Purdue University
Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1975

Optimization Among Provably Equivalent Programs
Paul Young

Report Number:
75-156

Young, Paul, "Optimization Among Provably Equivalent Programs" (1975). Department of Computer
Science Technical Reports. Paper 103.
https://docs.lib.purdue.edu/cstech/103

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

OPTIMIZATION AMONG PROVABLY EQUIVALENT PROGRAMS

Paul Young
Computer Sciences and Mathematlcs Department
Purdue University
Lafayette, Indlana 47907

CSD-TR 156

Abstract. We consider the extent to which it Is possible,

given a program
p for computing a functlon, f

» to find an optimal program p' which also

computes f and is ejther provably equivalent to P or else provably an optima)

program. Qur methods and problems come chiefly from abstract recursion-

theoretic complexity theory, but some of our results may be viewad as directly

challenging the intuitive interpretation of earlier results In the area.

Key words and phrases: abstract complexlty, theory, proving equivalence or

correctness of programs.

OPTIMIZATION AMONG PROVABLY EQUIVALENT PROGRAMS

Paul Young' , :
Computer Sclences and Mathematics Departments
Purdue University
Lafayette, Indiana 47907

. Motivation

In traditional recursion-theoretlc studies of complexity theory, two
Programs are regarded as equivalent if they compute the same function. The
efficiency of the running time of a program [s studled by comparing its
(ultimate, a.e.) behavior with the running times of all other programs for the
same function.

It Is not very difficult to find programs p and p' which in fact both
compute the same function, which can both be proven to halt on all inputs,
yet which can not be proven to compute the same function. Suppose then that

one is trylng to optimize some class of progranms, starts with a program p which
Is known to compute some desired function, f, and then is given program p'
as a better program for f. The user must regard the situation as unsatisfactory;
off hand, his only method for verifying that the use of program p' Is legitimate
is: after having run p' on a given Input x, he must then run program p on
input x to verify that p' Is correct on that input.

In practlce then, it seems clear that if one wants to consider program
p' as a possible optimization of program P, one first needs a proof that p
and p' really perform the same task. (1E_thls paper, we assume that this means

that we can prove that programs p and p' really do compute the same function,
i.e., p and p' are provhbly equivalent.)

We Timit our attention to programs for total functions, and for the
purpose of thls study we do not question the usual recursion-theoretic assump-
tions that (1) all programs are legitimate obJects of study, and (ii) infinite
. functions and the ultimate behavior of run times on large argument yield useful

lSupported by NSF Grant GJ 27127A1. Research performed while the author
was a visiting professor In the Electrical Engineering and Computer Sciences
Department, Unlversity of Callfornla, Berkeley, 1972-73.

2

insights Into computational complexity. Our work may be viewed as questioning

the traditional view that any two programs which compute the same function

should be regarded as equivalent. If this view |s taken seriously, it implies

that many results of recursion theoretic complexity theory should be reexamined.

fn the long tun, work such as this may have imptications for studies of how
one proves equivalence of programs (Floyd, Manna, etc.L but we make no such
explicit claims here,

In intultive terms, our two main results may be stated as fol)lows:

i) Every computable function has vepy good programs which are (nearly)

optimal {among the provably equivalent programs) .

ii) Every computable function has good classes of provably equivalent

programs in which 1t is possible to effectlively find very large
speed-ups and to prove both the correctness and the good Funning times
of the sped-up programs.
Thus from any practical standpoint, the traditional v/iew that questions
of optimality and speed-up are properties of the functions to be computed is
erroneous: from our point of view, questlons of optimality and speed-up are

completely independent of the function to be computed, but depend instead on

the description of the program used to compute the function. With a little

reflection, we believe the reader will find these results not at all} surprising.
We also observe that the standard method [M-F] of constructing functions
with well controlled speed-up cannot possibly produce very good programs for
which It is possible to have many provably equivalent programs which are sped~up.
Thus if we are concerned about provably equivalent programs, this standard
method does not produce any “'dood" Infinite chains of speed-ups. (Of course,
by (i) above, not all good programs can have infinlte chains of provably equi-
valent speed-ups, even when the functlon itself has speed-up.)

