢I
p

'(X)} a.e.

5

Our next theorem guarantees that all functions have near optimal programs.

Theorem 2. (Optimization) Given any program P. there is an equivalent

program pI for which (i) the running time of pi Is not much worse than the

running time of p (and may be much better) and (II) ~ng all the progr~ms

provably equivalent to pi, pi has a (nearly) optimal runnIng time (a.e.). pi
can be effectively found from p.

Theorem 2 has an obvious Corollary, which we state In highly IntuItive
terms:

Corollery I. For every function f Which has speed-up among~ Its pro­

gr.ms, there are programs p for f which have very good running times and which

have, among all the programs provably equivalent to p, (nearly) optimal running
times (a.e.).

Corollary I suggests both that the speed-up phenomenan of Blum Is highly

complicated and that Its Intuitive Implications are not easily summarized.

The proof of theorem 2, which we now sketch, is sImilar to the ppoof af

Theorem I. Given the program p, we let Po be either p or alp) where a is as

in Theorem 1. twe may (non-effectively) choose Po to keep t the smaller of
Pot or t ().) We deflnea total recursive function f as fo)Iows: to computePap

~f(I)(x). do log x steps enumerating theorems. letting PI' P2' P3' .•. , Pm
(m<log x) be the programs for which we obtain

~', .•~ , In these log x steps.
I Pj

Set

Of(') (x) • 0 (x) + J Iwhere J
. I p. 0 0

J o
Is chosen so that t (x)

PJo

.. min
O~~m

large x.

all j>", ~'~I -~ I, if we believe the soundness of
o PJ

have that for a II x, the chosen J Is P .0. Thus
o 0

this, we must have for any J.=:..I for

that ¢I (x) > ~ (x) for all sufficiently
PJ - Po

Furthermore, to achieve

The function f Is provably total, so we may find a ffxedpoint I
p

for which

0f(i) ~ oJ' Since for
o 0

our proof theory, we m&St

But by the construction of f, ~f(1) Is

that. (1
0

) Is near optimal among 0 the
never much greater. than 4l

p
,

programs provably equlvaleRt,
showIng

to It.

!,,
/
I 6

Corollary I dearly appl ies not Just j~ functi~ns Lth speed-up almost

everywhere (a.e.) but also to functions wfjch have spe+-up Infinrtely often,

(1.0.). In this version, it contrasts veiy sharply wllj Blum l s result [B-2J

that there are funet lon5 wh Ich not on IY ,have 1arge i. o. speed-up. but for. wh Ich

programs for this process .9!!!. be effecti:.'ely found. if orem 2 guarantees

find aCp), a program for f which is an ~.o. speed-up (f, the task of proving

for such a p that p and aCp) actually compute the sa~ function Is hopelessl
We state this as J

Corollary 2. Let f be a function with SUfflCie~tlY large I.o~. speed-up,

and Jet a be ~ algorithm whIch, given a program e/,or f, finds a program a(p)

which also computes f and which is an 1.0. speed-u~iof p. Then there are (lots

of) programs p for f which have good running timeSj~ut for which we cannot

prove that p and a(p) compute the same function. !
Corollary 2 is consistent with Blum's result~J on effectlve 1.0. speed-ups,

because Blum constructs a functJon f with 1.0. SPl{~d-uP by giving a specific

program Po for f and constructing his algorithm a /.0 that .!..f. p cOlJ1)utes f, 90
does a(p). (Since in genera) we cannot. for an 5j"bitrary program p for f, prove

that p and Po compute the same func!l.on, we cann!t In general prove that p and

a (p) compute the same funcUonl) As pointed out, to us by Albert Meyer,

examination of Blumls proof must prCIoI'e that not every class of provably eqlJi

valent programs contains a program \'lith a (near;' optimal a.e. running time..

However, 8S we next show, a much strorJger resule holds: every function has

any total function. Le~ p be

we can effectively flnd!a programFrom p~ total function.

classes of provably equivalent progralrs with arbitrarily large speed-up in the

classes. The proof of this result is, similar to any of the standard proofs of

speed-up [8-1], eM-F).[V). but surpri1-lngly simpler than these usual proofs.

(Its proof is by a cancellation argu~\nt In which nothing gets cancelledll)

Theorem 3. (Speed-up). Let r(x , t> be

~ p rog ram for

p I such that

(i) Po and pi . compute the same functIon.

(ii) for any p" for which we can prove that p'l and pi compute the same

function we can effectfvely find a pin for which ~.£!!!. prove that-­,

,

•I

7

",~.