Il. Notation

bn stating our results, we use standard intultive and formal terminology
for abstract complexity theory. Our proof theory for proving equlivalence of
programs Is any formal mathematical system (so the sat of theorems is recur-
stvely enumerable), which is adequate for carrying out elementary arlthmetical

arguments and which s sound for arlthmetlc (no false arithmetic statements

are prowable). For examples, first order Peano-arithmetic meets these

requirements, and it is commonly believed that any of the standard axlomatic

ements. Although the reader
xloms he pleases within these
oughout this paper.

systems for all of set theory meet these requlr
is free to choose any proof system and set of a
constraints, this system |s to remaln fixed thr

If S is a sentence which is provable In this fixed theory, wa write

n arbltrary standard IndexIng
but Instead In terms of any Provably standard

hich we have a partial recursijve function
v and a total recursive function S and computable Pairing function <, »
F's is totar®

" S, We state our results, not in terms of a
of the partlal recursive functions,
_indexIng. That is an indexIng for w

» for which

F'< > is a total one-one onto function from NxN+N'

F 1) (%) (vy) [U(1, <,y) =0 (S (<1 ,x5) ,y)] .

F'if ¢ is a partlal function computable by a Turlng machine, then there
exists an lntgger e, such that ye= AzU(eo,x)'

We state without further comment the following fact,
the reader after a little reflection.
functions mentioned In the literature a

Partlal recurslve functlons, including, €.9., Turing machines and ALGOL, is

provably standard. We follow standard recursion theoretic procedure and
abbreviate Al (i ,x) as ¢

writing llne 3 above as

FU, <x,y>)=U(s (<, x>) vy)!

which should be clear to
Every indexing of the partial recursive .

5 a reasonhbie model for computing all

We frequently drop universal quantifiers, e.g.,

Furthermore, examination of the standard proof of the recursion theorem
Proves that there is a total recursive functlon m with
F'n Is total’

k'¢i total Implies ¢

the following properties:

y = '
¢; (n (i) Pn (i)
We use such facts without further proof, :

Finally, we consider, not arbitrary Blum measures for computational complexity,
but instead only provable measures; specifically, we require
F' (vi){domain ¢i-dmain ¢i]'

and k'the relation ¢i(x)£y is decidable.’ ' |

Again, no examples of nonprovable measures have ever been seriously proposed
in the llterature.

{ 4
|
111 Results i

The proof of Theorem h depends on the followlng somewhat paradoxical
result. The reader should;bear In mind that a result of this form is possible
only because (as is well-known) our proof methods cannot be strong enough to
prove their own correctness. |

Theorem 1. There Is an effective procedure which, glven any program
p finds a program o{p} which does compute the same function as p and whose
run time in the 1imit 1s (almost) as good as that of any program provably equi-
valent to p, _

Note In particular éhat If every program provably equivalent to p should
have a large speed-up ppovably equivalent to tt, then wa would effectivety
have found a program computing the same function as does P, but doing so more
rapidly than any program provably equivalent to p. (Hence we could not prove
(inour formal proof theory} that p and o(p) compute the same function.)

Theorem 1 Is proven by a straightforward enumeration and simulatlon of all
programs provably equivalent to p, Which we now outline,

In multi-tape Turing machine time, we might, for example, define ¢a(p) i
as follows: to compute ¢U(P)(xb do log (x) steps In the enumeration of
theorems to obtain a list of programs p, po, Py, Pys e B {m<fog x) provably
equivalent to program p. Then begin dovetailing the computationsof ¢pr),

¢p0(x)..3pm(x), taking as ocutput for ¢G(P)[x) the first output obtained from
these dovetailed computations. Thus, if ¢p=¢p(i)' then for all sufficiently

large x

2
¢U(p)(x} 5_109(X)(¢p(i)(X)) .

Furthermore, sinse for ajl i, Fbp=¢p', if we believe that our proof theory is
sound, we belleye that ¢p-¢a(p)' " In fact, for each fixed x, ¢p(x)=
¢0(p)(x). even if ¢ (x) is undeflned. However, since in general wecannot

r y . / X F)
hope that F(Vl)[¢p-¢p], there is no a prlori method to obtaln }¢p=¢c(p)’ and

in general we shall sée that we cannot prove the latter statement.

A careful statement of Theorem 1 would read as follows: For any provably o
standard indexing and any provable measure, there are provably total recursive
functions o and r such that for al) P, ¢p=¢o(pj and for any p' such that ;
F'p =3 '8 < r(x, ¢ +(x}) a.e.