I;j

i
for which

I •
pili and p" compute the same functfon, and,
pili Is an r-speed-up of pll on the run times of pili

I
r Is defined.

(i ita)

(j i ,b)

;",

Furthermore. If r is honest, the run'tlmes of the programs provably equi­

valent to pi are "a bout ll as fast as any program provably equivalent to p.

Proof. We implicitly employ the recursion theorem to obtain a function

til" For any i (and In particular for the program I obtained by the recursion

theorem) we will be able to list PI' P2' P3' "0' an InfInite list, possibly

with repetlons,ofall programs provably equivalent to S(I,O). Here S Is the,
5J function for which

1-'(Vi)(Vn)(\I)<)[~S{i,n) (x) • ~i (n,x)):

p is as in the statement of the theorem.

We consider

are given by the

•. to be a function of
I

following flowchart:
two variables where computation rules

[Begin 1 .
IRead u and X}

.L
, s no

--r Set ~1(u,x)~~p{~)1x > u

yes

Calculate ~1(u,6). ~,(u,l), ~I (u,x-I)

to find the set defined by

0 = (pJ tpJ is cancelled in these calculations}u,x

Calculate f,{x,x), ~. (x-I ,x) , ~. (u+I,x)
I I

to find ~S(i ,x) (x), ~S(I,x'll (x), ... , IS{; ,u+1) (x) t

Set 41. (u,x) ... 1 + max {~p (x)lp
J

_ o " ~ (x) .::. I'I(X, ~S(r,J) (x»I
u<j~x J U,X PJ

(t:'all any P
J

satisfying the above conditions cance lied.) ,
~. (u,x) • ~P (x) if no P

J satisfies the ~bove conditions.I

- .'

-
f

,

8

Now 1n the event that r Is proYab ty tota I, we read Ily see that for any
fixed u,

~IAX .[CO,x) .. AX (Jr(u,x) unless some P
J

with I~~u Is cancelled ~Jhlle
calculating Ax +,(O,x).'

But for each J, I~~u,

~ "5(1 ,O)-'P
J

'Ax" (O,x)-'5(1,O).'

Examining the construction therefore immediately yields for each J, '~~ul

r lp
J Is not cancelled while calculating Ax ¢.,(O,X).I

Hence for each fixed u,

1-"5(1 ,0)-.5(1 ,u))­

Furthermore, for each flmed J.

1-' .P
J
-'5(1,0)-'5(1 ,j)'

while ~IPJ Is not cancelled while calculating AX +j{O,x),'

Immedletely yields .by examining the construction,

(2) ~'(Yx)[~'-;'r(x, .5(I,J)(x» < +p/x»).' •

The proof of (I) and (II) is now complete once we observe that, since for

each J ,f-'Pj Is not cancelled, I If we believe In the soundness of our proof

theory, it follows that In fact no P
J

Is cancelled, so from the construction

we see that for every u, 4>S(t .u)"4>p' (An easy double induction, simi lar t<l

one given below, is used to show that If p and r are total, so Is 9
1

" The

bases of the induct Ion are that (Au),," (u,O)-'p and (Vx) [u>x,~. (u,x)•• (x) J.)
o -0 lOp 0

The flnel remark follows, because from Theorem I, we may assume that

p is already about as fast as any program provably equivalent to P. while from

the construction, ~S(IJY)(.) = rX-u-o ~p and in the event that p is nearly an

optimal program, we can hardly expect to obtain equivalent prograff~ with r-speed-
up and better run times than thIs. 1

To complete the proof for the case when r Is not provably tota':, we now

assume (as we may without loss of generality) that r Is provably honest (or

near honest) and provable monotone. Under these dondltlons we may Interpret

• {x)::. r (x, .5(1 ") (x»PJ oJ

as megnlng either that a'i of the above calculations terminate and that the
,inequality holds or that ~ (x) Is defIned bu~ one of ~S(i ,J) (x) or

PJ

9

rex, ~S(I.j)(x» Is undefined. Thus for any x, successful computation of

Op/
x

) leads to caneelling PJ unless both .S(I,J)(x) and rex ••S(I,J)(x»

are defined and

·P
J

(x) > r(x, .S(I,J) (x».

• 0 '
PJ

Implies~'(l6c1I+1 (O.x) defined

Thus, the proof goes about as before, except that for fixed u. we see
for all J. 1.::.J~u

~,~x +,(O,x) • +S(I,O)

that

Op (x) defined)'
J

AI~o ~I~S(I.O) c 'Po 50 PJ is not cancelled'
J

I-! (VX)[O, (O,x) defined ","plies .S(I .J) (x) defined and r(x, .S(I,J) (x»)

defined, ~.PJ(X)' r(x, .1(I.J){x» for all x~J.I'

From this, for each fl.ed u
•
H~x) +j (O,x) • h +1 (u.x),'

completing the proof.