¢P ¢p] U(P)(X) > (K p'())

5

Our next theorem guarantees that all functions have near obtimal programs.

Theorem 2. . (Optimization) Given any program p, there is an equivalent
program p' for whéch (i) the running time of p' s not much worse than the
running time of p (and may be much better) and (1i) among all the programs
provably equivalent to p', p' has a (nearly) optimal running time (a.e.), p’
can be effectively found from P.

Theorem 2 has an obvlous Corollary, which we state in highly intuitive
terms:

Corollary 1. For every function f which has speed-up among all 1ts pro-
grams, theee are programs p for f which have very good running times and which
have, among all the Programs provably equivalent to P, (nearly) optimal running
times (a.e,).

Corollary 1 suggests both that the spedd-up phenomenen of Blum is highly
complicated and that [ts Intuitive Tmplications are not easily summarized.

The proof of theorem 3, which we now sketch, is simlilar to the ppoof aof
Theorem 1. Given the program p, we let P, be elther p or o(p) where o is as
in Theorem 1. ‘Ue may (non-effectlvely) choose Po to keep ¢p the smaller of
¢p or ¢o(p)') We definea total recursive function f as fol lQws: to compute
¢f(l)(x), do log x steps enumerating theorems, letting Pys Py Pgs --vs P
(m<log x) be the programs for which we obtain

F%i-¢p' in these log x steps.

Set
- + I r ho so that ® x) = min {¢ x .
¢f(i)(x) $. (X) :Ewhe e j Is ¢ aan tha () ! P-()u

The function f 1sg provably total, so we may find a fixedpoint Ip for which
e (i y = #; - Since for all j>o,}3¢l = ', if we believe the soundness of
o] o "
our proof theory, we mast have that for all x, the chosen jo is PO-O. Thus

¢, -¢f(i)-¢p + Furthermore, to achieve this, we must have for any J>1 for
o o o

' that ¢ (x) > 0 (k) for all sufficiently large x.
i P] Po

But by the construction of f, ¢f(l) Is never much greater.than °p , showlng

that .(io) s near optimal among ° the programs provably aqulvaleﬁt to it.
%

. —

Corollary 1 clearly applies not just /o functibns ith speed-up almost
everywhere (a.e.)} but also to functions thch have spedjl-up infinttely often,
(i.0.). In this version, it contrasts very sharply wish Blum's result [B-2]
that there are functlons which not only have large i.o. speed-up, but for. which
programs for this process can be effectively found. TI orem Z guarantees
that although we can, given a program p fdr one of Bluw/s functions f effectively
find o(p), a program for f which is an i.0. speed-up ¢f f, the task of proving
for such a p that p and o(p) actually compute the sam function Is hopeless!

We state this as

Corollarz 2. Let f be a function with sufflciey{Iy large |.0l speed-up,
and let g be any algorithm which, given a program p/For f, finds a program ¢ (p)}
which also computes f and which is an i.o. speed-up/of p. Then there are (lots
of) programs p for f which have good running times but for which we cannot
f

Corollary 2 is comsistent with Blum's results}on effective I.0. speed-ups

prove that p and o(p) compute the same function.

because Blum constructs a function f with I.o. spiad-up by giving a specific
program po for f and constructing hls algorithm ajuo that if p computes f, so
does o(p). (Since in general we canrnot, for an gf-bitrary program p for f, prove |
that p and P, Compute the same funcqlon, we cannﬁt in general prove that p and
o (p) compute the same functionl) As pointed out to us by Albert Meyer,
examination of Blum's proof must prave that not every class of provably equi-
valent programs contains a program with a (near, optimal a.e. running tima.
However, as we next show, a much strornger resul: holds: every function has
classes of provably equivalent progrars with arbitrarily large speed-up in the
classes. The proof of this result is similar to any of the standard proofs of
speed-up [B-1], [M~F],[¥], but surpritingly simpler than these usual proofs.
(lts proof is by a cancellation argumint In which nothing gets cancetlled!!)
Theorem 3. (Speed-up). Let r{x,y} be any total function. LeE p be |
any program for any total function. From p we can effectively find'a program
P' such that |
{i) Py and p'.compute the same functlon,
(ii) for any p" for which we can prove that p'' and p' compute the same

functlon we can effectively find a p' for which we cen prove that i

—— e —— i
' I
i

e

(ii,a) 'p"' and p*' compute the same function, and \
(ii,b) 'p"' 1s an r-speed-up of p'" on the run times of p"' for which
LT Is deflned.