Although Theorem), guarantees that we can, Tn a very strong sense obtain

infinite chains of provably equivalent speed-ups. the standard methods of con­

structing functions with speed-up place some limits on how good the run-time
of such Infinite chains can be:

tp (x) ,
, I
effect'ively• (xl) '.e.

Pi+l

Theorem 4.

there ~ a total
There are arbitrarIly large total recursive fUDctlons r for which

recursive function f which does have ~-speed-up, but which

also has a fixed program p such that for !!!.l program PO with lfI .. ~ .. f and
P PO

• < t a.e. there Is no Infinite sequence of programs PI' Pz' P
3

, PL, ... suchPO- P - •

that each program computes f and for a11 1>0 (a)~'~ Z lfI • and (b'
- Po PI

(In fact, from the size of program PO' we can

bound the number of programs in any such r-decreasing sequence of provably equi­
valent programs with run timSs below t

p
.)

o
The proofo-f this Is re1atlvely straightforward. The standard method ([M-FJ)

for constructing functlons,f, with speed-ups start with an honest function r

and makes the good run times of the function f coflnal In the infinite,

10

e <t,p-p
o

foughly at

Since the sequence

complexity sequence of

take any program p for

x-Ifunctions 50 >5 1>52 ,., where P1(x) "" S (x). If we

f for which t_<p , whenever p computes f ~nd
p-o 0

we observe that for a as in Theorem 1, a(p) computes'f and Is
o

least as fast as any program provable equivalent to p •
o

5 • 5," .•. is cojHnal In the good run times of f, t >5. for some i.
o o()_ I

Po
This proves the theorem except for the parenthetical remark. To actually

calculate the bound, one must do the proof from scratch, based on the speed-up

construction In lH-YJ where techniques for c'lculating bounds fn complexity

sequences are Introduced. (If one wishes a similar calculated bound for speed-ups

simply by recursive functions one adopts the extension of these techniques used

in [M-F].) We forgo the det8115. since they are lengthy.

We now understand ,several theoretical reasons why we may be unable to

find optimal programs, for a function. By the standard speed-up Theorem (B-1).. .
optimal programs may not exist. By Theorem 3,. even when optimal programs

exist for a function, we may be unable to fInd them If we start with ~ program

which is not provably'equlvalent to an optimal program. Theorem 5 gives yet
another reason.

Theorem 5. For every program P, we can effectively find a program pi

such that 'p••p"' the run times of p and pi are about the same, and~ p' can

~ be proven to be near optimal. (In particular If p Is optimal or near

optimal, pi Is a near optimal program which cannot be proven to be nearly optimal.)

Proof. Employing the recursion theorem. we define pi as follows: on input

x, pi spends about log x steps attempting to prove Its awn optimality. If

It doesnlt succeed, it simulates p on x, taking about. (x) + log x steps
P

{in standard time measure}. If It does succeed, It simulates pll on x Where pI!

is a program for which rIJ ·rIJ II but the. computatIon of ~ II by pll wastes lots of
P P P

resource and hence Is wu.. optimal. The result follO\'W's directly. (With care

we may obviously have ~~ ~~ .!)
. P P

,

II

a.e. I

8.e.

direct consequence of a result of Albert Meye~'s

SpecIfically, Meyer's result states that for

,(x'~I(x» > ~p(x)

r(x'~I(x» > ~ (x)
- P

Finally, we remark that some functions which do have (near) optimal com­

putational methods have no programs which compute the function which can be
proven near opt Irna I:

Theorem 6. There Is 8 total recursive function rand 8 total recursive
function f with program p such that

(I) ~I· P 1""lIes

and (il) If [~p.~;""

then ~P ~ f.

Proof. This result Is a

listed as Theorem I of [G-B].

every suffIciently large total recursIve function, h, every r.e. class of a.e.

h-complex partial recursIve functions (for example, the provably near-optimal

functions which are at least h-complex) omIts arbitrarily complex 0-1 valued

recursive functions. f. Heyerls proof actually proceeds as follows: Given a

total recursive function t and an enumeration a{a). a{I), 0(2) •... of programs

for a.e. h-complex functIons, Heyer constructs f so that f is at least t

difficult a.e. but f falls to agree with any of ~a(a)' ~o{I)' ~o(2)' ..•

But examlnatioo of Heyer's construction of f makes cJear that f can be chosen

so that it Is not much more difficult than t. Thus f Is near optimaT.