Furthermore, if r is honest, the run times of the programs provably equi-
valent to p' are '"about" as fast as any program provably equlvalent to p.

Proof. We implicitly employ the recursion theorem to obtain a function
¢, For any i (and 1n particular for the program | obtained by the recursion
theorem) we will be able to lst Pys Pys p3, «»-5 an infinlte 1lst, possibly
with repetions, of all programs provably equivalent to $(1,0). Here § Is the
S: function for which

F(wi) (vn) (0 Lag () €x) = 4, (n,x)]

P is as in the statement of the theorem.
We consider ¢i to be a functlon of two variables where computation rules

are given by the followlng flowchart:

Read u and X

[0 yfset 4, (u,0=, 0]

Calculate ¢I(u,ﬁ), ¢|(u,l), . ¢f(u,x-l)
to find the set defined by
Du,x= {pjipJ is cancelled in these calculations}

Calculate Ol(x.x), ¢i(x-l,x), ceey ¢i{u+l,x)

Lio find 050) (x), s (1,x=)) X0 <ot B (i uey)) ;

o

Set ¢.(u,x) = 1 + max {qbpj(x),pj ¢ Du'xz ¢pj(x) < ri(x, °s(i_,_|)("”

u<j<x

tall any p, satisfying the above conditlons cancelled.)
¢i(u,x) = ¢p(x) if no P satisfies the above conditions.

L

8

Now In the event that r is provably tetal,

we readily see that for any
fixed u,

- 'ax ¢[(0,x) = Ax ¢I[u,x) unless some p
calculating ax Ql(o,x).'
But for each J, 1<]<u,

""‘s(i.o)"*pj & 2x¢,(0,x)

] with I<j<u Is cancelled while

o= .
*s(1,0)"
Examining the constructlon therefore immediately ylelds for each Js t<j<u,

P-'pj Is not cancelled while calculating Ax ¢'(o,x).'
Hence for each fixed u,

5 0,00™s (1,0 . " !
Furthermore, for each fimed 1,

" s 0,001,))
while }Jpj is not cencelled while calculating Ax ¢i(0,x),'
immedlately ylelds by examining the construction,
(2} F'(yx) Do j=arix, °s(I,J)("” <9 (1. .

The proof of (i) and (I1) is now complete once we observe that, since for
each j,b‘pj is not cancelled,' If we belleve In the soundness of our proof
theory, it follows that In fact no p.l Is cancelled, so frem the construct!sn
we see that for every u, ¢S(I,u)-¢p' (An easy double induction, similar to
one given below, 15 used to show that |f P and r are total, so is ¢'. The

bases of the induction are that (1u)¢i(u.0)-¢p and (on][u3;0==b¢i(u,xo)=¢p{x0)].) E

The final remark follows, because from Theorem }, we may assume that
p is already about as fast as any program provably equlvalent to p, while from
the construction, °S(l,ﬁ)(') =Yy °p and in the event that p is nearly an
optimal program, we can hardly expect to obtaln equivalent prograns with r-speed-
up and better run times than thls.
To complete the proof for the case when r Is not provably total, we now
assume (as we may without loss of generality) that r is provably honest (or
near honest) and provable monotone. Under these donditlions we may Interpret
@pj(x)‘i r (x, ¢S(I,j)(x))
as meaning elther that all of the above calculatlons terminate and that the
inequality holds or that @p {x) 1s deflned but one of @S(i,j)(x) or '

]

|t

rix, QS(I j)(x)) Is undefined. Thus for any x, successful computation of

¢pj(x) leads to canaelling P unless both °S(I,j)(x) and r(x, ws(l,j)(XJ)
are deflined and
GPJ(x) > rix, °S(I,j)(x))'

Thus, the proof goes about as before, except that for fixed u, we see
that for all jJ, 1<j<u
] . - B
F'ax ¢l(0.3) ¢5(I,0) ¢pj'
#'(Uk)[¢'(0,x) defined Implies ¢p {x) deflned)'

Also F'¢S(I,O) = ¢pj SO P; is not cancelled!

FJ(Vx)[¢i(D,x) defined dmpllies ¢S(I J)(x) defined and r(x, ¢S(i j)(x))

defined, and ¢pj(x) * rix, QI(l,j)(x)) for all x > j.]°

From this, for each fimed u
Hax) $,(0,x) = ax ¢ (u,x),*

Eompleting the proof.

Although Theorem 3, guarantees that we can, In a very strong sense obtain
infinite chains of provably equivalent speed-ups, the standard methods of con-
structing functions with speed-up place some limlts on how good the run-time
of such i{nflnlte chains can be:

Theorem 4. There are arbitrarlily large total recursive fanctions r for which
there is a total recursive function f which does have k-speed-up, but which
also has a fixed program p such that for any program p, with ¢p - ¢po = f and
'pof-ép a.e. there Is no infinite sequence of programs p;, p,, P3r Pps --- such
that each program computes f and for all 1>0 (a)!3¢p0, ¢p; and (b) gpl(x) >
rix, ¢Pi+'(x)] a.e. (In fact, from the slze of program Pys We can effectively
bound the number of pPrograms in any such r-decreasing sequence of provably equi-

valent programs with run timés below @p)
: 0
The proof of thlé Is relatively straightforward. The standard method {[M-F1)

for constructing functions, f, with speed-ups start with an honest function r

and makes the good run times of the functlion § cofinal In the infinite
I

10

complexity sequenﬁe of functions SO>S]>52... where pl(x) = Sx_l(x). If we

take any program p for f for which @pipo, whenever P, computes f and @pojpp,
we observe that for @ as In Theorem 1, a(po) computes f and Is foughly at

least as fast as any program provable equivalent to +) Since the sequence

So, Sl’ . IS cQIfrnaI In the good run times of f, 0°U 3§i for scme 1.
{p,)
This proves the theorem except for the parenthetical remark. To actually
calculate the-bound. one must do the proof from scratch, based on the speed-up
construction In [H-Y] where techniques for cdlculating bounds In complexity
sequences are Introduced. (If one wishes a similar calculated bound for speed-ups
simply by recursive functions one adopts the extenslon of these techniques used
in [M~-F].) We forgo the detalls, since they are lengthy.
We now understand several theoretical reasons why we may be unable to
find optimal programs for a function. By the standard speed-up Theorem [B-1],
optimal programs may ﬁot exlst. By Theorém 3, even when aptimal programs
exist for a functlon, we may be unable to find them If we start with a program
which is not provably 'equivalent to an optimal program. Theorem 5 gives yet
another reason. -
Theorem 5. For every program Py We can effectively find a program p!
such that ¢p-¢p.. the run times of p and p' are about the same, and p’ can
not be proven to be near optimal, {In particular if p fs optimal orF near
optimal, p’' Is a near optimal program which cannot be proven to be nearly optimal.)
Proof. Employing the recursion theorem, we defina p' as follows: on input
x, p' spends about log x steps attempting to prove Its own optimalfty. |If
it doesn't succeed, it simulates P on x, taking about 9p(x) + log x steps
(in standard time measure). f it does succead, It slmulates p'' on x where p'"
is a program for which ¢p"¢p“ but the computation of ¢p” by p'" wastes lots of
resource and hence is not optimal. The result follows dlirectiy. (With care

we may obviously have Fbp=¢p,!)

. 11
Finally, we remark that some functions which do have (near) optimal com-
putational methods have DO programs whlich compute the function which can be
proven near optimal:
Theorem 6. There is a total recursive functlon r and a total recursive
function f with Program p such that

(1) $; = p lmplles v(x,#l(x)) > ﬁp(x) a.e.
and (il} |If [¢P-¢; — r(x,@l(x)) g_ﬁp(x) a.e,’

h .
then ¢p ¥ f

Proof. This result is a direct consequence of a result of Albert Meyer's
listed as Theorem | of [G-B]. Specifically, Meyer's result states that for
every sufflclently large total recursive function, h, every r.e. class of a.e.
h-complex partlal recursive functions (for example, the provably near-optimal
functions which are at least h-complex) omlts arbitrarily complex 0-1 valued
recursive functions, f. Meyer's proof actually proceeds as follows: Given a
total recursive function t and an enumeration o{0), ofl), o{2},... of programs
for a.e. h-complex functlions, Meyer constructs f so that f is at least t
difficult a.e. §ut f fails to agree with any of ¢0(0), ¢U(]), ¢a(2)' Ce
But examlnation of Meyer's construction of F makes clear that f can be chosen
50 that it Is not much more difficult than t. Thus f Is near optimal.