Suppose, for example that Po' Pl' P2' P
3

, '" is. a list of programs
which are provably "near" optimal, where IInearll here means the fixed re­

cursive functions h such that the preceeding t and f of Meyer1s

proof satisfies ~f~ h • t a.e., where ¢If is the difficulty of a good

way of computing f. In reasonable measures, we can expand Po' P
l

, P
z
'

.... to a 1ist Plj (0 2 i < co ; a 5.... , < Q>) such that PI '" P
ij

for all

and j, t c t a.e. and P
IJ

Is obtained from Pi by computingPI P iJ
• (x) c ~ (x) unlessp. . p.

I J I

up the value of

XED. and are taking at least h(x}steps to JookI

() . bl If p h p' h J 'hifI x lnata e XE J,w ere J lste
t
,PIj

canonically enumerable finite set. Then If 9 Is a function which is

provably near optimal and h-complex a. e., there must be some program

in the list Pij which computes g and takes at least h steps every­

~here. Thus, from the list Pij it is possible to extract a new list

of programs 0(0), a(l}, e(2}, ... such that every program o{i} In the

list satlstles ¢lo{i)::.h everywhere and !fIoO}· ~PJ for some J.

Furthermore. for every J. If ¢lPI ~ h, a. o. then ifI
pJ

.41
0

(1) for some

I. I. e., ~a(Or.a(I)"a(2)' I•• II" of 'he provably ne.r op,lmal

functions which are h-complex a.e., makIng Meyer's proof applicable.

·

Bibliography

[8-1] Blum, H., A machl,ne Independent theory of the ccmplexlty of recursive
functIons, JACM, 14 (1967), 322-336.

(B-2] Blum, H., On .ffectlve procedures for sp••dlng-up algorithms, JACM,
18 (1971), 290-305.

(C) Chaltln, Gregory, Information-Theoretic limits of forma) systems,
JACH, 21 (1974). 403-423.

(Co] Collins, William, Elom.ntt of provably recursive analysis, Notre
D... Journ.l of Fprmol Louie, to Ipplpr.

(Co-Y] Collins, W., and Yount, P., DI,contlnultl •• of provably correct
cOl'l1Jutable real va·1uad functions, to appesr.

[FJ Fischer, P. C., Ttuaory of provable recursive functions, Trans. A.H.S.
(1965), 117, 494-520.

[FI] Floyd, R. W., Assigning meanings to programs, Proc. Sy~. App.
Hath. " 19 (1967), Hath. Aspacts CO"". Sc •. , Amer. Moth. Soc. , 19-32 .

. _._._-----_._._--
[G-B] Gill, J., and Blum, H., On almost everywhere complex recursive functions,

JACM, 21 (l97~), ~25-435.

[H-V] He'_, J., and Young, P., On Ilze ~.fflcl.ncy f~r program$ admittIng
speed-up., J. Symbolic Logic, 36 ('971), 2'-27.

[H] Kenna, Z., The correctness of programs, J. Compo Syst. Sci. 3,
(1969). 114-127.

[~-F] Meyer, A., and FIscher. P., Computational speed~up by effective operators,
J. Symbolic Logic, 37 (1972), 55-68.

[R-V]

[V-I]

[V-2]

Ritchie, ft., and Young, P., Strong representabillty of partial functions
In arlthriletlc thoorles, Inf. ScI. 1 (1969). 189-20~.

-. - -_._""--- - . _. - ~-

Young, Paul, Easy constructions In complexity theory: gap and speed-up
theorems, Proc. A. H. 5., 36 (l973), 555-563. I
Young, Paul, Optimization among provably equivalent programs':
preliminary abstract, Proceedings of l~th Annual IEEE Symposium on
Switching and Automata Theory, 1973, 197-199.

EImA'fA SHEET

a[.tir~~atio~ ~~o~g P7.0V~ly equivalent programs

i·'ac~_'.:l

~--''-

1 ;, 1
arg-~nts

3 9 'l'hat i8.L.
3 10 drop a_a
4 b 7-8 from , ~ (x) ~ ¢a (p) (x),p

to, ,..'~ (x) ~ +0 (p) (x) • ,P
5 5 .5>timal
6 b 3 n top'0-, 13 1'ihare to whose
8 b 6 t'lhen to ~her~

~i,.l 1 which do have
11]_6

~. e.

:i
:1I,

	Optimization Among Provably Equivalent Programs
	Report Number:
	

	tmp.1307986960.pdf.H5Or2