Suppose, for example that Por Py Pys p3, R is_a list of programs
which are provably "'near" optimal, where ‘near" here means the fixed re-
cursive functions h such that the preceeding t and f of Meyer's
proof satisfies ®g< h * t a.e., where °f is the difficulty of a good
way of computing f. In reasonable measures, we can expand Py Py Py>

to a list Py (0<i<o;0<, <m guch that P; = Py for al)

i and j, ¢ = ¢ a.e, and le ls obtained from P; by computing

P, '

i) i

¢p (x) = ¢p (x) unless x ¢ D. and are taking at least h(x)steps to look ?
i i .=
up the value of ¢p (x} in a table If X € ﬁ]’ where tJ is the,Jth ;
¥ | :

canonically enumerable finite set. Then If g s a function which is

provably near optimal and h-complex a. e., there must be some program

in the list pij which computes ¢ and takes at least h steps every-

where. Thus, from the list P, it is possible to extract a new list

of programs a(0), o(i), 0(2), ... such that every program o(i} in the
- f .

list satisties °o(i) > h everywhere and ¢c(l) ¢pl or some |

Furthermore, for evary |, If ¢pl > h, a. e. then ¢p L] ¢a(l) for some :

- f timat
. 1, e., ¢a(0?¢u(l)'¢u(2)’ Is a llst of the provably near optims
functions which are h-complex a.e., making Meyer's proof applicable.

‘12
Bibliography

{B~1]} Bldm, H., A machine Independent theory of the complexity of recurs!ve
functions, JACH, 14 (1967), 322-336. ' :

(B-2] Blum, M., On effective procedures for spesding-up algorithms, JACM,
18 (1971}, 290-305.

[c} Chaitin, Gregory, Information-Theoretic limlts of farmal systems,
JACH, 21 (1974), 403-h23. _

{o]l cColllins, Willlam, Elements of provably recursive analysis, Notre

Dame Journal of Formel Logle, to appepr. :

{Co-Y) Collins, W., and Young, P., Discontinuitles of provably cofrect
computable real valued functlons, to appear.

[F) Fischer, P. C., Theory of provable recursive functions, Trans. A.M.S5.
(‘965]' ll?n ﬁ’*‘SﬂO.

[F11 Floyd, R. W., Assigning meanings to programs, Proc. Symp. App.
Math., 19 {(1967), Math. Aspects Comp. Sc., Amer. Math. Soc., 19-32.

[6-81 G111, J., and Bluﬁ, M., On almost everywhere complex recursive functions,
JA‘H. 21 (197&)’ I"25""35-

[H-Y] Helm, J., and Young, P., On slize v efflclency fér programs admitting
spsed-ups, J. Symbollic Loglc, 36 T1971), 21-27.

[M] Manna, Z., The correctness of programs, J. Comp. Syst. Scl. 3,
(1969}, 114-127. _

[M-F) Meyer, A., and Flscher; P., Computational speedfup by effective operators,
J. Symbolic Logic, 37 (1972), 55-68.

[R-Y] Ritchia, R., and Young, P., Strong representabi]lity of partial functions
fn arfthmetic theorles, Inf. Ssei. 1 (1969), 189-204.

[Y-1] Young, Pau), Easy constructions In complexity theory: gap and speed-up
thearems, Proc. A. M. S., 36 {1973}, 555-563.

{Y-2] Young, Paul, Optimization among provably equivalent programs:
preliminary abstract, Proceedings of 14th Annual 1EEE Symposium on
Switching and Automata Theory, 1973, 197-13%9,

Croitimdeatiog among

]

n

Wow |

It

1

E TA SHEET

arguments

That 1qL

drop comma

frem , ¢P(K) = ¢

to, k'fp(x) = ¢
optimal

D to
o B
vhare to whose
when to whera
vhich do have

Q. 2,

Provebly equivalent Programs

o (P} (x) ’

(x)*,

a{p}

	Optimization Among Provably Equivalent Programs
	Report Number:
	

	tmp.1307986960.pdf.H5Or2

